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Abstract

As renewable energies are incorporated in larger shares in the electricity grid

and district heating and cooling networks, the integration of storage solutions

becomes more important. Thermal Energy Storage is an effective way to store

heat and utilize the synergies between different energy carriers. Stratified stor-

age tanks are a promising technology because of their low cost, simplicity and

reliability. However, the modeling of the thermocline region in a stratified tank

remains a challenge. There is a need to develop a fast and accurate 1D model

for simulations and optimizations of TES. In this paper, a new discretization

scheme is applied to the vertical axis of the storage tank. Orthogonal Collocation

accurately represents the temperature profiles inside the storage tank with less

points than the traditional multinode model, therefore running faster. Oscilla-

tions appear in the temperature profiles computed with orthogonal collocation

if the thermocline represented is too steep and a low number of discretization

points is used. But if a realistic thermocline is used as initial condition, the

model performs well. Thus, it is appropriate to represent the real behavior of

a storage tank, where uniform temperature conditions are avoided. Orthog-

onal Collocation on Finite Elements runs even faster and represents a good

perspective for optimization studies. The model developed in this paper is vali-
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dated with real data from a solar thermal plant with storage. A continuous and

smooth model is also developed for natural convection inside the storage tank.

The limitations of the model are discussed and perspectives on the modeling of

natural convection for optimization models are given.

Keywords: Thermal Energy Storage, Modeling, Thermocline, Orthogonal

Collocation, Optimization

Nomenclature

Abbreviations

CFD Computational Fluid Dynamics

DHCN District Heating and Cooling Network

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

OC Orthogonal Collocation

OCFE Orthogonal Collocation on Finite Elements

TES Thermal Energy Storage

Symbols

β Thermal expansion coefficient [K−1]

∆z Tank layer height in the multinode model [m]

ṁc Mass flow rate to charge the storage tank [kg.s−1]

ṁd Mass flow rate to discharge the storage tank [kg.s−1]

ρ Storage fluid density [kg.m−3]

A Tank cross sectional area [m2]
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ai Coefficient associated with the trial function f triali

AOCFE Matrix representing the first derivative in the OCFE method

AOC Matrix representing the first derivative in the OC method

BOCFE Matrix representing the second derivative in the OCFE method

BOC Matrix representing the second derivative in the OC method

Cp Storage fluid heat capacity [J.kg−1.K−1]

dinsu Thickness of the insulation layer [m]

E Energy stored inside the tank [J ]

f triali Trial function in the OC formulation

g Gravitational acceleration [m.s−2]

H Tank height

Hext Convection coefficient with the ambient air [W.m−2.K−1]

K Von Karman constant

k∗ Effective thermal conductivity [W.m−1.K−1]

kfluid Thermal conductivity of the storage fluid [W.m−1.K−1]

kinsu Thermal conductivity of the insulation layer [W.m−1.K−1]

kturb Turbulent diffusion coefficient [W.m−1.K−1]

kwall Thermal conductivity of the tank wall [W.m−1.K−1]

li Lagrange polynomial

Lel Length of an element in the OCFE method [m]

P Tank perimeter [m]

Rext External radius of the storage tank [m]
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Rint Internal radius of the storage tank [m]

S1 Exchanger surface between the bottom layer and the environ-

ment [m2]

Sl Lateral surface of a tank layer [m2]

SN Exchanger surface between the top layer and the environment

[m2]

t Time [s]

T (z, t) Fluid temperature inside the tank [◦C]

Tamb(t) Ambient temperature [◦C]

Tcharge Temperature of the charging fluid [◦C]

Treturn Cold temperature returning to the storage tank [◦C]

U Tank fluid to ambient overall heat transfer coefficient [W.m−2.K−1]

U1 Tank fluid to ambient overall heat transfer coefficient for the

bottom layer [W.m−2.K−1]

UN Tank fluid to ambient overall heat transfer coefficient for the

top layer [W.m−2.K−1]

z Tank height from the bottom of the tank [m]

1. Introduction

In order to reduce the green house gases emissions of the energy sector, re-

newable energies will be incorporated in greater share into the electricity grid

and District Heating and Cooling Networks (DHCN) [1]. Some of these renew-

able energies are intermittent, such as wind or solar energy. Thus, storage of

the energy produced is required to ensure that the energy demand is met. Heat

can be stored easily, unlike electricity [2]. Therefore, Thermal Energy Storage
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(TES) is an important technology to develop. TES can be used to store hot

fluid for space heating, domestic hot water or industrial processes. Moreover, if

the temperature of the stored fluid is high enough, steam and electricity can be

generated with the hot fluid. TES allows to exploit the synergies between heat

and electricity [3]. Thus, TES can be used in association with solar thermal

plants or conventional thermal plants in order to store the heat produced. This

will help to overcome the intermittency of renewable energies and will ensure

that the energy demand is met.

There are three categories of TES based on different phenomena to store

the heat: sensible, latent and thermochemical [4]. The design, modeling and

optimization of all types of technologies are studied actively nowadays. For

example, a packed bed sensible heat storage was investigated in [5], a latent

heat storage included in a solar system was optimized [6], and an adsorption

heat storage was modeled in [7]. Hybrid storage solutions, such as a stratified

storage tank with phase change emulsion in [8], are also explored and simulation

models are developed. Although latent and thermochemical storage technologies

are promising, sensible heat storage is mostly used nowadays, because of its low

cost, reliability and high level of maturity. There are two main ways to store the

sensible heat in a thermal plant. It is possible to use two storage tanks, one for

the hot fluid exiting the plant and one for the cold fluid returning to the plant,

such as in [9]. The second option takes advantage of thermal stratification.

It uses one single tank that is charged from the top with hot fluid while the

cold fluid returning to the plant is charged from the bottom [10]. Because the

density of the storage fluid is lower at higher temperatures, there is no significant

mixing taking place between the hot and cold zones. The temperature gradient

between these two zones is very steep and this region is called the thermocline.

The stratification inside the storage tank is illustrated in Figure 1. This figure

shows the thermocline region and the temperature profile inside the storage

tank as an example.

This single tank technology is cheaper to build because it requires less land

space and construction materials, and is less complex [11]. For low tempera-
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Figure 1: The thermocline region and the temperature profile inside the tank

tures, water is a commonly used storage fluid because of its availability and

low cost. For application at higher temperatures, other fluids are chosen, such

as molten salts for example, and packed bed materials, such as rocks, metals,

ceramics or recycled materials are added [12]. Naturally stratified storage tanks

and thermocline storages with filler material share common features. In both

technologies, a thermocline separates a cold and a hot zone, and can be thick-

ened due to diffusion and convection [13]. However, the filler material plays a

role in destratification. If idle periods are long, both water and bed conductivity

lead to thermocline thickening [14]. Moreover, the limited heat transfer between

the fluid and the filler material can also lead to thermal destratification. The

present paper focuses on naturally stratified water storage tanks without any

filler material. However, the model proposed in this work could be adapted to

packed bed thermocline storages. The storage tank used for an energy system

can be long-term, also called seasonal storage, to store heat between seasons.

The other type of storage tank is short-term or daily, to store between days.

This paper focuses on short term storage tanks, although the model developed

in this work could also be applied to seasonal storage tanks.

Developing fast and accurate simulation and optimization models of TES is

crucial to accelerate their integration in smart grids or DHCN. Especially, TES

models for real-time optimization and control of energy systems, such as solar
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thermal plants [15], are needed. Since they will be used online, they need to run

even faster than offline optimization models. The modeling of thermocline TES

requires spatial discretization, which can lead to complex and computationally

expensive models. 3D and 2D approaches are useful to understand the phenom-

ena taking place inside the storage tank but optimization studies or simulation

studies of larger systems require a 1D model to speed up calculations. In the

tank, a temperature inversion might arise if the storage is charged with a lower

temperature, or because of heat losses for example. This is rapidly corrected

by natural convection in the real system. However, the 1D model does not tra-

ditionally include a natural convection term. It needs to be added in order to

correct temperature inversions. Adding the modeling of this 3D phenomenon in

a 1D model remains a challenge. In this paper, a new discretization scheme for

a 1D model, based on orthogonal collocation, is presented. This model is able

to represent more accurately the thermocline region than the finite volumes dis-

cretization scheme that is traditionally used, and with reduced computational

time. Some perspectives on the modeling of natural convection in a 1D model

are also provided.

This paper is divided as follows: Section 2 presents the state of the art of

TES modeling. Section 3 details the traditional 1D model based on finite vol-

umes and its drawbacks. Section 4 introduces orthogonal collocation and its

application for the spatial discretization of TES. Section 5 shows the results

obtained with the new discretization scheme. It also compares the two previ-

ously mentioned schemes, in terms of the estimation of the temperature profile

in the storage tank as well as the valuable stored energy. Section 6 introduces

the adapted discretization scheme for optimization, Orthogonal Collocation on

Finite Elements, and provides more results on the modeling of the TES in op-

eration. Finally, Section 7 is the validation of the model with real plant data

and Section 8 briefly discusses natural convection modeling.
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2. Literature review on stratified TES modeling

In a thermocline storage tank, it is crucial to maintain the best degree of

stratification possible, which means that the thermocline must remain as thin

as possible. Indeed, if there is some mixing between the hot fluid and the cold

fluid, it will deteriorate the energy stored at the top of the tank by decreasing

its temperature. Several phenomena lead to destratification inside the storage

tank: the mixing induced during charging and discharging, the vertical diffu-

sion between the hot and cold zones, natural convection due to charging and

discharging at a variable temperature and to heat losses to the environment

[16]. He et al. [11] analysed experimentally the thermocline evolution inside a

storage tank during charging and discharging and also during the static mode.

They observed that long periods of stand-by status should be avoided because

the thermocline widens with diffusion. Also, the thermocline thickness is highly

dependant on the flow rate during the charging and discharging phases. New

technologies are developed to enable a better stratification inside the TES, fo-

cusing on the inlet design and location. For example, in [17], a thin flexible

tube, called water snake, delivers the incoming fluid in the TES at the position

in the tank where the temperature and density of the stored fluid and the in-

coming fluid are the same. This minimizes mixing and turbulence inside the

TES. Although promising, this design is still in the early stages of development.

Modeling a thermocline storage tank is challenging. The thermocline must

be represented accurately because the temperature gradient in this region is

very steep. On the other hand, the integration of a TES model into a thermal

plant model or an energy network leads to long computational time. Therefore,

it is necessary to find a compromise between computational time and accurate

estimation of the valuable energy stored inside the storage tank. The compro-

mise is even more necessary for real-applications, such as real-time optimization

and control. Depending on the study objective, various modeling techniques

have been developed, summarized in [18] for example, and explained below.

TES can be modelled in 3D, using Computational Fluid Dynamics (CFD)
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for example, in order to accurately represent all the phenomena taking place

inside the tank. In such models, the mass, momentum and energy balance

equations are solved on a 3D grid. These models allow to understand better

the fluid movements around the diffusers for instance [19], in order to improve

their design and maintain a better stratification. Natural convection, taking

place when temperature inversions appear inside the tank, can also be studied.

Buoyancy forces due to natural convection correct these temperature inversions

in a few minutes. For example, the transient cooling inside the storage tank and

the natural convection movement induced by sidewall heat losses were investi-

gated with CFD in [20]. 3D and 2D CFD models are very accurate but also

computationally expensive. For storage tanks, a 2D simulation of the symmetry

plane might help to reduce the computational burden, such as in [8], but fur-

ther reduction in computational time may be necessary for some applications.

Thus, 2D and 3D models are usually employed to improve the design of TES

(in [21] for example) or to validate simplified models. Indeed, simplified models

are needed for long term simulations, complex energy systems simulations or

optimization studies. For instance, Johannes et al. [22] used a CFD model

with 110,000 nodes to model a TES and noticed a bi-dimensional mass transfer

leading to a non-uniform temperature along the radial axis of the tank. Their

accurate model was used to validate a simplified 1D model along experimental

measurements. They found a good agreement between the two models and the

experiments for the vertical temperature profiles inside the storage tank. Thus,

they suggested to use the 1D model for the simulation of a global energy system.

2D zonal models allow the modeling of a temperature gradient in the radial

direction with shorter computational times than CFD because they do not solve

the momentum equation. Nevertheless, they can still be computationaly expen-

sive and are used as references to validate 1D models (in [23] for example). De

Césaro Oliveski et al. [23] concluded that their 1D model is much faster than

the reference 2D model and the two models are in good agreement for the repre-

sentation of the vertical temperature profiles inside the storage tank. Therefore,

it is not necessary to use a 2D model for long-term simulations.
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For optimization studies of energy systems, it is more common to use a

1D model for the TES. In this case, only the temperature variations along the

vertical axis are considered. We assume that there is no temperature gradient in

the radial direction. This assumption has been verified experimentally, in [24] for

instance, in which the radial temperature gradients measured were below 1◦C.

The 1D model is a good approximation when the storage tank is cylindrical

with its inlet and outlet located at the top and bottom surfaces on the axis of

symmetry [25]. For other geometries, the 1D approximation is less accurate. The

simpliest 1D model is the fully-mixed storage tank. The temperature is assumed

uniform inside the whole storage tank, and there is no stratification. This model

leads to an important exergy destruction [26]. The ideally stratified storage tank

considers two zones with fixed temperatures and variable volumes, one for the

cold fluid and one for the hot fluid. The thermocline in considered having a zero

thickness and moves up and down along the vertical axis of the tank. This model

overestimates the valuable energy stored by considering a perfect stratification

[26]. In [27] two layers with variable volumes and temperatures were modeled

and a hypothetical transition profile of the temperature, centered in the ideal

separation line, was added to reproduce the thermocline. This model still runs

fast but is more accurate than the ideally stratified storage tank model. The

plug flow model uses a variable number of layers of fluid, each with a variable

volume [16]. A new layer is added when the incoming fluid temperature (during

the charge or discharge) is too different from the closest layer temperature (more

than 0.5◦C difference). Otherwise, the incoming fluid is mixed with the fluid

from the closest layer. The temperature profile is then shifted and the volume

of fluid crossing the boundary of the storage tank is sent back to the heat source

or sink. This 1D model is fast but does not rely on mass and energy balances

and therefore, it is not very accurate. The last 1D model strategy is to solve the

energy balance in the storage tank along an ascending vertical axis z. Assuming

constant thermophysical properties for the storage fluid and no heat source

inside the storage tank, the conservation of energy in 1D over a control volume

of thickness dz leads to the following Partial Differential Equation (PDE):
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ρCpA
∂T (z, t)

∂t
+ ṁCp

∂T (z, t)

∂z
= Ak

∂2T (z, t)

∂z2
+ UP (Tamb(t)− T (z, t)) (1)

The first term is the energy accumulation, the second term represents the

enthalpy fluxes due to the charge or discharge, the third term represents diffusion

inside the tank and the final term models the heat losses to the environment.

In Equation 1, the unknown variable is the storage fluid temperature T (z, t)

varying in space, along the vertical coordinate z, and in time t. ρ represents

the stored fluid density, Cp the stored fluid heat capacity and k the stored fluid

thermal conductivity. They are all assumed uniform and constant. A is the

tank cross-sectional area, P is its perimeter. The enthalpy fluxes due to charge

or discharge depend on the resulting flow rate ṁ inside the storage tank. The

thermal losses are computed based on an overall heat transfer coefficient U

between the tank fluid and the ambient air at the temperature Tamb. Details

on how we computed U in our model are given in Section 3. The variables and

parameters involved in Equation 1 are listed in the nomenclature.

The initial condition for the temperature in Equation 1 could be either a

fully mixed condition, represented by a single uniform temperature, or a known

temperature gradient [28].

The boundary conditions at the top and bottom of the storage tank depend

on its utilization ([29], [30]):

� Charge : ∂T (z,t)
∂z

∣∣∣
z=0

= 0 ; Tz=H = Tcharge

� Discharge : Tz=0 = Treturn ; ∂T (z,t)
∂z

∣∣∣
z=H

= 0

� Idle period : ∂T (z,t)
∂z

∣∣∣
z=0

= 0 ; ∂T (z,t)
∂z

∣∣∣
z=H

= 0

In these equations, z = 0 is the bottom of the storage tank, while z = H is the

top of the storage tank of height H. Tcharge and Treturn are the temperatures

respectively of the charging flow and the return flow. When fluid is entering the

tank, the temperature at the inlet of the storage is equal to the incoming fluid

temperature. When fluid is leaving the tank, which corresponds to the bottom
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during charge and the top during discharge, a zero gradient is considered for the

temperature. It means that the fluid at the outlet is at the same temperature

on each side of the outlet (storage side and pipe side). During idle periods, the

temperature gradient is also considered zero, which means that an adiabatic

surface is assumed. A value could be given to the temperature gradient, equal

to the heat losses to the environment through the top and bottom surfaces of

the tank. Fixed boundary conditions can only be applied if a fixed working

mode is determined for the simulation study. Otherwise, strategies need to be

developed to represent the changing boundary conditions. This will be explored

in 4.3.

In order to solve this EDP, different discretization strategies along the space

variable z can be used. They will allow the transformation of the EDP into a

system of Ordinary Differential Equations (ODE). The traditional discretization

scheme is based on finite volumes and is called the multinode model. It relies

on the division of the storage vertical axis into several layers of fixed height

and uniform temperature. An energy balance is written for each layer. Its

implementation will be detailed in the next section of the paper. The multinode

model has often been used in recent works for various applications. Firstly, the

stratified storage tank alone has been studied. This allowed to better understand

its stratification evolution [31], assess its efficiency [32] and study the effect of the

variation of important parameters on the TES performances [33]. Adaptations

were made to the original formulation to incorporate immersed heat exchangers

in [34]. This new model was then used to size the storage tank using deep

learning methods [35]. Furthermore, the multinode model has been used to

model the storage tank in a more complex energy system such as a micro-

combined heat and power system [36], a solar district heating system [37] or

a domestic hot water heat pump [38]. The authors sometimes implement the

model themselves or directly use it within a software library, such as the TES

implemented in TRNSYS used in [32], [26] and [39]. The model was also adapted

in 2D for a seasonal pit storage in [40] with segments of equal volumes instead

of equal height. Finally, the multinode model has been compared to fully-mixed
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and ideally stratified models, showing a better estimation of the exergy stored

[26]. Also, it has been compared to a 2D zonal model in [23] and a CFD

model in [22], showing sufficient accuracy in the vertical temperature profiles

with a greatly reduced computational time. As this literature review shows,

the multinode model has been extensively studied and used in the recent years.

Nevertheless, it presents the issue of numerical diffusion, a smoothing effect

on the vertical temperature profile when a reduced number of nodes is used

[41]. To overcome this issue, a large number of nodes needs to be used, at

least 100 according to [27], making the computational time prohibitive for some

applications. For the simulation of a complex system or an optimization, a

reduced number of nodes is used, leading to poor accuracy. For example 60

nodes were used in [36], 26 nodes in [37], 15 nodes in [39] and 10 nodes in

[34], [35] and [42]. These studies would benefit from a fast and accurate 1D

model suitable for long-term simulations, global energy systems simulations and

optimizations. A new discretization scheme, Orthogonal Collocation (OC), is

introduced in Section 4 to resolve the issue of numerical diffusion. OC has

never been applied to discretize the vertical axis of the storage tank. Other

discretization schemes for Equation 1 have not been found in the literature. In

[43], a 1D model with 5 layers of variable height but fixed temperatures was used

for the incorporation of a TES in a MILP-based energy management system.

In the present paper, no linearization is done and Equation 1 is directly solved.

An important aspect of a storage tank model connected to a thermal plant

that does not work with a constant outlet temperature is the correction of tem-

perature inversions. This is needed when working with a solar thermal plant

for example. At the end of the day, the solar irradiation goes down and the

temperature at the outlet of the solar field might decrease a few degrees. Nev-

ertheless, the temperature reached is still high enough for the consumer needs

and it might be interesting to store this fluid. In this scenario, the incoming

fluid is slightly colder than the stored fluid at the top of the storage tank. A

temperature inversion appears. In the real system, this temperature inversion

will be corrected by buoyancy forces induced by natural convection. This mixing
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phenomenon should be incorporated into the storage tank model [16]. Another

cause for a temperature inversion is the heat losses that are more important

along the walls of the storage tank, and especially on the top surface, where the

area is the largest and the fluid is the hottest. The top section of fluid might

cool down more rapidly than the rest of the stored fluid and therefore, a temper-

ature inversion will appear [23]. Temperature inversions are the main cause for

destratification [44]. Natural convection is a 3D phenomenon and its modeling

requires the development of the momentum equation. The colder fluid entering

the top of the tank will sink inside the tank because of its higher density. During

its descent, it will exchange mass and energy with its surrounding, composed of

warmer stored fluid. Thus, it will warm up and its downwards trajectory will

stop once the temperature equilibrium is reached [24]. Therefore, the incoming

fluid won’t mix perfectly with the fluid at the top of the tank and it won’t go to

the zone of storage with the same temperature without affecting the stored fluid

either. Different numerical artifices have been developed to model natural con-

vection in 1D, and have generally been incorporated into the multinode model.

The first category of methods is to perform an operation after each time step,

if a temperature inversion is spotted inside the storage tank. The first method

is to reorganize the temperatures after each time step, making sure that the

hottest temperature is at the top of the storage tank and that the coldest is at

the bottom [45]. This leads to an overestimation of the valuable stored energy

because it neglects the mixing between the incoming fluid and the surrounding

stored fluid. The other approach is to homogenize the temperatures around the

inversion. A weighted mean temperature amoung the segments involved in the

inversion is used [46]. These two methods provide good results [23] but require

conditional structures to activate the operation only if needed. This is not easy

to integrate into an optimization model because it only includes algebraic equa-

tions. Another method used in some studies is to inject the fluid inside the

layer with the temperature closest to the charging temperature, thereby avoid-

ing temperature inversions. Some actual systems provide several inlet ports

to reproduce this behavior, but they are more expensive. Moreover, they do
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not completely prevent temperature inversions as small temperature differences

will still occur because there are only a few inlet ports or because of the heat

losses through the top and lateral walls during idle periods. If the actual sys-

tem has only one inlet at the top of the tank, injecting at a variable height

in the model neglects the mass and energy transfer between the incoming and

the stored fluids. Thus, it overestimates the performances of the storage tank

[24]. Moreover, it requires the use of conditional structures and is not appro-

priate for optimization studies. Saloux et al. [47] developed an advanced flow

rate distribution method to reproduce the mixing between the incoming and

stored fluid during the incoming fluid descent through the storage tank. The

method is based on heuristics and not on physical models. Pate developed a 1D

model based on physical equations to describe the natural convection inside the

storage tank [24]. It is called the plume entrainment model. Pate performed

some experiments to visualize the trajectory of the incoming colder fluid. He

observed that the colder fluid sinks inside the storage tank and some of the

stored fluid is entrained with it. Some warmer stored fluid then rises inside the

tank to replace the entrained fluid. Those turbulent movements are in 3D but

the radial temperature gradient is negligible. From these observations, Pate de-

veloped a 1D plume entrainment model. Mass and energy balances are written

for the plume and the bulk fluids. The plume stops its course when tempera-

ture equilibrium is reached. These differential equations have been solved with

finite volumes and led to good results, in agreement with experimental results

[24]. In order to solve the ODE system, the equations for the plume and the

bulk were decoupled. The plume temperature was obtained from the previous

bulk temperatures, and then the new bulk temperatures were computed using

the plume depth ([44], [16]). Analytical solutions have also been developed,

neglecting the diffusion term [25]. Although this model is promising since it is

based on physics and is written in the form of ODEs, it is not appropriate for

optimization studies because of the discontinuities in the flow rates computed

inside the storage tank. Another approach is to model a turbulent diffusion

coefficient that is large only when a temperature inversion appears ([28], [48],
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[41], [49], [50]). The diffusion term in Equation 1 is then replaced by:

(k∗ + kturb)
∂2T (z, t)

∂z2
(2)

There are many formulations for the turbulent diffusion coefficient, based on

physical models [28] or not, which must be several order or magnitudes larger

than k∗ [41]. This formulation requires a conditional structure to determine if

kturb is zero or not, but it is a continuous formulation that does not need to be

performed at the end of each time step. For this reason, it is easier to incor-

porate into a simulation model using an automatic integrator. It is possible to

transform this model into a smooth model by using a continuous approximation

of the condition (logistic function for example) or the max function. The devel-

opment of a continuous and smooth model for a storage tank with temperature

inversion correction is the topic of very recent works ([51], [52]). These formula-

tions are appropriate for optimization studies but they require the tuning of the

smooth functions parameters to find the best compromise between accuracy and

convergence ease. Finally, a different approach was presented in [53]. Inversion

flow rates are introduced as optimization variables in the optimization problem.

They are activated to minimize the temperature inversion sum, that is included

in the objective function. This method also requires some tuning for the bounds

on these flow rates and on the weight associated with the temperature inver-

sion sum in the objective function. This approach is easy to implement in an

optimization study and does not cause convergence difficulties.

Based on this literature survey, there is still a need to develop a fast and

accurate 1D model for simulation and optimization studies. Moreover, ways to

correct temperature inversions in an easy way are needed, especially for opti-

mization models. This paper presents the discretization of the 1D model with

orthogonal collocation, which has never been applied to this problem before.

The model proposed hereafter requires less discretization points than the tradi-

tional multinode model to achieve the same accuracy. It is therefore faster to

run. A discussion on how to model natural convection for optimization studies

is added at the end of the paper.
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3. Traditional one-dimensional model

3.1. Mathematical Formulation

In the traditional multinode model, Equation 1 is discretized with finite

volumes, considering N layers of height ∆z. Layer 1 is located at the bottom

of the tank and layer N is located at the top. The unknown temperatures are

located in the middle of each layer, and the temperature inside each layer is

assumed uniform. This discretization scheme is illustrated in Figure 2, with the

vertical axis named x and pointing upwards.

Figure 2: Finite volumes discretization scheme for TES [41]

Each layer is composed of the stored fluid and the wall, assumed in thermal

equilibrium. The assumption stems from the large heat transfer coefficient be-

tween the stored water and the wall as well as the small thickness of the wall

and its large conductivity. Thus, diffusion through the wall and convection in

the water side are considered large, and the wall and the stored fluid are at

the same temperature. In this discretization model, the first derivative with

respect to z is approximated with finite differences of order 1 and used for the

convective terms. The second derivative with respect to z is computed with

centered finite differences, of order 2, and used for the diffusion term. For the

top and bottom layers, the finite differences to approximate the second deriva-

tive are not centered but are computed using the wall temperature as one of the
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neighbor temperatures. We assumed that the wall temperature is equal to the

fluid temperature. Since the wall is located at the distance ∆z
2 from the top and

bottom, a coefficient of 4
3 appear in front of the diffusion term for the top and

bottom layers. The equations used for the different layers i, at the temperature

Ti, are presented hereafter:

For the first layer at the bottom of the storage tank:

(3)ρCpA∆z
dT1

dt
= U1S1(Tamb − T1) +

4

3

k∗A

∆z
(T2 − T1)

+ ṁcCp(T2 − T1) + ṁdCp(Treturn − T1)

For an intermediate layer i, for i varying from 2 to N-1:

(4)ρCpA∆z
dTi
dt

= USl(Tamb − Ti) +
k∗A

∆z
(Ti−1 − 2Ti + Ti+1)

+ ṁcCp(Ti+1 − Ti) + ṁdCp(Ti−1 − Ti)

For the last layer N at the top of the storage tank:

(5)ρCpA∆z
dTN
dt

= UNSN (Tamb − TN ) +
4

3

k∗A

∆z
(TN−1 − TN )

+ ṁcCp(Tcharge − TN ) + ṁdCp(TN−1 − TN )

The time dependency of the variables in these equations is not written for

conciseness. In these equations, ṁc and ṁd are the flow rates of charge and

discharge respectively. The temperature of charge Tcharge and the return tem-

perature Treturn are the other inputs of the system. S1 and SN are the surfaces

of the layers 1 and N respectively in contact with the ambient temperature.

They are composed of the lateral surface of the tank layer as well as the top or

bottom surface. Therefore, the heat losses are more important for these layers

than the interior ones, because the exchange surface is larger.

The overall heat transfer coefficient with the environment takes into account

the diffusion through the insulation layer of the storage tank (with a depth dinsu

and a thermal conductivity kinsu) and the convection with the ambient air:

1

U
=

1

Hext
+
dinsu
kinsu

(6)
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The heat transfer coefficient with the environment Hext can be determined

with an experimental correlation and depends on the environmental conditions

(wind speed for example). Thus, this coefficient is variable and depends on the

weather. This coefficient can be different for the top, bottom and lateral surface

(hence the different names U1, U and UN in the above equations).

The effective thermal conductivity of the fluid and the wall is computed as

follows:

k∗ = kfluid + kwall
R2

ext −R2
int

R2
int

(7)

In Equation 7, Rext is the external radius of the storage tank, including the

wall, while Rint is the internal radius only considering the fluid. The effective

conductivity represents the effect of diffusion in the tank wall on the destratifi-

cation [54]. Although the cross sectional area of the wall is much smaller than

of the fluid, the large conductivity of the metallic wall contributes to the ho-

mogenization of the temperatures inside the storage tank. The thermal capacity

mCp is the one of the water only because the thermal capacity of the wall is

neglected. Indeed, the specific heat capacity of the wall is small compared to

the one of water and the mass of metal is much smaller than the mass of water.

3.2. Numerical Diffusion

One of the main assumptions in this model is the uniform temperature in

each layer of fluid, which corresponds to an infinite thermal diffusion inside

each layer. This generates an effect called numerical diffusion [41], where the

temperature profile along the vertical axis of the tank is smoothed. This effect is

highly dependent on the number of layers used in the model. If a large number

of layers is used, the thermocline region will be represented more accurately but

the computational time will be longer. This is illustrated in Figure 3 for 10,

100 and 1000 layers. In this example, a water storage tank of 500m3, initially

at 30◦C, was charged with hot fluid at 80◦C at a flow rate of 10kg.s−1. The

charge was performed over 26 hours in order to completely fill the storage tank.

The computational times were 0.1s, 0.14s and 4.7s for 10, 100 and 1000 layers

respectively, on a laptop with the following characteristics: Intel Core i7-1065G7
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1.3GHz, RAM 16Go. The simulation was performed on MATLAB and the solver

ode15s was used for the time integration.

Figure 3: Impact of the number of layers on the temperature profiles

Figure 3 shows that the thermoclines are not well represented with a small

number of layers. 1000 layers is not the converged solution yet and the thermo-

cline continues to get thinner as the number of layers increases. Powell et al.

[41] tested up to 10,000 layers and showed an improvement compared to 1000

layers. However, the computational time greatly increases with the number of

layers and the model with 1000 is already about 30 times slower than the model

with 100 layers. Thus, it is needed to find a compromise between the accuracy

of the model and the computational time for complex long-term simulations and

optimizations. For a study on the storage tank only, a large number of nodes

can probably be used without making the computational time prohibitive. The

bad representation of the thermocline region with a low number of layers has

a direct impact on the quantity of energy stored at a temperature high enough

for its utilization. The stored energy E(t) at each time instant compared to the

initial state of the storage tank is defined as follows:

E(t) =

∫ z=H

z=0

ρACp(T (z, t)− T (z, 0)) dz (8)

In this equation, T (z, t) is the current temperature profile along the vertical axis

inside the storage tank and T (z, 0) is the initial profile acting as a reference.

For an energy system, the quantity of energy stored is not the only variable of
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interest, but also its temperature. For example, if the consumer requires heat

at a minimum temperature of 65◦C, then it is the quantity of stored energy

with a temperature higher than 65◦C that matters. A bad representation of the

thermocline region does not affect the quantity of stored energy but its quality.

Figure 4 shows the cumulated energy at a temperature above 65◦C stored

throughout time during a charging phase, for different numbers of layers in the

model. It can be observed that there is a large discrepancy between the cu-

mulated energy profiles for 10 layers and for 100 or 1000 layers. A model with

only 10 layers greatly underestimates storage utilization. Using 100 layers is a

reasonable approximation, even if numerical diffusion still has an effect. A quan-

titative analysis shows that the maximal difference between the energy profile

with 1000 layers and the one with 10 layers is 5.1MWh, while it is 1.3MWh for

100 layers. At the beginning of the charging phase, during the first hour, when

the stored energy is small, the relative difference between the models with 1000

layers and 10 layers goes up to 100%, while it reaches 26% for 100 layers. This

analysis shows that a bad representation of the thermoclines due to numerical

diffusion with a model with few layers has a large impact on the estimation of

the valuable stored energy. Furthermore, the time needed to completely charge

the storage tank depends on its discretization. It takes 15 hours to completely

charge the storage tank with the 1000 layers model while it takes 22 hours to

do it with the 10 layers model. Therefore, using the multinode model with a

small number of layers leads to an underestimation of the performances of the

storage tank.

Modi et al. [33] chose to use 1500 layers after performing a grid convergence

study for their packed bed storage tank. Their model was validated with exper-

imental results. Mawire et al. [31] used 200 layers to model their TES because

no further improvement was observed with a finer spatial grid. Aguilar et al.

[38] used 100 layers and observed a deviation of 0.1% in the temperatures and

energies computed compared to a model with 500 layers. These models used

a large number of layers because they focused on the simulation of the storage

tank only or on a simple system. The computational time was not an issue in
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Figure 4: Cumulated stored energy through time during charging

these papers, and thus the authors were able to use enough discretization points

to limit the numerical diffusion effect. For more complex systems, the number of

layers needs to be reduced in order to achieve reasonable computational time.

Thus, 60 layers were used for the TES in a micro-combined heat and power

system [36], 15 layers were used for the TES associated with a ground source

heat pump [39] and 10 layers were used for the TES with two immersed heat

exchangers, whose model was developed in [34]. For the optimization of a com-

plex energy system the number of layers must be further reduced to speed up

the calculations. For instance, Scolan et al. [42] optimized the operation of a

solar thermal plant including a storage tank. They used only 10 layers to model

their storage tank. Similarly, Saloux et al. [37] minimized the primary energy

used in a solar district heating system with a 26 layers TES model. The TES

size was optimized in [35] with a model consisting of 10 layers. Although not

very accurate, these models allowed the authors to obtain approximate results

in a reasonable time. This highlights the need to develop a fast and accurate

1D TES model for complex long-term simulations or optimizations.

A first attempt to improve the results obtained was conducted in the present

work. In the original method, the enthalpy fluxes associated with charging and

discharging were computed with finite volumes in Equation 4, as shown below

for the interior points:

ṁcCp(Ti+1 − Ti) + ṁdCp(Ti−1 − Ti) (9)
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This corresponds to a finite difference of order 1 to approximate the first deriva-

tive with respect to z.

These terms were replaced by the following, based on finite differences with

a centered scheme, which corresponds to a finite difference of order 2 to approx-

imate the first derivative with respect to z:

ṁcCp(Ti+1 − Ti−1)

2
+
ṁdCp(Ti−1 − Ti+1)

2
(10)

The centered scheme for the computation of the first derivative of the tem-

perature could lead to more accurate results since it involves two neighbors

temperatures instead of one, and the order of the finite difference was increased

by 1. A simulation with 100 discretization points is performed for the charging

phase presented previously. For the boundary conditions, the temperature at

the top of the storage tank is equal to the charging temperature and the temper-

ature at the bottom of the tank, which is where the fluid exits during a charging

phase, has a zero spatial derivative [29]. The temperature profiles obtained are

plotted in Figure 5, at four time instants. In this figure, the thermoclines are a

bit steeper than the ones obtained with the traditional multinode model. Hence,

numerical diffusion is slightly reduced compared to the previous discretization

scheme. However, oscillations appear in the profiles above the thermoclines.

The oscillations are increasing as the charging phase continues. This is also

mentioned in [55], where the authors noticed spatial oscillations when a sharp

gradient was represented with a higher order discretization scheme. Moreover,

the computational time is the same for the two discretization schemes. Thus,

changing the derivation scheme for centered finite differences does not appear

to be a good approach.

In order to eliminate numerical diffusion, Powell et al. [41] developed an in-

termediate model between the ideally stratified model and the multinode model.

Two variable volumes represent the hot and the cold zones on each side of the

thermocline. The thermocline itself is modeled with a fine 1D grid along the

vertical axis. When the charging or discharging begins from a uniform temper-

ature storage tank, the thermocline is created while the fluid crosses the thin
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Figure 5: Temperature profiles obtained with centered finite differences and 100 layers

layers of the grid. Once the thermocline is established, it will move up and

down the storage tank and only the hot and cold volumes will vary. With this

approach, numerical diffusion is eliminated, the model runs faster than the tra-

ditional multinode model and does not overestimate the storage capacity as the

ideally stratified model does. Thus, this model is accurate and fast enough for

dynamic simulations. Unfortunately, conditional structures make it difficult to

incorporate into an optimization model.

In this paper, a new discretization scheme is applied to the storage tank

vertical axis in order to make numerical diffusion negligible and better represent

the storage tank.

4. New spatial discretization scheme

4.1. General presentation of Orthogonal Collocation

Orthogonal Collocation (OC) approximates the unknown state variable in-

volved in a differential equation with a sum of some selected trial functions of

the integration variable. In this case, the unknown variable is the temperature

inside the storage tank T (z) and the integration variable is the space coordinate

z. Equation 11 shows the construction of the approximate temperature T̃ (z)

with the trial functions f triali :
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T (z) ≈ T̃ (z) =

N∑
i=1

aif
trial
i (z) (11)

With this method, the derivative of the temperature can be easily computed

with the derivatives of the trial functions, which are known analytically. The

satisfaction of the differential equation is imposed for N points carefully chosen

and called collocation points. This method allows the transformation of a dif-

ferential equation into a system of algebraic equations, whose unknowns are the

coefficients ai associated with each trial function in the sum. Generally, poly-

nomials are used as trial functions. Collocation points are commonly chosen as

the roots of orthogonal polynomials, hence the name Orthogonal Collocation.

The choice of the collocation points will impact the convergence and accuracy

of the results. Moreover, orthogonal polynomial roots allow to use a quadrature

method in order to compute the integral of the unknown variable. Polynomial

interpolation ensures the continuous representation of the variable over the in-

tegration domain. On the contrary, finite volumes only provide the values for

distinct discretization points. Linear interpolation can then be used to obtain

a continuous solution. For the same degree of accuracy, less points are needed

and thus less computational time, for OC. For these reasons, Equation 1 was

discretized with OC for the space variable z in the next subsections.

4.2. Implementation methodology

To the best of our knowledge, OC has never been applied to discretize the

space dimension of a storage tank. This subsection presents the methodology

developed. The unknown temperature along the z axis is represented by a linear

combination of N interpolating Lagrange polynomials lj (numbered from j=1 to

N), which is a common choice for the trial functions of OC. The vertical axis is

discretized with N collocation points zi. The advantage of Lagrange polynomials

is the following property: lj(zi) = δji, which is 1 if j = i and 0 if j 6= i. Thus,

the temperature can be written as follows:

T (z) ≈ T̃ (z) =

N∑
i=1

Tili(z) (12)
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The characteristics of Lagrange polynomials allow us to write: T (zi) = Ti for

the temperature at each collocation point i. Thus, the coefficients involved in

the linear combination used to approximate the temperature along the z axis

are the temperatures in each collocation point. Diverse matrices formulations

were developed for OC. An advantage of the matrix methods is that the matri-

ces used to express the differential terms only depend on the collocation points.

Therefore, once the points are chosen, the matrices can be computed once and

then used in all the simulations and optimizations. That way, their construc-

tion does not participate in the computational time. One formulation takes

advantage of the properties of Lagrange polynomials to build an accurate ma-

trix method [56]. Ebrahimzadeh et al. [57] detailed the following steps for the

implementation of this method, here applied to the discretization of the height

of the storage tank:

1. Normalise the domain (the height of the storage tank) between 0 et 1 :

z∗ = z
H

2. Choose Nint interior collocation points as roots of orthogonal polynomials.

Shift then in [0,1] if necessary. The complete set of collocation points is

composed of the Nint points and the boundary points 0 and 1

3. The interpolation polynomial representing the temperature along the z

axis is passing through the Nint + 2 collocation points and has a degree of

Nint + 1. It can be written as a linear combination of Nint + 2 Lagrange

polynomials passing through the Nint + 2 collocation points:

T (z) ≈ TNint+1(z) =

Nint+2∑
i=1

Tili(z) (13)

4. The interpolation polynomial can then be differentiated by using the ex-

pression of the derivatives of Lagrange polynomials:

∂T (z)

∂z
≈ ∂TNint+1(z)

∂z
=

1

H

Nint+2∑
i=1

∂li(z)

∂z
Ti (14)

This Equation can be written for each collocation point, and the system

can be put in matrix form: dT = AOCT . The coefficients in matrix AOC
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are AOCij =
dlj(zi)

dz for i and j varying from 1 to Nint+2 and T is a column

vector containing all the Ti values. dT is a column vector containing all the

dTi values, which are the first derivatives of the temperature with respect

to z for each collocation point i, and are expressed as a linear combination

of the temperatures Ti.

5. The same method can be applied to the second derivative, with a matrix

BOC and a column vector d2T containing the second derivatives d2Ti of

the temperature with respect to z for each collocation point i. If the

domain has been normalized, we have ∂T (z)
∂z = 1

H
∂T (z∗)
∂z∗ , and similarly,

∂2T (z)
∂z2 = 1

H2

∂2T (z∗)
∂z∗2 .

6. The differential terms in Equation 1 can then be replaced by AOCT
H and

BOCT
H2 . This forms a system of Nint equations with Nint + 2 unknowns

which are the temperatures at each collocation point. Two boundary

conditions complete the system (see subsection 4.3)

With OC, Equation 1 is transformed into a system of ODEs and the time inte-

gration is performed in MATLAB with the solver ode15s. The ODE equations

are written as follows for each interior collocation point i:

(15)ρCpA
dTi
dt

= UP (Tamb − Ti) + k∗A
d2Ti
H2
− (ṁc − ṁd)Cp

dTi
H

The time dependency of the variables in this equation is not written for con-

ciseness. The boundary conditions are those defined in Section 2 and a new

formulation able to adapt to the working mode of the storage tank is presented

in 4.3.

The collocation points associated with Gauss-Lobatto quadrature are chosen.

This will allow an accurate calculation of the stored energy inside the storage

tank, which requires the integration of the temperature profile over the height

of the tank. For an interpolation polynomial of degree Nint + 1, the collocation

points are the two boundary points of the interval and the roots of the derivative

of the orthogonal polynomial of degree Nint + 1. In the simulations, the roots

of Chebyshev polynomials were chosen as collocation points. They were found

to perform better than Legendre polynomials.
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4.3. Boundary Conditions

As mentioned is subsection 4.2, to use OC with N collocation points (N =

Nint + 2) for the discretization of the space coordinate in the storage tank, two

boundary conditions are needed in addition to the energy balance written for

the interior collocation points. In this case, Equation 1 has a second derivative

term for the space variable, therefore two boundary conditions are required: one

at the bottom of the tank (point 1, z = 0) and one at the top (point N, z = H).

For finite volumes discretization, the energy balance was written for the top and

bottom layers, assuming that the derivative of the temperature with respect to

space was zero at the boundary. With OC, no energy balance is written for the

boundary points, and boundary conditions are directly added to the system of

differential equations. The boundary conditions, which depend on the working

mode of the storage tank, were presented in Section 2. In the simulation or

the optimization of an energy system including a storage tank, the model needs

to switch to the appropriate boundary conditions automatically. Conditional

structures would slow down the convergence of the calculations and should be

avoided. In the multinode model, the energy balance written for the top and

bottom layer involve the flow rates of charge and discharge. Thus, it is able

to represent all the working modes. The idea detailed hereafter is to apply an

energy balance on a small layer of fluid located at the top and at the bottom

of the tank in order to compute the boundary temperatures. This is similar to

the mixing zones mentioned in [28]. Pate also wrote an energy balance at the

boundary points but neglected the accumulation term [24]. This formulation

did not require the construction of a small layer of fluid and was solved locally.

However, since the inertia was neglected, it was found to generate oscillations

in the boundary temperatures. Thus, mixing zones were preferred.

The boundary condition at the bottom of the tank, z = 0, is written as

follows:

(16)ρCpA∆z
dT1

dt
= U1S1(Tamb − T1) +

4

3

k∗A

∆z
(T2 − T1)

+ ṁcCp(T2 − T1) + ṁdCp(Treturn − T1)
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T1 represents the temperature of the boundary and T2 is the temperature of the

first interior collocation point.

The boundary condition at the top of the tank, z = H, is written as follows:

(17)ρCpA∆z
dTN
dt

= UNSN (Tamb − TN ) +
4

3

k∗A

∆z
(TN−1 − TN )

+ ṁcCp(Tcharge − TN ) + ṁdCp(TN−1 − TN )

TN represents the temperature of the boundary and TN−1 is the temperature

of the last interior collocation point. The time dependency of the variables in

these equations is not written for conciseness. The impact of the thickness ∆z

of this mixing zone was assessed. It appeared that using the distance between

the boundary point and the closest collocation point as the layer thickness was

appropriate. The temperature profiles obtained during the charging phase were

in total agreement with the ones obtained with fixed boundary conditions cor-

responding to a charge. The computational times were also similar. When the

fixed boundary conditions are used, the temperature at the top of the storage

tank is the temperature of the charged fluid. However, with the mixing zone,

an energy balance is used, so the temperature is not immediately equal to the

charging temperature. Figure 6 shows the variations of temperature at the top

point during the charging of the storage tank for fixed boundary conditions and

mixing zones. The temperature at the very beginning of the simulation is not

included in Figure 6 for the mixing zone because it is much smaller than the

charging temperature. During the first time instants, there is some mixing be-

tween the charged fluid and the stored fluid, which seems realistic. We observe

that the top temperature quickly reaches the charging temperature and slightly

oscillates around it during the first hours. However, these oscillations are small,

less than 0.4◦C. The model with mixing zones to represent the changing bound-

ary conditions is therefore validated.

4.4. Importance of the diffusion term

In some studies, the diffusion term in Equation 1, Ak ∂2T (z,t)
∂z2 , is neglected

([26],[33], [44], [47]). Nevertheless, He et al. [11] showed in an experimental
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Figure 6: Temperature evolution at the top of the tank during charging

study the expansion of the thermocline during the stand-by status. They high-

lighted the importance of reducing the duration of those idle periods in order to

preserve the quality of the stored energy. First, the impact of the diffusion term

during the idle periods was assessed in a simulation in MATLAB. A stand-by

period of 48 hours was considered, which corresponds to a long idle period for

a daily storage tank. Heat losses to the environment are included in the model.

The storage tank is initially half charged and the vertical axis is discretized with

200 collocation points. Two simulations are run, one considering the diffusion

term and the other neglecting it.

Figure 7: Effect of the diffusion term during idle periods

Figure 7 presents the initial and final profiles with and without the diffu-

sion term. First, we can notice that the hot temperature in the tank decreases
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slightly due to heat losses for the two simulations. When diffusion is considered,

the thermocline thickens over time, but the effect is rather small. The compu-

tational times for these two simulations are similar (0.12s without diffusion and

0.15s with diffusion). A quantitative comparison of the stored energy inside

the tank was performed. Here, the energy is valuable above 65°C. The initial

valuable energy stored is 18.54MWh. After 48 hours, this value is 18.45MWh

when diffusion is neglected, which represents a drop of 0.49% due to heat losses.

When the diffusion is modeled, the valuable stored energy after 48 hours is

18.23MWh, which is a decrease of 1.67% compared to the initial state. Thus, in

this model, diffusion does lead to a slight destratification but the effect is small.

Experimental studies showed a larger impact of diffusion on energy degradation

[11]. Other effects than diffusion can lead to some mixing. For instance, the

heat losses are larger along the tank walls. The fluid close to the walls is cooled

down and sinks along the wall, generating convection movement that mixes

the stored fluid. Diffusion is probably negligeable compared to these convec-

tion movements and the destratification is mostly due to these 3D convection

movements. Unfortunetaly these 3D phenomena are difficult to model in 1D.

So these simulations showed that the diffusion term does not have a great

impact on the temperature profiles inside the storage tank during idle periods.

A second test has been conducted to assess the importance of the diffusion term

during charging or discharging. Figure 8 shows the temperature profiles in the

tank at 4 time instants during the charging phase of the storage tank for the

models neglecting or not the diffusion term. It can be observed that oscilla-

tions appear on each side of the thermocline region when diffusion is neglected.

Therefore, it is a good practice to keep the diffusion term when discretizing the

storage tank with orthogonal collocation. This term has a stabilizing behavior.

5. Orthogonal Collocation: results and discussion

The methodology explained in the previous section was applied to discretize

the vertical axis of the storage tank during a simulation of a charging phase.
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(a) With diffusion (b) Without diffusion

Figure 8: Effect of the diffusion term during the charging phase

The storage tank is initially at a uniform temperature of 30◦C and is charged

with a hot fluid at 80◦C with a flow rate of 10kg.s−1. A sensitivity analysis

on the number of collocation points is conducted to assess its effect on the

temperature profiles. Figure 9 shows the temperature profiles at 4 times instants

during a charging phase, with 10, 50, 100, 150 collocation points, along with the

computational times required to perform the 26 hours charge. Firstly, it can be

observed that the temperature profiles with a model with few collocation points

are not smooth and present oscillations in the temperature, especially around

the thermocline region. These oscillations fade away when the number of points

is increased. It can be noticed that the slope of the thermoclines is correctly

estimated with only 50 points. As expected, the computational time increases

with the number of points but they stay reasonable for simulations.

The impact of the number of points on the valuable stored energy over time

was also assessed. Figure 10 represents the cumulated stored energy at a temper-

ature above 65◦C for different numbers of collocation points. It can be observed

that the energy computed with the model with 10 points differs from the other

energy profiles. For 50 and 200 collocation points, the energy profiles are the

same. This shows that the oscillations in the temperature profiles do not im-

pact the stored energy estimation. The oscillations probably compensate along

the temperature profile. However, the thermocline slope needs to be accurately

32



(a) 10 points: 0.11s (b) 50 points: 0.26s

(c) 100 points: 0.44s (d) 150 points: 0.90s

Figure 9: Impact of the number of collocation points on the temperature profiles
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represented in order to estimate correctly the stored energy. A quantitative

analysis was performed. The maximal difference between the energy computed

with the 200 points model and the 10 points model is 1.1MWh and for the 50

points model it is 0.14MWh. The maximal relative difference is reached at the

beginning of the charging phase when the energy is small. It is 27% for the

10 points model and 2.8% for the 50 points model compared to the 200 points

model.

Figure 10: Cumulated stored energy throughout time during charging

The results obtained are compared with the multinode model (see subsection

3.2). The chosen reference is OC with 200 collocation points because the results

converge towards the same solution with a larger number of collocation points.

The multinode model with 1000 layers underestimates the stored energy by

up to 0.46MWh, and up to 8% at the beginning of charge. The difference is

small but still more important than the difference between the stored energy

with 50 points with OC and 200 points. This confirms that OC gives a better

estimation of the temperature gradient, despite some oscillations around the

thermocline, which do not impact the stored energy much. With 5000 layers

in the multinode model, the relative difference with the reference is 2.9% and

the absolute difference is 0.16MWh. These differences are similar to the ones

observed with 50 collocation points. In terms of temperature profiles, 5000

layers in the multinode model and 200 collocation points lead to similar results,

plotted in Figure 11. In this figure, a temperature profile is plotted every hour
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until the charge is complete, with solid black line for OC with 200 collocation

points and dashed red lines for the multinode model with 5000 layers. Both

models give similar results, although the multinode model still presents slight

numerical diffusion. The largest difference between the temperatures from the

two models at the same height is 5.9◦C, and the maximal relative difference

is 17%. These differences are not negligeable but even more layers would be

necessary in the multinode model in order to find the same results as OC. The

computational times are very different: 0.85s for OC and 330s for multinode.

This clearly shows the advantage of using OC over finite volumes to discretize

the storage tank.

Figure 11: Comparison of the temperature profiles throughout time with 200 collocation points

(solid black lines) and 5000 layers (dashed red lines)

This study showed that OC greatly reduces numerical diffusion and is able

to accurately represent the steep temperature gradient in the thermocline region

even with a small number of collocation points. However, oscillations appeared

in the spatial temperature profiles around the thermocline for a smaller number

of collocation points. The reason for these oscillations is that a low-degree

polynomial is not able to represent a very steep gradient. By increasing the

number of collocation points, hence the degree of the temperature polynomial,

the oscillations fade away.

For a simulation model, OC with 100 to 200 collocation points seems to

provide accurate and fast results. Thus, the problem of oscillations will not
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arise because the number of collocation points is large enough. However, for

an optimization model, computational times might be too long. The number of

points should probably be reduced. The next section will introduce Orthogonal

Collocation on Finite Elements (OCFE), which present some advantages over

OC and might be more suited for an optimization study.

6. Orthogonal Collocation on Finite Elements

When the discretization domain is large or when an important number of col-

location points is required, Orthogonal Collocation on Finite Elements (OCFE)

is generally more appropriate [58]. The domain is divided into elements and

OC is applied in each element. The continuity of the differential variable and

its first derivative (in the case of a 2nd order differential equation) is imposed at

the boundaries between elements. This method gathers the advantages of the

two previously mentioned discretization techniques. The convergence is fast,

as in OC, which allows to use a smaller number of discretization points. The

resolution is fast as for the finite volumes method. OCFE involves sparse ma-

trices, while OC involves full matrices. Thus, OCFE is faster to solve than OC.

Carey and Finlayson recommend using OCFE when there is a zone with a steep

gradient in the solution, by adapting the size and position of the elements to

the expected solution [58]. For example, OCFE is particularly well suited to

model boundary layers. In the storage tank, there is indeed a zone with a steep

gradient, the thermocline. Unfortunately, its position moves inside the storage

tank. It is therefore not possible to use fixed smaller elements around the ther-

mocline. Moving elements could be a good direction for future works but it is

more complex to implement in an optimization study than fixed elements.

Yet, OCFE presents promising advantages over OC, such as its fast res-

olution. Therefore, it might be more appropriate than OC for optimization

studies. In order to assess OCFE performances for optimization studies, a sim-

ulation model for the storage tank was built in an optimization environment.

The software GAMS was used and the model was solved with the optimization
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solver IPOPT. The simulation model developed can be directly incorporated

into an optimization model in GAMS. The model is built similarly to the OC

model explained in 4.2. The energy balance can be written for each interior

point i of each element j. This is represented by the following equation:

(18)ρCpA
dTj,i
dt

= UP (Tamb − Tj,i) + k∗A
d2Tj,i
L2
el

− (ṁc − ṁd)Cp
dTj,i
Lel

The time dependency of the variables in this equation is not written for con-

ciseness. The first and second derivatives of the temperature with respect to

z, dTj,i and d2Tj,i respectively, are expressed as a linear combination of all the

temperatures Tj,i in the collocation points of the corresponding element. The

matrices AOCFE and BOCFE , computed with the Lagrange polynomials deriva-

tives evaluated in each collocation point inside an element, as explained in 4.2,

are used to express the linear combination. Lel is the length of each element.

We consider N the total number of collocation points in each element. The con-

tinuity equations between elements for the temperature and its first derivative

with respect to time are written as follows:

Tj−1,N = Tj,1 (19)

dTj−1,N

dt
=
dTj,1
dt

(20)

One major difference between MATLAB and GAMS is the time integration.

In MATLAB, the simulation model was solved with the solver ode15s, using a

variable time step. In GAMS, the time discretization must be explicitly written

by the user. We chose orthogonal collocation on finite elements for the time

discretization. The time step does not adapt to the simulation but is fixed

in advance. Elements of 15 minutes are chosen, with 5 collocation points in

each element, including the boundary points. The collocation points are the

Gauss-Lobatto Legendre points. The matrix method implemented for the time

discretization is based on [59] and detailed in [53]. This method is particularly

suited for initial value differential equations. The length of the time elements

needs to be chosen carefully to respect the convergence criteria even though the
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spatial grid is non-uniform. Indeed, numerical instabilities might arise if the

time step is too large compared to the space discretization [53]. Generally, it

is recommended to ensure that the fluid does not flow through several space

discretization points during a single time step. Of course, with OCFE, both

time and space discretization are non-uniform. It is necessary to ensure that

the recommendation is followed for every time and space steps. This is only a

general recommendation and a time step 2 or 3 times larger might not generate

numerical instabilities. OC was used to discretize the vertical axis of the storage

tank to provide a comparison in this study. Figure 12 shows the temperature

profiles obtained during a charging phase for OC and OCFE with the same

total number of points, along with the computational times for the complete

charge. This figure shows that OC is the most accurate but its resolution takes

the longest. OCFE results depend on the number of elements and points. The

more elements are used for the same total number of points, the less accurate the

solution is. That is expected because the energy balance in Equation 1 is only

performed on the interior points. At the boundary points between elements,

continuity equations are derived. Based on these results, it is recommended to

use OCFE in an optimization code because it is much faster to solve. However, a

sufficient number of collocation points should be used in each element to ensure

a good accuracy in the results.

Unfortunately, a very large number of elements or collocation points can not

be used in an optimization study because it would increase the computational

time too much. Thus, oscillations in the temperature profiles will not be avoided

by increasing the number of points (see Section 5). These oscillations are due to

the representation of very thin thermoclines with polynomials. The steepness

of the temperature gradient in the thermocline is actually unknown. A valida-

tion with a real system will be conducted in Section 7. It is possible that the

thermocline representation obtained with the accurate resolution of Equation 1

for a charging phase starting with a uniform storage tank is too steep and not

realistic. The next study conducted was the assessment of the performances of

OCFE when the initial condition of the storage tank is not a uniform temper-
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(a) 5 elements, 10 points (10 s) (b) 10 elements, 5 points (7 s)

(c) 50 points (34 s)

Figure 12
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ature, but rather a thermocline. This initial condition is more likely to happen

in an energy system, since it is avoided to completely empty or fill up a storage

tank in a real system. This strategy is used because the beginning of charging

is when the thermocline thickens the most [11]. It is then better to create the

thermocline carefully, by using a small flow rate for example, and then try to

keep it inside the storage tank. For this calculation, OCFE was used and the

charging phase was simulated in GAMS in anticipation for future optimization

studies using this software. The solver IPOPT was used. As mentioned above,

it is much faster to use OCFE in GAMS than OC for the same total number of

collocation points. In the simulations performed, an initial thermocline exists

in the middle of the storage tank. The charging phase starts, with a flow rate

of 10kg.s−1 and a temperature equal to the hot section of the storage. Two

cases were tested: a multinode model with 500 layers and an OCFE model with

5 elements and 10 collocation points each. The results are plotted in Figure

13. Firstly, there are no major oscillations visible in the OCFE temperature

profiles even though only 50 discretization points were used. This is because

the initial thermocline is not too steep and therefore, a low degree polynomial

representation can approximate it accurately. Moreover, a slight numerical dif-

fusion can be observed for the multinode temperature profiles. The thermocline

thickens slightly during the charging phase. On the other hand, the thermocline

thickness remains unchanged with OCFE. Therefore, OCFE was able to greatly

reduce numerical diffusion. Finally, the computational times are very different:

7s for OCFE and 1000s for the multinode model to complete the charge of the

storage tank.

We showed that a small number of collocation points is able to accurately

represent the temperature profiles in the tank when the thermocline is already

created. OCFE runs much faster than the multinode model to achieve compa-

rable accuracy.

In this section, the results obtained with the multinode model and OC/OCFE

were compared. With a sufficiently large number of discretization points, a con-

vergence in the results is achieved. Therefore, we have access to the solution of
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Figure 13: Comparison of the temperature profiles for the multinode model and OCFE during

a charging phase from a half charged tank

Equation 1. We showed that OC performs better than the multinode model in

order to solve this equation accurately and rapidly. However, Equation 1 might

not be an accurate representation of the reality. Therefore, the next section will

present a validation of our OCFE model with real plant data.

7. Validation with a real system

7.1. Condat-Sur-Vézère, France, Solar Thermal Plant

NEWHEAT is a French company specialized in solar thermal plants, tak-

ing part in each stage of their life: design, financing, building and operation.

Their solar thermal plants are providing heat at a competitive price to industrial

processes or district heating networks. In June 2019, NEWHEAT inaugurated

a solar thermal plant in Condat-Sur-Vézère, in the South-West of France. At

the time, it was the largest solar thermal plants with flat plate collectors in
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France and the first in the world to use a 1-axis solar tracking system. The

heat produced by this plant is delivered to a paper mill. A water storage tank

of 450m3, with a height of 11.25m, allows the decoupling between the heat pro-

duction and consumption. The solar plant has been instrumented for accurate

measurements of flow rates and temperatures. Especially, 11 thermocouples are

measuring the temperatures along the vertical axis of the storage tank. The flow

rates and temperatures for the charging and return flows are also measured. It

was therefore possible to use real plant data to validate our storage tank model.

7.2. Validation

In order to validate the OCFE model presented above, a simulation is per-

formed over a charging cycle and compared to real plant data. The initial

temperatures inside the storage tank at the beginning of the charging phase,

as well as the charging flow rate and temperature are used as inputs to the

simulation model. The data were acquired on June 3rd, 2019, with a time reso-

lution of 10 minutes. The charging phase begins at 2pm. The multinode model

as well as the OCFE model presented in Section 6 were compared to the ex-

perimental data. The simulations were performed in GAMS with the IPOPT

solver. For the multinode model, a simplified simulation with 10 layers was first

conducted. The time discretization uses elements of 1 hour and 9 collocation

points. The results are plotted in Figure 14a, and the charging phase simu-

lation lasted 2 seconds. The temperature profiles at 3pm, 6pm and 9pm for

the experimental data and for the model are plotted. The uncertainty in the

temperature measurement is ±0.5 ◦C, which is too low to be represented on

the plot. We observe that numerical diffusion has an important impact on the

numerical temperature profiles and that there is a poor agreement between the

experimental and modeled values. Another simulation with 100 layers was then

run, with a finer time discretization. Elements of 30 minutes were used in order

to avoid numerical instabilities due to the smaller space elements. The results

are presented in Figure 14b. The effect of numerical diffusion is less visible in

this plot. A better agreement is noticed between the experimental and modeled
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(a) 10 layers (2 s) (b) 100 layers (15 s)

Figure 14: Comparison of the experimental and multinode model temperature profiles during

a charging phase

temperature profiles. However, the simulation lasted 15 seconds, which is 7

times longer than the simulation with 10 layers. For this simple system, with

only the storage tank, and a short time horizon, the computational times are

short in both cases. Nevertheless, for the simulation of a more complex system

including storage or for an optimization study, the computational time might

become too long with 100 layers. This is even more important for real-time

optimization.

The OCFE model developed in this paper was then compared to the exper-

imental results. The model in GAMS validated for optimization studies uses 3

elements and 8 collocation points. The time discretization uses elements of 1

hour and 9 collocation points, which is the same as the multinode model with

10 layers. The results are plotted in Figure 15, and the computational time for

the charging phase is 3 seconds. This is very close to the computational time

for the multinode model with 10 layers, and 5 times faster than the model with

100 layers. Moreover, as shown in Figure 15, the thermoclines are here well rep-

resented. There is a good agreement between the numerical and experimental

profiles.

The error made by the models was quantified with two indicators: Mean

Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). These

43



Figure 15: Comparison of the experimental and OCFE model temperature profiles during a

charging phase

10 layers 100 layers 3x8 OCFE

Time 3pm 6pm 9pm 3pm 6pm 9pm 3pm 6pm 9pm

MAE (◦C) 1.1 4.4 5.3 1.1 1.6 1.9 0.7 1.9 1.5

MAPE (%) 3.1 11.5 15.9 3.5 3.7 4.2 1.8 3.8 2.8

Table 1: Validation of the numerical models

are defined as follows:

MAE(◦C) =
1

k

k∑
i=1

|xi − yi| (21)

MAPE(%) =
1

k

k∑
i=1

∣∣∣∣xi − yixi

∣∣∣∣ (22)

In these Equations, k is the number of comparison points, xi are the experi-

mental points and yi are the numerical points. To ensure that xi and yi are

taken at the same height in the storage tank, the numerical profile obtained is

interpolated. The results for these two indicators are presented in Table 1 for

the three models tested.

Table 1, confirms that the model with 10 layers is not accurate with MAPE

going up to 15.9%. The two other models have a MAPE below 5% for 100

layers and 4% for OCFE. The MAE is below 2◦C, which is small compared to
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the accuracy of the temperature measurements. Therefore, these models are

considered valid. With OCFE, we were able to use less points and achieve a

better accuracy than the multinode model. Thus, the OCFE model presented

in this study is validated and should be used to discretize a TES for simulation

and optimization studies.

This validation study was conducted for a charge cycle, starting once the

thermocline inside the storage tank is created. The beginning of charge from

an empty storage is not well represented by Equation 1. Indeed, there is some

mixing happening when the fluid enters the storage tank, leading to a thicker

thermocline than the one predicted by the model. Developing diffusers that

prevent this effect is still an active area of research ([60], [61] for example).

To accurately represent this phenomenon in a 1D model, data reconciliation

should be performed and an additional diffusion term should be introduced in

the model to account for the mixing due to injection. This has been done

for reactors modeling to represent non-ideal flow patterns [62]. This would

require a large amount of data with a fine spatial and temporal resolution. In

real applications, it is avoided to completely empty or fill up the storage tank.

Therefore, the model presented in this paper is accurate to represent the real

conditions inside the storage tank.

8. Perspectives on natural convection modeling

As mentioned in Section 2, the correction of temperature inversions inside

the storage tank is an important aspect of TES modeling. It is particularly

challenging to incorporate natural convection in a 1D model appropriate for op-

timization studies. Indeed, a continuous and smooth model is required for op-

timization. Such a model was developed based on the physical model suggested

in [28]. A turbulent diffusion coefficient was added to correct the temperature

inversions, and had the following value:
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εturb =
kturb
ρCp

=


(Kδl)2

√
gβ ∂T (z,t)

∂z , if
∂T (z, t)

∂z
< 0

0, otherwise.

(23)

In this Equation, K is the Von Karman constant, whose value is 0.4, g is the

gravitational acceleration which is 9.81 m.s−2 and β is the thermal expansion

coefficient of water, which is about 2.6e−4K−1. The characteristic length δl is

chosen to be the tank height.

Such inversions correspond to a reversed temperature gradient. With z axis

pointing upwards, the gradient in normal conditions is positive, and in case of

temperature inversion it is negative. It is thus possible to spot a temperature

inversion thanks to the max function, with the turbulent coefficient written as:

kturb = ρCp(KH)2

√
gβmax(−∂T (z, t)

∂z
, 0) (24)

This formulation can be incorporated into an OCFE model for TES sim-

ulation. The boundary conditions used are presented in Subsection 4.3. 100

collocation points are used in this study. Figure 16 presents the results of a sim-

ulation with an inversion correction. In this study, the hot zone of the storage

tank is initially at 80◦C. The storage tank is charged during 1h with fluid at

75◦C, and then the charging fluid goes back to 80◦C and the simulation runs

for 5 more minutes. With this model, the temperature inversion persists as

long as the charging with fluid at 75◦C is still in progress, as shown in Figure

16. However, after the charging temperature goes back to 80◦C, temperature

inversions are corrected. The inlet of the storage tank is at 80◦C while the

rest of the hot zone is at a homogeneous temperature resulting from the mixing

between the fluid already present at 80◦C and the charged fluid at 75◦C. This

behavior seems realistic, but the model is much slower than a model without

natural convection, about 150 times slower. Unfortunately, no validation with

real plant data could be conducted for the natural convection modeling. This

would require data from thermocouples that are close to each other and with

a small time resolution. Such data were not available in the plant used for the
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validation.

Figure 16: Correction of temperature inversions with a continuous model

For a simulation model, this works fine with the max function, although it is

much slower than a model without the inversion correction. For an optimization

model, a smooth approximation of the max function needs to be used, such as

in [51] and [52]. The parameter determining the steepness of the max function

needs to be adjusted to offer a compromise between the accurate representation

of the max function and the ease of convergence. This will slow down even

more the calculations. For example, the following approximation was used to

determine the maximum between two values x1 and x2:

smoothMax(x1, x2, d) = 0.5(x1 + x2 +
√

(x1 − x2)2 + d2) (25)

In this formulation, parameter d needs to be adjusted to adapt the steepness of

the function. If d is large, the function varies smoothly and temperature inver-

sions are not spotted accurately. This leads to the thickening of the thermocline

due to a large diffusion coefficient, even when it is not needed. On the contrary,

if d is small, the approximate function better represents the max function and

the computation of kturb is more accurate. However, convergence is not ensured.

Figure 17 shows the results obtained with d = 1e−4. The results are slightly

different from the ones obtained in Figure 16, with a maximum difference of

2.5% in the final profiles. We notice that the average temperature in the hot

zone after the correction of the temperature inversion is about 1◦C lower with
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Figure 17: Correction of temperature inversions with a smooth model

the smooth function. This happens because the turbulent coefficient is not 0 in

the thermocline region, even though the temperature gradient is not reversed.

Thus, there is a large diffusion at the ends of the thermocline, introducing

some mixing between colder fluid from the thermocline and hot fluid in the hot

zone. Overall the results are in good agreement with the ones obtained with

the discontinuous max function. The computational time is about 32 times

longer than the model with the max function. If parameter d is smaller, the

simulations do not converge.

To conclude, it is possible to build a continuous and smooth model to repre-

sent natural convection inside a storage tank. However, this model needs some

tuning in the smooth function. The physical basis of the model is therefore

deteriorated by these tuning parts. Moreover, the computational time is largely

increased when using this model. Based on these observations, it is recom-

mended to choose another solution for the modeling of natural convection in an

optimization model. For example, the inversion flow rates presented in [53] ap-

pear to be a good solution to correct temperature inversions in an optimization

framework. An experimental study should be conducted to validate this model.

9. Conclusion and perspectives

The increasing share of intermittent renewable energies into the electricity

grid or heating and cooling district networks requires the development of storage
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solutions to ensure that the energy demand is met. Thermal Energy Storage

(TES) is an effective way to store energy in the form of heat, that can be latter

used, employing the synergies between various energy carriers. In order to ex-

pand the use of stratified TES in energy systems, a good model for it needs to

be developed. Especially, a fast and accurate model, that can be used for com-

plex dynamic simulations and optimizations is required. A short computational

time is even more crucial for real-time optimization and control. The challenge

in modeling a thermocline TES is the representation of the steep temperature

gradient between the hot and cold zones. The discretization scheme presented

in this paper, Orthogonal Collocation on Finite Elements (OCFE), is able to

reduce numerical diffusion and therefore estimates accurately the temperature

profile inside the tank as well as the valuable energy stored. This model uses

less discretization points and runs faster than the multinode model in order to

achieve the same accuracy. This discretization method can generate oscillations

in the temperature profiles if the storage is initially at a uniforme temperature.

The thermoclines estimations are too steep, and thus a low degree polynomial is

not able to represent them. Adding a term in the energy balance inside the tank

to represent the mixing at the injection point could solve the problem. However,

in a real plant, the storage tank is very rarely at a uniform temperature. There-

fore, the model presented in the paper is appropriate to represent the actual

behavior of a storage tank. This has been validated with real plant data. Thus,

the model developed in this work can be used in simulation and optimization,

including real-time applications. Finally, a continuous model for the correction

of temperature inversions was presented, based on a turbulent diffusion coef-

ficient. The model was able to correct temperature inversions effectively in a

simulation. However, the computational time was greatly increased. Trans-

forming it into a smooth model for optimization is even slower, making it not

computationally effective. Other ways to model natural convection, as part of

the optimization framework, could be better. Future work should focus on the

integration of natural convection in a 1D optimization model. Furthermore, the

validation of the correction of temperature inversion should be performed with
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an experimental set up or a real plant.
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