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Abstract
This paper presents an integrated approach, of a multi-criteria decision-making framework and fuzzy multi-objective

programming to optimize dispatching and rebalancing for Ride-sharing Autonomous Mobility-on-Demand (RAMoD)

systems, whereby, a fleet of self-driving electric vehicles are coordinated to service on-demand travel requests and

eventually allowing multiple passengers to share rides. Specifically, the fuzzy analytical hierarchy process and the Fuzzy

technique for order of preference by similarity to ideal solution are first integrated in order to analyze customer preferences,

prioritize their attitudes toward autonomous vehicles, and then to rank fleet vehicles according to these prioritizations.

Next, leveraging the ranks of vehicles, we introduce a new Multi-Objective Possibilistic Linear Programming (MOPLP)

model, considering realistic constraints and handling the uncertain nature of some critical data affecting RAMoD systems.

Three conflicting goals are considered simultaneously which are (i) to minimize the lost customer requests, (ii) to minimize

the total transportation cost and (iii) to improve customer satisfaction. This MOPLP model is converted to an equivalent

crisp MOLP through applying appropriate strategies and the goal programming method is called to solve this MOLP and

find an efficient compromise solution. Finally, the applicability and efficiency of the proposed approach are presented

through an illustrative example. Collectively, this work provides a unified framework for controlling and analyzing

RAMoD systems, which includes a wide range of modeling options (e.g., the inclusion of the uncertain future demand),

and provides the first correlation between the dispatching and rebalancing decisions, and the process of analyzing customer

preferences toward autonomous vehicles.

Keywords Ride-sharing autonomous mobility-on-demand � Multi-criteria decision-making � Multi-objective possibilistic

linear programming � Goal programming � Dispatching � Rebalancing

1 Introduction

The expansion of cities and the growth of population with a

slowly adapting infrastructure and increased mobility

demands, resulting in significant problems such as traffic

congestion, air pollution, increased travel times and park-

ing spaces. The urgent need to deal with these challenges

has spurred the development of evolutionary transportation

systems. Such an eventual solution will arguably involve

the convergence of a number of emerging technologies.

First, electric vehicles technology, which directly reduces

pollution and promotes the usage of renewable energy.

Second, one-way vehicle ridesharing systems, which are

designed to bring together passengers with similar time

schedules and itineraries (Agatz et al. 2012), have the

potential to reduce road congestion and parking demand

problems in the urban area.

Finally, the advancement of self-driving vehicles tech-

nology promises to further enhance safety, convenience,

and mobility for people unwilling or unable to drive

(Zhang et al. 2016). These key technologies lead to an

emerging transportation paradigm commonly known as

‘‘Ride-sharing Autonomous Mobility-on-Demand’’

(RAMoD) systems, whereby self-driving shared electric

vehicles service on-demand transportation requests.

Its multiple strengths have pushed several companies’

toward RAMoD technology (Abduljabbar et al. 2019).
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Nevertheless, the optimal fleet scheduling and dispatching

remain a key challenge, especially in the presence of

asymmetric customer requests. This problem of imbalance

arises in transportation systems when some stations/regions

are more requested than others. At the end of such trips,

vehicles will naturally accumulate in these stations/regions,

thereby restricting the accessibility of the service on other

stations/regions (Fricker et al. 2016). The significant

requirement to cope with this trend has spurred the design

of vehicle rebalancing processes, which consists of proac-

tively repositioning empty vehicles in anticipation of future

transportation requests.

In particular, travel demand forecasts are subject to a

high level of variability, uncertainty and inaccuracies due

to various external factors, such as traffic and weather.

Accordingly, successful dispatching and rebalancing

strategies in RAMoD systems must deal with such vari-

ability and uncertainty.

Even if several dispatching and rebalancing policies

have been proposed, these research works assume either

deterministic future demand or probabilistic demand fore-

casts, requiring specific knowledge on historical data.

When statistical data are not available and/or incomplete,

stochastic approaches may not be the better choice (Wang

and Shu 2007). Simpler and less data-demanding than

probability theory, the Fuzzy set theory (Zadeh 1965) and

the possibility theory (Zadeh 1978) are very helpful to deal

with epistemic uncertainty in RAMoD systems (Dubois

et al. 2003).

Successful dispatching and rebalancing strategies should

also hold promise for improving customer satisfaction.

This goal is not only achieved by meeting demand

requirements at each time period, but also by taking

account of customer preferences toward autonomous

vehicles services and options. Thus, for the design of an

efficient strategy aiming to improve customer satisfaction,

a better understanding of passenger preferences is

necessary.

Due to the subjectivity and the inherent vagueness of

human preferences, it is difficult to quantify them with

exact numerical values. It is more desirable to specify these

preferences using natural language (Zadeh 1975). In par-

ticular, Fuzzy set theory is very useful in tackling ambi-

guities arising in the process of linguistic evaluation.

Past research works tend to understand passenger’s

attitudes toward autonomous vehicles (Krueger et al. 2016;

Beirigo et al. 2019; Cai et al. 2019), but they usually focus

on the impact of traditional/functional travel factors (i.e.,

travel cost and travel time) and do not address the sub-

jectivity of human preferences. Moreover, to the best of our

knowledge passenger’s preferences have never been

explicitly integrated with the dispatching and rebalancing

decisions.

In this research work, we target the aforementioned

limitations reducing the applicability of RAMoD systems.

Against this backdrop, we propose and test a novel dis-

patching and rebalancing strategy under realistic con-

straints and where the lack of some critical data is assumed

to be fuzzy numbers. We show how such a strategy can be

cast with a preliminary decision-making process. This

preliminary process captures the vagueness and the sub-

jectivity of the passenger’s preferences and the decision

maker’s evaluations and leverages them to define efficient

dispatching and rebalancing decisions to further improve

customer satisfaction.

Specifically, contributions of this research work are

fourfold: First, a new Fuzzy multi-criteria decision-making

framework was proposed that leverages the Fuzzy AHP

method for analyzing customer preferences and prioritize

their attitudes toward autonomous vehicles. Based on this

prioritization, the Fuzzy TOPSIS method is applied to rank

fleet vehicles in terms of weights/importance. To the best

of our knowledge, this fuzzy framework pioneers the

consideration of customer preferences in the dispatching

and rebalancing problem in the field of AMoD/RAMoD

systems.

Second, it introduces a new multi objective possibilistic

linear program to model the dispatching and rebalancing

problem, which contemplates the various sources of

uncertainty affecting AMoD systems. Notably, to our

knowledge, it is the first time that the possibility theory and

the uncertain optimization are exploited to meet the sig-

nificant uncertainties in an AMoD system. Thirdly, to

handle an effective decision about the aforementioned

conflicting objective functions, goal programming

approach is exploited, which combines the decision-mak-

ers’ desire with the logic of optimization in mathematical

programming to meet various goals (Pati et al. 2008).

Finally, we show through experiments the usefulness and

applicability of the proposed approach in the predefined

area of Rambouillet.

The remainder of this article is arranged as follows. The

next section illustrates the relevant literature. The theoret-

ical background of this study is presented in Sect. 3 while

Sect. 4 introduces the RAMoD dispatching and rebalanc-

ing problem. In Sect. 5, our three-phase Fuzzy approach

for the problem under consideration is illustrated, numer-

ical tests being presented in Sect. 6. A sensitivity analysis

is performed in Sect. 7. Finally, concluding remarks and

future works are the subject of Sect. 8.
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2 Related literature

The issue of Autonomous Mobility on Demand (AMoD)

systems has been addressed from several perspectives in

the literature, ranging from simulation-based models to

queuing-theoretical models and model predictive control

(MPC) algorithms.

Simulation-based models (Chen et al. 2016; Levin et al.

2017; Hörl et al. 2019, 2021; Javanshour et al. 2019;

Ortega et al. 2020; Poulhès and Berrada 2020) have the

ability to capture transportation networks with very high

precision, involving microscopic interactions and complex

choice models, but are usually not expected to provide

optimal solutions.

The analysis of AMoD systems with queuing network

methods is commonly used for the routing and rebalancing

problem. Driven by the real case study of Manhattan,

Iglesias et al. (Iglesias et al. 2019) propose a Baskett

Chandy Muntz Palacios (BCMP) queuing-theoretical

framework (Baskett et al. 1975; Kobayashi and Gerla

1983) to deal with the routing and rebalancing problem.

This framework captures passenger arrivals, congestion

effects, vehicle routing, and the battery charge level of

vehicles. The results provide novel tools to control and

analyze performance metrics of AMoD systems. However,

it is assumed that the number of passengers is static since

passengers only switch their pick-up locations but do not

leave the network. It is also assumed that each passenger

travels alone: the problem of ride sharing is not addressed

in this work.

(Wollenstein-Betech et al. 2020) provide a theoretical

framework to design pricing and rebalancing policies for

AMoD systems. The authors begin by describing the sys-

tem using a fluid model consisting of queues of passengers

and vehicles in each region. Then, they design an opti-

mization framework to find optimal pricing and rebalanc-

ing policies given the endogenous travel demand rates.

This framework aims to maximize profits while providing

load balancing for customers and vehicles. The authors

conduct two case studies of New York City to quantify the

benefits of solving the joint problem of rebalancing and

pricing over other approaches. The results suggest that the

joint problem increases the total profit of the AMoD pro-

vider by 7–40%. However, this framework fails to deal

with more realistic nonlinear travel demand functions.

Owing to their simplicity and their ability to include

complex constraints, a number of papers model AMoD

systems within a network flow model. For instance, in

(Rossi et al. 2018), the problem of rebalancing vehicles and

routing customers was modeled within a network flow

framework. Within this model, the authors focus on control

vehicle-to-vehicle interactions, which would lead to traffic

congestion and decrease system performance. Neverthe-

less, travel demands are assumed deterministic and sta-

tionary, i.e., the rate of customer demands is modeled using

deterministic value and does not change through time.

The work published by (Salazar et al. 2019a, b) explores

the possibility of coordinating public transportation net-

works and AMoD systems by devising a multi-commodity

network flow optimization model. The goal is to satisfy

travel demand while maximizing the social welfare defined

as the sum of the operational costs incurred by the various

transportation modes and passengers’ travel time. Based on

real-world case studies of Berlin and New York City, the

authors derive insights on the benefits of intermodal AMoD

systems in terms of overall costs, travel time, and pollution

emissions. However, it is important to highlight that this

model is a time-invariant travel demand. That is, it is

assumed that travel requests remain constant over the time

horizon under analysis. Furthermore, the proposed model

does not explicitly take into account the stochastic nature

of the passenger arrival process and assume that AMoD

vehicles transport only a single passenger at a time.

In (Wollenstein-Betech et al. 2021), the authors present

a network flow model to optimize the routing and rebal-

ancing strategies for intermodal AMoD systems, whereby

self-driving vehicles provide on-demand mobility services

jointly with public transit in mixed traffic (consisting of

private and AMoD vehicles). The goal is to increase the

quality of the service by decreasing the overall travel time

while maintaining the availability of vehicles across the

regions. The authors suggest that for significant levels of

travel demand, pure AMoD systems can degrade the

overall system performance owing to the additional traffic

congestion arising from rebalancing flows. Using examples

with the transportation sub-networks in New York City and

Eastern Massachusetts the authors empirically showed that

the combination of AMoD systems with public trans-

portation systems, micromobility options, and walking can

provide significant improvements in the overall travel

times.

Reference (Ding et al. 2021) develops a combined

operation scheme for AMoD system and Battery Swapping

Station (BSS). The AMoD fleet operator manages the

electric vehicles and determines rebalancing and swapping

schedules. The operational behavior of the fleet is modeled

as an expanded network flow model with the aim of

maximizing the total profit. The BSS management problem

is modeled as a mixed-integer linear program to optimize

the refueling decisions of the depleted batteries. Simulation

experiments demonstrate the effectiveness of the proposed

integrated framework. However, the authors assume that

customer requests are known and deterministic.

In contrast, MPC algorithms provide an efficient tool to

leverage time-varying travel forecasts. This is way multiple

Dispatching and rebalancing for ride-sharing autonomous mobility-on-demand systems based…
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studies have been designed MPC approach to optimize

vehicle scheduling in an AMoD system. This is a control

technique, which consists of iteratively solving an open-

loop optimization problem to produce a sequence of con-

trol actions up to a fixed horizon, and the first control

action will be executed (Zhang et al. 2016).

In (Iglesias et al. 2018) a Model Predictive Control

algorithm was designed for the dispatching and rebalancing

problem. This framework leverages historical data and

neural networks to build demand short-term forecasts

model. Simulation using Didi data show that this strategy

scales very well for large fleet sizes and outperforms state-

of-the-art approaches by decreasing the mean passenger

wait time by up to 89.6%. However, this MPC method was

designed for a single-passenger configuration.

To account for forecast uncertainty, a stochastic MPC

strategy focusing on vehicle dispatching and rebalancing

was developed in (Tsao et al. 2018). The proposed con-

troller was divided into two submodules: the first one

allocates vehicles to existing passengers while the second

redistributes empty vehicles around the city. Substantial

performance gains in terms of reducing the average waiting

time compared to state of the art non-stochastic strategies

have been presented. However, the paper did not investi-

gate whether ride-sharing systems can provide similar

gains by forecasting uncertain future demand.

(Tsao et al. 2019) designed a real-time MPC framework

to optimize the routes of both customers carrying vehicles

and empty vehicles, with the goal is to improve social

welfare i.e., a weighted combination of vehicle mileage

and passenger travel time. Although the model has been

designed to accommodate travel demands in a ride-sharing

setting, all autonomous vehicles in this model are consid-

ered double-occupancy.

Theoretical queuing methods have the benefit of cap-

turing the stochasticity of the passenger arrival process,

making them suitable for efficient control synthesis (Sala-

zar et al. 2018). These methods are founded on the

‘‘Jackson Network’’ premise (Jackson 1957), in which all-

external arrivals at each queuing station in the transport

network occur according to a Poisson process. This random

process assumes constant occurrence rates for random

variables. For instance, if we consider the specific random

variable representing customer arrival time, according to

Jackson Network, customers are arriving at a constant rate

at pick up stations. In other words, this assumption disre-

gards the time-variant nature of the customer arrival rates

that happens on real transport networks (Javanshour et al.

2019). Thus, although queuing theoretical models can

provide a practical solution to the complex issues of con-

trolling and modeling AMoD systems, they prevent mod-

elers from getting a realistic depiction of these transport

networks as well as their potential impacts on the current

urban contexts. In contrast, Network flow model and MPC

algorithms provide an efficient tool to express complex

constraints. However, the majority of existing research

leverages a deterministic travel demand forecast. The few

works taking into account for uncertainty on the short-term

forecasts are mainly based on stochastic programming. In

this regard, probability distributions are generally esti-

mated from historical data. However, in real-life situations,

providing exact probability distribution is very challenging

and complex, especially if statistical data are incomplete,

or are even unobtainable.

In this context, the Possibility Theory (Zadeh 1978;

Dubois and Prade 2012) and the Fuzzy Sets Theory (Zadeh

1965) provide a highly efficient tool to deal with the

uncertainties. Accordingly, they have been successfully

applied to a variety of problems (Khemiri et al. 2017a, b;

Zhang et al. 2019; Nemati and Alavidoost 2019; Petrovic

and Kankaras 2020; De et al. 2020; Jain et al. 2020;

Moghdani et al. 2020; Voskoglou 2020; Kane et al, 2021).

Nevertheless, to our best knowledge, the only existing

works exploring the potential of fuzzy logic for coping

with uncertainty in AMoD/RAMoD systems are our pre-

vious works appeared as (Khemiri et al. 2020, 2020a).

In (Khemiri et al. 2020), a three-phase Fuzzy approach

is developed to optimize dispatching and rebalancing for

RAMoD systems considering the uncertain nature of the

customer requests as well as two conflicting objectives

simultaneously, namely, minimizing transportation costs

and improving customer satisfaction. This work was

extended in (Khemiri et al. 2020a) to design an integrated

strategy for the dispatching, rebalancing, and charging

problem. The optimal coordination of these different

decisions has been shown to be effective in establishing

optimal schedules for electric vehicle charging based on

travel demand forecasts. The coordination of such deci-

sions has shown its effectiveness in defining optimal

schedules for vehicle charging given the uncertainty of

demand forecasts.

There are some works in the field using hybrid

approaches like the 2-opt local exchange guided discrete

antlion optimization algorithm proposed by Barma et al.

(2019) to solve the multi-depot vehicle routing problem,

which is a variant of the vehicle routing problem. They

have combined a meta-heuristic algorithm and an exact

algorithm to address this problem. This amalgamation of

techniques gives good results to deal with this NP-hard

problem. However, the authors consider a homogenous

fleet of vehicles and a deterministic customer request,

which is not very realistic.

To position our proposed approach in the extended

domain of AMoD systems, we use five criteria, namely the

decision processes involved, the adopted modeling

approach, the source of uncertainty on which the problem

R. Khemiri et al.
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is based, and whether the ride-sharing service and customer

preferences have been addressed. Table 1 summarizes the

papers presented above in accordance with these five

dimensions. The majority of these papers are quite recent

and divided mainly into three categories: queuing-theo-

retical models, simulation-based models, and MPC algo-

rithms.0 It should also be pointed out that over 70% of the

models studied are deterministic whilst less than 30% of

the papers analyzed include only one source of uncertainty.

This is a significant weakness since, although customer

request is a significant source of uncertainty, the other

sources of uncertainty can significantly affect the AMoD

system. Moreover, the few works taking into account for

uncertainty are mainly based on stochastic programming.

Then these were followed by the models based on fuzzy

logic. Although the ride-sharing service is a main challeng

within AMoD systems, over half of the works studied feel

to address this emerging transportation paradigm.

Another critical shortcoming of the dispatching and

rebalancing strategies discussed above is that they consider

Table 1 Summary of the analysis of the literature according to four criteria

Paper Process Method Source of

uncertainty

RideSharing Customer

preferences

Chen et al. (2016) Dispatching,

Rebalancing, and

charging

Simulation – – –

Levin et al. (2017) Dispatching and Routing Simulation – X –

Hörl et al. (2019) Dispatching and

Rebalancing

Simulation – – –

Javanshour et al.

(2019)

Rebalancing Simulation Demand X –

Ortega et al. (2020) Daily activity plans of

travelers

Simulation – X X

Poulhès and Berrada

(2020)

Dispatching Simulation – X X

Hörl et al. (2021) Dispatching and

Rebalancing

Simulation – X –

Iglesias et al. (2019) Routing, rebalancing and

charging

BCMP queuing network model Demand – –

Wollenstein-Betech

et al. (2020)

Pricing and rebalancing Dynamic fluid model – – –

Rossi et al. (2018) Routing and rebalancing Network flow model – – –

Salazar et al.

(2019a, b)

Routing and rebalancing Network flow model – – –

Wollenstein-Betech

et al. (2021)

Routing and rebalancing Network flow model – – –

Ding et al. (2021) Rebalancing and

charging scheduling

Network flow model and mixed-integer

linear programming model

– X –

Iglesias et al. (2018) Dispatching and

rebalancing

MPC algorithm – – –

Tsao et al. (2018) Dispatching and

rebalancing

MPC algorithm Demand – –

Tsao et al. (2019) Dispatching, routing and

rebalancing

MPC algorithm – X –

Khemiri et al. (2020) Dispatching and

rebalancing

Fuzzy multi-objective programming Demand X –

Khemiri et al.

(2020a)

dispatching, rebalancing,

and charging

Fuzzy multi-objective programming Demand X –

Barma et al. (2019) Routing Exact algorithm ? meta-heuristic – X –

This paper Dispatching and

rebalancing

MCDM and fuzzy multi-objective

programming

Demand, X X

Transportation

cost
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a homogeneous passenger base and fail to capture the

considerable heterogeneity in customer preferences in

terms of travel comfort, value of time, and diverse other

opinions. The success of such emerging AMoD/RAMoD

systems, nonetheless, depends on their ability to provide

mobility services that adequately catering to the various

customer preferences. That is to say, understanding cus-

tomer preferences and perceptions toward autonomous

vehicles is critical to design popular AMoD services and

effective transport policies.

With the aim to further improve user’s satisfaction, we

propose in this paper a RAMoD solution able to capture

individual travel preferences and integrate this critical data

in the design of the dispatching and rebalancing decisions.

To achieve this goal, an integrated approach, of a multi-

criteria decision-making (MCDM) framework and fuzzy

multi-objective programming is developed. MCDM meth-

ods can provide an appropriate basis to capture customer

preferences. While, the uncertain optimization method can

be an appropriate tool to integrate these preferences in the

decision process and model transportation networks with

very high precision, especially in the presence of uncertain

parameters. The two above-mentioned methods have been

used with considerable success for a variety of problems.

For instance, MCDM methods are used in various research

works, focusing on the decision- and policy-making, to

determine preferences when there are several alternatives

defined on the basis of different attributes, which are usu-

ally conflicting. In order to find the most favorable alter-

native, intra- and inter-attribute comparisons are necessary

(Lu and Ruan 2007). Some ideas are represented in these

studies such as the combination of multiple methods and

the usage of fuzzy sets instead of crisp ones to enhance the

performance of the MCDM approaches and model the

uncertainties. These methods are used in various fields and

for various purposes including energy engineering (Lak

Kamari et al. 2020; Abdel-Basset et al. 2021), supplier

selection (Stević et al. 2020; Ulutaş et al. 2021; Ghasem-

poor Anaraki et al 2021), aggregating inputs (Sirbiladze

2021), biomedical problems (Zhang et al. 2020), waste

management (Büyüközkan and Gocer 2017; Pamučar et al.

2021), public transport (Nassereddine and Eskandari 2017;

Simic et al. 2021), project management (Jabbarzadeh

2018), software selection (Kaska and Tolga 2020), robotic

(Liu et al. 2019), aeronautics (Chen 2016), supply chain

management (Erceg and Mularifović 2019), neutrosophic

decision (Edalatpanah 2020) etc.

Optimization problems under uncertainty are charac-

terized by the need to make decisions without knowing all

their effects. Such problems appear in numerous applica-

tion areas and present several interesting design and com-

putational challenges. Uncertain multi-objective

optimization is an area of uncertain optimization involving

more than one optimization goal. The uncertain parameters

in such problems can be modeled as random variables for

which probability theory can be exploited or as Fuzzy

numbers to which Fuzzy set theory can be applied. Here,

we limit ourselves to describe the essence of fuzzy multi-

objective optimization, especially possibilistic multi-ob-

jective optimization. Many researchers took up the chal-

lenge of describing Fuzzy approaches for possibilistic

multiobjective programming which is a research area of

considerable practical relevance and which continues to

evolve dynamically. These fuzzy approaches cover several

fields, including transportation problem (Günay et al 2021;

Das et al 2017, 2018), seaport-dry port network design

(Tsao and Thanh 2019), water resource management (Wu

et al 2021), electronic reverse logistics (Tosarkani et al

2020), Sustainable development (Ghaderi et al 2018),

project management (Ehsani et al 2017), supply chain

management (Tosarkani and Amin 2018) and the list is

endless.

Owing to the success of the two above-mentioned

methods, several research studies propose to integrate

MCDM methods with possibilistic multi-objective opti-

mization programs to deal with several challenging prob-

lems in various fields and for several purposes

(Mohammedet al 2019; Mohammed 2020; Lahri et al.

2021). Despite that the reviewed literature revealed that

such approaches have become fruitful in various fields of

research, to our best knowledge, no solution framework for

AMoD/RAMoD systems currently exists that leverages an

integrated approach, of a MCDM framework and fuzzy

multi-objective programming to build efficient dispatching

and rebalancing decisions.

3 Theoretical background

3.1 Fuzzy set theory

Fuzzy set theory was first introduced by Zadeh (1965) as an

extension of classical set theory. In ordinary set theory, an

element either belongs or does not belong to the set,

whereas in Fuzzy sets, elements have degrees of mem-

bership valued in the real interval [0, 1]. Hence, it has the

advantage of representing the inherent imprecision and

vagueness mathematically.

Triangular fuzzy numbers are used in this research work

to deal with imprecise data and human judgments.

Some preliminary definitions are presented in the

following:

Definition 1 A triangular fuzzy number (TFN) ~Z can be

represented as a triplet of real numbers (a, b, c) and the

following membership function:

R. Khemiri et al.
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l ~Z xð Þ ¼

x� a

b� a
; a\x� b

c� x

c� b
; b\x� c

0; otherwise

8
>><

>>:

ð1Þ

where a, c, b stand for the lower bound, upper bound and

modal value of the fuzzy number ~Z respectively (as Fig. 1).

Definition 2 Given two triangular fuzzy numbers ~Z

1 = (a1, b1, c1) and ~Z 2 = (a2, b2, c2), the operational laws

of ~Z1 and ~Z2 are displayed as following (Kaufmann and

Gupta 1988, 1991):

~z1 � ~z2 ¼ a1þ a2; b1þ b2; c1þ c2ð Þ ð2Þ
~z1H~z2 ¼ a1� a2; b1� b2; c1� c2ð Þ ð3Þ
~z1 � ~z2 ¼ a1� a2; b1� b2; c1� c2ð Þ ð4Þ
~z1 � r ¼ a1� r; b1� r; c1� rð Þ; for each r 2 R ð5Þ
~Z1
~Z2
¼ a1

c2
;
b1
b2

;
c1
a2

� �

ð6Þ

ez1ð Þ�1¼ a1; b1; c1ð Þ�1¼ 1

c1
;
1

b1
;
1

a1

� �

ð7Þ

Definition 3 Let ~D be the (m*n) matrix whose entries are

from the fuzzy set. ~D is thus called a fuzzy matrix.

Definition 4 The linguistic variable is a variable whose

value is not a number but sentence or word expressed in a

natural or artificial language (Zimmermann 2011). This

kind of expression is commonly used to represent human

judgments and subjective appreciations of decision-mak-

ers. Linguistic variables can be converted into fuzzy

numbers.

3.2 Fuzzy AHP

In MCDM techniques, the weights of the various criteria

have an important role to play in providing information

about the importance of the considered decision criteria

(Roszkowaska 2013). Several models have been designed

to evaluate these criteria weights. Some well-known

approaches are Best Worst Method (BWM), Step-wise

Weight Assessment Ratio Analysis method (SWARA),

Full Consistency Method (FUCOM), Level-Based Weight

Assessment (LBWA) model, and AHP method. The

SWARA method has been applied in various kinds of

studies due to its simplicity with few steps (Mansory et al.

2021; Cui et al. 2021). Its main drawback, however, is its

inability to validate results through degrees of consistency

(Pamucar et al. 2018). FUCOM, BWM, LBWA, and AHP

are increasingly used recently because of their capability to

determine the measurement of consistency. The FUCOM

method (Pamucar et al. 2018; Ong et al. 2021; Popović

et al. 2022) has a minimal number of pairwise comparisons

among the previously mentioned approaches. However, the

further calculation process of this method is quite com-

plicated. The BWMmethod (Kumar et al. 2020; Khan et al.

2022) needs (2n-3) pairwise comparisons, which is double

the number of pairwise comparisons needed by the

FUCOM method. To determine the optimal weights of the

criteria, the BWM method uses a nonlinear min–max

model. However, a high number of pairwise comparisons

makes the application of BWM significantly complicated

(Zizovic and Pamucar 2019). Similar to the FUCOM

method, the LBWA model (Žižović et al. 2019; Torkayesh

et al. 2021) allows computing the weights with a minimal

number of pairwise comparisons. Another strength of this

method is that the increase in the number of criteria does

not increase the complexity of the algorithm. But, besides

these positive aspects, the LBWA model must highlight the

flexibility in terms of further adjustments of the weight

coefficients by the elasticity coefficient according to the

decision maker’s preferences (Saha and Roy 2021). The

AHP proposed by Saaty (1987, 1990) and be widely used

in the scientific literature (Karasan et al. 2019; Roy and

Dutta 2019; Shaygan and Testik 2019; Akbar et al. 2020;

Gündoğdu and Kahraman 2020; Yucesan and Gul 2020) is

a multiple criteria decision analysis framework designed to

facilitate structuring complex multiple criteria problems,

and provide an objective strategy to choose the most

appropriate among several alternatives for solving these

problems. The AHP method is built on a hierarchical

structure, and thus each criterion can be targeted in a more

transparent and efficient way (Kumar et al. 2017). How-

ever, the AHP method becomes inadequate to face the

ambiguity and the vagueness associated with human

Fig. 1 The membership functions of the triangular fuzzy number
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subjective judgments. To deal with this drawback, this

method has been extended by Chang (1996) for coping

with uncertainty and subjectivity. This extension, called

Fuzzy AHP, combines AHP and fuzzy set theory allowing,

thus, more accurate and realistic descriptions of the deci-

sion-making process. Fuzzy AHP uses linguistic variables

and fuzzy numbers to express the comparative judgments

(or the relative importance of each pair of criteria).

In this paper, the Fuzzy AHP is chosen for its several

advantages, including the relative simplicity with which it

deals with multiple criteria. This decision-making tool is

easy to understand and can efficiently process both quan-

titative and qualitative data. One of the main advantages of

the AHP method is its acceptance of inconsistencies in

perceptions/ judgments and its user-friendliness, as users

can directly enter the judgment data without requiring

cumbersome mathematical knowledge. The power of AHP

lies also in its ability to decompose complex problems in

the form of a hierarchy or a collection of integrated levels.

Consider the pairwise comparison matrix ~D = ~zi;j
� �

n�n:

To calculate a priority vector of the fuzzy matrix ~D, we

use the extent analysis method proposed by (Wang et al.

2008), which can outlined as follows.

Firstly, calculate the sum of elements in each row of the

fuzzy matrix ~D using fuzzy arithmetic operations:

RSi ¼
Xn

j¼1

~Zi;j ¼
Xn

j¼1

aij;
Xn

j¼1

bij;
Xn

j¼1

cij

 !

; i ¼ 1; ::; n

ð8Þ

Secondly, normalize the row sums as following:

~S¼ RSi
Pn

_j¼1RSj
¼

Pn
_j¼1aij

Pn
_j¼1aijþ

Pn
k¼1

Pn
j¼1Ckj

;

Pn
_j¼1bij

Pn
k¼1

Pn
j¼1bkj

;

 

Pn
_j¼1Cij

Pn
_j¼1Cijþ

Pn
k¼1

Pn
j¼1akj

!

ð9Þ

Thirdly, evaluate the degree of possibility of ~Si[= ~Sj,
which is defined as:

V ~Si 	 ~Sj
� �

¼

1; if bi [ bj
ci � aj

ðci � biÞ þ ðbj � ajÞ
; if aj � ci

0; otherwise

8
>><

>>:

i; j ¼ 1; . . .n and j 6¼ i

ð10Þ

Fourthly, the degree of possibility of ~Si the other (n-1)

fuzzy numbers is computed using the following equation:

Vð ~Si 	 ~Sjjj ¼ 1. . .; n; j 6¼ iÞ ¼ min
j2 1;...;nf g;j 6¼i

V ~Si 	 ~Sj
� �

ð11Þ

Finally, the weight vectors of the fuzzy matrix ~A is

defined as:

W = (w1, w2,…, wn)
T where:

wi ¼ Vð ~Si 	 ~Sjjj ¼ 1; . . .; n; j 6¼ iÞ
Pn

k¼1 Vð ~Sk 	 ~Sjjj ¼ 1; . . .; n; j 6¼ kÞ
; i ¼ 1; . . .; n

ð12Þ

3.3 Fuzzy TOSPIS

The Technique for Order of Preference by Similarity to

Ideal Solution (TOPSIS) is a widely used Multi-Criteria

Decision Method (Amin et al. 2019; Hu et al. 2019; Roy

and Dutta 2019; Başhan et al. 2020; Rouyendegh et al.

2020; Yucesan and Gul 2020).

According to this method, the most appropriate alter-

native is decided on the basis of the minimization of the

distance to the ideal negative solution (i.e., the alternative

that minimizes benefit criteria and maximizes cost criteria)

and the minimization of the distance to the ideal positive

solution (i.e., the alternative that minimizes cost criteria

and maximizes benefit criteria).

Fuzzy TOPSIS approach integrates the fuzzy logic to

deal with imprecise information. This fuzzy version con-

sists of the following six steps:

Step 1: Construction of the decisions matrix

Suppose a multiple criteria decision-making problem

has m possible alternatives Ai i ¼ 1; . . .;mð Þ and n

criteria/attributes Cj j ¼ 1; :::; nð Þ. The performance rat-

ing of each alternative with respect to each decision

~D ¼

1; 1; 1ð Þ a12; b12; c12ð Þ � � � a1n; b1n; c1nð Þ a1n; b1n; c1nð Þ
a21; b21; c21ð Þ 1; 1; 1ð Þ � � � a2n; b2n; c2nð Þ

� � � � � � � � � � � �
an1; bn1; cn1ð Þ an2; bn2; cn2ð Þ � � � 1; 1; 1ð Þ

2

6
6
4

3

7
7
5
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criterion can be represented by the decision matrix ~D as

follows:

C1 C2 � � � Cn

~D ¼

A1

A2

An

~x11 ~x12 � � � ~x1n

~x21 ~x22 ~x2n

� � � � � � � � � � � �
~xm1 ~xm2 � � � ~xmn

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

ð13Þ

where ~xij indicates the rating of alternative Ai with

respect to criterion Cj expressed by linguistic variables.

The weight of the n decision criteria can be concisely

expressed in vector format as formulation (14):

~w ¼ ½ ~w1; ~w2. . . ~wn
 ð14Þ

where ~wj represents the relative importance weight of the

decision criterion Cj.

In this work, ~xij and ~wj (i = 1,…, m and j = 1,…, n)

are modeled by triangular fuzzy numbers given by:

~xij ¼ ai;j; bi;j; ci;j
� �

and ~wj ¼ w1j; w2j; w3j
� �

Step 2: computation of the normalized fuzzy decisions

matrix

In some multi-criteria decision-making problems, the

decision criteria can be assessed using different scales

and measurement units. This step allows to transform

them on a similar scale.

The normalization process depends on whether an

attribute is a benefit decision criterion (to be maximized)

or a cost decision criterion (to be minimized).

The normalized fuzzy decision matrix can be estab-

lished as shown in Eqs. (15–17).

~R ¼ e½rij
m�n; i ¼ 1; :::;m and j ¼ 1; . . .; n ð15Þ

~rij ¼
aij
cþj

;
bij
cþj

;
cij
cþj

 !

; j 2 B ð16Þ

~rij ¼
a�j
cij

;
a�j
bij

;
a�j
aij

� �

; j 2 Co ð17Þ

Where cþj = max
_i
cij if j 2 B and a�j = min

_i
aij if j 2 Co.

Step 3: computation of the weighted normalized fuzzy

decisions matrix

The weighted normalized fuzzy decision matrix is

calculated by multiplying the importance weights of the

decision criteria by the normalized decision matrix

according to Eqs. (18, 19).

~V ¼ ½~vij
m�n; i ¼ 1; 2; ::;m; j ¼ 1; 2; ::; n ð18Þ

~vij ¼ ~rij � ~wj ð19Þ

Step 4: determination of the fuzzy positive ideal solution

and the fuzzy negative ideal solution

The fuzzy positive ideal solution (A?) and the fuzzy

negative ideal solution (A-) can be computed respec-

tively according to Eqs. (20) and (21).

Aþ ¼ ð~vþ1 ; ~vþ2 ; . . .; ~vþn Þ ð20Þ

A� ¼ ~v�1 ; ~v
�
2 . . . ~v

�
n

� �
ð21Þ

where ~vþj = max
_i

~vij3; ~v�j = min
_i
~vij1; i ¼ 1; ::;m; j ¼

1; :::; n

In the particular case where all criteria are evaluated

using the same scale of fuzzy values, there is no need to

normalize the fuzzy decision matrix, and the positive-

ideal and negative-ideal solutions can be respectively

calculated as:

Aþ ¼ ~vþ1 ; ~v
þ
2 ; . . .; ~v

þ
n

� �
¼ max

_i
Vij3jj 2 B

� ��

min
_i
Vij1=j 2 Co

� �� ð22Þ

A� ¼ ~v�1 ; ~v
�
2 ; . . .; ~v

�
n

� �
¼ min

_i
Vij1=j 2 Co

� ��

max
_i
Vij3jj 2 B

� �� ð23Þ

Step 5: computation of the distance between each

alternative, the fuzzy positive ideal solution and the

fuzzy negative ideal solution

The distance from each alternative to the positive

ideal solution is given as:

dþi ¼
Xn

j¼1

dð~vij; ~vþj Þ; i ¼ 1; ::;m ð24Þ

Similarly, the distance from each alternative to the

negative ideal solution is as follows:

d�i ¼
Xn

j¼1

dð~vij; ~v�j Þ; i ¼ 1; :::;m ð25Þ

where D( ~z1; ~z2) designates the distance between two

fuzzy numbers ~z1 and ~z2, this is computed as in Eq. (26).

D~z1; ~z2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
½ a1 � a2ð Þ2þ b1 � b2ð Þ2þ c1 � c2ð Þ2


r

ð26Þ

Step 6: computation of the closeness index and ranking

the alternatives

According to D? and D-, a closeness coefficient (CC)

is computed for each alternative as follows:

CCi ¼
d�i

d�i þ dþi
; i ¼ 1; ::;m ð27Þ

This coefficient allows to rank alternatives in descending

order so that the alternative with the highest closeness
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index is the best choice.

The Fuzzy TOPSIS has strengths over other Multi-

Criteria Decision methods because it has (1) a very

simple computation process that can be implemented in a

spreadsheet, (2) a scalar measure that simultaneously

takes into account the best and the worst alternatives, (3)

a sound logic that represents the rationale of human

decision, and (4) performance measures that can be

presented on a polyhedron.

3.4 Goal programming

The goal programming (GP) method originally developed

by (Charnes et al. 1955) is one the most widely used

method for solving multi-objective and multi-criteria

decision-making problems (Chang 2007). It has been

applied to many real-world problems in areas such as

transportation, engineering, economics, marketing, supply

chain design, energy efficiency, etc. (Romero 2004; Khe-

miri et al. 2017a; Aksaraylı and Pala 2018; Hu et al. 2018;

Kaucic et al. 2020; Kilic and Yalcin 2020; Malik and

Gupta 2020).

The popularity of this technique is directly linked to its

mathematical models flexibility, robustness, and the ability

to introduce a large number of system constraints (Dhahri

and Chabchoub 2007).

Unlike linear programming, the GP method does not

directly optimize objective functions. Instead, it aims to

minimize the deviations between the realized results and

the desired goals. GP can be formulated as follows:

Min
x2A

Xn

i¼1

dþj þ d�j


 �

Subject to:

Cl xð Þ� 0; l ¼ 1; 2; . . .; L

Fj xð Þ � dþj þ d�j ¼ Gj j ¼ 1; 2; . . .; n

dþj ; d
�
j 	 0

ð28Þ

where dþj and d�j are the positive and negative deviations

from the goal Gj; Fj(x) is the level of realization of the

objective function j (for j = 1; 2;…; n); Gj is the goal value

of the jth objective function and Cl(x) is a set of

constraints.

In order to best reflect the preferences and desires of the

decision-makers, a full range of extensions and variants of

GP was proposed in the scientific literature. The two major

GP forms are lexicographic and weighted Goal Program-

ming (WGP). The distinguishing feature of the first variant

is the existence of a certain number of priority levels. In

turn, each priority level contains some undesirable devia-

tions to be minimized. The WGP variant allows for direct

trade-offs between all deviational variables by placing

them in a normalized weighted single function (Jones et al.

2010). The general form of the WGP can represented by

the following formulation:

Min
x2A

Xn

i¼1

wþ
j d

þ
j þ w�

j d
�
j


 �

Subject to :

Cl xð Þ� 0; l ¼ 1; 2; . . .; L

Fj xð Þ � dþj þ d�j ¼ Gj j ¼ 1; 2; . . .; n

dþj ; d
�
j 	 0

ð29Þ

where wþ
j and w�

j are respectivly the weight factors for

positive and negative deviations of the objective j. These

factors make it possible, on the one hand, to normalize the

units of measurement of the various objectives, and on the

other hand, to valorize each objective (Kettani et al. 2004).

In standard Goal Programming, the decision-maker is

mainly called for establishing goals for the objectives, and

his/her involvement in the decision-making process usually

finishes at this stage. Thus, the weighted variant involves

the decision-maker more than before by asking him/her not

only to enter his/her preferences regarding the goals to be

achieved for each objective but also to express his/her

opinion regarding the importance given to each objective

by means of the coefficients wj. This issue can help to make

a final decision that better reflects the structure of the

decision maker’s preferences.

Therefore, in order to benefit from these advantages, in

this paper we use the WGP method to deal with a multi-

objective decision-making problem.

4 Problem formulation

Despite the number of works that have investigated the

potential of RAMoD systems, these various initiatives treat

the problem with a specific focus on the high-density areas.

The FUI TORNADO project that we are working on

aims to study the interaction between connected intelligent

infrastructures and autonomous vehicles in a low-density

environment where transport solutions are scarcer (Tor-

nado 2020).

We consider an urban system discretized into a set of

connected stations, where a fleet of autonomous vehicles

fulfills on-demand transportation service. Each vehicle can

provide a ride-sharing service to the passengers without

exceeding their capacity. The fleet of self-driving vehicles

is marked by a high degree of heterogeneity: different

transportation costs and characteristics (sailing speed,

capacity, Comfort, Safety, etc.).

In the context of the Tornado project, using a mobile

application, the passenger is able to make a mobility
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request from a pickup and drop off location in the prede-

fined area of Rambouillet.

If there are available vehicles in the fleet, one of them

will be chosen to accomplish this mobility demand. On the

other hand, if there are no available vehicles, the user

immediately leaves the transportation system without

waiting time. Therefore, we adopt the passenger loss

model, similar to (Zhang and Pavone 2016; Iglesias et al.

2019), where if all vehicles are unavailable upon the cus-

tomer’s request, the customer directly leaves the system.

This modeling assumption is more involved in transporta-

tion systems where a high degree of service is desired

(Iglesias et al. 2019).

Dispatching vehicles to accomplish mobility demands is

done by the fleet manager. The vehicle will then drive the

passenger to the desired destination while maintaining

communication with the fleet manager in real-time to find

optimal routes and track the information and status of the

vehicle.

At the end of the trip, the fleet manager could be sending

a mission to the vehicle to accomplish other mobility

demands. It could also send a notification to rebalance

itself or even to park in the drop-off station for a certain

period of time.

For simplification purpose, it is assumed that each sta-

tion has sufficient space so that incoming vehicles can

directly be parked and recharge their batteries at all times.

Further, it is assumed that people traveling as a group, must

have the same pick-up and drop-off stations. It means, in

this model, no detour will occur when picking up and

dropping off passengers at different locations.

It is also worth mentioning that, due to several external

factors, future customer demand is uncertain to the fleet

management and will be estimated using fuzzy sets and

possibility theory.

Finally, it is assumed that the time horizon is discretized

into ordered periods.

5 Proposed approach

The suggested approach consists of three main phases

namely analyzing customer preferences, ranking fleet

vehicles and dispatching and rebalancing (see Fig. 2).

5.1 Phase I: analyzing customer preferences

Fleet vehicle selection is complicated by the fact that

customer preferences must be taken into account in this

decision-making process. Moreover, in practice, deter-

mining customer preferences is far from being an easy task.

Our RAMoD system is able to query passengers for pref-

erences using the ride request mobile application. The

decision-makers take advantage of this available informa-

tion for understanding passengers’ attitudes toward auton-

omous vehicles service and selecting thereafter the right

vehicles that will satisfy travelers.

5.1.1 Step 1: select the criteria used for fleet vehicle
ranking

In this first step, the decision-maker must choose the

preference attributes that will be used to evaluate the

passengers’ attitudes toward autonomous vehicles service

and to evaluate thereafter the various vehicles.

We suggest in the following a list of preference attri-

butes that can be adapted in order to fit with the strategy of

the decision-maker as well as the specificity of a given real

case.

• Travel cost: often considered as an important travel

factor, which represents the total cost of the entire trip.

This cost may be imprecisely known at the mid-term

horizon; it will, therefore, be modelled by fuzzy

numbers.

• Vehicle speed: the average speed of the vehicle can be

calculated by dividing the total distance traveled by the

travel time. There are many external factors that can

affect the (average) speed of the vehicles such as traffic

congestion and weather. It can also be significantly

different according to the type of lanes (i.e., express

lanes and local lanes) (Zoto et al. 2012).

• Vehicle capacity: the ability of the vehicle for carrying

passengers. This attribute is of particular interest when

we made with a ride-sharing system.

• Comfort: this factor concerns the passenger’s level of

comfort. According to (Telpaz et al. 2018), comfort is

an important aspect of traveler experience. This is

justified by the fact that a traveler’s perception of a

driverless ride is strongly based on the vehicle’s driving

style, especially in the complex road environment

(headway gap, jerk, acceleration, deceleration, etc.)

• Safety: according to (Telpaz et al. 2018), the basic

needs of passengers of self-driving vehicles is primarily

that of protection and safety. Safety can be defined as a

‘‘state in which the system is not in danger or at risk,

free of injuries or losses’’ (Sanz et al. 2015).

• Accessibility for persons with reduced mobility: the

premise of AMoD systems is to provide on-demand

transportation and 24/7 mobility to all, including

persons with reduced mobility. Hence, we assume that

this attribute is of particular interest in this kind of

transportation system.

To deal with the inherent subjective nature of the last

three criteria, we suggest that will be quantitatively eval-

uated according to an expert judgment.
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5.1.2 Step 2: Prioritization of vehicles evaluation criteria

In this step, the relative strengths of each criterion, from the

perspective of an individual passenger, have been

computed.

For the prioritization of individual preferences, passen-

gers are queried through the ride request application and

individual preferences are elicited by comparing the rela-

tive importance of two travel factors at a time.

After collecting these preferences, it would be coded as

fuzzy comparison matrices. Fuzzy linguistic variables are

used to indicate the relative importance of each pair of

criteria and would subsequently be converted into fuzzy

numbers.

Based on the pairwise comparison and triangular fuzzy

numbers, the fuzzy comparison matrix is constructed as

below:

~A ¼

~a1;1 ~a1;2 � � � ~a1;n
~a2;1 ~a2;2 � � � ~a2;n
� � � � � � � � � � � �
~an;1 ~an;2 � � � ~an;n

2

6
6
4

3

7
7
5

where ~ai;j indicates the importance of criterion i over cri-

terion j, where i = j = 1,…n.

The number of matrices obtained at this phase depends

on the number of passengers who agreed to answer the

questionnaire through the ride request application.

5.1.3 Step 3: construct aggregated fuzzy decision matrix

5.1.3.1 Aggregation of the comparison matrix After the

prioritization of the vehicle evaluation criteria was done,

these individual passenger opinions should be fused to get

a group opinion and estimate the collective preferences. In

order to do that, we construct an aggregated fuzzy decision

Fig. 2 Framework of the

proposed approach
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matrix according to the definitions proposed by (Büyü-

közkan and Feyzıo~glu 2004; Vahidnia et al. 2008):

lij ¼ min
k2 1;...;pf g

lijk
� �

ð30Þ

mij ¼
Yp

k¼1

mijk

 !1=p

ð31Þ

uij ¼ max
k2 1;...;pf g

uijk
� �

ð32Þ

5.1.3.2 The measurement of consistency After the

aggregation is done, the result must be controlled. This is

achieved by calculating the consistency ratio (CR) for the

aggregate comparison matrix. This parameter is used to

directly evaluate the consistency of the pairwise compar-

ison matrix and must be inferior to 0.1. In fact, it can be

said that the collective preferences are acceptable and can

be used later if and only if the CR is less than 0.1 other-

wise, they will be not acceptable.

This consistency measure is obtained as per the fol-

lowing steps:

Calculate the maximum eigenvector kmax for the pair-

wise comparison matrix of order n using the formulae:

kmax ¼ max
j

Lj þ Uj

2�M _j

 !

ð33Þ

Lj ¼
Pz

i¼1 lijPz
i¼1

Pz
j¼1 lij

; Mj ¼
Pz

i¼1 mij
Pz

i¼1

Pz
j¼1 mij

;

Uj ¼
Pz

i¼1 uijPz
i¼1

Pz
j¼1 uij

Compute the consistency index (CI) given by:

CI ¼ kmax � n

n� 1
ð34Þ

The consistency ratio (CR) is then computed by divid-

ing the CI by the random consistency index as follow:

CR ¼ CI

RC
ð35Þ

where RC is the average random consistency index com-

puted from a significant number of simulation runs. The

table of the average random consistency indexes of order

1–10 proposed by Saaty (1980) can be seen in Table 2.

5.1.4 Step 4: calculating importance weights of criteria

For analyzing customer preferences and fuzzy priorities,

the fuzzy AHP process has been used in this study. AHP

allows the complex decision of vehicle selection to be

presented in a descending hierarchical structure from an

overall goal of the objective to the various criteria

contributing to the decision and so on until the last level of

the hierarchy, which will include the different alternatives.

Figure 3 illustrates the hierarchy of the considered prob-

lem. Specifically, the overall objective of this problem is to

choose the best or most suitable autonomous vehicle in the

fleet. To achieve this overall goal, six factors have been

identified to constitute the second level. Finally, the third

level represents the alternative vehicles.

At the end of this step, we can compute the weight

vector W = (w1, w2,…, wn) of the n selected criteria, where

wj is the weight of the criterion j.

5.2 Phase II: vehicle ranking (provide the weight
of each vehicle)

At the second phase, the decision-maker compares all

vehicles in the fleet under each of the decision criteria

defined in the first step. As before, linguistic variables are

used to express subjective appreciation and human

judgments.

Assume there are m vehicles Vi (i = 1, 2,…m), evalu-

ated on n criteria Cj = (j = 1,..,n). The rating of the vehicle

with respect to the different criteria can be concisely rep-

resented by a decision matrix ~D:

C1 C2 � � � Cn

~D ¼

V1

V2

Vm

~x11 ~x12 � � � ~x1n

~x21 ~x22 ~x2n

� � � � � � � � � � � �
~xm1 ~xm2 � � � ~xmn

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

If there is more than one decision-maker involved with

the decision process, as is often the case, aggregation of the

different decision matrices is made according to Eqs. (30–

32). Then, we call the fuzzy TOPSIS method, considering

the decision criteria defined in the previous phase and the

fuzzy decision matrix ~D. At the end of this phase, we can

compute for each vehicle Vi, the relative weight Wi.

5.3 Phase III: dispatching and rebalancing

5.3.1 Step 1: proposed multi-objective possibilistic linear
programming model

5.3.1.1 Notations

• Set of indices

Table 2 Average random index (RI) based on matrix size adopted

from (Saaty 2000)

n 1 2 3 4 5 6 7 8 9 10

RC 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49
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• S: overall number of stations in the considered urban

environment (s = 1, 2,…,S).

• V: overall number of autonomous vehicles in the

RAMoD system (v = 1, 2… V).

• T: number of time periods in the planning horizon

(t = 1, 2…, T).

• Fuzzy parameters:

• fCr t,s1,s2: expected number of passengers who wish

to travel from origin s1 to destination s2 departing at

time t (i.e., customer trip demands).

• gTr costv: transportation cost of the vehicle v.

• Certain parameters:

• Wv: relative weight of the vehicle v obtained from

the previous stage.

• Capv: capacity of the vehicle v for carrying

passengers.

• Spv: speed of the vehicle v.

• Dists1, s2: distance between stations s1 and s2 by

taking the shortest way.

• Decision variables

• S_Crt,s1,s2: the satisfied customer trip demands

departing at time period t from station s1 to station

s2.

• Local_initv,s: represents the initial availability of

vehicle v at station s: if v is available at s in the first

period, Local_initv,s = 1 and 0 otherwise.

• Parkv,t,s: Binary variable indicating if vehicle v is

parked in station s during period t.

• Missv,t: Binary variable indicating if vehicle v is on a

mission during period t.

• Miss_Rv,s1,s2,t1,t2: Binary variable indicating if vehi-

cle v is on a rebalancing mission traveling from

station s1 to station s2 beginning at period t1 and

arriving at period t2.

• Miss_Tv,s1,s2,t1,t2: Binary variable indicating if vehi-

cle v is on a customer transport mission traveling

from station s1 to station s2 beginning at period t1

and arriving at period t2.

5.3.1.2 Objective functions

• Objective 1: Minimizing the number of lost customer

requests.

MinimizegLCr

gLCr ¼
XT

t¼1

XS

s1¼1

XS

s2¼1=s26¼s1

fCrt;s1;s2 � S Crt;s1;s2
ð36Þ

• Objective 2: Minimizing the total transportation cost.

Minimize fTC

fTC ¼
XT

t1¼1

XT

t2¼1

XS

s1¼1

XS

s2¼1=s2 6¼s1

XV

v¼1

gTr cost�v (Miss Rv;s1;s2;t1;t2

+ Miss Tv;s1;s2;t1;t2) * Dists1;s2

ð37Þ

• Objective 3: Improving customer satisfaction.

Maximize CS

CS ¼
XT

t1¼1

XT

t2¼1

XS

s1¼1

XS

s2¼1=s26¼s1

XV

v¼1

W�
v Miss Tv;s1;s2;t1;t2

ð38Þ

5.3.1.3 Model constraints

XS

s¼1

Parkv;t; s þ Missv; t ¼ 1 8v; t ð39Þ

Missv;t ¼
XS

s1¼1

XS

s2¼1=s26¼s1

X

t1� t

X

t2	 t

Miss Rv; s1; s2; t1; t2

þMiss Tv; s1; s2; t1; t2 8v; t ð40Þ

Parkv;1;s þMiss Tv;s;s1;1;t1 þMiss Rv;s;s2;1;t2 � Local initv;s

8 v; 8 s; 8 s1 6¼ s; 8 s2 6¼ s; t1 ¼ 1þ ðDists;s1=SPvÞ;
t2 ¼ 1þ ðDists;s2=SPvÞ

ð41Þ

Fig. 3 Hierarchical structure of

the considered autonomous

vehicle selection problem
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Parkv; t; s � Parkv; t�1;s þMiss Rv;s1;s;t1;t�1 þ Miss Tv;s2;s;t2;t�1

8 v; s; s1; s2; t[ 1; t1 ¼ t � ðDists1;s=SPvÞ � 1;

t2 ¼ t þ ðDists2;s=SPvÞ � 1

ð42Þ
Miss Rv;s1;s2;t1;t2 � Parkv;t1�1;s1

þ
XS

s36¼s1

Miss Rv;s3;s1;t3;t1�1 þ
XS

s4 6¼s1

Miss Tv;s4;s1;t4;t1�1

8 v; s1; s2; t1[ 1; t2 ¼ t1þ ðDists1;s2=SPvÞ;
t3 ¼ t1� ðDists3;s1=SPvÞ � 1 ; t4 ¼ t1� ðDists4;s1=SPvÞ � 1

ð43Þ
Miss Tv;s1;s2;t1;t2 � Parkv;t1�1;s1

þ
XS

s36¼s1

Miss Rv;s3;s1;t3;t1�1 þ
XS

s4 6¼s1

Miss Tv;s4;s1;t4;t1�1

8 v; s1; s2; t1[ 1; t2 ¼ t1þ ðDists1;s2=SPvÞ;
t3 ¼ t1� ðDists3;s1=SPvÞ � 1 ; t4 ¼ t1� ðDists4;s1=SPvÞ � 1

ð44Þ

S Crt1;s1;s2 �
XV

v¼1

Miss Tv; s1; s2; t1; t2 � Capv

8 s1; s2; t1; t2 ¼ t1 þ ðDists1;s2=SPvÞ
ð45Þ

S Crt; s1; s2 � fCrt; s1; s2 8 t; s1; s2 ð46Þ

S Crt; s1; s2 	 0 and integer 8; 8 s1; s2 � 1; S½ 
 ð47Þ

Missv; t; Parkv; t; s; Miss Tv; s1; s2; t1; t2; Miss Rv;s1;s2; t1; t2� 0; 1½ 

8 t; v; s; s1; s2; t1; t2

ð48Þ

Equation (39) models the two potential states each

vehicle can take, namely, be on a mission between two

stations and parked/wait at a station. Besides, this con-

straint guarantees that an autonomous vehicle can have

only one state at a time.

During a vehicle mission, two possible actions can be

carried out (1) travel empty in order to rebalance the sys-

tem, and (2) transport customer(s) from one station to

another. These actions are modelled through constraint

(40), which also ensures that only one action can take place

at one time by a vehicle.

When a vehicle v is on a rebalancing mission (i.e.,

Miss_Rv,s,s1,1,t1 = 1), or a customer transport mission (i.e.,

Miss_Tv,s,s1,1,t1 = 1) departing at the first period, it is

essential that v was initially available at this station (i.e.,

Local_init v,s = 1). Similarly, a vehicle v cannot wait in a

station s during the first period (i.e., Parkv,1, s = 1) if and

only if it is initially in this station (i.e., Local_init v,s = 1).

Equation (41) ensures that these rules are always respected.

These restrictions must be taken into account in the next

periods (i.e., t[ 1). This means that if a vehicle v has

waited at a station s during a time period t (i.e.,

Parkv, t, s = 1), it is required that v is physically located in

station s at the beginning of period t. Specifically, either the

vehicle v 1) has waited at a station s during the last period

(i.e., Parkv,t-1,s1 = 1) or 2) has arrived at a station during

the last period (i.e., Miss_Rv,s3,s1,t3,t1-1 = 1 Or

Miss_Tv,s4,s1,t4,t1-1 = 1). Constraint (42) enforces the inte-

gration of this condition in the model.

In other words, when vehicle v is on a mission beginning

from station s1 at period t1, it is necessary that v was

physically located in s1 at the beginning of this period (i.e.,

Parkv,t-1,s1 ? Miss_Rv,s3,s1,t3,t-1 ? Miss_Tv,s4,s1,t4,t-1 = 1).

Eqs. (43) and (44) guarantee the respect of this rule

respectively for customer transport missions and rebal-

ancing missions.

Constraint (45) limit the satisfied customer requests to

the total capacities of the vehicles used for transporting

passengers for each origin–destination pairs in each period.

Equation (46) ensures that vehicles transporting cus-

tomer(s) between each origin–destination pairs in each

period cannot transport more passengers than it has been

requested.

Finally, limitations of variables are presented in

Eqs. (47) and (48): S_Crt,s1,s2 is an integer, while other

decision variables are binary.

5.3.2 Step 2: an auxiliary multi-objective linear model

Fuzzy mathematical programming addresses two different

issues: fuzziness and epistemic uncertainty. Fuzziness is

modeled by fuzzy constraints while the lack of knowledge

or epistemic uncertainty is modeled by fuzzy coefficients

(Dubois et al. 2003; Mula et al. 2007).

The model proposed in the previous step jointly con-

siders fuzziness (associated with the flexible constraint 46)

and incomplete information in data (associated to: cus-

tomer request and transportation cost). To deal with this

fuzzy multi-objective linear programming model, we apply

a two-step solution methodology. In the first step, the

proposed model will be converted into an equivalent aux-

iliary crisp multiple objective linear model. Then, in the

second step, an efficient compromise solution will be

computed through interaction with the decision-maker. To

do so, we apply in this section appropriate strategies for

transforming the fuzzy total cost and lost customer requests

objective functions as well as the soft constraint (46) into

the equivalent crisp formulations.

5.3.2.1 Treating the imprecise objective functions In the

scientific literature, several methods are developed to deal

with imprecise objective functions (Luhandjula 1989;

Sakawa and Yano 1989; Tanaka and Asai 1984; Tanaka

et al. 1984; Lai and Hwang 1992). As stated by Hsu and

Wang (2001), the first four approaches (Luhandjula 1989;
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Sakawa and Yano 1989; Tanaka and Asai 1984; Tanaka

et al. 1984) use restrictive assumptions and it is generally

difficult to enforce them in practice, we then use the well-

known Lai and Hwang’s approach (Lai and Hwang 1992)

which is also adopted by several researchers (Hsu and

Wang 2001; Liang 2006).

Recalling customer trip demands fCr t,s1,s2 have trian-

gular possibility distributions, the lost customer requests

objective function gLCr should also have a triangular

possibility distribution. In geometric terms, gLCr can be

clearly defined by the three main points (LCrp,0),

(LCrm,1) and (LCro,0). Thus, in order to maximize the

fuzzy objective, it is necessary to push these three corner

points in the direction of the right-hand side.

As the vertical coordinates of the aforementioned points

are always fixed at either 1 or 0, we’re only looking at the

horizontal coordinates. Therefore, the problem is to mini-

mize LCrp, LCrm, and LCro simultaneously. According to

Lai and Hwang’s approach, in order to avoid the conflict

resulting from the simultaneous minimization of these

objectives, the process of maximizing the fuzzy objective

function gLCr comes back to minimizing LCrm, maxi-

mizing (LCrm—LCrp) and minimizing (LCro—LCrm).

In this way, the original fuzzy lost customer requests

gLCr can be transformed into a three crisp objective as

follows:

Minimize LCr1 ¼ LCrm

LCrm ¼
XT

t¼1

XS

s1¼1

XS

s2¼1=s2 6¼s1

Crmt;s1;s2 � S Crt;s1;s2
ð49Þ

Maximize LCr2 ¼ LCrm � LCrp

LCrm � LCrp ¼
XT

t¼1

XS

s1¼1

XS

s2¼1=s26¼s1

Crmt;s1;s2 � Cr
p
t;s1;s2


 �
� S Crt;s1;s2

ð50Þ
Minimize LCr3 ¼ LCro � LCrm

LCro � LCrm ¼
XT

t¼1

XS

s1¼1

XS

s2¼1=s26¼s

ðCrot;s1;s2 � Crmt;s1;s2Þ � S Crt;s1;s2

ð51Þ

Similarly, the original fuzzy total transportation cost can

be replaced by the following crisp objective functions:

Minimize TC1 ¼ TCm

TCm ¼
XT

t1¼1

XT

t2¼1

XS

s1¼1

XS

s2¼1=s26¼s1

XV

v¼1

�Dists1;s2

Tr costmv � ðMiss Rv;s1;s2;t1;t2 þ Miss Tv;s1;s2;t1;t2Þ

ð52Þ

Maximize TC2 ¼ TCm � TCp

TCm � TCp ¼
XT

t1¼1

XT

t2¼1

XS

s1¼1

XS

s2¼1=s26¼s1

XV

v¼1

Dists;s2

ðTr costmv � Tr costpvÞ Miss Rv;s1;s2;t1;t2 þMiss Tv;s1;s2;t1;t2
� �

ð53Þ

Maximize TC3 ¼ TCo � TCm

TCo � TCm ¼
XT

t1¼1

XT

t2¼1

XS

s1¼1

XS

s2¼1=s26¼s1

XV

v¼1

Dists1;s2

ðTr costov � Tr costmv ÞðMiss Rv;s1;s2;t1;t2 þMiss Tv;s1;s2;t1;t2Þ
ð54Þ

5.3.2.2 Treating the fuzzy constraint Recalling Eq. (46)

in the original fuzzy model is a flexible constraint in which

the fuzzy customer request fCr is compared to the crisp

value S_Cr. One of potential resolutions for this flexible

constraint is to provide crisp representative number for the

fuzzy one. Then an auxiliary crisp constraint will be

obtained.

In this paper, we adopt the well-known weighted aver-

age defuzzification method, originally introduced by (Lai

and Hwang 1992) and successfully used in several

researchers for its simplicity and efficiency (Wang and

Liang 2005; Liang 2006; Torabi and Hassini 2009). To do

so, the decision-maker must first determine the minimum

acceptable possibility degree of occurrence for the impre-

cise/fuzzy parameter, a. Then, the fuzzy constraint (46) can
be transformed into an auxiliary crisp one as follows:

S Crt;s1;s2 �w1Cr
p
t;s1;s2;a þ w2Cr

m
t;s1;s2;a

þ w3Cr
o
t;s1;s2;a 8 t; s1; s2

ð55Þ

where w1 ? w2 ? w3 = 1.
The weights w1, w2 and w3 are commonly defined sub-

jectively by the decision maker and represent respectively

the weight of the most pessimistic value Crp; the most

possible value Crm and the most optimistic value Cro.

As several relevant works (Lai and Hwang 1992; Liang

2006; Torabi and Hassini 2009), we adopt the concept of

most likely values which uses the same minimum accept-

able possibility degree and the same weights for all of the

flexible constraints by setting these parameters as follows:

w1 ? w3 = 1/6; w2 = 4/6 and a = 0.5.

The purpose of using the above weighted values is that

Cro is too optimistic and Crp is too pessimistic values of the

fuzzy customer request fCr . Of course, these boundary

values provided us boundary weights. On the other hand,

the most possible value Crm is usually the most important

one and thus should be assigned a higher weight (Lai and

Hwang 1992).
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5.3.3 Step 3: goal programming-based solution approach

In the previous step, the proposed MOPLP model was

converted to an equivalent crisp one. For solving the

resulting multi-objective linear programming model and

finding an efficient compromise solution, we use here the

Weighted Goal Programming approach, which is being

increasingly applied in the scientific literature.

Accordingly, we can reformulate our GP problem that

attempts to reduce the deviations between the realized

results and the desired goals as follows:

Minimize FGP ¼ Wþ
Lcr1

dþLcr1 þW�
Lcr2

d�Lcr2 þW�
Lcr3

d�Lcr3
Wþ

Tc1
dþTc1 þW�

Tc2
d�Tc2 þW�

Tc3
d�Tc3 þW�

Csd
�
Cs

ð56Þ

Subject to :

39�45; 47; 48; 55ð Þ

Lcr1 þ dþLcr1 ¼ Lcr�1 ð57Þ

Lcr2 þ d�Lcr2 ¼ Lcr�2 ð58Þ

Lcr3 þ d�Lcr3 ¼ Lcr�3 ð59Þ

Tc1 þ dþTc1 ¼ Tc�1 ð60Þ

Tc2 þ d�Tc2 ¼ Tc�2 ð61Þ

Tc3 þ d�Tc3 ¼ Tc�3 ð62Þ

Cs þ d�Cs ¼ Cs� ð63Þ

dþLcr1 ; d
�
Lcr2

; d�Lcr3 ; d
þ
Tc1

; d�Tc2 ; d
�
Tc3

; d�Cs 	 0 ð64Þ

where:

• dþk and d�k are respectively the positive and negative

deviations from the target value of kth goal.

• wþ
k and w�

k are respectivly the weight factors for

positive and negative deviations of kth goal fixed by the

decision-maker such that
P

k wk = 1.

• Lcr�1, Lcr
�
2, Lcr

�
3, Tc

�
1, Tc

�
2, Tc

�
3 and Cs� are the goals

calculated using the mathematical model with objective

functions (38, 49–54) and respectively and constraints

(39–45, 47, 48, 55).

6 Numerical example

In this section, we introduce numerical experiments to

validate our proposed dispatching and rebalancing

approach in the presence of imprecise travel demands. The

tests are carried out with a fleet of 20 autonomous vehicles.

The considered transportation network consists of a subset

of Rambouillet’s real road network, with 5 stations and 20

road links.

For all experiments, our approach was implemented

using the optimization software LINGO.

The computational procedure is structured in three

phases namely analyzing customer preferences, vehicle

ranking, and dispatching and rebalancing.

6.1 Phase I: analyzing customer preferences

6.1.1 Step 1: select the criteria used for fleet vehicle
ranking

The evaluation criteria to be considered in the model were

identified by the decision-making team, based on their

experiences and their strategies.

We suggest that the expert team choose the following

decision criteria: total cost (C1), vehicle speed (C2),

vehicle capacity (C3), comfort (C4), safety (C5) and

accessibility for persons with reduced mobility (C6).

6.1.2 Step 2: prioritization of vehicles evaluation criteria

This step allows each passenger to specify his/her trip

preferences and then coded these individual preferences as

fuzzy pairwise comparison matrices. Here, we consider ten

matrices coming from ten passengers (Tables 3, 4, 5, 6, 7,

8, 9, 10, 11, 12) by using the fuzzy scale provided in

Table 13.

6.1.3 Step 3: construct aggregated fuzzy decision matrix

In the third step of the first phase, the aggregate compar-

ison matrix is constructed (see Table 14) by using formulas

(30–32). Then, the consistency test is carried out to eval-

uate the quality of the aggregated fuzzy decision matrix.

This test demonstrates that the considered matrix is sup-

posed consistent since the consistency ratio is equal to

0.077 (i.e., less than 0.10). Consequently, we can include

this aggregated fuzzy decision matrix in the next steps.

6.1.4 Step 4: calculating importance weights of criteria

At this step of the decision procedure, the Fuzzy AHP

method is called to calculate the weights of the decision

criteria. By using formulas (9) and (10), we obtain:

SC1 ¼ 0:08; 0:31; 0:63ð Þ
SC2 ¼ 0:07; 0:26; 0:59ð Þ
SC3 ¼ 0:05; 0:18; 0:51ð Þ
SC4 ¼ 0:04; 0:13; 0:39ð Þ
SC5 ¼ 0:04; 0:10; 0:29ð Þ
SC6 ¼ 0:01; 0:02; 0:09ð Þ
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Then, by appling formulas (10) and (11), the minimum

degree of possibility of these values are:

V S1	 S2; S3; S4; S5; S6ð Þ ¼ min 1; 1; 1; 1; 1ð Þ ¼ 1

V S2	 S1; S3; S4; S5; S6ð Þ ¼ min 0:91; 1; 1; 1; 1ð Þ ¼ 0:91

V S3	 S1; S2; S4; S5; S6ð Þ ¼ min 0:76; 0:84; 1; 1; 1ð Þ ¼ 0:76

V S4	 S1; S2; S3; S5; S6ð Þ
¼ min 0:64; 0:71; 0:89; 1; 1ð Þ ¼ 0:64

V S5	 S1; S2; S3; S4; S6ð Þ
¼ min 0:5; 0:57; 0:75; 0:87; 1ð Þ ¼ 0:5

V S6	 S1; S2; S3; S4; S5ð Þ
¼ min 0:06; 0:09; 0:21; 0:33; 0:43ð Þ ¼ 0:06

Finally, by using formula (12), the weight vector of the

six decision criteria is obtained:

W ¼ 0:258; 0:236; 0:197; 0:165; 0:129; 0:16ð Þ:

6.2 Phase II: vehicle ranking

At this second phase of the decision procedure, the lin-

guistic terms and TFN were used by the decision-maker to

evaluate the vehicles under each of the decision criteria

separately. The Fuzzy comparison matrix established is

presented in Table 15. This latter was used to construct the

normalized fuzzy decision matrix (see Table 16) using the

formulae (16) and (17).

Using the importance weights of the decision criteria

calculated by Fuzzy AHP (i.e., vector W) and the nor-

malized fuzzy decision matrix, the weight normalized

fuzzy decision matrix is established with formula (19). The

resulting weighted evaluation matrix is given in Table 17.

The results obtained during the third and fourth stages,

in particular, the distance of each vehicle from the fuzzy

positive ideal solution (FPIS) and the fuzzy negative ideal

solution (FNIS), respectively, are shown in Table 18.

Based in Eq. (27), the closeness coefficient of each

vehicle is calculated. Finally, these calculations led to

overall outranking presented in Table 17.

6.3 Phase III: dispatching and rebalancing

6.3.1 Detailed results

We test the proposed dispatching and rebalancing strategy

with a planning horizon divided into 10 periods. The dis-

cretization of time into small segments allows modeling the

variation of customer requests over time. These customer

requests, in turn, could be influenced by several external

factors and will, therefore, be estimated using TFN, as

shown in Table 19.

Figure 4 shows the results provided by the third phase of

the decision procedure by reporting vehicle statues over

time.

6.3.2 Discussion

We can see on Fig. 4 that, as intended, an autonomous

vehicle can be on a rebalancing mission, be on a customer

transportation mission and be parked in a drop-off station.

For missions, pick-up and drop-off locations are also

indicated in Fig. 4.

This latter also illustrates the relationship between cus-

tomer request and the required fleet size. Indeed, we see

that as customer demand increases, the number of vehicles

involved increases until it reaches 100% during the last

period.

The proposed approach is not only about the fleet sizing

problem, but it also takes into account the composition of

the fleet. An investigation of the impacts of the variation of

customer requests on the fleet composition shows that for

low demand levels, the fleet includes only the best-ranked

vehicles with the lowest transport cost. However, increased

customer demands require the inclusion of lower-ranked

vehicles and/or vehicles with very high transportation

costs.

For instance, during the first two periods, customer

demand is satisfied with the best-ranked and least costly

vehicles, which are V1, V2, and V20.

The increase of the customer request in the third period

results in an increase in the fleet size by integrating V4.

Although V4 is ranked 5th, just after V3, depending on the

results of the previous phase, it was selected to be part of

the fleet during this period before V3. This is mainly due to

the fact that V3 has a high transport cost compared to V4.

Similarly, to satisfy the increased customer demand

during the fourth period, V5 has been integrated into the

fleet although the latter is ranked 8th after V10 and V19,

which are characterized by their very high transport costs.

We can observe that during the fifth period, V11 joins the

fleet despite being more expensive and ranked lower than

Table 3 Passenger 1 fuzzy comparison matrix

C1 C2 C3 C4 C5 C6

C1 1 VH H H H M

C2 1/VH 1 M M VH H

C3 1/H 1/M 1 H VH H

C4 1/H 1/M 1/H 1 H VH

C5 1/H 1/VH 1/VH 1/H 1 M

C6 1/M 1/H 1/H 1/VH 1/M 1
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V18. This can be explained by the fact that the increase of

the grouped customer requests involves more possibilities

for grouping requests, which need autonomous vehicles

with larger capacities, resulting in fewer trips and therefore

lower transport costs. Given that V11 is characterized by a

large capacity, it allows to better accommodate the grouped

customer requests reported during the fifth period.

Table 4 Passenger 2 fuzzy comparison matrix

C1 C2 C3 C4 C5 C6

C1 1 VH VH VH VH H

C2 1/VH 1 VH M H M

C3 1/VH 1/VH 1 M VH P

C4 1/VH 1/M 1/M 1 M VH

C5 1/VH 1/H 1/VH 1/M 1 VH

C6 1/H 1/M 1/P 1/VH 1/VH 1

Table 5 Passenger 3 fuzzy comparison matrix

C1 C2 C3 C4 C5 C6

C1 1 H VH H VH H

C2 1/H 1 VH M VH M

C3 1/VH 1/VH 1 VH VH VH

C4 1/H 1/M 1/VH 1 M P

C5 1/VH 1/VH 1/VH 1/M 1 VH

C6 1/H 1/M 1/VH 1/P 1/VH 1

Table 6 Passenger 4 fuzzy comparison matrix

C1 C2 C3 C4 C5 C6

C1 1 VH VH H P P

C2 1/VH 1 H M P P

C3 1/VH 1/H 1 M P P

C4 1/H 1/M 1/M 1 M M

C5 1/P 1/P 1/P 1/M 1 M

C6 1/P 1/P 1/P 1/M 1/M 1

Table 7 Passenger 5 fuzzy comparison matrix

C1 C2 C3 C4 C5 C6

C1 1 P M P P M

C2 1/P 1 VH M M VH

C3 1/M 1/VH 1 P P P

C4 1/P 1/M 1/P 1 M VH

C5 1/P 1/M 1/P 1/M 1 VH

C6 1/M 1/VH 1/P 1/VH 1/VH 1

Table 8 Passenger 6 fuzzy comparison matrix

C1 C2 C3 C4 C5 C6

C1 1 H H VH M M

C2 1/H 1 H VH M VH

C3 1/H 1/H 1 M P M

C4 1/VH 1/VH 1/M 1 P H

C5 1/M 1/M 1/P 1/P 1 VH

C6 1/M 1/VH 1/M 1/H 1/VH 1

Table 9 Passenger 7 fuzzy comparison matrix

C1 C2 C3 C4 C5 C6

C1 1 H M M M P

C2 1/H 1 M P P P

C3 1/M 1/M 1 H H M

C4 1/M 1/P 1/H 1 H M

C5 1/M 1/P 1/H 1/H 1 M

C6 1/P 1/P 1/M 1/M 1/M 1

Table 10 Passenger 8 fuzzy comparison matrix

C1 C2 C3 C4 C5 C6

C1 1 VH M VH VH H

C2 1/VH 1 P H M VH

C3 1/M 1/P 1 VH H VH

C4 1/VH 1/H 1/VH 1 P H

C5 1/VH 1/M 1/H 1/P 1 H

C6 1/H 1/VH 1/VH 1/H 1/H 1

Table 11 Passenger 9 fuzzy comparison matrix

C1 C2 C3 C4 C5 C6

C1 1 M VH H M H

C2 1/M 1 VH H M VH

C3 1/VH 1/VH 1 M P M

C4 1/H 1/H 1/M 1 P H

C5 1/M 1/M 1/P 1/P 1 VH

C6 1/H 1/VH 1/M 1/H 1/VH 1
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We can notice also that station S5 is more on-demand

than the other destinations during the fifth period. Conse-

quently, at the end of this period, the vehicles used for

these trips, which are the best-ranked ones with the lowest

transport cost, are inevitably accumulate in S5. However, in

the next periods, trips departing from S5 are not requested.

This justifies the recourse to rebalancing missions from

station S5 to the requested stations.

The rebalancing decisions taken during T6 and T7 are

guided by the minimization of the transportation costs and

the improvement of customer satisfaction by promoting the

use of the best-ranked vehicles with the lowest transport

costs. On the contrary, these decisions were introduced

during the 8th period to meet customer demands during the

9th period. Indeed, with the increase of the customer

request during this period, all the vehicles were sent on

transportation mission, even the lowest ranked and the

most expensive ones.

Nevertheless, during the last period, the mobilization of

all vehicles is still insufficient to meet customer demand,

which exceeds the capacity of the fleet.

From these results, we can conclude that the dispatching

and rebalancing decisions are very sensitive to the objec-

tives of the minimization of transportation costs and the

improvement of customer satisfaction while meeting cus-

tomer requests.

7 Sensitivity analysis

Sensitivity analysis is a key issue in multiple criteria

approaches, where all changes in the original data as well

as in the preferences must be taken into account.

This section presents the results of sensitivity analysis

based on the passengers’ preference variation.

Table 20 illustrates the impact of these variations on the

ranking of vehicles. In the first six tests, the passengers’

preferences are assumed to be homogeneous. For example,

in the first experiment, C1 is assumed to be the most

important criterion for all passengers. The vehicles with the

lowest cost are the highest ranked, namely V12, V10, and

V13, while the V14 and V16 come in at the bottom of the

ranking due to their significantly higher transportation

costs. Similarly, for the second experiment, we assume that

C2 is the most important criterion for all passengers.

Therefore, the fastest vehicles in the fleet which are V3 and

V4 come at the top of the list, while the slowest ones (i.e.,

V13 and V16) come at the bottom of the ranking. For test 7,

criteria C2 and C3 are the most preferred criteria for the

majority of passengers. Consequently, the fastest vehicles

with a high capacity come at the top of the list. For test 8,

the individual preferences of the passengers are oriented

toward the C2 and C4 criteria. Thus, we find that vehicles

with a good speed/comfort compromise appear at the top of

the ranking. In experience 9, three criteria are referred by

the passengers, which are speed, capacity, and comfort.

Thus, the vehicles of the fleet presenting a good compro-

mise about these three criteria are ranked at the top of the

list. For test 10, the preferences of the majority of the

passengers are oriented toward the speed criterion, while

the rest prefer vehicles adapted to people with reduced

Table 12 Passenger 10 fuzzy comparison matrix

C1 C2 C3 C4 C5 C6

C1 1 P P P P VP

C2 1/P 1 VH M M VH

C3 1/P 1/VH 1 P P M

C4 1/P 1/M 1/P 1 M VH

C5 1/P 1/M 1/P 1/M 1 VH

C6 1/VP 1/VH 1/M 1/VH 1/VH 1

Table 13 Linguistics variables

and fuzzy values
Very High(VH) (8, 9, 10)

High (H) (6, 7, 8)

Medium (M) (4, 5, 6)

Poor (P) (2, 3, 4)

Very poor (VP) (0, 1, 2)

Table 14 Aggregate comparison matrix

C1 C2 C3 C4 C5 C6

C1 (1, 1, 1) (2,00, 6.32, 10) (2, 6.43, 10) (2, 6.16, 10) (2, 5.29, 10) (0, 4.4, 8)

C2 (0.1, 0.16, 0.50) (1, 1, 1) (2, 6.82, 10) (2, 5.39, 10) (2, 5.25, 10) (2, 6.26, 10)

C3 (0.1, 0.15, 0.50) (0.10, 0.15, 0.50) (1, 1, 1) (2, 5.43, 10) (2, 4.94, 10) (2, 4.99, 10)

C4 (0.1, 0.16, 0.50) (0.10, 0.18, 0.50) (0.1, 0.18, 0.50) (1, 1, 1) (2, 4.59, 8) (2, 6.65, 10)

C5 (0.1, 0.19, 0.50) (0,10, 0.19, 0.50) (0.1, 0.2, 0.5) (0.13, 0.22, 0.5) (1, 1, 1) (4, 7.36, 10)

C6 (0, 0.21, 1) (0,10, 0.16, 0.50) (0.1, 0.2, 0.5) (0.1, 0.15, 0.5) (0.1, 0.14, 0.25) (1, 1, 1)
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mobility. Therefore, the vehicles with a good compromise

between the C2 and C6 criteria and especially the fastest

ones are placed at the top of the ranking as displayed in

Table 20. Three criteria are also chosen by passengers in

experience 13 which are speed, capacity, and safety. The

fastest vehicles are the most popular, followed by high-

capacity vehicles and then the safest vehicles. The analysis

of the individual preferences revealed four criteria pre-

ferred by the passengers in experiment 14: C6 is the most

requested criterion followed by C2, then C5, and finally

C1. This analysis influenced the ranking of the vehicles.

We find the vehicles with a good compromise concerning

these criteria positioned at the top of the ranking, with

special consideration of the vehicles adapted for people

with reduced mobility. The passengers’ preferences are

very heterogeneous in the last experiment, so the weights

of the different criteria are very close. Therefore the

ranking reveals the vehicles with a good compromise of all

decision criteria.

The vehicle rankings presented in Table 20 are in

accordance with the vehicle occupancy rates presented in

Fig. 5. For instance, in the first test where the passengers’

preferences are oriented toward the cost criterion, the least

costly vehicles are the most occupied. In the same way, for

the five following tests where the preferences respectively

Table 15 Fuzzy comparison matrix (Vehicle-Criteria)

Vi C1 C2 C3 C4 C5 C6

V1 (15, 20, 25) (55, 60, 65) 10 VH VH VH

V2 (18, 22, 26) (58, 60, 62) 8 VH VH H

V3 (20, 25, 30) (60, 65, 70) 2 VH VH VH

V4 (17, 19, 21) (55, 65, 75) 1 VH H H

V5 (2, 3, 4) (25, 30, 35) 5 M M VP

V6 (2, 4, 6) (27, 29, 31) 4 M VP P

V7 (8, 10, 12) (25, 30, 35) 5 M M M

V8 (7, 9, 11) (27, 30, 33) 4 M M M

V9 (12, 13, 14) (30, 32, 34) 4 VH P VH

V10 (1, 3, 5) (10, 15, 20) 12 VP M VP

V11 (2, 4, 6) (12, 15, 18) 10 P M VP

V12 (1, 2, 3) (10, 15, 20) 1 VP P VP

V13 (1, 4, 7) (12, 14, 16) 2 P VP P

V14 (22, 25, 28) (25, 30, 35) 5 M H M

V15 (15, 25, 30) (15, 25, 35) 6 H M M

V16 (22, 25, 28) (10, 12, 14) 2 P P VP

V17 (2, 5, 8) (22, 24, 26) 2 M VH H

V18 (12, 15, 18) (10, 20, 30) 7 VH M P

V19 (20, 22, 24) (25, 35, 45) 8 M H VH

V20 (7, 10, 13) (50, 55, 60) 10 VH H M

Table 16 Normalized fuzzy decision matrix

Vi C1 C2 C3 C4 C5 C6

V1 (0.25, 0.33, 0.5) (0.92, 0.92, 0.92) (0.83, 0.83, 0.83) (0.8, 0.9, 1) (0.8, 0.9, 1) (0.8, 0.9, 1)

V2 (0.16, 0.25, 0.5) (0.92, 0.92, 0.92) (0.66, 0.66, 0.66) (0.8, 0.9, 1) (0.8, 0.9, 1) (0.6, 0.7, 0.8)

V3 (0.08, 0.1, 0.13) (1, 1, 1) (0.16, 0.16, 0.16) (0.8, 0.9, 1) (0.8, 0.9, 1) (0.8, 0.9, 1)

V4 (0.09, 0.11, 0.14) (1, 1, 1) (0.08, 0.08, 0.08) (0.8, 0.9, 1) (0.6, 0.7, 0.8) (0.6, 0.7, 0.8)

V5 (0.071, 0.077, 0.08) (0.46, 0.46, 0.46) (0.41, 0.41, 0.41) (0.4, 0.5, 0.6) (0.4, 0.5, 0.6) (0, 0.1, 0.2)

V6 (0.2, 0.33, 1) (0.45, 0.45, 0.45) (0.33, 0.33, 0.33) (0.4, 0.5, 0.6) (0, 0.1, 0.2) (0.2, 0.3, 0.4)

V7 (0.16, 0.25, 0.5) (0.46, 0.46, 0.46) (0.41, 0.41, 0.41) (0.4, 0.5, 0.6) (0.4, 0.5, 0.6) (0.4, 0.5, 0.6)

V8 (0.33, 0.5, 1) (0.46, 0.46, 0.46) (0.33, 0.33, 0.33) (0.4, 0.5, 0.6) (0.4, 0.5, 0.6) (0.4, 0.5, 0.6)

V9 (0.14, 0.25, 1) (0.49, 0.49, 0.49) (0.33, 0.33, 0.33) (0.8, 0.9, 1) (0.2, 0.3, 0.4) (0.8, 0.9, 1)

V10 (0.03, 0.04, 0.05) (0.23, 0.23, 0.23) (1, 1, 1) (0.0.1, 0.2) (0.4, 0.5, 0.6) (0, 0.1, 0.2)

V11 (0.03, 0.04, 0.07) (0.23, 0.23, 0.23) (0.83, 0.83, 0.83) (0.2, 0.3, 0.4) (0.4, 0.5, 0.6) (0, 0.1, 0.2)

V12 (0.03, 0.04, 0.05) (0.23, 0.23, 0.23) (0.08, 0.08, 0.08) (0.0.1, 0.2) (0.2, 0.3, 0.4) (0, 0.1, 0.2)

V13 (0.12, 0.2, 0.5) (0.22, 0.22, 0.22) (0.16, 0.16, 0.16) (0.2, 0.3, 0.4) (0, 0.1, 0.2) (0.2, 0.3, 0.4)

V14 (0.056, 0.067, 0.08) (0.46, 0.46, 0.46) (0.41, 0.41, 0.41) (0.4, 0.5, 0.6) (0.6, 0.7, 0.8) (0.4, 0.5, 0.6)

V15 (0.042, 0.045, 0.05) (0.38, 0.38, 0.38) (0.5, 0.5, 0.5) (0.6, 0.7, 0.8) (0.4, 0.5, 0.6) (0.4, 0.5, 0.6)

V16 (0.07, 0.10, 0.14) (0.18, 0.18, 0.18) (0.16, 0.16, 0.16) (0.2, 0.3, 0.4) (0.2, 0.3, 0.4) (0, 0.1, 0.2)

V17 (0.25, 0.33, 0.5) (0.37, 0.37, 0.37) (0.16, 0.16, 0.16) (0.4, 0.5, 0.6) (0.8, 0.9, 1) (0.6, 0.7, 0.8)

V18 (0.16, 0.25, 0.5) (0.31, 0.31, 0.31) (0.58, 0.58, 0.58) (0.8, 0.9, 1) (0.4, 0.5, 0.6) (0.2, 0.3, 0.4)

V19 (0.08, 0.1, 0.13) (0.54, 0.54, 0.54) (0.66, 0.66, 0.66) (0.4, 0.5, 0.6) (0.6, 0.7, 0.8) (0.8, 0.9, 1)

V20 (0.09, 0.11, 0.14) (0.85, 0.85, 0.85) (0.83, 0.83, 0.83) (0.8, 0.9, 1) (0.6, 0.7, 0.8) (0.4, 0.5, 0.6)
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centered on the criterion C2, C3, C4, C5, and C6, we can

notice that the vehicles placed at the top of the ranking (in

Table 20) are always the most occupied ones. For tests

7–13, the analysis of individual preferences has focused on

two to three decision criteria which are aligned with the

occupancy rates for these different tests. Thus, we can

notice from the curves presented in Fig. 5 that the vehicles

with a good compromise of the selected criteria have the

highest occupancy rates. Despite the heterogeneity high-

lighted in the passengers’ preferences in the two last

experiments, the occupancy rate of the vehicles remains

coherent with the ranking presented in Table 20. These

findings demonstrate that the occupancy rate differs

according to individual passenger preferences, as well as

between vehicles.

Figure 6 also illustrates that there are significant varia-

tions from vehicle to vehicle in the average occupancy rate.

We find at the first place V1 which showed an average

occupancy of around 76%, followed by V2 and V20 where

the average occupancy rate is about 71%. This is not

unexpected because these vehicles present excellent per-

formance for the most popular criteria, namely C2, C4, and

C6. This differs from V6, V13, and V12 which have an

average occupancy rate at around 17%, 15%, and 14%

respectively. This low occupancy rate is due to poor per-

formance, especially for the most popular criteria. We can

Table 17 Weighted normalized fuzzy decision matrix

Vi C1 C2 C3 C4 C5 C6

V1 (0.003, 0.013, 0.017) (0.217, 0.217, 0.217) (0.16, 0.16, 0.16) (0.13, 0.15, 0.165) (0.103, 0.116, 0.129) (0.013, 0.014, 0.015)

V2 (0.010, 0.012, 0.014) (0.217, 0.217, 0.217) (0.13, 0.13, 0.13) (0.13, 0.15, 0.165) (0.103, 0.116, 0.129) ((0.010, 0.011, 0.012)

V3 (0.009, 0.01, 0.013) (0.236, 0.236, 0.236) (0.03, 0.03, 0.03) (0.13, 0.15, 0.165) (0.103, 0.116, 0.129) (0.013, 0.014, 0.015)

V4 (0.012, 0.014, 0.015) (0.236, 0.236, 0.236) (0.02, 0.02, 0.02) (0.13, 0.15, 0.165) (0.77, 0.09, 0.103) (0.010, 0.011, 0.012)

V5 (0.065, 0.086, 0.129) (0.109, 0.109, 0.19) (0.08, 0.08, 0.08) (0.07, 0.08, 0.099) (0.051, 0.064, 0.077) (0, 0.002, 0.003)

V6 (0.043, 0.065, 0.129) (0.105, 0.105, 0.105) (0.07, 0.07, 0.07) (0.07, 0.08, 0.099) (0, 0.013, 0.026) (0.003, 0.005, 0.006)

V7 (0.022, 0.026, 0.032) (0.109, 0.109, 0.19) (0.08, 0.08, 0.08) (0.07, 0.08, 0.099) (0.051, 0.064, 0.077) (0.006, 0.008, 0.009)

V8 (0.023, 0.029, 0.037) (0.109, 0.109, 0.19) (0.07, 0.07, 0.07) (0.07, 0.08, 0.099) (0.051, 0.064, 0.077) (0.006, 0.008, 0.009)

V9 (0.018, 0.02, 0.022) (0.116, 0.116, 0.116) (0.07, 0.07, 0.07) (0.13, 0.15, 0.165) (0.026, 0.039, 0.051) (0.013, 0.014, 0.015)

V10 (0.052, 0.086, 0.258) (0.054, 0.054, 0.054) (0.02, 0.02, 0.02) (0, 0.02, 0.033) (0.051, 0.064, 0.077) (0, 0.002, 0.003)

V11 (0.043, 0.065, 0.129) (0.054, 0.054, 0.054) (0.16, 0.16, 0.16) (0.03, 0.05, 0.066) (0.051, 0.064, 0.077) (0, 0.002, 0.003)

V12 (0.086, 0.129, 0.258) (0.054, 0.054, 0.054) (0.02, 0.02, 0.02) (0, 0.02, 0.033) (0.026, 0.039, 0.051) (0, 0.002, 0.003)

V13 (0.037, 0.065, 0.258) (0.051, 0.051, 0.051) (0.03, 0.03, 0.03) (0.03, 0.05, 0.066) (0, 0.013, 0.026) (0.003, 0.005, 0.006)

V14 (0.009, 0.01, 0.012) (0.109, 0.109, 0.19) (0.08, 0.08, 0.08) (0.07, 0.08, 0.099) (0.77, 0.09, 0.103) (0.006, 0.008, 0.009)

V15 (0.009, 0.01, 0.017) (0.091, 0.091, 0.091) (0.1, 0.1, 0.1) (0.1, 0.12, 0.132) (0.051, 0.064, 0.077) (0.006, 0.008, 0.009)

V16 (0.009, 0.01, 0.012) (0.043, 0.043, 0.043) (0.03, 0.03, 0.03) (0.03, 0.05, 0.066) (0.026, 0.039, 0.051) (0, 0.002, 0.003)

V17 (0.032, 0.052, 0.129) (0.087, 0.087, 0.087) (0.03, 0.03, 0.03) (0.07, 0.08, 0.099) (0.103, 0.116, 0.129) (0.010, 0.011, 0.012)

V18 (0.014, 0.017, 0.022) (0.072, 0.072, 0.072) (0.11, 0.11, 0.11) (0.13, 0.15, 0.165) (0.051, 0.064, 0.077) (0.003, 0.005, 0.006)

V19 (0.011, 0.012, 0.013) (0.127, 0.127, 0.127) (0.13, 0.13, 0.13) (0.07, 0.08, 0.099) (0.77, 0.09, 0.103) (0.013, 0.014, 0.015)

V20 (0.020, 0.026, 0.037) (0.199, 0.199, 0.199) (0.16, 0.16, 0.16) (0.13, 0.15, 0.165) (0.77, 0.09, 0.103) (0.006, 0.008, 0.009)

Table 18 Computation of D?, D-, CC and outranking of vehicles

according to Fuzzy TOPSIS

Vi D? D- CC Rank

V1 5329 0674 0112 1

V2 5364 0637 0106 3

V3 5443 0559 0093 4

V4 5485 0517 0086 5

V5 5568 0439 0073 8

V6 5651 0363 0060 16

V7 5628 0374 0062 15

V8 5641 0361 0060 17

V9 5597 0405 0067 12

V10 5539 0500 0083 6

V11 5588 0424 0071 10

V12 5718 0308 0051 19

V13 5735 0311 0052 18

V14 5619 0383 0064 14

V15 5611 0391 0065 13

V16 5824 0180 0030 20

V17 5601 0413 0069 11

V18 5578 0424 0071 9

V19 5543 0458 0076 7

V20 5363 0640 0107 2
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also notice that despite low transport costs, the average

occupancy rate of these vehicles remains very low. This is

justified by the fact that the cost is not a popular criterion

for the passengers. The lowest average occupancy rate was

observed for the V16, which has the worst performance in

the fleet. These findings demonstrate that the average

occupancy rate differs between vehicles, and it is coherent

with the passenger preferences as well as the ranking of the

vehicles.

8 Conclusion and future research work

The advance in transportation paradigms in the last decade

has paved the way for the emergence of a novel transfor-

mational technology known as RAMoD systems. Such

systems require an efficient mechanism to optimal schedule

and rebalance activities of the fleet vehicles, which are

impacted by various uncertainties. However, the scientific

literature still reveals a lack of work to address these sig-

nificant uncertainties. In addition, customer satisfaction is

usually measured using traditional quantitative criteria

such as travel time and waiting time. Nevertheless, quan-

titative criteria are not enough to reflect customer prefer-

ences. Therefore, an efficient combined quantitative and

qualitative analysis becomes an important requirement for

customer satisfaction.

This work proposes a new three-phase fuzzy approach to

address the dispatching and rebalancing problem of

RAMoD systems, which clubs a multi-criteria decision-

making framework with a fuzzy multi-criteria objective

program. At first, customers’ preferences are captured and

the fuzzy AHP method is used to analyze passenger’s

attitudes toward autonomous vehicles using qualitative and

quantitative criteria. Thereafter, the fuzzy TOPSIS method

is employed to evaluate the fleet vehicles. Next, we

designed a new multi-objective possibilistic linear program

that allows computing efficient dispatching and rebalanc-

ing decisions under dynamic environment assumptions.

Simulation results adopting the subset of Rambouillet’s

real road network, show the effectiveness of the proposed

approach in terms of simplicity of implementation and

ability to deal with uncertainty. These experiments show

that the proposed strategy can produce efficient dispatching

and rebalancing plans based on the passenger’s preferences

along with providing sufficient flexibility to deal with

uncertain travel demand. They also show that the dis-

patching and rebalancing decisions are very sensitive to the

passenger preferences.

This work leaves opens for considerable extensions for

future research. First, the proposed approach can be

Table 19 Fuzzy Demand for each time period

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

S1 S2 (0, 1, 2) (3, 5, 7) 0 (0, 1, 2) 0 0 (10, 12, 14) (2, 5, 8) (4, 9, 17) (10, 15, 20)

S3 0 (1, 8, 9) 0 0 0 0 (4, 9, 17) (0, 1, 2) (8, 10, 12) (11, 12, 13)

S4 0 0 0 (4, 9, 17) 0 0 (7, 8, 9) (2, 3, 10) (4, 8, 12) (12, 14, 16)

S5 0 0 0 0 (0, 1, 2) 0 (0, 2, 4) (1, 2, 3) (10, 13, 16) (15, 16, 17)

S2 S1 (0, 1, 2) 0 0 0 (3, 11, 13) 0 (0, 1, 2) (6, 9, 18) (2, 4, 6) (4, 6, 8)

S3 0 (4, 9, 17) 0 0 0 0 (0, 1, 2) 0 (1, 4, 7) 0

S4 0 0 (7, 8, 9) (3, 11, 13) 0 (6, 7, 8) 0 0 (6, 9, 18) (0, 1, 2)

S5 0 0 0 0 (0, 1, 2) (3, 5, 7) (3, 4, 11) 0 (1, 8, 9) (1, 2, 3)

S3 S1 (0, 1, 2) 0 9 0 0 (3, 5, 7) 0 (0, 2, 4) (0, 1, 2) (10, 15, 20)

S2 0 0 (3, 11, 13) 0 0 (3, 5, 7) 0 (6, 9, 18) (1, 3, 5) (3, 5, 7)

S4 0 0 0 0 (2, 4, 6) (3, 4, 11) 0 (3, 4, 11) (0, 2, 4) (15, 17, 19)

S5 0 0 0 0 (7, 8, 9) (10, 12, 14) 0 (3, 4, 11) (1, 8, 9) (15, 18, 21)

S4 S1 0 0 (0, 1, 2) 0 0 0 (2, 5, 8) (6, 8, 10) (3, 5, 7) (2, 5, 8)

S2 0 0 0 0 0 0 0 (1, 4, 7) (1, 4, 7) (2, 4, 6)

S3 0 0 0 (4, 6, 8) 0 0 0 0 (3, 4, 11) (6, 8, 10)

S5 0 0 0 0 (18, 20, 22) (3, 4, 11) (5, 6, 7) 0 (2, 5, 8) 0

S5 S1 0 0 0 (1, 2, 3) 0 0 0 (3, 11, 13) (3, 4, 11) (3, 5, 7)

S2 0 0 0 0 0 0 0 (2, 3, 10) (1, 2, 3) (10, 12, 14)

S3 0 0 0 (3, 4, 11) 0 0 0 0 0 0

S4 0 0 0 0 0 0 0 0 0 0
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extended to take into account the routing problem with the

capacitated road network. One of the purposes of this field

is to introduce congestion-aware routing approaches (Rossi

et al. 2018; Salazar et al. 2019a). Second, on the

application side, we will focus on exploiting the high

efficiency of the proposed approach in a number of cities

with different urban infrastructures. Third, it may be

advisable to add features to the RAMoD system presented

Fig. 4 Vehicle scheduling as a function of time

Table 20 Results of sensibility analysis: ranking of vehicle

Test 1 V12[V10[V13[V5[V6, V11[V17[V8[V20[V7[V9[V18[V1[V4[V15[V2[V19[V3[V14, V16

Test 2 V3[V4[V2[V1[V20[V19[V9[V5[V7[V14[V8[V6[V15[V17[V18[V10[V12[V11[V13[V16

Test 3 V10[V1, V11, V20[V2, V19[V18[V15[V5, V7, V14[V6, V8, V9[V3, V13, V16, V17[V4, V12

Test 4 V1, V2, V3, V4, V9, V18, V20[V15[V5, V6, V7, V8, V14, V17, V19[V11, V13, V16[V10, V12

Test 5 V1, V2, V3, V17[V4, V14, V19, V20[V5, V7, V8, V10, V11, V15, V18[V9, V12, V16[V6, V13

Test 6 V1, V3, V9, V19[V2, V4, V17[V7, V8, V14, V15, V20[V6, V13, V18[V5, V10, V11, V12, V16

Test 7 V1[V20[V2[V10[V19[V11[V3[V4[V18[V15[V5[V7[V14[V9[V8[V6[V17[V13[V16[V12

Test 8 V3[V4[V2[V1[V20[V9[V18[V15[V19[V5[V7[V14[V8[V6[V17[V11[V10[V12[V13[V16

Test 9 V1[V20[V2[V3[V4[V18[V19[V9[V10[V15[V11[V5[V7[V14[V8[V6[V17[V13[V16[V12

Test10 V1[V2[V20[V3[V19[V9[V4[V17[V18[V15[V14[V10[V11[V8[V5[V6[V13[V16[V12

Test11 V3[V1[V4[V2[V20[V19[V9[V17[V7[V14[V8[V15[V6[V5[V18[V13[V10[V12[V11[V16

Test12 V1, V3, V9[V2, V4[V19[V17[V20[V15[V7, V8, V14[V18[V6[V13[V5[V11, V16[V10, V12

Test13 V1[V2[V20[V3[V4[V19[V10[V14[V5, V7[V15[V11[V8[V18[V9[V17[V6[V12[V16[V13

Test14 V3[V1[V2[V4, V19[V9[V17[V20[V14[V7[V8[V15[V18[V6[V5[V13[V11[V10[V16[V12

Test15 V1[V2[V3[V20[V19[V4[V17[V14[V10[V15[V18[V7[V11[V8[V9[V5[V6[V16[V12[V13
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here such as interactions with public transit and develop

efficient dispatching and rebalancing policies for such an

intermodal transportation system. Fourthly, we plan to

study the interaction between large RAMoD fleets and the

electric power network. Finally, we plan to integrate an

additional constraint regarding customers’ priorities. This

approach may assign a higher priority to passengers with

reduced mobility or those who have been waiting longer or

give priority according to price incentives.
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Gündoğdu FK, Kahraman C (2020) A novel spherical fuzzy analytic

hierarchy process and its renewable energy application. Soft

Comput 24(6):4607–4621

Hörl S, Ruch C, Becker F, Frazzoli E, Axhausen KW (2019) Fleet

operational policies for automated mobility: a simulation

assessment for Zurich. Transp Res Part c Emerg Technol

102:20–31

Hörl S, Becker F, Axhausen KW (2021) Simulation of price,

customer behaviour and system impact for a cost-covering

automated taxi system in Zurich. Transp Res Part c Emerg

Technol 123:102974

Hsu HM, Wang WP (2001) Possibilistic programming in production

planning of assemble-to-order environments. Fuzzy Sets Syst

119(1):59–70

Hu H, Li J, Li X (2018) A credibilistic goal programming model for

inventory routing problem with hazardous materials. Soft

Comput 22(17):5803–5816

Hu YP, You XY, Wang L, Liu HC (2019) An integrated approach for

failure mode and effect analysis based on uncertain linguistic

GRA–TOPSIS method. Soft Comput 23(18):8801–8814

Iglesias R, Rossi F, Zhang R (2019) Pavone M (2019) A BCMP

network approach to modeling and controlling autonomous

mobility-on-demand systems. Int J Robot Res 38(2–3):357–374

Iglesias R, Rossi F, Wang K, Hallac D, Leskovec J, Pavone M (2018)

Data-driven model predictive control of autonomous mobility-

on-demand systems. In: 2018 IEEE international conference on

robotics and automation (ICRA) 2018 May 21 (pp. 1–7). IEEE

Jabbarzadeh A (2018) Application of the AHP and TOPSIS in project

management. J Project Manag 3(2):125–130

Jackson JR (1957) Networks of waiting lines. Oper Res 5(4):518–521

Jain P, Tiwari AK, Som T (2020) A fitting model based intuitionistic

fuzzy rough feature selection. Eng Appl Artif Intell 89:103421

Javanshour F, Dia H, Duncan G (2019) Exploring the performance of

autonomous mobility on-demand systems under demand uncer-

tainty. Transp Transp Sci 15(2):698–721

Jones D, Tamiz M (2010) Practical goal programming, vol 141.

Springer, New York

Kane L, Sidibe H, Kane S, Bado H, Konate M, Diawara D, Diabate L

(2021) A simplified new approach for solving fully fuzzy

transportation problems with involving triangular fuzzy num-

bers. J Fuzzy Extens Appl 2(1):89–105

Karasan A, Ilbahar E, Kahraman C (2019) A novel pythagorean fuzzy

AHP and its application to landfill site selection problem. Soft

Comput 23(21):10953–10968

Kaska M, Tolga A C (2020) Blockchain software selection for a

maritime organization with MCDM method. In: International

R. Khemiri et al.

123

https://doi.org/10.13140/RG.2.2.30633.34400


conference on intelligent and fuzzy systems (pp. 543–549).

Springer, Cham
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