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Abstract
The study of eco-evolutionary dynamics, that is of the intertwinning between ecologi-
cal and evolutionary processes when they occur at comparable time scales, is of grow-
ing interest in the current context of global change. However, many eco-evolutionary 
studies overlook the role of interindividual interactions, which are hard to predict 
and yet central to selective values. Here, we aimed at putting forward models that 
simulate interindividual interactions in an eco-evolutionary framework: the demo-
genetic agent-based models (DG-ABMs). Being demo-genetic, DG-ABMs consider the 
feedback loop between ecological and evolutionary processes. Being agent-based, 
DG-ABMs follow populations of interacting individuals with sets of traits that vary 
among the individuals. We argue that the ability of DG-ABMs to take into account 
the genetic heterogeneity—that affects individual decisions/traits related to local and 
instantaneous conditions—differentiates them from analytical models, another type 
of model largely used by evolutionary biologists to investigate eco-evolutionary feed-
back loops. Based on the review of studies employing DG-ABMs and explicitly or 
implicitly accounting for competitive, cooperative or reproductive interactions, we 
illustrate that DG-ABMs are particularly relevant for the exploration of fundamental, 
yet pressing, questions in evolutionary ecology across various levels of organization. 
By jointly modelling the effects of management practices and other eco-evolutionary 
processes on interindividual interactions and population dynamics, DG-ABMs are also 
effective prospective and decision support tools to evaluate the short- and long-term 
evolutionary costs and benefits of management strategies and to assess potential 
trade-offs. Finally, we provide a list of the recent practical advances of the ABM com-
munity that should facilitate the development of DG-ABMs.

K E Y W O R D S
agent-based models, demo-genetic models, DG-ABMs, eco-evolutionary dynamics, eco-
genetic models
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1  |  INTRODUC TION

Understanding and anticipating populations' response to changes 
in environmental and anthropogenic pressures requires conceptual 
and modelling approaches coupling ecological and evolutionary pro-
cesses. This is largely motivated by the increasing realization that 
ecological and evolutionary responses of populations can occur on 
similar temporal scales, with potential consequences on dynamics 
from gene to ecosystem (Carroll et al., 2007). The burgeoning litera-
ture investigating eco-evolutionary dynamics illustrates this growing 
interest (Bassar et al., 2021; Dunlop et al., 2009; Oddou-Muratorio 
et al., 2020; Romero-Mujalli et al., 2019; Schoener, 2011).

The conceptual framework of eco-evolutionary dynamics de-
picts feedback loops between response processes at different lev-
els of biological organization in a contemporary timescale (Govaert 
et al.,  2019; Hendry,  2017; Pelletier et al.,  2009). These feedback 
loops acknowledge that (1) genetic diversity and its architecture 
determine the demographic structure and population dynamics 
through phenotypic expression; (2) demographic structure and pop-
ulation dynamics determine evolutionary processes, that is genetic 
drift, selection and gene flow, which in turn (3) determine genetic di-
versity. As an illustration of such feedback, the competition between 
trees within a forest results in a selection process contributing to 
genetic evolution, while the genetic composition of the tree pop-
ulation drives interindividual competition and forest productivity 
(Pretzsch,  2021). To account for feedback loops, eco-evolutionary 
models must integrate inheritance mechanisms and the multiple 
driving forces controlling the dynamics of the distributions of herita-
ble traits across generations (Bassar et al., 2021).

One of these key drivers of selection is the interactions between 
individuals within populations, as they directly or indirectly affect 
individual fitness at the core of any evolutionary dynamics (Maynard 
Smith, 1974; Webber & Vander Wal, 2018). We focus here on within-
population interindividual interactions (i.e. competition, cooperation 
and mating) affecting the demographic dynamics (growth, reproduc-
tion and mortality) and ultimately individual fitness or even inclusive 
fitness (Box 1). In essence, the outcome of such interactions is emi-
nently stochastic and context-dependent, and population structure 
itself is part of the context. It is now recognized that the structure 
of social networks within a population may affect natural selection 
and trait evolution through indirect genetic effects (traits affected 
by genes in other individuals, Fisher & McAdam, 2017; Kazancioǧlu 
et al., 2012; Marjanovic et al., 2022; Wade et al., 2010). Additionally, 
these networks are themselves dynamic, since changing the social 
environment may influence an individual's later decisions in a social 
interaction, leading to rapid shifts in networks' structures (Farine & 
Whitehead, 2015). For instance, individuals are able to modify their 
mating tactics, which diminishes the selection they endure (Oh & 
Badyaev, 2010) and thus affects selection at the population level. 
Likewise, the distribution of phenological traits (e.g. flowering or 
maturation time) shapes mating opportunities within plant and an-
imal populations and possibly leads to assortative mating (here, the 
positive correlation of phenology between mates). Compared with 

random mating, assortative mating can either deplete or increase the 
genetic variance available for selection depending on whether the 
environment is stable or changing, with contrasted consequences 
on genetic adaptation (Godineau et al.,  2021). Unfortunately, the 
interindividual interactions are usually little appreciated in eco-
evolutionary models, with potential consequences on our under-
standing of the full range of eco-evolutionary responses.

Our objectives here are to put forward models that explicitly 
or implicitly account for variable within-population interindividual 
interactions in an eco-evolutionary framework: the demo-genetic 
agent-based models (DG-ABMs). After defining these models, we 
survey the literature to illustrate how DG-ABMs can be used to in-
vestigate fundamental issues in evolutionary ecology, as well as to 
assist the management of natural populations facing environmental 
changes.

2  |  HOW TO MODEL ECO -
E VOLUTIONARY FEEDBACK LOOPS: FROM 
ANALY TIC AL MODEL S TO DG -ABMS

At the very core of the eco-evolutionary models is the need of speci-
fying the genetically variable and heritable traits, their impact on 
the focal organism's life history and the ecological embedding that 
determines how life-history traits affect and are affected by envi-
ronmental conditions and the demographic context (Dieckmann 
& Ferriere,  2004). This can be achieved by various approaches 
(Figure  1). First, there is a long tradition in evolutionary ecology 
to rely on analytical models (differential-equation and difference 
equation models), which offer elegant solutions and provide general 
knowledge on elementary eco-evolutionary feedback loops, gener-
ally at the cost of simplifying hypotheses. Among the most com-
mon analytical formalisms of eco-evolutionary feedback loops are 
(1) adaptive dynamics models (Dieckmann & Ferriere, 2004), which 
incorporate ecological realism, in particular, the notion that the suc-
cess of any given strategy depends on its frequency within the pop-
ulation, but often bypass the complexity of genotype–phenotype 
relationship (for instance by assuming asexual reproduction, 
clonal inheritance); (2) evolutionary quantitative genetics models 
(Kirkpatrick & Barton, 1997; Pease et al., 1989; Slatkin, 1978), which 
integrate the genotype–phenotype map with population demogra-
phy (e.g. density-dependence) but where other ecological changes 
remain independent from the population dynamics; and (3) inte-
gral projection models (Smallegange & Coulson,  2013), which use 
population models classically developed in population dynamics to 
describe the evolution of continuous characters in a quantitative 
genetics framework. We purposely do not mention traditional op-
timisation models, such as stochastic dynamic programming used to 
represent individual behaviour (e.g. life-history decisions) and devel-
opment (e.g. growth and sexual maturity) and their consequences 
for population dynamics (Mangel,  2015), as these models do not 
specify the genetic architecture of traits, which is yet mandatory 
for eco-evolutionary feedback to emerge. The main limitation of the 
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1990  |    LAMARINS et al.

above-listed analytical approaches is that they consider evolution-
ary and ecological processes (be they deterministic or stochastic) 
to be homogeneous within groups of individuals (the population or 
life stages), whereas group composition constantly varies in terms 
of phenotypes and genotypes, affecting individual decisions, linked 
to local and instant conditions, and their outcome at the group level 
(i.e. emerging effects).

Yet the question of individual heterogeneity and its effects 
has long preoccupied eco-evolutionary ecologists. For several 
decades, simulations using agent-based models (ABMs, also 
called individual-based models or IBMs in ecology) were used 
to investigate more complex scenarios and explore unexpected 
eco-evolutionary feedback loops, with approaches spreading 
on a spectrum of complexity well-described by DeAngelis and 

B O X  1  Interindividual interactions involved in population eco-evolutionary dynamics

Here, we focus on interactions between conspecific individuals within a population—mainly competition, cooperation, and mating—which directly 
drive the processes of mortality, growth, and reproduction (e.g. Figure A, C, D below) and whose variations subsequently induce evolutionary 
changes. This also includes the variety of ecological interactions indirectly impacting demography, such as exchange of information (e.g. on 
predator, or resource availability), movement (e.g. to escape predation or competition) or group behaviour (e.g. affecting predator's avoidance 
or resistance, Figure A, B below).

The major reason why we focus on local (i.e. within-population), variable, conspecific interactions is that evolution is a population-specific 
process, primarily fuelled by differences in individual fitness arising from the response to abiotic and biotic environments, the latter including 
the social context. Interspecific interactions may also shape the within-population social context and contribute to evolution: for instance, 
the existence and strength of plant-pollinator interactions define the social context within which selfing may evolve (Katsuhara et al., 2021). 
Trophic interactions may contribute to the resource context within which functional traits related to resource acquisition may evolve (Kang 
& Thibert-Plante, 2017). On a macroevolutionary timescale, intra- and inter-specific competition for resources can drive speciation (Gavrilets 
et al., 2007; Weber et al., 2017). However, considering interspecific interactions without genetic variation in at least one of the partners of the 
interaction is not enough to model the dynamic feedback loop between ecological interactions, fitness, and the genetic composition of the 
population. This is particularly why predation was not considered as a focal interaction in this review: indeed, when predation is investigated 
from the point of view of the variation of a prey's trait conferring variable avoidance ability from the predator, or from the variation of a 
predator's trait conferring variable ability to catch prey, then it becomes a trait involved in competition among prey to escape predators, or 
among predators to optimize prey foraging and selection (e.g. Kelly & Phillips, 2019; Labonne & Hendry, 2010).

(a) School of common minnow (Phoxinus phoxinus) individuals maintained in an experimental tank at INRAE, Saint-Pée-sur-Nivelle, France. 
Schooling behaviour in this species is supposed to be both an anti-predator and a foraging optimisation strategy (Photo: ©INRAE—Stéphane 
Glise)

(b) Fifth instar hoppers of gregarious desert locust basking in the morning sun within herbaceous plants of the Mauritanian desert; grouping 
behaviours and bright coloration in desert locust (Schistocerca gregaria) are supposed to be an anti-predator strategy (Photo: ©JIRCAS—
Koutaro Ould Maeno)

(c) Sea lamprey (Petromyzon marinus) spawning in the Nive River (South-western France). Species from the Petromyzontidae family are 
semelparous, but the number of mates is highly variable among species (Photo: ©INRAE—Stéphane Glise)

(d) Beech (Fagus sylvatica) trees with late and early phenologies on Mont-Ventoux, France. Phenological mismatch limits male more than female 
reproductive success (Photo: ©INRAE—Frédéric Jean)

(a) (b)

(c) (d)
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    |  1991LAMARINS et al.

Mooij (2005). On the one side of the spectrum, some ABMs were 
developed to validate and/or explore the predictions made with 
analytical models, replace these models and/or eventually nur-
ture their future development. To keep these ABMs as simple as 
possible, individuals usually have a minimum number of attributes 
and fitness does not depend on interindividual interactions. For 
instance, by coupling a niche-based model with individual-based 
demo-genetic simulations, Cotto et al.  (2020) investigated the 
evolutionary constraints related to alpine plant response to a 
changing climate. The key originality of their approach is to model 
individuals as spatial points across a complex climatic landscape, 
where the individual phenotypes are explicitly linked to climatic 
variables and where the optimal phenotype is prescribed by the 
niche-based model and varies through time. They use a classical 
multistage life cycle model (from seeds to adults) where individ-
ual survival and ultimately fitness increases when the multivariate 
phenotype is close to the optimal phenotype but is independent 
of the phenotype of other individuals. This typical top-down ap-
proach aims at extending classic analytical models into more com-
plex domains with the assistance of ABMs.

On the other side of the spectrum, some ABMs employ a spe-
cific bottom-up approach to fully integrate individual interactions 
and their outcome over time and space within a population, the re-
sult of which will dictate the strength and direction of evolution-
ary processes at the population level (DeAngelis & Mooij,  2005; 
Huston et al.,  1988). These ABMs acknowledge that individuals 
have inherently nonuniform interactions with each other, and that 
the consequences of the variation in traits mediating interindivid-
ual interactions are better described by rule-based simulations than 
by mathematical models. Accordingly, these approaches depict the 
interactions between individuals and their effects on individual fit-
ness, accounting for the social context, and observe the resulting 

dynamics in terms of distributions of heritable traits and demogra-
phy. We hereafter refer to these ABMs as DG-ABMs, DG-ABMs (an-
other possible acronym would be eco-genetic ABMs).

DG-ABMs can be defined as individual-based (meta) popula-
tion dynamics models with heritable trait variation and phenotype-
dependent interactions between individuals (Box 2). A key feature of 
DG-ABMs is that fitness variation emerges mechanically from inter-
actions between individuals (as opposed to assuming an a priori fit-
ness function) and gives rise to the evolution of patterns structuring 
the population diversity and its dynamics (e.g. genetic architecture 
and spatial genetic structure). Typical examples of emerging fitness 
variation are spatially structured individual-based models focus-
sing on dispersal evolution (Bach et al., 2006; Kubisch et al., 2013; 
Poethke et al., 2007). Indeed, these studies demonstrated that ge-
netic structure and kin competition emerge from the spatial design 
of their DG-ABMs, when the genetic architecture of dispersal and 
competition is included (here implicitly). Hence, dispersal evolves 
to reduce kin competition and increase inclusive fitness, ultimately 
driving back kin structure within populations. This is radically dif-
ferent from assuming a prescribed relationship between traits and 
fitness, as done in analytical models and some ABMs (e.g. Cotto 
et al., 2020). We argue here that this bottom-up construction of fit-
ness in DG-ABMs provides different and new insights into various 
fundamental and applied questions in ecology and evolution, and 
illustrate further our point of view by a review of the literature.

3  |  OBJEC TIVE AND METHOD FOR THE 
LITER ATURE RE VIE W

In their recent review of individual-based modelling of eco-
evolutionary dynamics, Romero-Mujalli et al. (2019) illustrated how 

F I G U R E  1  Different approaches to model eco-evolutionary feedback loops. This scheme summarizes the main differences between two 
major modelling approaches used to investigate eco-evolutionary dynamics: analytical models on the left and DG-ABMs on the right. Their 
main difference is that analytical models consider evolutionary and/or ecological processes to be homogeneous within groups of individuals 
(the population or life-stages), whereas DG-ABMs can account for phenotypic and genotypic variation in groups of individuals, its effects 
on individual decisions/traits linked to local and instant conditions, and their outcome at the group level (i.e. emerging effects). In particular, 
some (although not all) DG-ABMs model interindividual interactions, and their effects on individual fitness, which emerge in part from these 
interactions. QG, quantitative genetics.
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1992  |    LAMARINS et al.

ABMs have been applied to assess organisms' and populations' re-
sponses to environmental change, but overlooked whether these 
ABMs accounted or not for interindividual interactions. Here, we 
specifically reviewed DG-ABMs in which fitness variation emerges 
mechanically from interactions between individuals.

To that aim, we searched the Web of Science Core Collection 
between 1955 and 2022 for various combinations of keywords 

(Figure S1). A first query using (Individual-based model* OR IBM*) 
AND (eco-evol* OR demo-genet* OR demogenet* OR ecoge-
net* OR eco-genet*) returned 138 publications. Using the terms 
(Agent-based model OR ABM) instead of (Individual-based model* 
OR IBM*), we obtained 15 publications indicating that the eco-
evolutionary community has not appropriated the term ABM despite 
its broader meaning (e.g. Railsback & Grimm, 2019). Of all these 153 

B O X  2  An overview of demo-genetic agent-based models (DG-ABMs), and on how they model interindividual interactions

Conceptual scheme of DG-ABMs (Figure below). Individuals (or agents) are characterized by their phenotypic traits, determined by their genotype, 
the environment, and interactions between them (denoted G × E). The agents together define the population, hence determining its diversity 
and structure, where interindividual interactions shape the social environment. This social environment influences population dynamics, 
which ultimately drives evolutionary processes (drift, selection, gene flow). Fitness variations (e.g. survival, fecundity variation) emerge from 
different outcomes of interindividual interactions (e.g. mating, competition, cooperation, information exchange) and give rise to evolution of 
traits via the trans-generational response to selection. This framework, highlighting the feedback loop central to eco-evolutionary approaches, 
is the core part of DG-ABMs and is identified by solid (units)/dashed (units' properties) line boxes and bold arrows

Modelling interindividual interactions: ABMs have the general capacity to represent both direct interactions among agents (i.e. when one agent 
identifies one or more other agents and directly affects them, for example by having some kind of contest with them, eating them, or choosing 
them to mate) and mediated/indirect interactions (when one agent affects others indirectly by producing or consuming a shared resource)

The choice to model these interactions explicitly or implicitly in DG-ABMs depends on the interaction type, the degree of realism/complexity 
desired, and on the focal, evolvable trait(s) involved in the interaction (see Table 1 for examples of these traits). Direct reproductive 
interactions are most often explicitly modelled, through variable mate preference or competitiveness among potential mates (e.g. Chevalier 
et al., 2022), or assortative mating for a variable phenological trait (e.g. Soularue & Kremer, 2014). This is also the case of direct cooperative 
interactions, where the mechanisms involved (e.g. in grouping behaviour) are usually explicitly represented (de Jager et al., 2020; Van Der Post 
et al., 2015)

Indirect interactions such as competition for resources can be implicitly modelled through density-dependence functions. For instance, most DG-
ABMs investigating fisheries-induced evolution assume that increasing density will lead to increasing competition, the competition strength 
also depending on individual size (Ivan & Höök, 2015; Piou & Prévost, 2012). By contrast, some DG-ABMs consider competition in an explicit 
prey–predator (Costa et al., 2016) or consumer-resource (Kang & Thibert-Plante, 2017) system; in these cases, the level of the resource 
and the consumption process at each time step are explicitly modelled, and the traits involved in the interaction can be more realistically 
represented (e.g. gill-raker count in Kang & Thibert-Plante, 2017)

DG-ABMs applications: DG-ABMs also offer the opportunity to study eco-evolutionary dynamics at multiple levels of organization and spatio-
temporal scales. At population scale, habitat structuring and variation in the abiotic environment can be included to account for selection, 
stochastic events and subdivision of the social environment. These models also allow simulations of several populations' dynamics connected 
through dispersal with potential gene flow, such as in a metapopulation case. At a higher level, community dynamics can be modelled through 
interspecific interactions between individuals from directly or indirectly interacting species
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    |  1993LAMARINS et al.

publications (Table S1), only 54 included the terms ([interindivid* OR 
inter-individ* OR individ*] AND interact*). After excluding reviews, 
technical publications, book chapters, preprint and duplicated stud-
ies (Table S2), we retained 120 publications. Finally, as we were in-
terested in studies using a DG-ABM approach, we checked whether 
these 120 remaining publications (1) use an IBM; (2) simulate dy-
namics over multiple generations; (3) represent (direct or indirect) 
interactions between conspecific individuals; (4) represent individ-
ual variation in the interaction-related trait(s); and (5) consider that 
part of this variation is heritable. With this method, we filtered out 
45 additional publications that did not satisfy these five criteria, re-
sulting in a total of 75 publications using DG-ABMs where interin-
dividual interactions affect fitness. Using a nonexhaustive snowball 
approach, we found 14 additional references cited in or citing the 
75 selected publications (see Table  S3 and Lamarins et al.,  2022 
for the final database). Note that the difficulties we encountered in 

selecting studies using DG-ABMs with interindividual interactions 
from the WOS illustrate the need for clearer referencing based on 
keywords better shared by the community.

4  |  SYNTHESIS OF THE LITER ATURE 
RE VIE W

In the selected 89 studies, competition was by far the most con-
sidered interaction (79 studies), followed by reproductive interac-
tions (38 studies) and cooperative interactions (four studies only). 
We found 32 studies accounting for two types of interaction 
simultaneously.

On average, 1.9 traits (between 1 and 19 traits) per study were 
considered as evolvable. The nature of evolvable trait(s) depended 
on the interaction type, the species/kingdom considered and the 

TA B L E  1  Interindividual interactions and associated evolvable traits modelled in DG-ABMs

IT

Evolvable traits

Examples of references (species/kingdom)Category Examples

Competition (1) growth/
maturation

Size at emergence Fielding (2004) (grasshopper); Ayllón et al. (2016, 2018) 
(trout)

Threshold for size at migration Piou and Prévost (2012, 2013) (salmon)

Growth rate Kang and Thibert-Plante (2017) (alewife); Moya-Laraño 
(2011) (generic); Travis et al. (2010) (plant)

(2) abstract trait Competitive abilities Gascuel et al. (2015), Pontarp et al. (2015), Ward and 
Collins (2022) (all generic for species community)

(4) dispersal trait Prospecting of habitat quality Fronhofer and Altermatt (2017), Ponchon et al. (2021) 
(generic)

Dispersal distance LaRue et al. (2019) (sea rocket); Leidinger et al. (2021) 
(plant)

(5) behaviour Movement preference Hrycik et al. (2019) (perch)

Drifting Mazzucco et al. (2015) (shrimps)

(6) energy, 
allocation

Functional traits related to energy 
acquisition

Ivan and Höök (2015) (perch); Mollet et al. (2016) (plaice)

(7) defence Toxin production de la Peña et al. (2011) (plant-herbivores)

Abstract defence Costa et al. (2016), Urban et al.  (2019) (generic)

(8) virulence Pathogen virulence Papaïx et al. (2018), Rimbaud et al. (2018) (plant 
pathogen)

REPRODUCTION (1) growth/
maturation

Threshold for size at maturity Ayllón et al. (2016, 2018) (trout); Piou and Prévost (2012, 
2013) (salmon)

Slope/intercept of the maturation 
reaction norm

Dunlop et al. (2007) (bass)

(3) mating Selfing or self-incompatibility Kirchner et al. (2006), Katsuhara et al. (2021) (plant)

Mate choice (preference, 
competitiveness), mate search

Berec et al. (2018), Chevalier et al. (2022) (generic); 
Labonne and Hendry (2010) (guppy); Nathan 
et al. (2019) (trout)

Cooperation (2) abstract trait Mutualistic or antagonistic trait Maliet et al. (2020) (generic)

(5) cognitive 
behaviour

Grouping, schooling behaviour Van Der Post et al. (2015) (generic); Reuter et al. (2016) 
(fish)

Attachment density de Jager et al. (2020) (mussel)

Note: To illustrate the categories of traits considered as evolvable in the reviewed DG-ABMs, we listed some examples depending on the interaction 
type considered (IT).
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level of generality/realism/precision of the model (following the clas-
sification of models properties of Levins,  1966). We distinguished 
eight categories of evolvable traits (Tables 1 and 2): (1) traits related 
to growth and/or maturation thresholds (36 studies); (2) traits related 
to mating (12 studies); (3) dispersal traits (12 studies); (4)  traits re-
lated to cognitive behaviour and information exchange (six studies); 
(5) traits related to energy acquisition or allocation (six studies); traits 
related to (6) defence (five studies) or (7) virulence (two studies); 
(8) and finally, abstract traits—meaning that they do not correspond 
directly to a measurable trait—generally related to competitive abil-
ity or/and assortative mating (17 studies). We found seven studies 
considering two types of traits simultaneously. While some of these 
traits directly mediate interindividual interactions (e.g. mating traits 
for reproduction, behavioural traits for cooperation), most of them 
indirectly impact interactions. For instance, dispersal traits or move-
ment preferences are often associated with avoidance of competi-
tion and/or predation, or mate search for reproduction (Fronhofer & 
Altermatt, 2017; Travis et al., 2012). Traits related to growth, matu-
ration and energy acquisition or allocation, influence individual size, 
which often plays a major role in the outcome of competition.

These evolvable traits are at the core of the eco-evolutionary 
feedback loops in DG-ABMs, since fitness variation emerges from 
interactions among individuals that differ in these traits, giving rise 
to population dynamics in terms of both distribution of evolvable 
traits and demography. We distinguished five main types of eco-
evolutionary feedback in the reviewed DG-ABMs (Table  2). We 
found 17 ‘Ecology-focussed’ DG-ABMs, with a high level of realism 
in the demographic and ecological processes, and incorporating a 
‘dose’ of evolutionary processes to gain a better understanding of the 
ecological/demographic behaviour. In these DG-ABMs, evolvable 

traits were most often growth/maturation traits, but six other trait 
categories were considered. Then, we found 19 ‘Microevolution-
focussed’ DG-ABMs, with a high level of generality in the evolu-
tionary processes, and incorporating a ‘dose’ of demographic and 
ecological processes to gain a better understanding of the evolu-
tionary behaviour at a contemporary timescale. Similarly, there were 
also 13 ‘Macroevolution- focussed’ DG-ABMs, dedicated to the un-
derstanding of speciation at a macroevolutionary timescale. In these 
‘Micro- or macroevolution-focussed’ DG-ABMs, the evolvable trait 
was most often abstract, but mating traits were also often consid-
ered. Then, we identified 24 ‘Management- focussed’ DG-ABMs, 
used to address how management practices interfere with eco-
evolutionary feedbacks; in these DG-ABMs, evolvable traits were 
most often growth/maturation traits. Finally, we found 16 ‘Spatial-
focussed’ DG-ABMs, used to investigate eco-evolutionary feedback 
loops in a spatially explicit context (e.g. metapopulation). These DG-
ABMs investigated in particular the evolution of dispersal traits.

Another characteristic of DG-ABMs is the type of inheritance 
framework used to model genetic variation in the evolvable traits. 
We found that 64 studies (71.9%) used a Mendelian inheritance 
process either in a population genetic framework (one locus, pos-
sibly multi-allelic, which directly determines the phenotype) or 
combined with a quantitative genetic framework (several loci, 
together with the environment, which govern trait variation). 
Besides, 22 studies (24.7%) used an infinitesimal quantitative ge-
netic framework (where each offspring inherits the mean of the 
two parent's genetic values), and two studies (2.2%) tested for 
population versus quantitative genetic framework. Note that our 
definition of DG-ABM is larger than the one suggested by some 
authors (e.g. Frank & Baret, 2013), who proposed to reserve the 

TA B L E  2  Association between the category of evolvable traits considered in each DG-ABM, and the type of eco-evolutionary feedback 
considered

Trait category

Type of eco-evolutionary feedback

Ecology-
focussed

Microevolution-
focussed

Macroevolution-
focussed

Management-
focussed

Spatial-
focussed

Number of 
studies

Growth/Maturation 6 2 3 16 3 29

Abstract trait 2 7 8 17

Dispersal 2 9 11

Mating 2 5 1 8

Cognitive behaviour 2 1 1 2 6

Defence 1 2 1 4

Energy acquisition or allocation 2 1 1 4

Virulence 2 2

Mating & growth/mat. 1 2 3

Mating & Energy acq) or allocat. 1 1

Growth/ mat. & Defence 1 1

Growth/mat. & Dispersal 1 1

Growth/mat. & Energy acq. or 
allocat.

1 1

Number of studies 17 19 13 24 16 89
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    |  1995LAMARINS et al.

term ‘eco-genetic’ to models based on a quantitative genetics 
framework, and the term ‘demo-genetic’ to models based on a 
population genetics framework.

Beyond these general typologies, we illustrate below the main 
applications of the reviewed DG-ABMs, through selected examples.

5  |  DG -ABMS TO BET TER UNDERSTAND 
ECO -E VOLUTIONARY FEEDBACK LOOPS

Accounting for variable within-population interindividual interac-
tions in a bottom-up approach allows DG-ABMs to better inves-
tigate the emergence of fitness variation resulting from several 
complex eco-evolutionary processes and the interactions between 
them. Accounting for the stochastic and context-dependent out-
comes of competitive, cooperative or reproductive interactions 
can change the predicted evolution of life-history traits com-
pared with an approach where the relationship between traits 
and fitness is prescribed. Below, we emphasize relevant studies 
from our literature review which investigate these three types of 
interaction.

We start with examples of DG-ABMs considering explicit com-
petitive interactions within species. Fielding  (2004) investigated 
competition in grasshoppers and showed that contrasted optimal 
values of life-history traits can emerge from different types of 
localized interindividual interactions, that is exploitative or size-
based competition. In their DG-ABM of trout population, Ayllón 
et al. (2016) observed the emergence of different eco-evolutionary 
outcomes due to explicit competitive interactions for food in a 
changing environment. These two DG-ABMs with explicit compet-
itive interactions were built from well-tested demographic models, 
and additionally considered that the same traits (size at emergence 
and maturity size threshold) could evolve and interact with the spa-
tial distribution of food resources to shape population dynamics. 
Most often in the reviewed DG-ABMs focussing on single species 
adaptive dynamics, competition is implicitly considered, for example 
through a density-dependence function. In a perch species, Ivan and 
Höök (2015) showed variable patterns of energy allocation along in-
dividual ontogeny, resulting from the interplay between plastic and 
adaptive responses to selection and density-dependent competition 
for food. Using a DG-ABM representing competition among individ-
uals choosing different life-history tactics, Piou and Prévost (2012, 
2013) showed that climate change may modify salmon population 
dynamics through plastic responses of individual size. These two 
DG-ABMs acknowledge the main role of individual size on competi-
tion, and incorporate both genetic and plastic variation into this trait 
to gain a better understanding of the adaptive population dynamics 
in future, changing environments.

Integrating behavioural interactions between individuals and 
eco-evolutionary feedback is logically critical to understand the evo-
lution of sociality and cooperation. Van Der Post et al. (2015) inves-
tigated how grouping, a taxonomically widespread social process, 
co-evolved with two cooperative social behaviours: anti-predator 

vigilance and foraging. In a simulation experiment where be-
havioural processes were specified through 19 variable traits, but 
not the cost and benefits of each decision strategy, they showed 
eco-evolutionary interactions between group size and vigilance 
with an evolutionary trajectory towards bigger groups and less 
vigilance, eventually leading to fission into small groups with high 
vigilance and back. Accounting for heritable interindividual differ-
ences and environmental heterogeneity in resource distribution, 
Reuter et al.  (2016) were able to relate landscape structuration to 
the evolution of schooling behaviour and collective foraging in fish. 
Although these studies mostly focussed on how cooperation can 
emerge in models where costs and benefits are not explicitly speci-
fied but related to other behavioural traits, reverse strategy, where 
cooperation is the evolvable trait, could also be used to investigate 
adaptive dynamics.

Reproductive interactions are an obvious major driver of demo-
graphic dynamics, and ‘Ecology-focussed’ DG-ABMs are particularly 
suitable to investigate this issue in an eco-evolutionary framework. 
For instance, to explore how mating behaviour and population size 
jointly affect fitness components or population growth rate through 
Allee effects, Berec et al. (2018) considered the rate of mate search 
as evolvable and found different optimal values of search rates for 
populations at different densities, resulting in lower Allee thresholds 
in populations kept at lower densities. DG-ABMs are also relevant 
to examine the interplay between demographic processes and the 
mating system when self-incompatibility (Kirchner et al.,  2006) or 
sterility (Nonaka & Kaitala, 2020) occur as a direct consequence of 
the genotype.

Reproductive interactions are also known to drive evolutionary 
dynamics (Maan & Seehausen, 2011), and explicit representation of 
mating interactions is important as sexual selection can sometimes 
oppose natural selection (Labonne & Hendry, 2010), or eventually 
reinforce it (Soularue & Kremer,  2014). Mate choice strongly de-
pends on the population structure, making the outcome challeng-
ing to predict yet rarely random (Klug & Stone, 2021). DG-ABMs, by 
allowing to represent explicitly sexual interactions, are particularly 
adapted to explore the evolution of traits considering the dynamic 
aspects of mating systems, such as when sexual preference and 
competition over mating partners occur, while still accounting for 
natural selection (Chevalier et al., 2022; Nathan et al., 2019). In this 
context, growth traits, or traits related to life-history decisions such 
as migration or maturation, are often chosen as key traits to jointly 
consider size-dependent survival and reproductive interaction and 
their possible interactions (Ayllón et al.,  2019; Piou et al.,  2015). 
Another application is the investigation of sexual dimorphism, which 
can arise when a given trait is subject to different selection pres-
sures in males versus females (or even opposing pressures in the 
case of sexual conflict), but has a shared genetic basis between the 
sexes. Höök et al. (2021) showed how sex-specific plasticity for size 
could evolve by looking at perch evolutionary response to environ-
ment. Kane et al. (2022) showed that optimal migration propensity 
differed among males and females in trout, and that populations 
could adapt to environmental change across a range of intersex 
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genetic correlations for migration propensity, which influence the 
magnitude of sexual conflict.

6  |  E X TENDING IN SPACE ,  TIME AND 
LE VEL S OF ORGANIZ ATION

In most examples detailed above, eco-evolutionary dynamics are 
modelled within a non-spatially explicit population. However, the 
spatial arrangement of habitats shapes animal movements or gametes 
propagation, and therefore also shapes social interactions and sexual 
networks (He et al., 2019). Since they allow fine-scale explicit repre-
sentation of habitats as well as individual movements, DG-ABMs are 
well-suited to represent spatial evolutionary dynamics. Focussing on 
the evolution of dispersal, Fronhofer and Altermatt (2017) showed 
how eco-evolutionary feedback can emerge from a simple spatially 
explicit DG-ABM. Depending on network topology and connectivity, 
variable evolutionary stable dispersal strategies emerged from their 
model via kin competition, and lead to eco-evolutionary feedback 
by changing back the network's demography and genetic structure. 
Hrycik et al. (2019) explored the importance of environmental cues 
in perch vertical movement. By allowing movement rules in response 
to these cues to evolve, they illustrated the role of DG-ABMs in de-
termining appropriate movement rules in spatially explicit ecological 
modelling. Travis et al. (2010) used a mechanistic DG-ABM approach 
to model the evolution of seed dispersal in plant populations, ac-
counting for likely trade-offs between traits in a patchy landscape. 
Additionally, sexual selection can determine the reproductive suc-
cess of immigrants in populations and thus the strength and direc-
tion of demo-genetic consequences of dispersal (e.g. demographic 
rescue, evolutionary rescue vs. gene swamping). For instance, 
Soularue and Kremer  (2014) highlighted the major importance of 
gene flow and assortative mating in shaping the genetic differentia-
tion between populations in a heterogeneous environment.

Interactions between conspecific individuals are at the core of 
DG-ABMs. In addition, considering explicitly higher levels of orga-
nization (e.g. community level) to represent interspecific interactions 
may ultimately change the evolutionary outcomes expected from 
single species systems (Terhorst et al., 2018; Weber et al., 2017). We 
found examples of such multispecies DG-ABMs used to investigate 
mating interactions: for instance, using an ABM in which two plant 
species share the same pollinators, Katsuhara et al.  (2021) high-
lighted that the evolution of selfing without pollinator assistance (au-
tonomous selfing) may increase population growth rates of inferior 
competitors and consequently favour long-term coexistence via an 
evolutionary rescue. Furthermore, McDonald et al.  (2019) showed 
that the strength of intraspecific competition for mates may result 
from sexual interactions with heterospecifics, which may interfere 
with sexual selection (i.e. interspecific reproductive interference).

Most of the reviewed multispecies DG-ABMs focussed on com-
petitive interactions, in an explicit prey–predators' or community 
context. For instance, Kang and Thibert-Plante (2017) illustrated that 
considering trophic interactions and the genetic basis of functional 

traits within a single model could improve the understanding of evo-
lutionary morphological changes in fish. Hillaert et al. (2020) showed 
that in a fragmented habitat, the presence of predators selects for 
increased herbivore movement and hence larger herbivore size. 
Demo-genetic models of plant-virus interactions allowed to inves-
tigate the emergence of plant viral genotypes breaking down plant 
qualitative resistance genes (Fabre et al., 2009). Ecological interac-
tions at the community level may drive selection within species, and 
selection may affect in return the processes of species assembly at 
a community scale (Leidinger et al.,  2021). Finally, as multispecies 
DG-ABMs represent both intra- and interspecific complexity, they 
are especially suited to address macroevolutionary consequences of 
interspecific interactions, such as speciation (Gavrilets et al., 2007; 
Weber et al., 2017). We found several examples of macroevolution-
focussed DG-ABMs developed to investigate adaptive radiation, 
that is the rapid diversification of a single lineage into many species 
with a great diversity of ecological strategies (Gascuel et al., 2015; 
Pontarp et al., 2015; Ward & Collins, 2022). These models generally 
consider a limited number of abstract, phenotypic traits reflecting 
the competitive ability of the focal individual with all the other in-
dividuals of the local patch. The distance between these ecological 
phenotypes within a patch drives exploitative competition, while 
heritable variation of the ecological phenotype fuels the processes 
of local adaptation and speciation.

Overall, it appears that DG-ABMs have a large potential to ad-
dress fundamental eco-evolutionary questions accounting for multi-
ple drivers of fitness, and are increasingly used in an integrative way, 
allowing effects to flow up and down between organization levels.

7  |  DG -ABMS TO A SSIST MANAGEMENT 
STR ATEGIES

Another key feature of DG-ABMs is their capacity to model the ef-
fects of management practices on individuals and their interactions, 
together with that of other eco-evolutionary processes. Hence, by al-
lowing emerging effects, DG-ABMs can also be efficient prospective 
tools to elaborate and assess management strategies. When man-
agement consists of demographic control of populations, in particular 
through individual phenotype-based choices, it can deeply impact 
all demographic processes and population genetic composition, and 
therefore the intensity and direction of the evolutionary processes 
(Lefèvre et al., 2013). For example, selective fishing (or harvesting) 
directly affects competition among surviving fish (or trees), while 
genetic composition determines optimal fishing (or harvesting) pat-
terns. In particular, different DG-ABMs were used to understand 
how selective fishing can affect the demography and evolution of 
fish populations (fisheries-induced evolution), through cascading 
and sometimes counterintuitive effects on population demographic 
structure, growth and maturation thresholds (Ayllón et al.,  2018; 
Piou et al., 2015; Wang et al., 2017; Wang & Höök, 2009). By simul-
taneously modelling the plastic and genetic responses of individu-
als, DG-ABMs can also disentangle the role of selective fishing and 
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environment in the observed and predicted population declines and 
phenotypic changes (Piou et al., 2015).

When evolutionary dynamics and land use planning decisions are 
linked, DG-ABMs also represent valuable decision support tools. 
For example, Papaïx et al.  (2018) and Rimbaud et al.  (2018) used 
a spatially explicit demo-genetic model to assess the joint effect 
of crop cultivar deployment strategies in space and time and key 
pathogen life-history traits on epidemiological dynamics, resistance 
durability and long-term evolutionary control. Using a DG-ABM, 
Mims et al.  (2019) found strong effects of spatial connectivity on 
demo-genetic outcomes in reintroduced bull trout populations, and 
allowed identification of watershed areas with higher persistence 
probabilities.

In the case of hybridization between native/wild and introduced/
domesticated gene pools, DG-ABMs allow to study the impact of 
management on the dynamics of crossing within and between gene 
pools, which depends on differential social interactions (e.g. mating 
preference) and genetic performances (e.g. local adaptation) be-
tween gene pools (Castellani et al.,  2015; Nathan et al.,  2019). In 
this context, DG-ABMs are an effective means of developing genetic 
enrichment strategies in a prospective approach (which genetic re-
sources and which deployment modalities for which risks?), and con-
versely of evaluating strategies aimed at preserving the local gene 
pool from unwanted introgression.

In these different case studies, DG-ABMs offer a relevant frame-
work to evaluate the short- and long-term evolutionary costs and 
benefits of management actions and to assess potential trade-offs 
between them. For example, they allow to address the issue of ex-
ploiting a population or a metapopulation (e.g. fishing and wood 
production) while preserving its genetic value and diversity, or to 
determine how to minimize the risks of demo-genetic collapses of 
populations facing climate change. Furthermore, by controlling the 
social context of populations, management drives the overall eco-
logical processes and thus affects biotic and abiotic stressors, the 
susceptibility of populations to these stressors, and selection inten-
sity (Jactel et al., 2009).

8  |  TAKING ADVANTAGE OF ABMS FOR 
DG -ABMS

The above-listed examples from our literature review illustrate the 
diversity of interindividual interactions, adaptive traits and ecologi-
cal processes that can be investigated using DG-ABMs. This diver-
sity is a strength but requires active strategies to better identify 
possible links between similar models developed to answer different 
questions, and to structure the community of developers and users 
of these models. Identified as ABMs, DG-ABMs can benefit from 
multiple advances in the ABM community. The flexibility of the ap-
proach ranges from very simple and generic models to very complex 
and specific models, depending on model assumptions and objec-
tives (Edmonds & Moss, 2005). A wide panel of tools and method-
ologies are available to explore DG-ABMs (Thiele et al., 2014). The 

exponential increase in genomic databases should help in the cali-
bration/validation of DG-ABMs (Rudman et al., 2018). The use of de-
scription protocols such as Overview, Design concepts and Details 
protocol ensures the replicability and enhances the understanding 
of the models (Grimm et al., 2020). The TRACE framework (Grimm 
et al., 2014) is also a powerful tool for planning, documenting and 
assessing model development, analysis and application. Software 
for ABM development have increased in simplicity, quality, speed 
of computation and reliability and allow sharing pieces of code eas-
ily (Dufour-Kowalski et al., 2012); in particular, quantitative genetic 
libraries can be plugged into existing population dynamic models to 
describe the genetic architecture of adaptive traits (e.g. ‘Genetics’ 
library in CAPSIS Dufour-Kowalski et al.,  2012; Oddou-Muratorio 
& Davi, 2014). Software for complex model exploration have been 
proposed (Reuillon et al., 2013). Complex and multi-authored models 
may use modelling notebooks to keep trace of all steps of concep-
tualisation, model development, implementation and exploration in 
order to enhance the confidence of end-users of DG-ABMs in the 
management communities (Ayllón et al., 2021). Finally, the publica-
tion of model codes on specific dissemination platforms is encour-
aged in the ABM community (e.g. https://www.comses.net/codeb​
ases/). All these recommendations should benefit the development 
of DG-ABMs.

Intrinsically, DG-ABMs conception requires a multidisciplinary 
approach integrating multiple levels of knowledge and can be used in 
interdisciplinary research projects as a tool of interaction among dis-
ciplines. ABMs are also used as frontier objects in several contexts 
(Le Page & Perrotton, 2017; Reilly et al., 2021). As such, DG-ABMs 
are important tools in interacting with management or other end-
user communities that need to incorporate evolutionary processes 
in their decisions. Although this has not been done so far, DG-ABMs 
could even be developed as part of a participatory modelling ap-
proach (Le Page et al., 2012) to integrate the knowledge of a diverse 
community of experts that need to manage constantly evolving eco-
systems. Finally, they should become essential to adaptive manage-
ment with an evolutionary perspective (Groot & Rossing, 2011).

9  |  CONCLUSION

In complement to the analytical models traditionally employed by 
evolutionary ecologists to investigate eco-evolutionary feedback 
loops, this review puts forward DG-ABMs, which are individual-
based (meta)population dynamics models with heritable trait vari-
ation and phenotype-dependent interactions between individuals. 
Our literature review illustrates how the bottom-up construction of 
fitness in these DG-ABMs allows them to provide new insights into 
various fundamental and applied questions in ecology and evolution.

Previous reviews of the literature have indicated that ABMs in 
general are not used to address general questions in ecology and 
evolution, but have a more ‘narrow’ or ‘pragmatic’ scope (DeAngelis 
& Grimm, 2014). We advise modellers working on eco-evolutionary 
processes to carefully consider the benefits of accounting for the 
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effects of interactions between individuals on fitness in their ap-
proach, since it might significantly affect the direction and magni-
tude of evolution. This is true for theoretical investigations and for 
more applied objectives, since these eco-evolutionary mechanisms 
also operate on rather short timescales (a handful of generations). 
Using a dedicated term—such as DG-ABM—would facilitate a dis-
tinction between categories of modelling approaches, highlighting 
the specifics of eco-evolutionary models accounting for interindivid-
ual interactions and their variations, and the potential differences in 
their respective predictions.
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