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Abstract: High-resolution mass spectrometry is a promising technique in non-target screening (NTS)
to monitor contaminants of emerging concern in complex samples. Current chemical identification
strategies in NTS experiments typically depend on spectral libraries, chemical databases, and in silico
fragmentation tools. However, small molecule identification remains challenging due to the lack
of orthogonal sources of information (e.g., unique fragments). Collision cross section (CCS) values
measured by ion mobility spectrometry (IMS) offer an additional identification dimension to increase
the confidence level. Thanks to the advances in analytical instrumentation, an increasing application
of IMS hybrid with high-resolution mass spectrometry (HRMS) in NTS has been reported in the
recent decades. Several CCS prediction tools have been developed. However, limited CCS prediction
methods were based on a large scale of chemical classes and cross-platform CCS measurements. We
successfully developed two prediction models using a random forest machine learning algorithm.
One of the approaches was based on chemicals’ super classes; the other model was direct CCS
prediction using molecular fingerprint. Over 13,324 CCS values from six different laboratories and
PubChem using a variety of ion-mobility separation techniques were used for training and testing
the models. The test accuracy for all the prediction models was over 0.85, and the median of relative
residual was around 2.2%. The models can be applied to different IMS platforms to eliminate false
positives in small molecule identification.

Keywords: collision cross section; ion mobility spectrometry; non-target screening; machine learning

1. Introduction

A large number of chemicals have been released into the environment by human activ-
ities, such as agriculture, industrial productions, and their relative byproducts. Once these
chemicals enter the environment, transformation products (TPs) can be produced through
hydrolysis, photosynthesis, and biological metabolism [1–6]. Most of these chemicals and
their TPs are missing molecular and/or structure information. Thus, these chemicals’
human and environmental risk assessments remain an open question [6–12]. Although
most legacy pollutants have been banned for decades in many countries, they can still be
detected at trace-level in the environment [2,13–15]. The known pollution is only the tip of
the iceberg compared to the number of environmental hazards [1,13,14].

Non-target screening/analysis (NTS) is considered as an appropriate methodology to
identify a variety of chemicals, especially for the unknown unknowns, such as contaminants
of emerging concern (CECs) [16–18]. High-resolution mass spectrometry (HRMS) coupled
with gas or liquid chromatography (GC or LC) is the most commonly used analytical tech-
nique in human health and environmental assessments. Thanks to the advance of HRMS,
it has been increasingly applied in NTS studies in the last decades [17,19–21]. HRMS (i.e.,
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Time-of-flight (TOF) and Orbitrap) maintains a high mass accuracy within ±5 mDa m/z
error, and it can be acquired in full scan MS data or plus MS/MS data [10,21–24]. The ac-
curate mass of the parent ion and the fragments are used to identify unknowns [17,19,21].
The isotopic pattern is one of the additional criteria which can help determine the presence
of hetero-elements in non-target analysis [25]. However, mass spectral information is
not enough for highly confident structural elucidation [22,25,26]. Therefore, inclusion of
orthogonal sources of information such as measured or predicted retention time and/or
retention time indices is necessary [21,27,28]. Such measurements are complex to perform
and require particular experimental conditions [29–31].

Collision cross section (CCS) is a platform-independent measure of chemical structure
in the gas phase and the three-dimensional space [32–34]. Studies have demonstrated
that the inter-laboratory CCS biases are within 2% for the same IMS technique [35,36].
Moreover, cross-platform biases are below 3% for over 98% of the chemicals included
in their studies [37,38]. Drift tube ion mobility (DTIM) and traveling wave ion mobility
(TWIM) are two of the most used IMS techniques to measure the CCS value or drift
time [37,39]. CCS value and drift time have been employed in NTS as an additional source
of information, to increase confidence level in structural elucidation [40–42]. In addition to
experimentally defined CCS values, CCS values can be estimated/predicted via theoretical
calculations or Machine Learning (ML) [43,44]. ML CCS predictions take advantage of large
datasets of the experimentally defined CCS values to train, validate, and test the regression
models [44]. Zhou et al. [45] reported the first CCS prediction tool using the support vector
regression (SVR) ML algorithm for metabolites. Plante et al. [46] published a deep neural
networks CCS prediction strategy for cross-platform CCS measurement. The currently
available CCS prediction tools rely on molecular descriptors or the combination of the
chemical class and the m/z value of the parent compound [44–52]. Molecular fingerprints,
which are more accurate and representative of the structure of a molecule [53], have
not been used for the prediction of CCS values due to the difficulties associated with
variable selection.

This study proposes a novel approach for CCS prediction using molecular topology
fingerprints instead of molecular descriptors. First, we built a classification model to predict
the chemical super classes based on their fingerprints. This model was used to classify
chemical super classes. Then, CCS prediction models were developed for each super class.
Additionally, all 13,324 chemicals were combined and to build a direct CCS prediction
model. We also evaluated the impact of the chemical classes on the model accuracy.

2. Materials and Methods
2.1. Datasets

Experimental CCS databases and chemical information were collected from Zenodo,
PubChem, and published articles as referenced in Table 1. Firstly, we retrieved all the
missing SMILES notations from PubChem by PubChem CID using the Python PubChemPy
library [54]. All the datasets were concatenated, and molecular fingerprints were generated by
RDKit [55] (Open-source cheminformatics https://www.rdkit.org) (accessed on 10 April 2022)
modules in Python. Hence, a dataset containing PubChem CID, SMILES [56,57], and empirical
CCS value was saved as a csv file ready for model development and validation. The datasets
and the source codes are available at https://github.com/fyang22/CCS-Prediction-Publish
(accessed on 10 April 2022). Additional details about model optimization and construction
are available in the Supplementary Materials.

The merged dataset included 13,324 unique empirical CCS values from 108.4 to
450.6 Å2, measured by TWIM and DTIM. The merged dataset of 3313 chemicals was
categorized into 43 super classes, including POPs, lipids, sugars, metabolites, hormones,
drugs, etc. This dataset was then used for a classification model training and testing. Topo-
logical torsion (TT) fingerprints were chosen as features to encode chemical structure. TT
fingerprints were first introduced by Nilakantan et al. [58], which describe the atom type,
the topological distance between two atoms within four bonds, and torsion angles [59].

https://www.rdkit.org
https://github.com/fyang22/CCS-Prediction-Publish
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Four examples of molecular substructures are shown in Figure 1. The SMILES were con-
verted to 1024 bit-strings fingerprints (FPs) by the implemented module in RDKit. The
FPs were used to calculate molecular similarity, then visualized by principal component
analysis (PCA) and fit machine learning models.

(a) bit-string 194 (b) bit-string 792 (c) bit-string 842 (d) bit-string 588
Figure 1. Examples of a substructure of a bit string. The most relevant features in the prediction models.

2.2. Overall Workflow

This study consists of two major parts and three models, and the workflow is sum-
marized in Figure 2. Firstly, we developed a classification model to categorize chemicals
into five groups, so-called “super class”, based on their FPs similarity. The number of
the “super class” was selected to create a balanced distribution of chemicals in each class.
Five class-based CCS prediction models were developed using the optimized predicted
category. Meanwhile, a direct CCS prediction model was built with the complete dataset
without considering chemical categories. We also compared the two strategies to assess
the prediction accuracy of these two modeling approaches. Finally, we applied the models
to NORMAN SusDat (i.e., 101,684 chemicals) and carried out the direct and class-based
prediction of the CCS values for SusDat.

2.2.1. Dataset for Classification Model

The dataset consisted of the identified chemical super classes which were merged from
three CCS libraries [60–62]. This split dataset was used for chemical classification model
training, validation, and testing. Initially, 43 super classes were defined, where most super
classes contained less than 20 chemicals. To avoid overfitting of the classification model,
we merged different super classes based on the calculated similarity scores of the chemicals.
This enabled a more balanced distribution of chemicals in each super class. First, we calcu-
lated pair-wised fingerprint similarity by the Tanimoto similarity using RDKit. Tanimoto
coefficient is a way to calculate the distance metric using molecular fingerprints [53,63].
Based on the distribution of the chemicals, super classes, and the similarity scores (plot-
ted in Figure 3a), we kept the 5 super classes with the highest population of chemicals
(listed in Figure 3b) and used them as ground truth. Chemicals in other super classes
were assigned to one of the referred classes based on their similarity with a minimum
similarity threshold of 0.6 since around 97% of pair-wise similarities were under 0.6 (shown
in Figure 3a). Chemicals (n = 118) not meeting the similarity score criteria were manually
assigned to a new super class (5 super classes) based on their characterized functional
groups. Meanwhile, we kept the chemicals from the same given class (43 super classes
from the raw dataset) in the same new super class. The final dataset consisted of 5 super
classes having around 1000 unique chemicals in each class (in Supplementary Table S1),
the classification of chemicals is visualized in Figure 3b. This dataset was used for random
forest classification modeling. The final dataset for classification included fingerprints with
1024 bit-strings and the assigned super classes. Our super-class reassignment strategy
effectively differentiated chemical classes from each other. For example, Organic acid and
derivatives (in blue) and Benzenoid (in green) are two separate clusters in the middle left
and in the bottom left.
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Figure 2. Modeling workflow: CCS empirical databases were collected from 6 different laboratories
and PubChem. Two CCS prediction approaches were developed and validated. One model was
class-based CCS prediction, and 5 super classes were defined for modeling. Another was a direct CCS
prediction model. In the end, both prediction approaches were applied to the Norman Susdat list.

2.2.2. Dataset for Regression

For CCS regression modeling, we only considered protonated ions (8620 chemicals of
[M + H]+), deprotonated ions (4589 chemicals of [M − H]−) and radical ions (115 chemicals
of [M].). Then, all the replications were removed by the SMILES, adduct ion and CCS
values. Meanwhile, we calculated the standard deviation of CCS values for the same
chemicals (same SMILES and adduct ion). In the training and test datasets, 642 chemicals
have replications with different measured CCS values. The median of relative standard
deviation (RSD) was about 1.4% (shown in Supplementary Figure S1) for both positive and
negative ionization mode, and studies from multiple laboratories, which are consistent with
the results reported by Hinnenkamp et al. [37] and Feuerstein et al. [38] Aspartame resulted
in RSD of 12.5%, Picache et al. [60] recorded a CCS value of 127.4 Å2 for Aspartame [M +
H]+, which is 40 Å2 lower than the one measured in other references. Different Aspartame
CCS values are also recorded in https://pubchem.ncbi.nlm.nih.gov/compound/134601

https://pubchem.ncbi.nlm.nih.gov/compound/134601#section=Collision-Cross-Section
https://pubchem.ncbi.nlm.nih.gov/compound/134601#section=Collision-Cross-Section
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#section=Collision-Cross-Section (accessed on 1 June 2022). Hence, this dataset, collected
from different laboratories and measured by different IM-MS platforms, was appropriate
for CCS prediction. The entire dataset contained 13,324 unique empirical CCS values
ranging from 108.4 to 450.6 Å2, covering metabolites, drugs, lipids, etc., and it is available
in Supplementary Table S2.

(a) Tanimoto similarity (b) Super class PCA
Figure 3. Super class distribution: A histogram of pair-wise fingerprints similarity is plotted in (a),
and a normalized gamma distribution was fitted to the data and is shown as a red line. Based on the
gamma distribution curve, similarity ≥ 0.6 was chosen to arrange the dataset. In (b), a 2D-scatter
plot of PCA is generated by fingerprints.

Table 1. Summary of the dataset used in CCS prediction model optimization.

Reference Number of Chemicals Instrument *

Picache et al. [60] 1195 Agilent 6560 IM-QTOF MS
Hines et al. [64] 1304 Waters Synapt G2-Si HDMS
Celma et al. [40] 631 Waters VION IMS-QTOF MS

Zheng et al. [61,62] 891 Agilent 6560 IM-QTOF MS
Belova et al. [65] 145 Agilent 6560 IM-QTOF MS
Bijlsma et al. [51] 193 Waters VION IMS-QTOF MS

PubChem [66] 8965

* Agilent: Drift tube ion mobility (DTIM), Waters: Traveling wave ion mobility (TWIM).

2.3. Modeling

In this study, we optimized three models: (1) Class prediction, (2) Class-based CCS
regression model, and (3) a direct CCS regression model. A super class prediction model
was first optimized using random forest classification. This model was used to assign the
super class (i.e., five classes) of the whole dataset. Then, a regression model was built for
each super class to predict the CCS values based on the FPs. Finally, we developed a model
using only molecular FPs for CCS prediction. We compared the pros and cons of two CCS
prediction approaches. All the modelings were performed using a 5-fold cross-validation by
GridSearchCV build-in functionality in Scikit-learn. The details of each modeling strategy
are provided below.

2.3.1. Class Prediction

The Class prediction model was first optimized using the random forest classification
algorithm. The dataset was split into a training set (80%, n = 836) and a test set (20%,
n = 210) with even distribution by super classes. In the random forest classifier, different
hyper-parameters impact the model accuracy differently [67]. In this study, we focused
on the number of trees in the random forest (n_estimators) and the minimum number of

https://pubchem.ncbi.nlm.nih.gov/compound/134601#section=Collision-Cross-Section
https://pubchem.ncbi.nlm.nih.gov/compound/134601#section=Collision-Cross-Section
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samples required at each leaf node (min_samples_leaf). These two parameters appeared to
have the highest impact on the balance between the model robustness and accuracy. We
generated a grid with 25 candidates for the number of trees ranging from 100 to 200 and 2
to 15 for minimum sample leaf. For each model, we performed 5 folds of cross-validation
to assess the model accuracy. The model with the highest cross-validation accuracy was
chosen as the optimized classification model, and the GridSearchCV scores are plotted in
Supplementary Figure S2. The accuracy and F1 scores of each class are listed in Table 2.

Table 2. Results of super-class prediction modeling.

Super Class Training Test F1 Score Accuracy

Benzenoids 181 46 0.905 0.935
Lipids and lipid-like molecules 189 47 0.909 0.889
Organic acids and derivatives 184 46 0.848 0.813
Organic oxygen compounds 142 36 0.861 0.861

Organoheterocyclic compounds 140 35 0.822 0.857

2.3.2. Class-Based CCS Regression

For class-based regression modeling, we applied the optimized classification model
(mentioned above) to the entire dataset, and the results are shown in Supplementary Ta-
ble S2 and Figure S3. We independently performed the CCS prediction modeling for 5 data
splits based on this classification, using the random forest regression algorithm. A total of
80% of the datasets were trained and tested by the rest. Similarly, we generated a grid with
50 candidates and the number of tree fits of 100 to 500. To avoid overfitting, the minimum
sample leaf was set from 5 to 20. For each model and each class, 5 folds of cross-validation
were evaluated to assess the model accuracy (Supplementary Figure S4a–e).

2.3.3. Direct CCS Regression

For comparison, we developed and tested a direct CCS prediction model for the
entire dataset (13,324 compounds). A total of 80% of the data was used to train the
model, and 20% of the data to test with 5-fold cross-validation (Supplementary Figure S4f).
Similarly to the class-based CCS prediction model, n_estimators, and min_samples_leaf
were optimized. The hyper-parameter optimization followed the same steps as class-based
modeling (mentioned above). The model details and accuracy are listed in Table 3.

Table 3. Results of CCS prediction modeling.

Training Test

Dataset Data R2 Data R2 MRE (%)

All 10,659 0.972 2665 0.958 2.20
Benzenoids 1930 0.942 483 0.869 1.89

Lipids and lipid-like molecules 3675 0.940 919 0.932 2.33
Organic acids and derivatives 1392 0.950 348 0.901 2.21
Organic oxygen compounds 754 0.925 189 0.860 2.33

Organoheterocyclic compounds 2907 0.960 724 0.933 1.96

3. Results
3.1. Random Forest Classifier and Regression Prediction Model

Random forest is a suitable supervised machine learning algorithm for categorical and
nonlinear data. We used a random forest classifier model to divide chemicals into 5 super
classes by their molecular fingerprints. Then, we developed two CCS prediction strategies
using molecular fingerprints. One is based on molecular super classes and molecular
fingerprints, and another is a direct prediction by molecular fingerprints. As a CCS value is
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related to the chemical structure, we described each chemical structure by 1024 bit-strings
molecular fingerprints, which were used as the prediction features. Each bit represents a
substructure of a chemical, and some refer to a characteristic chemical substructure. These
bits build up sets of nodes and leaves, then a decision tree.

A collection of decision trees results in a random forest model (decision trees files are
available in Supplementary Materials). In order to obtain a generalized CCS prediction
model, we merged 7 CCS libraries containing 13,324 unique CCS values (108.4 to 450.6 Å2)
measured by TWIM and DTIM platforms from multiple laboratories. Additionally, using a
merged dataset for modeling allowed us to understand the variation of CCS measurement.

3.2. Evaluation of Classification Model

We obtained a classification model to separate 5 super classes with a global test accu-
racy (R2) ≥ 0.871. In the classification model, it is crucial to have sufficient examples and
similar training weights for each class. For example, if the dataset is randomly split to 80%
of the training set that contains 50 organoheterocyclic compounds but over 200 chemicals
of other classes, it would lead to insufficient training for organoheterocylic compounds
and an overfitting problem, which can impact the overall performance of the classifier
prediction. As shown in Table 2, the training and test sets were evenly distributed by super
classes before modeling. The F1 score was over 0.9 for two classes and over 0.82 for the
other three, indicating that the training data were balanced between classes. To further
evaluate the classification model, we also generated a confusion matrix (Figure 4).

Figure 4. Confusion matrix of classification model.

Our model correctly predicted the super class of around 87% of the chemicals while
around 8% of Organic acids and derivatives were classified as Organoheterocyclic com-
pounds or Organic oxygen compounds. We noticed that errors frequently occurred in
carboxylic acid compounds with phosphate esters or peptides. We randomly selected
3 incorrectly classified chemicals in each class. For instance, sulfadimethoxine (Figure 5a)
was defined as Benzenoids due to an aniline. Nevertheless, it also contains pyrimidine,
which was predicted as an Organoheterocyclic compound. Similarly, 3-Methyloxindole
(Figure 5b) is an oxinole derivative consisting of a benzene ring and a heterocyclic with
nitrogen. It was assigned to Organoheterocyclic (indole) in the collected dataset but
went to Benzenoids compounds by prediction. We further investigated these incorrect
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classifications by examining the feature importance, shown in Supplementary Figure S5.
Figure 1 shows a possible substructure of the most relevant bit-strings. For example, bit 792
(Figure 1b) would define whether a compound is classified as a Benzenoid or Organohete-
rocyclic compound. On the other hand, the bit-string 842 (Figure 1c) was used to decide
whether a chemical should go to Organic oxygen compounds. None of the bit-strings
displayed significant importance from others, indicating that the “incorrect” classification
mainly has to do with which functional groups were given the higher priority when the
original training set was being compiled.

(a) Sulfadimethoxine (b) 3-Methyloxindole
Figure 5. Random examples of “incorrect” predicted chemical.

3.3. Evaluation of Regression Models

In class-based modeling, the prediction R2 was from 0.860 to 0.933, and the median
relative error (MRE) of prediction was from 1.89% to 2.33% (Table 3). Direct CCS prediction,
on the other hand, reached an R2 of 0.95 and MRE of 2.2%, showing a good performance.
Although we dropped replicated chemicals having the same CCS values before generating
the modeling, considering that this dataset was merged by inter-laboratory studies, some
chemicals might have been seen during training. Thus it can affect the prediction accuracy.
Chemicals with less measurement deviation will increase the accuracy. On the contrary,
those who have a significant deviation will bias prediction performance. We confirmed
that for the direct prediction model, only 2% of the chemicals were common over 2665 test
samples. The dataset was split by category in the class-based prediction, and the replications
percentage was varied by chemical class. About 10% chemicals in the test set of Organic
oxygen compounds were used in training before prediction, and less than 5% for other
classes. Furthermore, except for a few outliers, the deviation of replications was under 6%.
Therefore, we considered that the impact of replicated chemicals was negligible.

Additionally, we compared the performance of class-based models. Organic oxygen
compound model obtained the lowest accuracy due to the lack of training data. Moreover,
in its test split, the relative error ≥10% only occurred to macromolecules (e.g., maltode-
caose (C60H102O51)), contributing 15% to the test split, which resulted in poor prediction
accuracy. Since we could not remeasure outliers’ CCS values, we hypothesize that the error
is associated with the compact and complex chemical structure. For instance, IMS measures
the rotational-average surface of the maltodecaose ion. While a 1024 bit fingerprint is not
enough to represent its complex chemical structure, resulting in a relative prediction error
of 41.9% (true CCS at 390.3 while predicted 226.6 Å2). Another possible reason can be
the training weight. The dataset size of Organic oxygen compounds were almost 5 times
less than Lipids and lipid-like molecules dataset, and glucose was the minority in the
Organic oxygen compounds dataset. The model cannot properly generate the chemical
rarely present during training. Therefore, higher accuracy was reached by Lipids and
lipid-like molecules model and the direct prediction model. Outliers of other models were
further investigated (shown in Supplementary Figure S6), and Figures 6 and 7a compare
the predicted results of class-based models and direct prediction model. Four error cases
have occurred to macromolecules (e.g., Diphenyl phosphate (C39H34O8P2)), which can be
explained by the same hypothesis as maltodecaose (mentioned above). Metronidazole
(C6H9N3O3) has 6 empirical CCS values measured with Waters TWIM, 5 were between 124
to 133 Å2, while 200 Å2 was measured by Picache et al. [60], leading a −61 Å2 residual error
(predicted CCS = 139.3 Å2). L-tenuazonic acid (C10H15NO3) was predicted to have a twice
higher CCS than the measured one by the class-based model (35% higher by the direct
prediction model). It might result from an inappropriate prediction by certain important
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features. Predicted CCS of vinyl acetate (C4H6O2) was 127.4 Å2 through the class-based
model, and 147.9 Å2 by direct prediction, while the empirical one was 227.2 Å2. We hy-
pothesize that vinyl acetate might be polymerized leading to higher measured CCS values.
Benefiting from datasets from multiple sources, class-based and direct prediction models
can verify experimental CCS and evaluate the inter-laboratory and inter-platform deviation.

(a) Class-based Models (b) Direct prediction Model
Figure 6. Precision comparison between each predictive class and direct prediction without class.
Class-based models lead to a better precision from 150 to 300 Å2, while giving more bias by the small
and macro molecules. The direct prediction model is less affected by the extreme cases.

Figure 6 compares empirical and predicted CCS values generated by different models.
We noticed that the direct prediction model was less biased by chemical class and structure,
small and/or macro molecules, leading to higher prediction accuracy than the class-based
prediction results. Although class-based models generated lower MREs (Table 3), a higher
residual error was obtained in vinyl acetate and macro molecules resulting in lower R2.
As we can see in Figure 7c, over 25% of the test dataset obtained relative residual lower
than 1%, and class-based models gained slightly higher, at 26.6%. All prediction models
were further evaluated by feature importance (shown in Supplementary Figures S7 and S8).
In both prediction approaches, the most relevant features divided chemicals into relative
low CCS and high CCS. In other words, the decision tree was made of different CCS ranges
based on certain substructures. For example, the most relevant feature in Organic acids and
derivatives CCS prediction model was bit 588 (Figure 1d). If a chemical has its represented
substructure, this chemical will be considered as CCS > 150 Å2, which might yield the
prediction error for l-tenuazonic acid. Overall, the direct CCS model generated the best
prediction performance, and a more extensive dataset ensured a more robust model.

MetCCS was a support vector regression (SVR) based on a prediction method only
for metabolites. It achieved an excellent R2 > 0.96 with the intra-laboratory and inter-
laboratory measurements, relative residual was within 5% [45]. Bijlsma et al. [51] developed
an artificial neural network (ANN)-based CCS prediction tool and [52] published an multi-
variate adaptive regression splines (MARS) CCS prediction model. Both were trained by
TWIM data, and the relative error was within 6% for 95% of the chemicals. Belova et al. [68]
compared experimental DTIM measured CCS values to predicted CCS values by the ANN-
based and MARS-based predictors. A total of 95% of the protonated and deprotonated
ions observed the relative error under 6.7%. However, only 56 compounds with 108 DTIM
measured CCS values were compared in their study. We obtained comparable results by
direct and class-based models, 87% of predicted results obtained the relative error within
7% (Figure 7c). DeepCCS is a more generalized CCS prediction model generated by SMILES
with the deep neural network. R2 was greater than 0.97, and MRE was below 2.6% [46].
However, only 1637 datasets were initially used to train the model, and the prediction
power might be declined by chemical class [49,50]. We achieved a comparable accuracy
for a wider scope of chemicals by direct prediction model (R2 over 0.95, MRE within 2.2%).
AllCCS and CCSbase generated better accuracy, with R2 over 0.98 and MRE below 2%,
since both tools used a larger and more diverse training set than DeepCCS and MetCCS.
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More structural-related features were emphasized in their studies. Considering our models,
we reached comparable MREs with other tools and over 90% of the chemicals predicted
within 8% relative residual. The results are satisfied with the CCS measurement bias via
different IMS instrumentation and techniques [37].

(a) Residuals of class-based and direct model

(b) Zoom-in of (a) (c) Comparison of relative error

Figure 7. (a) compared the residuals of predicted CCS from class-based CCS prediction model and
direct CCS prediction model. (b) is a zoomed-in of (a). Both approaches generate a good prediction
power. A total of 98% of chemicals has a predicted difference within 25 Å2. (c) Comparison of relative
error in the testing set between the two approaches within 1%, 3%, 5%, and 7%.

3.4. Application on SusDat

NORMAN SusDat database contains over 111,000 environmentally relevant chemi-
cals, with SMILES, accurate mass, and physiochemical properties [69]. We applied direct
CCS prediction and class-based CCS prediction to the SusDat database, which contains
chemicals that have never been seen during training and test, such as antibiotics and trans-
formation products. A total of 96 % of the chemicals have a predicted difference within
25 Å2 by two approaches (shown in Figure 8). The lack of true CCS values in SusDat, thus,
by comparing the differences in predicted results generated by two approaches, demon-
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strates the robustness of models, and the direct prediction model can discriminate different
chemical classes.

Predicted CCS values are provided in Supplementary Table S3 for use in non-target
screening or retrospective analysis. Moreover, these predicted CCS values can be compared
to the measured CCS values by standard inter-laboratory evaluation and inter-platform
deviation and improve the performances of our models.

(a) (b)
Figure 8. Comparison of direct and class-based CCS prediction model using Norman Susdat. (a) Scat-
ter plot of class-based predicted CCS value against direct predicted CCS value. (b) Difference of
predicted CCS values between class-based and direct prediction models. A total of 96 % of the
chemicals have a predicted difference within 25 Å2.

4. Discussion

In this study, we introduced topological fingerprints to categorize chemicals and
generate CCS prediction models using the random forest algorithm. Our methods are
generalized to TWIM and DTIM measured CCS data collected from seven sources. Pre-
diction models were developed for five super classes of chemicals (Benzenoids, Lipids
and lipid-like molecules, Organic acids and derivatives, Organic oxygen compounds, and
Organoheterocyclic compounds) and the entire dataset. The test prediction accuracy was
0.958 by the direct prediction approach, 3 class-based prediction models more than 0.9,
and over 0.86 for the remaining two classes. The MRE was between 1.89% to 2.33%. Ad-
ditionally, models only required SMILES to encode fingerprints. A significant predicted
variation was observed in macro molecules and vinyl acetate, with over 100 Å2 residual.
We noticed that the residuals were reduced through the direct prediction model due to an
extensive training set and a higher presence of macro molecules in the dataset. The pre-
diction performances are highly dependent on the collected CCS libraries. Therefore, it
is emphasized that multiple and accurate empirical CCS libraries with a broad scope of
chemicals are crucial to CCS machine learning studies. Moreover, this bias indicated a
limited prediction performance for chemicals with unique structures. A better classification
model or other structural importance features might improve the prediction accuracy. Since
fingerprint was the only input feature for prediction, adduct ions (e.g., [M + Na]+) were
eliminated in this study. Other features can be introduced in the models to generate more
ion types. Moreover, fingerprints offer a novel aspect in CCS prediction using machine
learning. The generated feature importance of 1024 bits was directly related to the structures
and thus easier to interpret chemically.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27196424/s1, Table S1: SuperClassModeling.csv; Table S2:
CCSPredictedData.csv; Table S3: SusDatCCSprediction.csv; Decision trees files: DecisionTrees.zip.
Figure S1: RSD of replicated chemicals; Figure S2: Classification GridSearchCV scores; Figure S3:
Distribution of predicted super classes; Figure S4: Regression modeling scores of hyper-parameters
optimization by GridSearchCV; Figure S5: Feature Importance of classification model; Figure S6:
Outliers with predicted Class, predicted CCS by Class-based and direct models; Figure S7: Regression
modeling Feature Importances; Figure S8: Example of most relevant features.
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