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Abstract

This review provides a deep analysis of the different methodologies to im-

prove the operation of solar thermal plants based on mathematical optimiza-

tion. The various schemes found in the literature to determine the optimal

operational strategy are classified depending on two criteria: time dependence

(static or dynamic) and with feedback or not from the plant (real-time or of-

fline). This review shows that offline dynamic optimization is performed on

solar thermal plants in research papers but highlights the lack of real-time opti-

mization studies. The analysis work conducted in this review, based on studies

of the operation of solar systems but also on process engineering research arti-

cles, shows that dynamic real-time optimization seems capable of handling the

intermittency of the solar radiation and well suited to improve the operation of

a solar thermal plant. Indeed, the daily and seasonal variations of weather and

heat demand associated with the uncertainty of their forecasts make the oper-

ation of such systems very challenging. This paper details the different ways to

implement Dynamic Real-Time Optimization, and the possible improvements

to the classical scheme. Perspectives on the application of Dynamic Real-Time

Optimization in association with a planning phase to plan a smart use of stor-

age are described. Although it has not been studied in depth in the literature,
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the Dynamic Real-Time Optimization of a solar thermal plant including storage

should be investigated in order to maximize the benefits from the heat sold, ex-

tend the time period where the heat demand is met and reduce the consumption

of back up fossil fuels.

Keywords: Solar thermal energy, Dynamic Real-Time Optimization, Optimal

operation, Storage management

Introduction

More than half of the final energy consumption in the world is in the form

of heat (Collier, 2018). The production of heat contributes greatly to the global

CO2 emissions on the planet. Solar thermal energy uses a renewable source, the

sun, to produce heat with very low greenhouse gases rejection while operating.5

According to the International Energy Agency, the use of all the installed so-

lar thermal systems for heat production in 2020 led to savings of 43.8 million

tons of oil and 141.3 million tons of CO2 (Weiss & Spörk-Dür, 2021). There-

fore, solar thermal energy acts as a good replacement for fossil fuels used for

heat production in various applications and is a key element of a good energy10

transition.

In 2015, 196 countries signed the Paris Agreement which aims to limit global

warming to well below 2◦C and to pursue efforts to limit it to 1.5◦C com-

pared to pre-industrial levels (United Nations Framework Convention on Cli-

mate Change, 2015). Targets are fixed locally for the various sectors of green-15

house gases emissions. In Europe, the Revised Renewable Energy Directive

(Renewable Energy Directive, 2018) fixed the target of a 1.3 % increase each

year in the share of renewable energy for heating and cooling for every member

state. In France, the Energy Transition Law for Green Growth (Loi de tran-

sition énergétique pour la croissance verte), adopted in 2015, aims at reaching20

38 % of renewable heat in the final heat consumption of the country in 2030

(Loi française, 2015). Similar objectives are fixed in many countries around the
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world in order to reduce CO2 emissions and mitigate climate change. In this

context, developing efficient solar thermal plants and making the most out of

them, through mathematical optimization for example, is crucial to achieve the25

objectives.

Optimization can be applied to the design of a solar thermal system, in

order to size the elements and choose the layout of the process in a way that

maximizes revenues while keeping the investments low. It can also be used to

determine the best operation strategies given a fixed design for the system. The30

optimization of the operation of a solar thermal plant including storage is the

focus of this work.

It is worth mentioning that heat production for domestic or industrial use

is only one purpose of solar thermal plants. Systems with concentration can

achieve temperatures high enough for steam and electricity generation and are35

referred to as Concentrated Solar Power (CSP) plants. This review aims at

providing solutions to improve solar heat production for domestic and indus-

trial use. Nevertheless, heat is produced and stored in a solar thermal plant,

regardless of the technology used or the final utilization of the heat generated.

For this reason, both concentrating and non-concentrating solar thermal plants40

are considered in this paper, as long as the studies are focused on the solar field

operation and storage management. Furthermore, the methodologies described

in this paper could benefit to all types of solar thermal plants.

Figure 1 presents the cumulated capacity in operation at the end of 2020,

and the energy supplied that year, for solar thermal heat and other renewable45

energy technologies, including solar thermal power. This diagram shows that

solar thermal plants for heat production are already an established technology

for renewable energy production. The total collector area in the world is 715

million square meters and China is leading the market, with 48 % of the installed

collector area for large-scale systems (Weiss & Spörk-Dür, 2021).50

In a solar energy system, both the energy source and demand are time-

varying. Thus, it is difficult to find the best operational stategy ensuring best

economical performance of the system. A steady-state set point optimization,
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Figure 1: Global capacity and energy supplied for solar thermal and other renewable energy

technologies (Weiss & Spörk-Dür, 2021)

computing a constant value for the decision variables, would not be able to

ensure optimal operation throughout time. Dynamic optimization computes55

optimal trajectories for the controlled variables on the complete time horizon

chosen, by minimizing an objective function such as cost, and accounting for

the dynamic behavior of the system (Biegler & Grossmann, 2004). In order to

compute these reference trajectories, inputs such as solar irradiance, ambient

conditions, heat demand and the complete initial state of the solar thermal60

plant are necessary. The values of state variables could be measured directly

on the solar plant and the complete initial state would then be inferred from

the measurements using estimation techniques. However, the perfect knowledge

of the meteorological data over the complete time horizon can not be acquired

in advance. Weather forecasts, as well as load forecasts, need to be used even65

though they contain uncertainties. A way to remedy to these uncertainties is

to use Dynamic Real-Time Optimization (DRTO) (Kadam et al., 2002). This

methodology, mainly used in process engineering research, could greatly improve

the operation of a solar thermal plant. Dynamic optimizations are regularly
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performed to ensure that the plant continuously operates in optimal conditions70

(Kadam et al., 2002) to maximize the benefits and meet the heat demand. Before

each DRTO run, measurements are performed on the actual plant to determine

the initial conditions and the disturbances affecting the system, and forecasts are

updated. As the accuracy of forecasts increases when the time horizon shortens,

the update reduces the error between the predicted and actual weather and load.75

On the other hand, a long time horizon ensures a better long term strategy as

the solar radiation also varies between days and months.

Therefore, the continuous adaptation of the operation strategy to the current

conditions could correct the forecasts uncertainties, and in association with

the respect of a plan previously determined, it would help to find the optimal80

operation strategy for the solar thermal plant.

This paper gives a state of the art on dynamic optimization and control of

solar thermal plants. It then provides detailed explanation of the methodology

of DRTO with examples from the literature, highlighting the lack of studies

focusing on the DRTO of solar systems. Finally, it provides ideas for future85

work on the DRTO of solar thermal plants. Such a comprehensive analysis of

the application of DRTO to solar thermal plants has never been done before to

the authors knowledge.

The first Section of this paper introduces the system studied and its mod-

eling and defines the optimization problem considered. Section 2 presents the90

state of the art on dynamic optimization and control of solar thermal plants.

Real-time Optimization is then introduced in Section 3. After a short presen-

tation of the classical scheme for Static Real-Time Optimization (SRTO), the

Dynamic Real-Time Optimization (DRTO) schemes are presented in Section 4.

Some adaptations to this methodology are provided in Section 5. In Section 6,95

the three main schemes for real-time optimization are compared and finally, in

Section 7, perspectives on the application of DRTO to solar thermal plants are

presented.
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1. Solar thermal plant modeling and optimization

1.1. Solar thermal plant modeling100

A solar thermal plant is composed of several circuits with a Heat Transfer

Fluid (HTF) flowing in them. The design of the solar thermal plant is different

for each plant, depending on the solar collectors technology, HTF used and the

application. Nonetheless, some features are common to all solar thermal plants.

In the production loop, the HTF is heated up in the solar field, made of solar105

collectors, and the heat collected is transferred to the storage circuit through a

heat exchanger. Direct storage is also possible when the HTF and the stored

fluid are the same. A by-pass pipe allows the HTF to flow through the solar field

without supplying the heat in the heat exchanger during a warm up phase. The

storage circuit is centered around a Thermal Energy Storage (TES) tank, which110

can be charged with hot fluid when solar irradiation is abundant and discharged

when solar heat cannot be produced in sufficient quantity to satisfy the heat

demand. The storage tank can also be by-passed to directly supply the heat

produced to the consumer. In some CSP plants, two storage tanks, one for the

cold fluid and one for the hot fluid are used (in (Casella et al., 2014) for exam-115

ple), instead of a stratified single one (used in Scolan et al. (2020) for instance).

The consumer circuit is generally connected to the storage circuit trough a heat

exchanger, but the stored fluid can also be supplied directly. An example of the

structure of a solar thermal plant is presented in Figure 2. In order to optimize

Figure 2: General structure of a solar thermal plant
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the operation of a solar thermal plant, a model of the system needs to be de-120

veloped. In a solar thermal plant, the quantity of energy produced, stored or

supplied is as important as the temperature level of that energy. In contrary to

electrical system with a fixed voltage, in a solar thermal system the tempera-

ture of the energy varies and affects the quality of the energy. For this reason,

models of solar thermal plant are nonlinear, with power terms computed with a125

product between temperatures and flow rates. In order to keep the accuracy of

the model, linearization should be avoided. When attempting to linearize the

model, the difficulty of various operating points with different dynamics arises

(Camacho et al., 2007a). There are two types of models that can be used: first-

principle models or data-based models. First-principle models are based on the130

equations of the conservation of mass and energy, an example can be found in

(Pataro et al., 2020b). These models are based on Partial Differential Equations

(PDE) that need to be discretised before the resolution. The equations can be

developed for each element of a solar thermal plant to build a complete model.

Nonlinear detailed models can provide accurate results but require more compu-135

tational time. Thus, simplifications are often necessary. Data-based models are

much faster to solve because they do not incorporate any differential equation

or discrete-event based component. Historical data obtained from a real plant

or a detailed, physical based, simulation model are used to build the empirical

model. There are two categories of data-based models: parametric models and140

data-driven models (Vasallo et al., 2021). In the literature, data-based models

are often used to represent the solar field of a solar thermal plant. In a para-

metric model, a parameterised function is used to represent the solar thermal

plant and the values of parameters are determined with regression techniques.

Such models are used in the literature in optimization studies to speed-up the145

calculations, in (Brodrick et al., 2017) or (Rashid et al., 2019b) for example.

Linear models are easier to build with parameter identification. Grey-box mod-

els, based on first principles and tuned according to real measurements, can

also be built (Gálvez-Carrillo et al., 2009). Data-driven models are based on
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machine learning. They use historical data and a prediction algorithm to pre-150

dict the solar thermal plant output, such as the outlet temperature of the solar

field or the thermal power produced, based on a few inputs, such as ambient

temperature, solar irradiance and inlet temperature. Artificial Neural Networks

(ANN) are data processing systems inspired by human brain and have been

used in recent years to model the solar field (Ghritlahre & Prasad, 2018). They155

present numerous advantages such as their simplicity, rapidity, capacity to rep-

resent complex and nonlinear relationship among the variables and input data.

However, they require a large quantity of appropriate data to train the model,

obtained from a real plant or a detailed simulation model. Elsheikh et al. re-

viewed the use of ANN for the modeling of solar energy systems and concluded160

that ANN models are much simplier and faster than theoretical models and

require less experimental data than parametric models (Elsheikh et al., 2019).

Moreover, ANN models are able to represent changes such as plant degradation

thanks to retraining with appropriate data. Farkas et al. trained an ANN model

with simulation data from a physical model for flat-plate collectors. During the165

validation process, an average deviation of 0.9◦C was achieved in the outlet

temperature. This study shows that ANN model with an appropriate structure

and a good training is accurate (Farkas & Géczy-Vı́g, 2003). A similar study

was performed by Heng et al. for parabolic troughs collectors. In this paper,

a transient model was developed to predict the parabolic trough collector tube170

exit temperature in Kuala Lumpur, Malaysia. In this location, the solar irradi-

ation fluctuates a lot because of humidity and rarely stays at the same value for

more than 1 minute. In such conditions, the accurate prediction of a solar ther-

mal collector system performance is challenging and requires a transient model.

The outlet temperature of the fluid during one day is obtained with a mean175

absolute deviation of 2K with the ANN model, and its calculation lasted only 1

minute on a personal computer, which is short compared to the Finite Element

Method achieving the same accuracy (Heng et al., 2019). This study confirms

the rapidity of an ANN model to estimate the solar field performances compared

to traditional models. Even though data-driven models might be less accurate180
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than detailed first-principle models, the uncertainty in solar irradiance forecasts

compensates for this disadvantage (Vasallo et al., 2021). Machine learning tech-

niques are also used to predict the weather conditions affecting solar thermal

plants. For instance, Kumari et al. reviewed the deep learning models used

for solar irradiance forecasting (Kumari & Toshniwal, 2021). Based on these185

studies, it seems that data-driven models are appropriate to model the solar

field of a solar thermal plant in an optimization study. There are no data-based

models representing the complete solar plant with the solar field, storage tank,

pipes and heat exchangers found in the literature. A solar thermal plant is

usually modeled with different sub-models for each element of the system. The190

remaining parts of this paper focus on the optimization of the operation of a

solar thermal plant, independently of the type of model used for the solar field

and the other elements of the plant.

1.2. Generalities on optimization

Optimizing means finding the best solution to a problem among all the possi-195

ble solutions respecting given constraints. The criterion to determine which one

is the best solution is expressed through an objective function to be minimized

or maximized. Generally, the minimization of cost or maximization of profit

are used as objectives for the optimization, although non-economical objectives

are sometimes employed, such as energy efficiency or exergy maximization or a200

target value for a variable (quality target as part of the objective function in

(Ravi & Kaisare, 2020) or temperature target in (López-Alvarez et al., 2018)).

The mathematical formulation of a dynamic optimization problem is pre-

sented in Equation 1.

min
u,z,y,p,tf

Φ(z,y,u, p, t0, tf )

s.t. 0 = f(ż, z,y,u, d, p, t), z(t0) = z0

0 = g(ż, z,y,u, d, p, t),

0 > h(ż, z,y,u, d, p, t); t ∈ [t0, tf ].

(1)
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In this equation, Φ is the objective function to be minimized on the time205

span [t0, tf ], in which tf itself can be an optimization variable. The objective

function involves the differential state variables z(t), with initial conditions z0,

the algebraic state variables y(t), the controlled variables u(t) and the param-

eters of the system p. The number of degrees of freedom in the optimization

problem matches the number of optimization variables, which are some of the210

controlled variables, parameters and tf if applicable. The minimization is sub-

ject to several constraints. Firstly, the process model is represented by the

function f , which generally entails partial or ordinary differential equations as

well as algebraic equations. In the model, d(t) denotes the disturbances, in-

cluding external disturbances, plant-model mismatch and measurement noise,215

and p are the time-independent parameters of the system, which might also

be optimized. Finally, g and h contain the design and operational constraints

formulated with equalities and inequalities respectively. The complete set of

constraints forms a (Partial) Differential Algebraic Equations (DAE) system,

in which the only derivatives appearing are those of the differential variables220

(z(t)).

In Equation 1, the time dependency of the problem denotes a dynamic op-

timization, which will compute optimal trajectories for the controlled variables.

Simplification of this model to steady-state operation would lead to the com-

putation of set-points (constant values) for the controlled variables. Various225

resolution algorithms may be used to solve a steady-state problem, depend-

ing on its characteristics: linear or not, made only of continuous variables or

not. In the case of dynamic optimization, solving is more complex, due to the

differential terms appearing in the model and constraints. Thus, discretiza-

tion techniques are needed (Biegler & Grossmann, 2004). One way of solving230

complex optimization algorithms is to use stochastic algorithms, as opposed

to deterministic algorithms. Stochastic algorithms involve randomness and are

often based on a biological or physical phenomenon. For example, Genetic Al-

gorithm (GA) is inspired by natural selection and Particle Swarm Optimization

(PSO) is inspired by the movement of organisms in a bird flock or fish school.235
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One advantage of their use is a large search space which avoids local optimum

but their main drawback is the need to evaluate the objective function many

times until convergence is reached, which leads to long computational time.

Stochastic algorithms require objective functions that can be evaluated quickly

and are more often used for linear problems. ANN models or other data-based240

models are well-suited to be used with those algorithms, especially for real-time

application (in (Blackburn et al., 2020) for example) because of their fast com-

putational time. Stochastic algorithms are particularly appropriate when the

problem studied is complex and its physical modeling is not entirely known (Ca-

macho et al., 2007a), which is the case of a solar thermal plant since it uses an245

intermittent and hard to predict energy source.

If the optimization uses a deterministic algorithm, the application of the

general optimization equation 1 to the operation of a solar thermal plant, would

involve the following variables and parameters:

� the differential state variables z are the temperatures in the system,250

� the algebraic state variables y are the pressures in the system elements,

� the controlled variables u are flow rates, such as the flow rate through

the solar panels ṁsolarfield, the flow rate to collect the energy from the

production loop ṁproduction, the flow rate to supply the energy to the

consumer ṁsupply and the flow rates to charge, discharge or by-pass the255

storage tank ṁcharge, ṁdischarge and ṁby−pass,

� the manipulated variables, not represented in equation 1 because they

are part of the control problem only, and not the open-loop optimization

problem, are the valve openings and the pumps rotational speeds. The

variable speed pumps and control valves are presented in Figure 2,260

� the disturbances d include the weather information (solar irradiance, ambi-

ent temperature, etc.), fouling of heat exchangers, plant-model mismatch,

etc.,
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� the model parameters p include characteristics such as size, heat trans-

fer coefficients, etc. for solar collectors, thermal energy storage, pipes,265

heat exchangers and other parts of the plant. Some of these parameters

are bound to evolve as disturbances affect the system. For example, the

fouling of a heat exchanger has an impact of the heat transfer coefficient

value.

It goes without saying that this description is highly model dependent and are270

chosen by the person in charge of developing the optimization scheme. If the

system definition changes, so do the previous categories. Using these variables

for a fixed design, the optimal trajectories for the flow rates could be deter-

mined with an economic objective function, taking into account the revenues

due to the heat sold and the operating costs. More complex objective func-275

tions including several objectives could also be used (see subsection 5.4). If

a stochastic algorithm is used for the optimization, the problem formulation

would be adapted. Nonetheless, the variables and parameters involved would

remain the same. Thus, this review includes both deterministic and stochastic

optimizations, and details are given to explain the cited papers authors’ choices.280

The main difference between a solar thermal plant and a conventional fossil

fuel plant is that the energy source is variable and cannot be manipulated. It

then acts as a fast disturbance on the system. Several constraints are associated

with the optimization of the operation of a solar thermal plant and are detailed

hereafter (Camacho et al., 2007a). The flow rate in the solar field must be above285

a minimum value to avoid overheating the fluid and to ensure that the pumps

are working with a high efficiency. The outlet temperature is also limited to

avoid overheating and phase change that would deteriorate the equipment. The

temperature difference between the inlet and outlet of a solar field should also

be kept under a maximum value to avoid a high pressure variation throughout290

the collectors. Compared to an electrical system, whose variations are almost

instantaneous, there is a transport delay in the field and the pipes of a solar

thermal plant. This leads to more complex dynamics. Furthermore, the dy-
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namics of the system changes with the operating point making the optimization

and control a solar thermal plant very challenging.295

The next section will present a review on optimization and control of solar

thermal plants, using a similar description of the system and the optimization

problem.

2. Optimization and control of solar thermal plants

Most optimization studies on solar thermal plants aim at optimizing the de-300

sign of the plant under standard operation strategies. It means that in Equation

1, only the design parameters included in p are optimized. For example, the size

of the solar field and its layout, the capacity of the storage tank, the capacity of

the pumps, the pipes diameter, can be optimized in order to reduce investments

while satisfying the production constraints. Research on the optimization of the305

design of the elements of solar thermal plants is still active, especially for the

integration of solar heat in larger systems. For instance, several studies recently

aimed at finding the optimal design for solar thermal systems integrated in Dis-

trict Heating Networks (DHN). Winterscheid et al. focused on the integration

of solar energy into an existing DHN (Winterscheid et al., 2017), while Hirvonen310

et al. analysed the feasibility of a solar DHN using seasonal storage in Finland

(Hirvonen et al., 2018). Furthermore, Tian et al. optimized the design of a

hybrid solar plant supplying a DHN by minimizing the Levelized Cost Of Heat

(LCOH) (Tian et al., 2018). The use of solar heat for industrial processes is also

under investigation ((Parvareh et al., 2015), (Jannesari & Babaei, 2018)), the315

design of the solar system being economically optimized using standard control

strategies. The optimization of the design of a solar thermal plant can also

be an important step when studying the economic feasibility of a project. For

example, Zubair et al. optimized the solar multiple and the size of the thermal

energy storage of a parabolic trough concentrated solar thermal plant to assess320

the economic feasibility of a project for international electricity export (Zubair

et al., 2021). For the optimization of the design, stochastic algorithms are some-
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times used. For example, a GA was used to find the optimal operating point

of an evacuated tube solar collector system modeled with an ANN (Dikmen

et al., 2014). PSO was used in multi-objective optimization based on a physical325

model to determine the best design and steady-state operating point ((Awan

et al., 2020), (Bahari et al., 2021)). In these studies, no dynamic behavior was

considered and the optimization only needed to be conducted once. Therefore,

the use of a stochastic algorithm was possible.

Krause et al. outlined that the optimization of the design of a solar domestic330

hot water system greatly improves its performances, leading to a reduction

of solar heat cost of about 18 % compared with the conventionally planned

and installed system (Krause et al., 2003). The authors concluded that, for a

well-designed system, the improvements from the optimization of the operation

strategy are smaller, only a few percents, but for a large system, this still leads335

to impactful savings. Camacho et al. explain that, because of the very expensive

cost of solar thermal plants, any improvements in their performance, through

better operation and control, would help to present them as a viable alternative

to fossil fuels (Camacho et al., 2007a). The optimization of the operation of the

solar thermal plant is the main focus of this literature survey.340

The optimization and control of a solar system can be divided into several

levels of decision. The different levels are presented in Figure 3, with the time

step decreasing from top to bottom. In this diagram, LP stands for Linear

Programming and QP for Quadratic Programming.

The two lower levels correspond to the control level, which aims at track-345

ing a set-point or a trajectory for the controlled variables in the presence of

disturbances by adjusting the values of the manipulated variables. The control

strategy is an active area of research, especially for Concentrated Solar Power

(CSP) plants, which are a particular type of solar thermal plants that produce

solar heat at high temperature suitable for electricity or steam generation. In350

most control studies, the outlet temperature is maintained to a fixed level by

adjusting the flow rate through the solar collectors, which presents several avan-

tages (Camacho et al., 2007a). This strategy ensures that the energy is always
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Figure 3: General hierarchy for control and decision making in a plant (Darby et al., 2011)

produced in a usable form with a temperature high enough for the consumer

needs. It also avoids frequent shutdowns and startups by keeping the solar field355

ready for full scale operation if the solar irradiance goes up. Finally, it allows

the different parts of the solar thermal plant to work near design conditions

with high efficiencies. Nowadays, the outlet temperature of the solar field in

actual CSP plants is mainly controlled using basic control approaches to find

the appropriate flow rate in the solar field, even though the system character-360

istics (nonlinear, various dynamics, changing environmental conditions) require

a high order nonlinear controller (Camacho et al., 2007a). In the last decades,

numerous control methods have been studied and applied to CSP plants (Ca-

macho et al., 2007b), allowing a better disturbance rejection and uncertainties

handling. For example, Gálvez-Carillo et al. used a nonlinear predictive con-365

troller with dead-time compensator to track the outlet fluid temperature from

the solar field of a CSP plant in the presence of disturbances (Gálvez-Carrillo

et al., 2009). The authors found that this new controller can handle both sig-

nificant nonlinear dynamics and variable dead-times. Csordas et al. compared

several control strategies and highlight some drawbacks of the fixed outlet tem-370
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perature control objective. This strategy leads to dump some solar energy when

the solar irradiance is too low to reach the desired temperature. Moreover, if

the inlet temperature is high in the solar field, a very high flow rate will be

needed to avoid exceeding the target outlet temperature (Csordas et al., 1992).

The solar energy unused with this strategy could still be useful. If the consumer375

needs a precise temperature level, it can be adjusted by mixing the outlet HTF

with colder fluid or heated up with a back-up fossil fuel burner. Csordas et

al. recommended to fix the temperature raise in the solar field instead of the

outlet temperature to waste less energy. However, this strategy also presents

some drawbacks. The temperature at the outlet of the solar field becomes high380

when the inlet fluid is already warm. These high temperatures in the solar field

lead to high thermal losses, reducing the benefits of avoiding the dumping of

energy with a variable outlet temperature. Moreover, constraints on the max-

imum allowable temperature should be added in order to avoid exceeding the

maximum temperature of the components. Some control strategies maximize385

the output power from the solar thermal plant by adjusting the flow rate in the

solar collectors. For example, Amman et al. used a control algorithm based

on ANN to detect the optimal power operating point of PhotoVoltaic Thermal

Panels, maximizing both thermal and electrical powers (Ammar et al., 2013).

Ruiz-Moreno et al. developed a Model Predictive Control (MPC) to maximize390

the thermal power of a parabolic trough plant. The MPC needs to be run fre-

quently, every few seconds or minutes. For a large-scale plant with a long time

horizon, the computational time might exceeds the sampling time. To remedy

to this issue, the authors developed an ANN model to represent the MPC and

compute the control output. The computational time was reduced to only 3%395

of the tradiational MPC calculation time, and smoother outputs were generated

with only slight violation of the constraints (Ruiz-Moreno et al., 2021). Thus,

control strategies based on ANN are a future direction for research. Allowing

the outlet temperature to vary seems to help to meet the heat demand and

increase the thermal energy produced. While advanced control strategies help400

to improve the solar field performances, the operation of a solar thermal plant
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could further be improved by dynamic optimization with a cost function. This

will help to reduce the costs of the complete plant, by making a smart use of

storage and running the pumps in order to avoid wasting electricity. This idea

will be developed in the next sections.405

The higher level of decision for the short term operation of the solar plant

is the offline dynamic optimization, also known as planning. In this level, the

disturbances and initial state of the system are known inputs for the economic

optimization. The time horizon comes from a compromise between long term

optimal strategic vision and short term forecasts reliability. The optimal trajec-410

tories determined during this planning phase can be tracked by controllers only

if the error between the forecasts and the actual measures is small. Delubac

et al. used a dynamic multi-period approach to determine the best design and

also the optimal operation strategy of a DHN using solar energy in association

with a biomass plant and backup gas boilers (Delubac et al., 2021). This plan-415

ning determines the optimum energy mix and particularly the use of the solar

thermal plant. It computes the optimal flow rate through the solar field but it

does not model precisely the complete solar plant. Offline dynamic optimiza-

tion has been performed on a non-concentrating solar thermal plant by Scolan

et al. (Scolan et al., 2020). In this study, the weather and the customer demand420

in solar heat were supposed to be perfectly known. Under such assumption of

perfect forecasts, control was not included in the model since no disturbances

were considered. Offline dynamic optimization was then performed to deter-

mine the best operation of the solar thermal plant including the heat storage,

over a time horizon of 36 hours. Optimal trajectories for the flow rates in each425

part of the solar thermal plant were computed. The stored energy at the end

of the time horizon was added to the objective function, with a weight, in order

to give value to the stored energy and thus make the most out of the storage

tank. Counterintuitive operating strategies were found to be optimal on this

time horizon because of a smart use of storage.In this study, the solar heat pro-430

vided to the consumer increased by 6.2%, the electricity consumption from the

pumps decreased by 62.3% and finally,the economic profits increased by 2.1%.
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These gains could further be improved under less favorable weather conditions.

This is, to the best of our knowledge, the only study referring to the offline dy-

namic optimization of the operation of a non-concentrating solar thermal plant,435

as most studies in this field focus on optimizing only the design of the plant.

The close field of concentrated solar power received slightly more attention

recently. Several studies aiming at automatically finding the plant optimal op-

erating point (maximizing the economic profit from electricity selling) can be

found in the literature. Wittmann et al. developed a methodology to opti-440

mize the planning of power selling at the day ahead market for a CSP plant

(Wittmann et al., 2011), determining the optimal use of the backup fossil fuel

burner and the storage tank. It takes into account meteorological and electricity

market price forecasts to optimize the bidding strategy. Thermal Energy Storage

(TES) transforms the intermittent solar power into a dispatchable power that445

can be sold when the electricity price is high and thus, increase revenue. Indeed,

it is easier to store heat and then transform it into electricity when needed than

to store electricity directly. The time horizon for such an optimization should

be between one and two days to compromise between profit gains and forecasts

quality. Similarly, Casella et al. optimized a Solar Tower Power Plant with450

TES (Casella et al., 2014). The electricity generation schedule was optimized

in terms of the Heat Transfer Fluid (HTF) flow rate to the power block. The

other control variable of the problem was the power dumped by heliostat de-

focusing, which is needed in summer to avoid exceeding the maximum power

that can be handled by the receiver. Their paper includes a detailed dynamic455

model and concludes that optimal control should be taken into account when

estimating the potential plant revenue during the plant design phase, as it can

increase the revenue of about 7 % for a 10 days case study. Finally, Lizarraga-

Garcia et al. conducted a similar study but added the possibility to recharge

the TES using electric heaters and electricity from the grid (Lizarraga-Garcia460

et al., 2013). This additional feature further increases the flexibility of the plant

and its revenue by taking advantage of the high variability of electricity price.

Their optimization variables were the initial temperatures of the hot tank, the
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cold tank, and the lid, the initial mass of salt in the hot tank, the start-up time,

the shutdown time, the mass flow rates between the hot tank and the cold tank,465

and the electricity purchased from the grid. Offline dynamic optimization was

also used by Lopez-Alvarez et al. to optimize start up policies of a CSP plant

(López-Alvarez et al., 2018). The objective was to reach the target operating

temperature (control variable) in the shortest amount of time by manipulating

the input water flow rate (water was the HTF used in this solar thermal plant).470

It is essential for such systems to achieve full operation from shut-down condi-

tions in the minimal amount of time and using minimum energy requirements,

in order to meet the power demand. In this study, TES was used after the Rank-

ine cycle to store water warmer than fresh water and recycle it to speed-up the

start-up policies of the CSP plant. Wagner et al. optimized the timing and rate475

at which electricity is generated by the power cycle (Wagner et al., 2017) in a

concentrated solar power tower plant with TES. They used a Mixed-Integer Lin-

ear Program (MILP) to maximize the electricity sales while avoiding frequent

cycle start-ups. They used perfect forecasts from historical meteorological data

to compute the solar power available, thanks to a simulation tool using design480

flow rates. Their methodology allows more production during highly priced

hours and a smoother generation profile than heuristic control approach. The

authors concluded that the Power Purchase Agreement price could improve by

10 to 15% for electricity markets with highly variable electricity prices or narrow

windows of high revenues thanks to their optimization. The authors used the485

same approach in (Wagner et al., 2018) and solved the optimization problem

over a time horizon of 48h, applied the hourly dispatch schedule during 24h

and then used a rolling horizon of 24h. The yearly results of this optimization

show an improvement in the operating cost of the plant over its lifetime, with

lower maintenance costs, compared to the standard algorithm that allocates the490

dispatch to hours of particularly high revenues. Finally, Hamilton et al. im-

proved this methodology with a detailed model for off-design conditions for the

electricity production (Hamilton et al., 2020). The flexibility of CSP with TES

can also help to alleviate negative effects of photovoltaic solar plants. Kong et
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al. optimized the scheduling for for a hybrid solar power plant comprising CSP495

and photovoltaic solar panels. They used a simplified linear model based on

energy flows and optimized the day-ahead generation plan of the plant with a

time step of one hour. A modified Butterfly Optimization Algorithm (BOA)

was used because it is faster compared to GA and PSO. The use of a stochastic

algorithm was possible because the system was simplified and the task is per-500

formed offline. The operation cost of the integrated system decreased by 10%

with this methodology.

In addition to thermal energy storage, hybridization of a CSP plant with a

back up fossil fuel system helps to harvest the maximal solar energy. Indeed,

the hybrid system considered by Powell et al. led to a larger amount of solar505

energy collected, when optimizing the HTF flow rates through the solar field,

through the bypass loop, and from the hot tank (Powell et al., 2014). This

is due to the hybrid mode which allows the solar field to operate at a lower

temperature, reducing heat losses, the demand being completed by the fossil

fuel. Such systems have been improved afterwards by Ellingwood et al. who510

added Flexible Heat Integration (FHI) to the hybrid plant (Ellingwood et al.,

2020a). They optimized dynamically a concentrated solar tower connected to a

Rankine cycle and including three thermal storages. Brodrick et al. optimized

the operation of an Integrated Solar Combined Cycle (ISCC), which included a

parabolic trough solar thermal field and a gas turbine (Brodrick et al., 2017).515

The hourly operation, in terms of part load of the gas turbine, solar focus rate

and mass flow rate of the solar HTF, of representative days was optimized using

different objective functions. A proxy model was used to recreate predicted

solar output and no storage was considered in this study. The proxy model

is a statistical model with fitting parameters determined thanks to a detailed520

simulation model. This is a data-based model, thus, the dynamics modeling was

simplified compared to the previously mentioned studies based on first-principle

models. The design and the operation of the same system were then optimized

simultaneously for two conflicting objectives: the net present value (NPV) and

the average CO2 emissions intensity of the power produced (Brodrick et al.,525
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2018). Improvements over published designs were achieved and it shows that

optimal operation should be considered when designing a system. Finally, an

ISCC with storage was optimized in (Orsini et al., 2021) and the benefits of

using storage tanks were presented.

This literature review shows the benefits of using offline dynamic optimiza-530

tion and advanced control strategies to operate a solar thermal plant. There are

many ways of implementing the optimization of the operation of a solar thermal

plant, with their respective advantages and drawbacks. All of these methods are

explored in this review: using a first-principle or a data-based model, employ-

ing a deterministic or a stochastic optimization algorithm. The implementation535

differs from one study to the other. This review is focused on the details of

the optimization methodology (decision variables, time horizon, sampling time,

hierarchical structure etc.) rather than the model construction or the optimiza-

tion algorithm. The offline dynamic optimization is based on weather and load

forecasts, and thus, cannot adapt the strategy to the current situation. If the540

uncertainty of the forecasts is too high, the optimal trajectories computed can-

not be applied to the real plant. Besides, advanced control strategies are mostly

used to track the target outlet temperature of the solar field. Some studies

show the benefits of maximizing the output power of the field. Nevertheless,

economic considerations are not included in most control strategies even though545

they might improve the operation of solar thermal plants. An intermediary level

between control and planning is Real-Time Optimization (RTO). This method

uses measurements of disturbances and state variables of the system to update

the optimal set-points (Static Real-Time Optimization SRTO) or trajectories

(Dynamic Real-Time Optimization DRTO) online. This ensures that the plant550

continually operates under optimal conditions, even in a variable and hard to

predict environment. All the previously mentioned works would be improved

by using a DRTO method, as mentioned in (Powell et al., 2013), to adapt the

optimal operation to the plant states, solar irradiation and updated forecasts.

It is worth mentioning that data-based models and deterministic algorithms are555

faster to solve, based on the previous literature survey, and therefore constitute
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a good perspective for real-time optimizations where computational times are

crucial. If DRTO has been widely studied in process engineering research, it is

fairly new in the field of solar thermal plants, although it seems well-suited to

such systems. The next sections will provide detailed explanations on DRTO,560

along with the few examples of application of this method to solar systems found

in the literature.

3. Generalities on Real-Time Optimization

In the aforementioned mathematical formulation of the optimization prob-

lem (Equation 1), the disturbances d(t) and the initial state z0 are not known565

in advance. If they are supposed to be perfectly known, offline optimization can

be performed to compute the optimal set-points/trajectories until the end of

the time horizon. In practical applications, disturbances and initial conditions

are always unknown and online optimization, also called real-time optimization,

has to be implemented. Measurements are then necessary to access to the initial570

conditions and disturbances values.

RTO is used in research articles in various fields, from electrical systems

(Clarke et al., 2018) to chemical processes. Among the latter category, batch

reactors are the focus of many works ((Kadam et al., 2002), (Hua et al., 2004),

(Alonso et al., 2013), (Arpornwichanop et al., 2005)). These systems are highly575

nonlinear, always in transient behavior, their process model is not generally

well-known and finally only a few measurements are available (Arpornwichanop

et al., 2005). Those systems are then very challenging to optimize, explaining

the numerous studies focusing on them. Their characteristics are similar to

thermal systems such as solar thermal plants, in which both the energy source580

and the load are time varying. Solar systems are rarely optimized in real-time

in the literature. Hence, batch chemical reactors constitute the major resource

for this study. Other fields are seldom found in the optimization literature, such

as waste water treatment (Elixmann et al., 2010), thermal building (De Oliveira

et al., 2013) or district heating and cooling systems (Cox et al., 2019). The next585
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subsections will highlight the role of measurements in RTO, in subsection 3.1,

and the association of RTO and control in a plant, in subsection 3.2.

3.1. Measurements

RTO takes process measurements to update the process model and the initial

conditions and trigger a new optimization. Thus, it is able to reject unknown590

disturbances as they appear in the process. This applies even for large and slow

disturbances which can have a high impact on the system, whereas controllers

generally reject only fast disturbances because of their short time step.

In a RTO study, measurements are used before each optimization run. The

measurements are performed directly on the facility to be optimized (Vetten-595

ranta et al., 2006), but for research studies a prototype (Alonso et al., 2013),

or more often a simulation model, are used to represent the real process and

provide feedback measurements. In the latter case, the simulation model may

be different than the model used during the optimization step. For example,

Hua et al. used a reduced model for the optimization and a detailed model for600

the simulation of their batch reactor because of their different computational

costs (Hua et al., 2004). Also, the measurements on the simulation model can

include noise and sampling time delay to represent a real process more realis-

tically (Arpornwichanop et al., 2005). Most of the time, the measurements of

the system state variables, although the values usually include noise, provide605

the initial conditions of the optimization problem. In a solar thermal plant,

the temperatures, pressures and flow rates could be measured on the plant and

provide a feedback to the optimizer and also define the initial state of the plant.

These online measurements allow the system to detect and take into account

the disturbances. For a solar thermal plant, ambient temperature, wind speed610

and solar irradiation need to be measured in order to adapt the optimization

and control accordingly. In addition, measurements can correct the plant-model

mismatch resulting from simplifications in the model formulation due to com-

putational limitations. Generally, the model used in the optimization algorithm

includes uncertain parameters which can be estimated through measurements615
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to limit the impact of the uncertainty on the optimum. The set of uncertain

parameters to be estimated online is chosen based on the impact of each param-

eter value on the objective function. The selection of measurements to estimate

those key parameters also has to be based on a sensitivity analysis. Indeed,

a change in the measurement must accurately reflect a change in the parame-620

ter value. A method to choose the set of key parameters and measurements is

presented by Krishnan et al. (Krishnan et al., 1992).

There are several ways to take advantage of the measurements to correct

parameter uncertainties and plant-model mismatch (Chachuat et al., 2009). Es-

timation techniques are required to determine the parameters and states values625

from the noisy measurements. Various techniques exist with different minimiza-

tion criteria (Zhang, 1997). Parameter and state estimation is an essential but

complex topic, that could be the focus of a separate paper.

3.2. Economical and control objectives

Optimization is closely associated to control as both are necessary to ensure630

best economical performance and feasible operation of a process in the presence

of disturbances and uncertainties. The objective of a controller is to track a set-

point or a trajectory for the controlled variables in the presence of disturbances

by adjusting the values of the manipulated variables. This is called a regula-

tory objective. Optimization tries to find the set-point (static optimization) or635

trajectory (dynamic optimization) for the controller to track which leads to the

best economical performance for the system.

Tracking relies on the minimization of the quadratic error between the set-

points determined by the optimization and the measurements performed on the

actual system. The two tasks, economic optimization and tracking, can be done640

in one layer, called EMPC (Economic Model Predictive Control). However, they

are generally performed in two distinct layers. On the upper layer, the economic

optimization problem is solved, and the set-points/trajectories are sent to a

lower layer controller which tracks them and rejects process disturbances. The

lower layer can be composed of simple controllers such as PID (Proportional645
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Integral Derivative) which are generally able to track the value of one output

by adjusting one input. This is the case in a real-time optimization study

of an evaporative cooling tower for example (Blackburn et al., 2020). More

advanced controllers include Model Predictive Control (MPC). These controllers

use a dynamic model of the process inside their formulation in order to predict650

the future behaviour of the system and track the optimal trajectories more

efficiently. The MPC system often constitutes a supervisory controller that

communicates with the base controllers (PID for example). Although not always

necessary, the MPC ensures a better rejection of disturbances.

To summarize this Section, Figure 4 presents the typical architecture of655

real-time optimization. State variables, y and z are measured on the system,

and their measured values ym and zm are sent to the validation part of the

algorithm. In the validation part, data reconciliation is performed to eliminate

random and gross errors from the measurements and the estimated values for

y and z, which are ŷ and ẑ, are sent to the next step. The model updater660

takes the corrected data to estimate unknown model parameters. The new

model is then used to update the optimization. The optimizer computes optimal

set-points of trajectories for some variables, following a previously determined

schedule or plan. If these new set-points or trajectories represent significant

changes in optimization variables, which is tested in the condition part of this665

framework, the reference set-points or trajectories are sent to the controller. The

controller compares the reference values to the measured ones and determines

the appropriate control moves to track the optimal set-points or trajectories.

Several schemes exist to implement RTO within the general framework of

Figure 4. After a short presentation of the original scheme SRTO, DRTO is670

explained in the next Section.

4. DRTO schemes

The classical scheme to optimize a process in real-time is based on a station-

ary model. This scheme, referred to as Static Real-Time Optimization (SRTO),
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Figure 4: Typical architecture of real-time optimization (based on (Shokri et al., 2009))

allows the re-optimization of the process only when the system reaches steady-675

state. Measurements are performed at steady-state and the static model is

updated before the next optimization is run. The optimal set-points are sent

to the lower-level controller, which tracks the optimal constant values of the

controlled variables until the next steady-state is reached. A downside of this

approach is that the frequency of optimization runs can not be adjusted and is680

limited to the amount of times the process reaches steady-state. Furthermore,

detecting steady state in order to trigger the optimization is not trivial and

requires complex detection algorithms (Darby et al., 2011).

Rashid et al. performed a real-time optimization of a CSP plant hybridized

with a back up fossil fuel burner using a steady-state model (Rashid et al.,685

2018). The temperature exiting the parabolic trough collector and the split

fraction of heat transfer fluid entering the steam generator and the pre-heater

were optimized in real-time. The static model used for RTO was an empirical

model based on data collected from a one year simulation. The nonlinear model

was then complexified in (Rashid et al., 2019a). The detailed model used in690

simulation and the empirical model used in SRTO were different, introducing

plant-model mismatch as in a real application. The data based models were able

to predict accurately the total solar power collected for various solar irradiations
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and ambient temperatures. This nonlinear static model was used in (Rashid

et al., 2019b) to optimize the hybrid plant with flexible heat integration. It695

was shown that SRTO is able to improve the total solar power collected, and

hence the solar fraction of the plant, especially when the irradiation is low.

Adding Flexible Heat Integration and RTO increases the solar fraction by 18.2%,

and the Leverage Cost Of Energy by 3.81% in comparison to the conventional

hybrid plant. The CO2 production also decreases by 4%. In these studies, the700

solar thermal plant used parabolic trough technology without storage, so the

dynamics of the system were all fast (less than 10 minutes). By running the

SRTO algorithm every 5 minutes, and adjusting the set-point in the simulation

every optimization, the plant was able to stay near optimality.

Hybridization of natural gas with solar energy has also been studied for a705

Solar Power Tower system. Ellingwood et al. showed the improvement in so-

lar energy utilization achieved with hybridization and FHI (Ellingwood et al.,

2020b) for a Solar Power Tower system including energy storage. In this study,

the operation of the solar thermal plant was based on heuristic control. The

preferred mode of operation was determined relative to the incident solar irradi-710

ation peaks on the receivers. Dynamic optimization was performed on the same

system (Ellingwood et al., 2020a), based on weather forecasts. The method-

ology is not able to adapt the operation of the plant as disturbances occur in

the system, but it provides the optimal operation for known inputs. This study

concluded that the heuristic control approach was reliable enough for design715

and optimization initialization. It also showed that optimization can lead to

improved performance of the hybrid plant.

The systems in (Rashid et al., 2019b) and (Ellingwood et al., 2020a) are

both hybridized solar-natural gas power plants, even though the solar collectors

technologies are not the same. The main difference between the systems from720

(Ellingwood et al., 2020a) and (Rashid et al., 2019b) was the presence or not

of thermal energy storages. TES allows the decoupling between the variable

solar resource and the heat supply which aims to be as constant as possible.

It can extend the use of solar energy at night and smooth the energy delivery
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during fluctuating weather conditions. In (Rashid et al., 2019b), no storage725

was considered, so the dynamics of the different parts of the concentrated solar

plant were all fast, allowing the plant to quickly reach steady-state. The use of

a static model in a real-time optimization formulation was therefore possible.

On the contrary, the three storage tanks in (Ellingwood et al., 2020a), prevent

the plant to reach steady-state as the dynamics of the storages are slow while730

the other systems dynamics are fast. Offline optimization was then preferred,

with supposedly perfect weather prediction.

These studies show that SRTO can improve the operation of a solar ther-

mal plant. Since it uses a static model, it needs to be run regularly to adapt

the operation to the changes happening in the transient system. A condition735

to make the use of a static model possible is to have a system with all fast

dynamics. Indeed, with fast dynamics, the system will quickly reach steady-

state. A disturbance affecting the system’s inputs will immediately impact its

outputs. Thus, a system with fast dynamics operates in quasi-static conditions

with short transitions between steady-states. Computing constant set-point val-740

ues for the optimization variables is possible. Those values will be optimal until

a change occurs in the system or its environment, leading to a different steady-

state and requiring a new optimization. On the contrary, if the solar thermal

plant includes storage, there is accumulation/inertia in the system. There will

be a delay before a disturbance on the system’s inputs impacts its outputs.745

The slow dynamics of the storage and the fast dynamics of the solar collectors,

pipes and heat exchangers will prevent the system to ever reach steady-state.

It is therefore non-optimal to compute constant values for the controlled vari-

ables. Dynamic optimization, which will compute optimal trajectories for the

decision variables in the system always operating in transient behavior, is more750

appropriate. When the inputs, such as solar irradiance, are not known in ad-

vance, a real-time scheme is required. Therefore, DRTO seems well-suited to

such systems, as it can provide optimal trajectories taking into account process

dynamics, while adapting the operation strategy online.
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4.1. Single-layer scheme: EMPC755

One approach to compute dynamic optimal trajectories in real-time is to

perform the economic optimization and regulatory tasks on the same level (En-

gell, 2007). The economic objective is included into the formulation of the con-

troller. This is generally called Economic Model Predictive Control (EMPC). In

this method, the optimization algorithm is run at each sampling time of the con-760

troller, which depends on the distubance dynamics present in the system. With

this single-layer method, a unique dynamic model is used, ensuring consistency

between the economic optimization and the tracking task. The major drawback

of EMPC is that the optimization is run very often, which might not be possi-

ble for a complete process with a complex model since the computational time765

would exceed the sampling time of the EMPC. Additionally, the EMPC is not

able to handle systems with a wide range of dynamics because its very short

sampling time might not be capable of dealing with slow disturbances, such as

plant-model mismatch. Finally, stability issues might arise, ensuring best eco-

nomic performance thanks to the controller is maybe not enough for stability.770

EMPC are used in some studies, when the process is well-suited for single-layer

DRTO, and the model can be simplified without a large loss of accuracy. For

instance, Clarke et al. used an EMPC to optimize an electrical system contain-

ing storage, such as microgrids or hybrid electric vehicles (Clarke et al., 2018).

The EMPC performs several tasks: it minimizes the short term economic cost775

and achieves a reasonable tracking of the storage state trajectories provided

by a top-level controller in charge of planning. The use of an EMPC is here

feasible because the dynamics of electric devices are very fast and the model

used for calculations can be simple. Amrit et al. used an EMPC to optimize

an evaporation process and a William-Otto reactor (Amrit et al., 2013). The780

use of a single-layer DRTO was made possible by only considering disturbances

with similar dynamics. The sampling time of the controller was then chosen

based on this common time constant, 1 minute was used in this study. Finally,

Hotvedt et al. optimized a CO2 capture facility with an EMPC (Hotvedt et al.,

2019). A reduced model allowed the EMPC to run faster than the sampling785
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time chosen.

EMPC has already been used for solar systems. Serale et al. (Serale et al.,

2018) and Pintaldi et al. (Pintaldi et al., 2019) developed an EMPC for solar sys-

tems with storage, with the objective of minimizing backup energy consumption.

In (Serale et al., 2018), the performance of a latent heat storage solar thermal790

system to be used in building is optimized with estimated weather forecasts to

represent a real-time implementation. The control time step used in this study

is one hour, and the problem is linearized, making the use of an EMPC possi-

ble. In (Pintaldi et al., 2019), the system considered is a solar thermal cooling

system with storage. A GA is used to solve the optimization problem, based795

on perfect weather forecasts. The control algorithm was adapted to be used in

real-time since the resolution of a nonlinear system is too long. Only the state

variables are computed in real-time by the simulation model. The layout of the

EMPC is presented in Figure 5, using identical models for the optimization and

the simulation.800

Figure 5: Layout of the EMPC (Pintaldi et al., 2019)

Pintaldi et al. highlight the necessity of using a well-tuned EMPC with a

system with enough degrees of freedom in order to ensure an enhanced per-
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formance of the system thanks to the EMPC control. In their studies, fossil

fuel burner energy was reduced by about 10% for the evaluated scenario using

EMPC compared to a rule based controller. The authors state that a hierar-805

chical MPC, including a lower layer of controllers, such as PID, to track the

set-points, might improve the use of storage. Hierarchical methods with a de-

coupling of optimization and control will be presented in subsection 4.2.

These were specific examples where the EMPC can solve the optimization

problem. In most cases, the complex model involved, the wide range of dy-810

namics in the sub-systems and disturbances and the computational limitations

make the single-layer DRTO impractical. In particular, a solar thermal plant

including storage presents various time scales and includes highly nonlinear phe-

nomena, so EMPC is not well suited for the optimization of their operation. This

observation is bound to evolve with the recent and future computational devel-815

opments such as methods that take into account the sparsity of the problem

and can make the resolution run efficiently.

4.2. Two-layer scheme: DRTO and MPC

Based on the impracticability of the single-layer scheme for complex, large-

scale processes, Kadam et al. suggested the decomposition of the economic820

optimization and the regulatory objective on two hierarchical levels (Kadam

et al., 2002). This methodology with two layers will be referred as two-layer

DRTO in the following parts of the paper. The standalone acronym DRTO is

used for the economic optimization on the upper layer. On the upper level,

an economic DRTO is performed: optimal trajectories for the process variables825

are computed to minimize or maximize an economic objective function while

satisfying all the process constraints. The DRTO problem is solved repeatedly

to update the reference trajectories during the complete time span, taking into

account slow disturbances. On the lower level, controllers, often MPC systems,

track the reference optimal trajectories. The sampling time of the controllers,830

noted ∆t̃, has to be small because the fast process disturbances are rejected at

this level. On the other hand, the DRTO does not need to be executed that
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often and its sampling time, noted ∆t, can be larger. The dynamic models

might differ between the 2 layers: a detailed model is required for the DRTO

to achieve best performance, and a simplified model (sometimes linear) is more835

suited for the control layer as it has to be executed often and thus needs a

short computational time. Since disturbances are rejected on both levels, a

time-scale separation needs to be implemented and is schematized in Figure 6,

with z,y,u defined in Equation 1. The circumflex accent represents estimates

based on the measurements of some state variables zm,ym. The slow-varying840

and persistent disturbances, noted d, such as parameter uncertainties, changes in

price markets and slow physical disturbances which affect the economic objective

are taken into account at the DRTO layer. The controller considers all types

of disturbances in its process model, including the fast, stochastic disturbances,

noted d̃. The switches in Figure 6 represent the fact that the operations are not845

performed continuously but at every time step. The estimation of disturbances

and parameters from the measurements, and the time-scale separation, can be

performed in any order (Würth et al., 2011).

The main advantage of the two-layer DRTO is that the DRTO is executed

at a slower frequency, allowing larger computational time and hence, making850

it practical for real complex processes. A downside is that the models used

in the two layers are different and inconsistencies might arise between the two

objectives and strategies (Ravi & Kaisare, 2020). Using two layers is the current

practice in chemical industries but usually with SRTO on the upper layer. This

might change with the future improvements in computational performances.855

Such a hierarchical control layout was used in (Gil et al., 2020) to control

the start-up procedure of a solar thermal field with storage, with the objective

of maximizing the temperature at the top of the storage tank. However, no eco-

nomic optimization was performed in this study. Berenguel et al. also used a

hierarchical control architecture to optimize the electricity production of a CSP860

plant (Berenguel et al., 2005). The set-point optimization layer used a static

model and the control layer was based on classic control schemes. An upper

layer consisted on a daily and seasonal operation optimization to determine the
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Figure 6: Time-scale decomposition of the disturbances between the DRTO and the control

layers (based on (Kadam et al., 2002))

operating periods of the plant based on weather and electricity demand fore-

casts. These works, although not using an economic DRTO on the upper level,865

show that the hierarchical structure of the resolution allows the management of

storage and a more complex model for the optimization layer. Thus, a two-layer

DRTO approach, with a decoupling between the economic optimization and the

tracking task, would improve the optimization and control of the solar systems.

Recently, Pataro et al. performed a two-layer DRTO of a parabolic concen-870

trator collector field in order to maximize the thermal power energy delivered

by the solar field (Pataro et al., 2020b). The economic objective function takes

into account the thermal energy produced and the electricity consumption of the

pumps. The DRTO algorithm uses measurements of the ambient temperature,

solar irradiance and solar field inlet temperature to compute optimal trajectory875

for the inlet volumetric flow rate. This algorithm is solved repeatedly over a

receding time horizon. The results in this paper are promising, the two-layer
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DRTO scheme seems to handle correctly disturbances and parameter uncer-

tainties on the irradiance model parameter and the thermal losses coefficient.

Even if a complete system with storage and customer load is presented in this880

paper, only the solar field was optimized in real-time. No other study focusing

on the two-layer DRTO of a solar system was found in the literature, but this

work confirms the interest of this methodology. The framework presented in

(Wagner et al., 2017), and tested in (Wagner et al., 2018), then improved in

(Hamilton et al., 2020) seems able to perform the DRTO of the electricity gen-885

eration in a CSP plant. The methodology was only tested with perfect forecasts

but it should be able to adapt the optimal dispatch as disturbances occur in

the system. Indeed, the framework already include the CSP controllers and an

optimizer, and uses a rolling time horizon. Future work based on these studies

could add the possibility to handle uncertainty in weather and electricity pric-890

ing forecasts and permit intra-day adjustments to make sure this scheme can be

applied on a real facility. For real-time applications, the optimization algorithm

needs to run efficiently. One way to achieve that is to use a data-based model,

such as in (Brodrick et al., 2017), to model the solar field outputs. This reduces

greatly computational time, allowing more frequent optimizations. The model895

could be adjusted online based on measurements on the real facility or a detailed

simulation model.

5. Applications and adaptations of two-layer DRTO

The two-layer DRTO scheme is widely used in chemical engineering research

papers and over the last decade, several adaptations have been made to the900

method presented in the last section, and are detailed in the following subsec-

tions 5.1, 5.2, 5.3, 5.4. The last subsection 5.5 shows how to couple a planning

phase to the DRTO methodology. This Section focuses on two-layer DRTO since

this scheme seems to be the more complete and the more appropriate to opti-

mize the operation of a solar thermal plant. Indeed, the dynamic optimization905

allows the computation of optimal trajectories, taking into account the various
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dynamics of the system’s components. Additionally, the real-time aspect allows

the adaptation of the operational strategy as disturbances occur in the system

and can correct uncertainty in weather and demand forecasts. Furthermore,

the two-layer scheme allows the rejection of small/fast disturbances that do not910

necessitate a new optimization. And it also corrects the plant-model mismatch

arising from the difference between the simple model used for the frequent op-

timizations and the detailed model used to replace the real plant for research

purposes. Finally, it allows the use of different time horizons and time step sizes

in the optimization and the control layers. The methods presented hereafter are915

a good source of inspiration for future studies on the DRTO of solar systems.

The features of the presented algorithms could also be used on studies based on

SRTO or EMPC.

5.1. Fast updates and DRTO triggering

Although repetitive DRTO is widely used (in (Hua et al., 2004), (Jamaludin920

& Swartz, 2016), (Remigio & Swartz, 2020) for example), re-optimization is not

necessary at each time step. The previous reference trajectories might still be

optimal at the end of the time step if no new significant disturbance appeared

and a new DRTO would be computationally expensive and not really useful. A

better way to trigger the optimization layer is based on the actual disturbances925

and is called conditional triggering. When a new optimization is not needed,

fast updates of the previous trajectories are sufficient. In the case of small

perturbations, linear updates of the solutions are performed and the DRTO is

triggered only for large perturbations (Kadam et al., 2003). The DRTO can

be triggered based on disturbance sensitivity analysis, which indicates when930

the Necessary Conditions of Optimality (NCO) are no longer fulfilled ((Würth

et al., 2011), (Pontes et al., 2015)). Other studies suggested to re-optimize

based on different conditions. Pataro et al. state that a new DRTO needs to be

triggered when a large perturbation affects the values of the state variables or

when a change in the optimization problem such as market prices, operational935

conditions, etc, appears (Pataro et al., 2020a). Rohman et al. ran a new DRTO
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if the active constraint for the conversion of their final product was violated

(Rohman et al., 2019). Ochoa et al. listed three different ways of triggering

the DRTO: based on a time step, on disturbance analysis and lastly on a value

below a threshold for the economic objective function (Ochoa et al., 2009).940

Finally, some studies mention detecting deviations between the predicted and

real variables trajectories and trigger the DRTO when the deviation is too large

(Alonso et al., 2013).

5.2. Computational delay

The computational time, noted τ , necessary to obtain the reference trajec-945

tories at the DRTO upper level leads to a delay in the real-time implementation

of the optimal trajectories by the MPC controllers on the lower level (Pontes

et al., 2015). Indeed, during the execution of the DRTO resolution, the state of

the system is still under progress. The optimal trajectories computed based on

the states measured at time tn become sub-optimal when implemented in the950

process at time tn + τ . Pontes et al. suggested to anticipate the need of a new

DRTO and predict the state of the system at the time of the new trajectories

(Pontes et al., 2015). The DRTO is triggered in advance and when the calcu-

lation is finished, the system has reached the predicted state so the reference

trajectories implemented are optimal.955

When the DRTO is not triggered in advance and there is some computational

delay, the previous trajectories are applied during the calculation (Würth et al.,

2011). This is the common practice in the literature, but probably not the

optimal one.

5.3. Closed-loop two-layer DRTO960

Most two-layer DRTO approaches do not consider the presence of the Model

Predictive Control (MPC) system in the DRTO problem formulation (Remigio

& Swartz, 2020). This traditional scheme can be referred to as open-loop two-

layer DRTO. A perfect control is assumed, the hypothesis is that the closed-

loop response dynamics will follow the economically optimal trajectories of the965
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DRTO layer. But it is not always the case, so closed-loop two-layer DRTO was

introduced by Jamaludin et al. (Jamaludin & Swartz, 2016). In this new for-

mulation, the future MPC control actions are included into the DRTO problem,

which means that the control performance is considered when making economic

decisions. The DRTO general problem includes MPC optimization subprob-970

lems, as presented in Figure 7. In this Figure, a diagram provided in (Remigio

& Swartz, 2020), u denotes the inputs of the system while y are the outputs.

The entire DRTO prediction horizon N is divided into steps. At each step j, the

predicted control moves from the previous step uj−1 are fed to the DRTO model

in order to compute the actual trajectories for the outputs yDRTO
j . The DRTO975

plant response provide disturbance estimates for the next MPC calculations.

Economic optimization is performed based on these disturbances predictions

and new reference trajectories are determined yrefj . The disturbance estimates

from yDRTO
j along with the new trajectories yrefj are given to the MPC model

to compute new corresponding control moves. At the end of the prediction hori-980

zon, the last outputs yDRTO
N are used in the economic optimization to compute

the set-point trajectories ySP supplied to the plant MPC. The MPC will then

determine the control moves to apply to the process uMPC . Finally, the outputs

of the process will be measured ym and sent to the first step of the closed-loop

prediction. In Figure 7, scheduling decisions are also included in the DRTO985

framework.

This closed-loop two-layer DRTO problem can be solved in different ways.

In a sequential approach, the optimization determines updated trajectories and

then a dynamic simulation generates the closed-loop plant response. These steps

are performed iteratively until the minimum of the objective function is reached.990

This resolution method is used by Pataro et al. but they point out some sta-

bility and convergence difficulties (Pataro et al., 2020a). The other method

adopted in (Jamaludin & Swartz, 2016), (Remigio & Swartz, 2020) and (Li &

Swartz, 2019) is the simultaneous approach. The MPC subproblems are trans-

formed into complementary constraints using their conditions of optimality and995

are moved in the constraints set of the DRTO problem resulting in a single-level
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Figure 7: The architecture of a closed-loop two-layer DRTO (Remigio & Swartz, 2020)

mathematical program with complementarity constraints (MPCC). This formu-

lation was improved to include planning decisions (Remigio & Swartz, 2020) or

distributed MPC systems for each subsystem of the plant (Li & Swartz, 2019).

Although the closed-loop two-layer DRTO scheme performs slightly better than1000

the open-loop two-layer DRTO, it is at the price of higher computational time.

This method is still at an early stage of research and its application to a real sys-

tem has never been tested. Thus, in this review, the focus is made on open-loop

two-layer DRTO.

5.4. Multi-objective two-layer DRTO1005

In a few studies, multi-objective two-layer DRTO is performed. Ravi et al.

had two hierarchical objectives: the tracking of the quality of their final prod-

uct and the maximization of the overall profit on plant scale (Ravi & Kaisare,

2020). The tracking objective was formulated in the objective function as the

minimization of the squared deviation between the reference and the actual1010

qualities at the terminal point of the time step. The multi-objective problem
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was solved thanks to the Lexicographic method. The optimal solution for the

priority quality objective was retained through an additional constraint for the

economic optimization. The Pareto front was generated and the optimal so-

lution was chosen to be the closest to the standalone optimal solution of the1015

respective objective function. Kim et al. optimized an energy system with both

economic and environmental objectives (Kim, 2020). As in the previous study,

the two objectives are here conflicting: an improvement of one objective results

in a decline of the second objective. A Tchebycheff weighted metric method

was used to find the Pareto optimum without computing the complete Pareto1020

front. Zhang et al. optimized the operation of an integrated energy system with

several energy carriers (Zhang et al., 2021). Their system included renewable

energy sources and the associated uncertainty due to weather conditions. The

two levels of optimization had a multi-objective function each: benefits maxi-

mization and customer satisfaction for the offline optimization and to limit the1025

deviation from the offline trajectories and to ensure safe operation for the online

optimization. An adapted GA was used to solve the multi-objective problems.

These works show that it is possible to perform multi-objective two-layer DRTO.

5.5. Coupling between an offline planning and DRTO

The wide range of time scales in a problem sometimes imposes the use of1030

distinct optimization layers. In Section 2, the planning and the RTO levels were

introduced. Although both optimization strategies have been applied to solar

thermal systems in the literature, there was no coupling between them. Yet,

the association of an offline and an online phase could benefit to the operation

of a solar system and has been implemented previously for other processes.1035

For instance, Clarke et al. used an upper level planning controller to plan the

storage levels of electric systems offline, on a slow time scale, and an EMPC on

a lower level controlled the fast dynamics online while performing an economic

optimization of the operation of the system (Clarke et al., 2018). The time

decomposition was necessary because storage has very slow dynamics compared1040

to the other components of the system and the storage utilization has to be
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determined on a rather long time horizon to benefit from it. On the other

hand, the system presents fast disturbances that need to be rejected on a small

sampling time. The architecture of the two layers is presented in Figure 8. In

this Figure, x̄B represents the storage state target set-point and u is the control1045

input.

Figure 8: Hierarchical control structure for a system with storage (Clarke et al., 2018)

The upper layer is an offline planning while the lower layer is an EMPC. The

storage state targets are the values passed from the offline optimization to the

online optimization. Rossi et al. also had an offline and an online phases in their

optimization of multi-unit batch processes (Rossi et al., 2017). Distinct objective1050

functions were used in the two steps, with an economic objective present in each

of the two layers. Some constant key parameters were passed from the offline

to the online optimization steps, such as the number of batch cycles. During

the second phase, the offline campaign schedule was updated in real-time and

optimal control actions were generated. Zhang et al. optimized an integrated1055

energy system (WE: We-Energy) including renewable energy sources (Zhang

et al., 2021), whose approach is shown in Figure 9. A day-ahead planning

was first performed offline, based on the daily energy prices, the renewable

energy (RE) forecasts and the energy load. In order to maximize economic profit

and customer satisfaction, the shifting of the flexible loads and the amount of1060

energy traded with the networks were determined. Then, real-time optimization

balances the renewable energy forecast error thanks to real-time information. A

new operation strategy is determined, with some units following the day-ahead

plan if they are not flexible enough to be adjusted in real-time. The goal in this
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step is to minimize the deviation between the day-ahead energy deal plan and1065

the real-time deal.

Figure 9: The framework of the optimal planning of an integrated energy system (Zhang et al.,

2021)

Here, the uncertainty on the renewable energy forecast is corrected thanks

to an online phase. Such a strategy seems perfectly adapted to solar systems.

6. Comparison of the different schemes

The three different real-time optimization schemes presented earlier are sum-1070

marized in Figure 10, based on a schematic in (Würth et al., 2011), with a pos-

sible offline phase. The first scheme, SRTO, will not be studied much further as

it only provides constant set-points values and is not well suited to a dynamic

system, always in transient state and with various time scales. The advantages

and disadvantages of the EMPC and the two-layer DRTO schemes have already1075

been discussed. Caspari et al. compared the two schemes for the optimization

of a continuous air separation unit (Caspari et al., 2020). The EMPC showed

slightly better economic improvements even with a reduced model to decrease

the computational requirements. It achieved 0.2 to 2.4 times higher economic
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Figure 10: The three different schemes in real-time optimization

performance compared to the improvements of the two-layer DRTO scheme.1080

However, the authors outlined some downsides of choosing the EMPC scheme.

First, it requires a new infrastructure to be installed on an existing plant. Also,

the EMPC generated more aggressive control moves due to the smaller time

step, which can lead to accelerated deterioration of the system components.

Furthermore, the two-layer DRTO made a better use of the storage because of1085

its longer time horizon. Given the current computational performances, the two-

layer DRTO scheme seems more suitable for the optimization of a large-scale

system despite its slightly lower economic improvements.

7. Perspectives on the application of DRTO to solar thermal plants

Based on this literature review, a lack of studies focusing on the DRTO1090

of a complete solar thermal plant is noticed. Most authors performed offline

dynamic optimization based on perfect weather forecasts and did not test their

methodology online. These papers show the benefits resulting from dynamic

optimization, but the methods presented are not readily applicable to a real
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plant. Indeed, the trajectories are computed based on weather and load forecasts1095

and are not updated online with plant measurements. Thus, the trajectories

will probably become sub-optimal and the controllers might not even be able

to track them. There are some studies using an EMPC scheme to optimize a

solar system, but it required model simplifications and the use of storage was

not optimal. A two-layer scheme, composed of a SRTO and controllers, has1100

been used in (Rashid et al., 2019b), but it was applied to a CSP plant without

storage. There is only one study in which two-layer DRTO was performed, but

it just optimized the operation of the solar field and not the complete solar plant

including pipes and storage. Nevertheless, two-layer DRTO seems well-suited to

improve the performances of solar thermal plants. Furthermore, if tested using1105

a detailed simulation model, two-layer DRTO should be readily applicable to a

real plant since it models both the optimization and the control layers.

The complete optimization strategy that could possibly be used to optimize

the operation of a solar thermal plant is presented in Figure 11 and entails a

planning phase and a two-layer DRTO methodology. This hierarchical diagram1110

clarifies the different time scales used for each step and the flow of information

in the control structure.

The design of the plant and the storage management could be determined

offline using weather forecast and planned heat demand (as in subsection 5.5)

and sent to the DRTO level (as a market and environment information in Figure1115

6). The storage planning should be made over a time period ensuring good

strategic vision. It might be necessary to compute a new plan before the end of

the current one if the forecasts are too inaccurate.

The DRTO layer could take into account the current solar irradiation and

load measured on the system and updated forecasts. They would represent the1120

slow disturbances d in Figure 6. The optimal trajectories would therefore be

adapted to changes in the weather or the load, on an hourly basis for example,

or with other triggering methods (see subsection 5.1). The solar irradiation and

load forecasts used on the time horizon of the DRTO are updated forecasts.

These forecasts will provide accurate but averaged values for the next few hours1125
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Figure 11: Complete optimization strategy for a solar thermal plant

and they will not be able to predict the actual weather and load with a very

precise time step. Finally, the fast disturbances, d̃ in Figure 6, such as cloud

movements, would be handled at the MPC level. The averaged solar irradiation

used in the DRTO level will be less variable than the actual irradiation, which

is affected by clouds moving fast in the sky. Solar thermal plant could benefit1130

from DRTO to correct weather forecast uncertainties and achieve a smoother

and enhanced energy supply. To summarize the proposed methodology, Figure

12 is the system diagram from Figure 4 adapted to a solar thermal plant, given

as an example of a possible scheme for the optimization of the operation of

such systems. The measured outputs are the temperatures and flow rates in1135

the system, as well as some environmental parameters, such as solar irradiation

(noted DNI for Direct Normal Irradiation in Figure 12). An example of an

estimated parameter in this application is the heat transfer coefficient in the

heat exchangers.

Future works should focus on the two-layer DRTO of solar thermal plants1140

and assess the benefits of using this methodology compared to standard control

strategies or offline dynamic optimization. Since two-layer DRTO includes con-
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Figure 12: Control diagram for the optimization of a solar thermal plant

trol, work could also be done to improve controllers, which track the optimal

trajectories, in terms of uncertainty handling and disturbance rejection.

8. Conclusion1145

This review is focused on the mathematical optimization of the operation

of a solar thermal plant, and particularly on the heat production and stor-

age. It shows that dynamic optimization is often carried out in research papers

to minimize the cost of the solar thermal plant operation. Optimal trajecto-

ries are computed for the decision variables in the system, taking into account1150

the various dynamics of the components of the plant, such as the solar field

and storage tank, and the variable environmental conditions. Improvements in

the performance of the solar thermal plant, in terms of solar utilization and

costs, are achieved thanks to dynamic optimization. However, the uncertainty

in weather and demand forecasts cannot be corrected with an offline optimiza-1155

tion. Thus, the dynamic optimization methodologies are not readily applicable

to real plants. This review then presents the different schemes of real-time opti-
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mization which appears to be a powerful tool to control a process and maximize

its benefits. The measurements performed on the actual system allow the opti-

mization algorithm to represent accurately the system and its environment at1160

the current time and thus to provide regularly updated optimal set-points or

trajectories. The control layer track these reference set-points or trajectories

in the presence of disturbances. The analysis work conducted in this paper

shows the potential of two-layer DRTO in association with a planning phase

to optimize the operation of a solar thermal plant. The analysis is based on1165

research articles in chemical engineering, where two-layer DRTO is studied in

depth. This review provides perspectives on the application of two-layer DRTO

to solar thermal plants with details on its possible implementation. Future re-

search should focus on the DRTO of solar thermal plants, including control, in

association with a planning phase, to reduce their operating cost, help to meet1170

the heat load and cut down the fossil fuels consumption in heat production.
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plication of data-based solar field models to optimal generation scheduling in

concentrating solar power plants. Mathematics and Computers in Simulation,

190 , 1130–1149.1410

Vettenranta, J., Smeds, S., Yli-Opas, K., Sourander, M., Vanhamäki, V.,
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Winterscheid, C., Dalenbäck, J.-O., & Holler, S. (2017). Integration of solar1425

thermal systems in existing district heating systems. Energy , 137 , 579–585.

55



Wittmann, M., Eck, M., Pitz-Paal, R., & Müller-Steinhagen, H. (2011).

Methodology for optimized operation strategies of solar thermal power plants

with integrated heat storage. Solar Energy , 85 , 653–659.

Würth, L., Hannemann, R., & Marquardt, W. (2011). A two-layer architecture1430

for economically optimal process control and operation. Journal of Process

Control , 21 , 311–321.

Zhang, N., Sun, Q., & Yang, L. (2021). A two-stage multi-objective optimal

scheduling in the integrated energy system with We-Energy modeling. Energy ,

215 , 119121.1435

Zhang, Z. (1997). Parameter estimation techniques: A tutorial with application

to conic fitting. Image and Vision Computing pages, 15 , 59–76.

Zubair, M., Awan, A. B., Baseer, M. A., Khan, M. N., & Abbas, G. (2021).

Optimization of parabolic trough based concentrated solar power plant for

energy export from Saudi Arabia. Energy Reports, 7 , 4540–4554.1440

56


	Nomenclature
	Solar thermal plant modeling and optimization
	Solar thermal plant modeling
	Generalities on optimization

	Optimization and control of solar thermal plants
	Generalities on Real-Time Optimization
	Measurements
	Economical and control objectives

	DRTO schemes
	Single-layer scheme: EMPC
	Two-layer scheme: DRTO and MPC

	Applications and adaptations of two-layer DRTO
	Fast updates and DRTO triggering
	Computational delay
	Closed-loop two-layer DRTO
	Multi-objective two-layer DRTO
	Coupling between an offline planning and DRTO

	Comparison of the different schemes
	Perspectives on the application of DRTO to solar thermal plants
	Conclusion

