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Abstract Elium® resin is nowadays actively investigated to leverage its recy-
cling ability. Thus, multiple polymerization modeling are developed and used.
In this work, we investigate the polymerization of Elium®/Carbon fiber com-
posite in a cylindrical deposition, followed by an in-oven heating. The model
parameters are optimized using an active-set algorithm to match the exper-
imental heating profiles. Moreover, the simulation efforts are coupled to an
artificial intelligence modeling of the discrepancies. For instance, a surrogate
model using convolution recurrent neural network is trained to reproduce the
error of the simulation. Later, a digital twin of the process is built by coupling
the simulation and the machine learning algorithm. The obtained results show
a good match of the experimental results even on the testing sets, never used
during the training of the surrogate model. Finally, the digital twin results are
post-processes to investigate the resin polymerization through the thickness of
the part.
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1 Introduction

Thermoplastic Composite materials have proven to be a viable engineering
solution for a wide range of applications requiring high performance compo-
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nents [1,2]. With increased interested in their applications with the arrival of
the electric vehicles, developing composite materials with the aim of reducing
energy consumption represents a challenge for years to come. Indeed, the pos-
sibilities offered by these materials are appealing since they offer an incredible
ratio of mechanical performance to density, and they can easily be endowed
with special properties, multiple functionality, and even gradient properties
in a wide range of applications. Recently, thermoplastics are aimed as they
potentially offer the possibility of being completely recycled [3,4]. Another ad-
vantage over metal alloys is the ability to design components with properties
tailored to a specific application. Composed of two macroscopically separate
materials, the reinforcement and the matrix, whose different characteristics
together contribute to the final properties. Composite components offer addi-
tional design freedom that allows them to be engineered to withstand a variety
of loads and working conditions while having more efficient functional config-
urations [5]. This freedom comes from the ability to manipulate processing
variables such as fiber orientations of sequentially stacked layers or fiber vol-
ume fractions. Because of this advantage, composite materials are particularly
relevant to the transportation sectors and play an important role in the cur-
rent and future success of these industries. However, today, if the applications
using these materials are more and more numerous, they are not up to what
one could expect, neither in quantity, nor in quality, with production rates
often limited [6].

One of the critical aspects to enhance remains the composite materials
manufacturing processing time, especially to be in phase with the needs of the
automotive industry. Facing such challenge, reactive resin solutions have been
proposed [1]. In fact, these resins allow to guarantee a low viscosity of the
material during its implementation, and concentrates during the process the
polymerization and consolidation phase, thus offers the possibility to reduce
drastically the processing time [7]. This solution is very attractive, guarantee-
ing an ease of implementation similar to thermosetting resins, shortening the
operations on the products, and decreasing the number of processing opera-
tions, which is also a considerable gain from the energy point of view [7].

The down-side of these solutions is that the complex manufacturing pro-
cess, a key to delivering high performance parts, is not mastered yet. An
inadequate control of the polymerization step leads to reduced mechanical
properties, and final performance not matching expectations [8,9]. Thus, few
industries today take the step of using these reactive systems, which concen-
trate all the final properties of the part in a single step of implementation.

On a parallel line to these technological advances in polymer design, the
digital world has evolved and Industry 4.0 has brought solutions for a better
modeling and control of industrial processes. Novel modeling and simulation
methods are combining the modern computation tools with artificial intelli-
gence algorithm to enhance their prediction ability [10]. While using machine
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learning is a trend in computational mechanics [11–15], these models tend to
violate basic engineering principles. Therefore, new techniques based on satis-
fying basic principles appeared [16–18]. Others preferred to update the simu-
lation reduced basis subspace using experimental measures and experimental
variability, while constraining the variation into the physical manifold of the
problem [19–22], constructing therefore a stochastic digital twin of the mea-
sured instance. Digital twins, also known as hybrid twins, is a novel paradigm
in computational mechanics, where data complements the simulation to tackle
the possibility of generating highly predictive and physics-based realistic solu-
tions [23–25].

In this work, we propose to build a digital twin for the curing of one of
the popular reactive resin known as Elium, using a deterministic modeling as
measurements of the experimental variability are not available. Deterministic
digital twins deliver an enhanced predictive simulation through a correction
of the simulation results, while conserving the physical interpretability of the
results. This work is part of this issue, how to give confidence to users of re-
active resins, so that they control the processing throughout the day, and in
particular ensure that the polymerization reaction, generally exothermic, does
not cause hot spots, which would irreversibly damage the material, and guar-
antee a maximum rate of polymerization, and therefore mechanical properties
expected at the end of the part manufacturing. Moreover, this work generates
a 3D map of the polymerization ratio, as a function of the selected heating
cycle, something unavailable by any other means nowadays. The map can be
generated post curing, using experimental data, or estimated pre-curing using
the built model as an integrator scheme.

In the first part, of the work, section 2 reviews the main materials and
methods used for the measurements of the data, while section 3 explore the
obtained experimental results. In section 4, we explore the simulation model
used in this work, which is enhanced in section 5 using machine learning tech-
niques. Finally, the obtained digital twin results are shown in section 6 and
some conclusions are drawn in section 7.

2 Materials and method

2.1 Materials

Composites tanks were made from continuous carbon fiber, impregnated by a
winding grade monomer formula, Elium®C595 of Arkema, France. The tanks
winding process prior to curing is illustrated in figure 1.

2.2 Manufacturing

Six composites wounded structures made of 92 plies were manufactured, on
a cylindrical drum. The main material parameters are the same for all six
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Fig. 1: Winding process.

experiments, the curing cycles are slightly different. The first step being the
impregnation and winding, at ambient temperature, followed by a second step
performed in an oven consisting in a temperature cycle of 1h at 80oC to per-
form the polymerization of the matrix. During this polymerization phase, the
temperature is recorded within the structure thanks to 3 K-type thermocouples
placed at the interface of plies 1/2, 45/46, and 91/92. An additional thermo-
couple allows the following of the environment temperature inside the oven
cavity being the unique controlled input, it will be noticed T∞ in the furthur
modeling of the process . The schematic of the deposited composite material
is illustrated in figure 2.

3 Experimental results

Six experimental polymerization data are available with the initial composite
material. The simulation will however consider only the main heating phase,
where the main resin polymerization process occurs. The experimental mea-
surements are shown in figure 3 for two selected cases, in figure 3(a), and figure
3(b).

The experimental data sets are used with the environmental temperature as
an input for the simulation. The convection coefficient are previously identified
internally and found to be at r = Rmax is hout = 50W/m2.K, while the one
at the inner part of the drum, r = Rmin is hin = 2W/m2.K. Obviously, inside
the cylindrical support, the convection is hindered by the small inner diameter
of the cylinder, reducing naturally the air circulation inside the used hollow
shaft.
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Fig. 2: The schematic of the studied deposition.

(a) Sample data from an experiment (b) Other example of an experiment sam-
ple data

Fig. 3: The thermocouple and environment temperature data for two selected
experiments. In correlation with figure 2, the bottom thermocouple refers to
the thermocouple 1, the middle thermocouple is the one thermocouple 2 and
the top thermocouple is the thermocouple 3.

4 Resin polymerization model and simulation

Resin polymerization model published in [26] is initially considered, while using
cylindrical coordinates. For instance, leveraging the axisymmetrical shape and
boundary conditions, and neglecting the edge effects, the thermal fields are
modeled using the transient 1D cylindrical heat transfer equation with heat
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generation:
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T denotes the thermal field, t the time, r the radial coordinate, µ the
thermal diffusivity and Q the heat generation therm.

Q is modeled initially using the resin polymerization model in [26]. Its
expression is the following :

Q = − ∆H

CpM0
wM0

dM

dt
(2)

with ∆H being the total enthalpy of polymerization, Cp the heat capac-
ity of the composite material, M the concentration of monomer, M0 the ini-
tial concentration of monomer at t = 0 and M0

w the molecular weight of
the monomers. The monomer used in this work in the methyl methacrylate
(MMA). The heat capacitance of the composite material is homogenized using
the law of mixture [27] as follows:

Cp = (1− wf ) ((1−X )Cp,m + XCp,p) + wfCp,f , (3)

with wf the fibers mass fraction, X the degree of monomer conversion,
Cp,m the monomers heat capacity, Cp,p the polymer (polymethyl methacrylate
- PMMA) heat capacity and Cp,f the used carbon fibers heat capacity. The
polymerization reaction chain is modeled using:

dM

dt
= −kpM

√
2fkdI

kt
(4)

with kp the coefficient of radical propagation, kt the one for radical ter-
mination and kd the initiator decomposition steps. The two terms I and f
are parameters relative to the reaction initiator, I being the reaction initiator
concentration and f the initiator’s efficiency factor. f is a fitting parameter,
while the parameters kp, kt and kd are computed as described in appendix 1.A
of the reference[26]. Another fitting coefficient, γ appears in the calculation of
the three mentioned parameters kp, kt and kd. The solution is therefore com-
puted through solving equation 1 through fitting the two parameters (f, γ) to
find the most suitable parameters, and the best solution of the problem using
the modeling published in [26]., which relies on identifying two fitting param-
eters (f, γ). The found optimal solutions for f = 0.5 and γ = 0.45, fitted using
a Newton gradient descent algorithm, are illustrated in figure 4 for the case
of the same two experiments illustrated in figure 3. One should mention that
the environment temperature shown in figure 3 is an input for the simulation
leading to figure 4. The simulations illustrated in figure 4 assumes an initial
degree of polymer conversion X0 = 0.
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(a) Sample simulation results for experi-
ment 1

(b) Sample simulation results for an exper-
iment 2

Fig. 4: The simulated and the experimentally measured temperatures data for
two selected experiments. The dotted lines are the experimental measurements,
while the solid lines are the simulation ones.

4.1 Identifying the initial degree of polymer conversion

The solutions using the original modeling published in [26] and illustrated in
figure 4 do not allow the prediction of the thermal fields with high fidelity.
Since the simulated peak thermal fields are delayed with respect to the exper-
imental ones, while having a higher maximum value, one would imagine that
the reaction may have already started in the experimental setting. Therefore,
we create a first optimization algorithm to fit 8 parameters, placed in a vector
α such as α =

(
X 1

0 ,X 2
0 , · · · ,X 6

0 , f, γ
)
, with X i

0 is the initial degree of polymer
conversion for an experiment i.

Allowing to set X i
0 ̸= 0 for experiment i means that the reaction may have

already started before the set initial time t = 0. An optimization problem is
now set to solve the problem parameters through minimizing a cost function
J :

αopt = argmin
α∈[0,1]8

(J) , (5)

with J being defined as the sum of square errors over all time-steps such
as:

J =

6∑
i=1

∫
t

(
T sim
i − T exp

i

)2
dt (6)

The selected optimization algorithm is the active set optimization algo-
rithm [28], which will identify the 8 parameters by performing the simulation
of each experimental setup several times. Active set is suitable for parame-
ters fitted inside a small variation interval, and thus is an appealing gradient
descent algorithm for our application [28]. To accelerate the optimization pro-
cess, a proper orthogonal decomposition (POD) reduced basis is built for the
problem a priori, before starting the optimization process [29–32].
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4.2 Construction of the reduced order model

A reduced order model based on the POD method is built to accelerate the
optimization process. For this aim, the time dependent solution of each avail-
able simulation is used to build a POD solution for the corresponding set of
the solutions. For instant, we simulate an experimental setting i, considering
X i

0 = 0, 0.1, 0.2, · · · , 0.5, f = 0.5 and γ = 0.45, to obtain a solution T i(x, t).
The solution T i(x, t) is a matrix of dimension N ×m, where N is the number
of degrees of freedom in the space domain r and m is the number of time steps.
We perform a singular value decomposition (SVD) of T i(x, t) using:

svd(T i) = UiΛiWi (7)

The matrices Ui and Wi consists of the space and time mode shapes
respectively, while Λi is a diagonal matrix containing the singular values of
decomposition. The reduced basis Vi is obtained through retaining only the n
highest singular values, and their corresponding vectors in Ui. Noting Vi the
resulting reduced basis, one can write:

T i(x, t) ≈ Vi ∗ ζi(t) (8)

where ζi is the size n vector of reduced coordinates values in the defined
reduced space. One reduced basis is built for every initial degree of polymer-
ization, with an interpolation performed in between the selected values.

Time discretization is performed using and an implicit integration scheme
is adopted [33]. At every time step, the discrete form of the problem defined
in equation (1) is reduced into a linear system of equations having the form:

KT = B (9)

The projection of equation (9) into the projection reduced basis space leads
to:

ViTKViζi = ViTB (10)

The equation (10) is therefore reduced to a n×n system of linear equations
instead of N ×N as in equation (9).

Considering the remaining unselected terms of Λi, one can estimate an
error of the POD approximation ePOD evaluated on the training snapshots
eventually, such as:

ePOD =

j=nt∑
j=1

∥T i
j −ViViTXT i

j∥2X
j=nt∑
j=1

∥T i
j∥2X

=

j=nt∑
j=1+n

λi
j
2

j=nt∑
j=1

λi
j
2

(11)

with nt the total available snapshots, one per each time step and λi
j the di-

agonal value of matrix Λi on line j. The used projection matrix for the inner
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product used in this work is the identity matrix, X = I. The selected value
of n ∈ [6, 10] was used for all the 6 cases, with a POD error ePOD < 10−5.
The final optimization results will also be compared to their final elements
counterparts to validate the POD approach.

4.3 Optimized results

The optimization problem defined in equation (5) is coupled to a cost function
J evaluation using the reduced basis defined in section 4.2, and solved using
an active set algorithm. The convergence leads to fopt = 0.68 and γopt = 0.24
and an initial degree of polymer conversion X0 ∈ [0.15; 0.2]. All the results
illustrated in this section are using the material properties shown in A, table
5.

Once the optimal solutions available, the simulation is performed again
using finite elements to validate the POD reduced basis, and to alleviate any
truncation error generated by the reduced basis. The results are illustrated in
figure 5 for two selected simulations.

(a) Sample simulation results for an exper-
iment 1

(b) Sample simulation results for an exper-
iment 2

Fig. 5: The simulated thermal field with optimized parameters along with
the experimentally measured temperatures for two selected experiments. The
dotted lines are the experimental measurements, while the solid lines are the
simulation ones.

The results shown in figure 5 show lower relative errors than the ones illus-
trated in figure 4. However, the shown results are still not fully satisfying and
require further enhancement. For this aim, we will combine the obtained opti-
mized simulation to a machine learning algorithm to build a digital twin able
to reproduce the experimental results, by enhancing the available simulation
through modeling the ignorance, or the error, in the model.



10 Chady Ghnatios* et al.

5 Surrogate modeling of the generated error

In this section, we aim to build the digital twin reproducing the error between
the simulated results and the experimental ones. First of all, we start by cre-
ating a surrogate model to fit the errors Ei between the simulation and the
experimental results, defined as:

Ei =
(
T exp
i − T sim,opt

i

)
(12)

The errors are plotted for two selected case in figure 6.

(a) Sample simulation results for an exper-
iment 1

(b) Sample simulation results for an exper-
iment 2

Fig. 6: The relative error between the experimental and simulated results after
performing the parametric optimization.

Two modeling methods were used for the surrogate modeling of the error.
A first method uses the radial coordinate r as an input, and therefore is able
to predict the time-dependent error in all the domain thickness after being
trained only on the three available data points. The second method do not
uses the r coordinate as an input to the problem, and thus fits only the three
available data points. Later on, a parabola is fitted between the available data
points to predict the error values in the rest of the thickness domain. In what
follows, we detail both methods used for the error modeling.

One should highlight the available data set for training and testing is much
larger than the number of experiments. In fact, since transient incremental
model is being built, each time step measurement is a data point that can be
used in the training of the algorithm. Thus, the total number of available in-
put/output combinations is 26,703 data points, enough to train the considered
neural network.
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5.1 Considering the radial coordinate as an input parameter

In this part, we use a recurrent neural network with convolution layers to
model the error E between the simulation and the experimental results. We
will be omitting the subscript ·i as the error is systematically fitted on five
experiments, while the last one is used for testing and evaluation of the fitting
quality. The error is approximated as Ẽ by a recurrent convolution neural
network, consisting a surrogate model g1. This model takes as an input the
error values in the last 5 time steps on the 3 available thermocouples, the degree
of polymer conversion X estimated on the location of the three thermocouples
using the model discussed in section 4, the time t, the radius coordinate of the
thermocouple currently being evaluated and the ambient temperature Tenv.
The output is the estimation of the error for the upcoming time step s. For
instance one can write:

(
Ẽs(r)

)
= g1


Es−1

...
Es−5


bot

,

Es−1

...
Es−5


mid

,

Es−1

...
Es−5


top

,

 ts
...

ts−4

 ,

Xs−1

...
Xs−5


bot

,

Xs−1

...
Xs−5


mid

,

Xs−1

...
Xs−5


top

,

 Ts

...
Ts−4


env

, r


(13)

The used neural network is illustrated in table 1. The model is trained using
300 epochs and 22506 inputs/outputs combinations, corresponding to all the
timesteps from the first 5 experiments, while the validation is performed on
the 6th experiment, with 3571 time steps, corresponding to 3567 input/output
combinations. All data values are normalized before training. For example, for
a data input m, the normalized values mnorm are obtained using:

mnorm =
m−mmean

mmax −mmin
, (14)

where mmean is the average value of m, mmax is the maximum and mmin

is the minimum value of m. All normalization constants are only computed on
the observed in the training set.

The error fittings results are illustrated in table 2, where we represent the
mean absolute percentage errors on the observed training and testing sets.
The results are not satisfying and therefore the need for the second approach
illustrated in section 5.2 is motivated.
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Layers shape activation

1 2D convolution, 30 filters, kernel (5× 4), strides (2× 1), no padding selu
2 2D convolution, 60 filters, kernel (1× 3), strides (1× 3), no padding selu
3 A flatten layer, reshapes all inputs into a single vector no activation
4 Fully connected dense layer with 1200 neurons selu
5 Fully connected dense layer with 500 neurons selu
8 Fully connected dense layer with 1 neuron linear

Table 1: Structure of the deep convolution neural network g1 used for the
fitting of Ẽ . selu stands for the scaled exponential linear unit [34], while linear
stands for linear activation or no activation function.

Model g1 Mean absolute percentage error Root mean square error (oC)

Training sets 23% 0.4607
Testing sets 45% 0.3862

Table 2: Mean relative errors of the trained model g1

5.2 Modeling only the available data points with a parabolic fitting
in-between

In this part, we approximate again Ẽ by a recurrent convolution neural net-
work, consisting a surrogate model g2. This model does not take as an input
the radius location r, but still takes as an input the error values in the last
3 time steps on the 3 available thermo couples, the degree of polymer con-
version X estimated on the location of the three thermo couples using the
model discussed in section 4, the time t and the ambient temperature Tenv.
The output is the estimation of the error for the upcoming time step s on the
three available thermocouples. For instance we can write:

(
Ẽs

bot
, Ẽs

mid
, Ẽs

top
)
= g2


Es−1

...
Es−3


bot

,

Es−1

...
Es−3


mid

,

Es−1

...
Es−3


top

,

 ts
...

ts−2

 ,

Xs−1

...
Xs−3


bot

,

Xs−1

...
Xs−3


mid

,

Xs−1

...
Xs−3


top

,

 Ts

...
Ts−2


env


(15)

The used neural network is illustrated in table 3. The model is trained
using 2500 epochs using the same data combinations illustrated in section 5.1.
However, in this case, not each sensor consists a data set by its own, therefore
the number of available combinations is divided by 3, as each 3 thermocouples
consists a single input/output combination. All data values are normalized
before training using the same approach as in section 5.1.
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Layers shape activation

1 2D convolution, 30 filters, kernel (3× 4), strides (3× 1), no padding selu
2 2D convolution, 60 filters, kernel (1× 2), strides (1× 2), no padding selu
3 A flatten layer, reshapes all inputs into a single vector no activation
4 Fully connected dense layer with 1200 neurons selu
5 Fully connected dense layer with 50 neurons selu
8 Fully connected dense layer with 3 neuron linear

Table 3: Structure of the deep convolution neural network g2 used for the
fitting of Ẽ . selu stands for the scaled exponential linear unit [34], while linear
stands for linear activation or no activation function.

The error fittings results are illustrated figure 7 for two selected experi-
ments, while the table 4 represents the mean absolute percentage errors on
the observed training and testing sets. It is clear that, although the used net-
work does not take the radius into consideration, it performs much better than
the one illustrated in section 5.1, and therefore this approach will be adopted
for the digital twin construction.

The model g2 outperforms g1, as it doesn’t has to predict the through
thickness variation of the results, as it is fitted using the parabolic variations. In
fact, with only 3 available measurements through the thickness dimension, and
absence of any other information about the discrepancy, a parabolic estimation
is the most suitable approach.

Model g2 Mean absolute percentage error Root mean square error (oC)

Training sets 7.9% 0.1765
Testing sets 13.25% 0.1463

Table 4: Mean relative errors of the trained model g2

6 Digital twin results

In this section we combine the solution obtained from the optimized simula-
tion, to the one obtained from the recurrent neural network, building therefore
a digital twin of the thermal solution. The final digital twin thermal solution
TDT is computed as:

TDT = T sim + Ẽ (16)

The digital twin solution of the thermal fields is illustrated in figure 8 for
a selected testing and training experiments. The comparison with the experi-
mental thermal results is illustrated in figure 9. Later on, the thermal fields are
leveraged to compute the resin polymerization degree X , using the model pro-
posed in [26]. The results are illustrated in figure 10 for selected experimental
testing and training set.
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(a) g2 training results (b) g2 testing results

Fig. 7: Sample results of g2 surrogate model for the training data-set of exper-
iment 2 and for the testing data-set, experiment 6. The dotted lines are the
correct errors obtained in equation (12), while the solid lines are the neural
network output

(a) g2 final digital twin training results (b) g2 final digital twin testing results

Fig. 8: Sample results of g2 surrogate model combined with the simulation
data.

7 Conclusion

In this work, we developed a digital twin of the in-situ polymerization of a
cylindrical continuous fiber composite material, impregnated with Elium®resin.
Elium®is a reactive resin with auto-accelerating polymerization kinetics. The
simulation obtained using the implemented digital twin is of high predictive
ability, validated on an experimental set never seen during the training. The
obtained model is leveraged through post processing the degree of resin poly-
merization through the thickness of the part and the processing time. The
described procedure allows therefore to predict the ability of the monomers
to react and polymerize leading to the final desired part, while avoid local
overheating and degradation of the Elium®matrix.
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(a) g2 final digital twin training results (b) g2 final digital twin testing results

Fig. 9: Sample results of g2 surrogate model combined with the simulation
data. The dotted lines are the experimental measurements, while the solid
lines are the digital twin output

(a) Post processing the degree of resin poly-
merization in a training experiment

(b) Post processing the degree of resin poly-
merization in a testing experiment

Fig. 10: Post processing of the digital twin output to compute the final degree
of monomer conversion
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A Polymerization material properties

In this section we review the used properties of the polymerized composite material, as illus-
trated in table 5. For detailed explanation on the used polymerization and heat generation
model please refer to reference [26], appendix A.
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Properties Values

Tape thickness 0.215 mm
Cylindrical support thickness 3 mm
Mesh distance between nodes 43 µm

Time step ∆t 1 s
Initiator decomposition energy 124000 J/mol

Initiator pre-exponential factor for macro-radical diffusion 3× 10−6 m2/s
Overlap factor γm 0.8

Overlap factor of macroradical γt 1.8
Normalized initiator diffusion coefficient 12.5

Initial air temperature T0 25oC
Mass fraction of the resin in the composite 0.25

Thermal diffusivity of the mold 90×10−6 m2/s
Thermal conductivity of the mold 100 W/m.K

Thermal diffusivity of the composite 2.0815×10−7 m2/s
Thermal conductivity of the composite 0.7 W/m.K

Resin molecular weight 0.100121 kg/mol
Polymerization enthalpy 57800 J/mol

Activation energy of propagation step 22360 J/mol
Activation energy of termination step 5890 J/mol

Pre-exponential factor of propagation step 2670 m3.kg.mol/s
Pre-exponential factor of termination step 198 400 m3.kg.mol/s

Pre-exponential factor of initiator decomposition step 7.44× 1015 s−1

Coefficient of chain transfer to monomer 5× 10−5

Coefficient of chain transfer to initiator 6× 10−2

Interaction radius of propagation step 2.93× 10−10 m
End-to-end distance per square root of number of monomer units in chain 6.9× 10−10 m

Average entanglement spacing in polymer 70
Pre-exponential factor for calculation of monomer diffusion coefficient 3× 10−8 m2/s

Glass transition temperature of monomer −126oC
Glass transition temperature of polymer 114oC

Density of monomer 940kg/m3

Density of polymer 1170kg/m3

Table 5: Material and simulation properties used in for optimization problem
detailed in section 4
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