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Environmental Context

Understanding mercury transformations in the aquatic environment is of utmost importance for 

the improvement of mercury biogeochemical modelling and sound environmental risk 

assessment. In such a context we discuss critically the advancement in the knowledge on the 

role of the phytoplankton (algae and cyanobacteria) in mercury cycling and transformations in 

the aquatic environment. Important research advances revealed that different microalgal species 

and cyanobacteria contribute to biotic reduction of inorganic mercury to elemental mercury, as 

well as methylmercury demethylation and transformation of inorganic mercury into 

metacinnabar, as well as produce different biomolecules which can contribute to abiotic 

mercury reduction. 
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15 Environmental Context

16 Understanding mercury transformations in the aquatic environment is of utmost importance for 

17 the improvement of mercury biogeochemical modelling and sound environmental risk assessment. 

18 In such a context we discuss critically the advancement in the knowledge on the role of the 

19 phytoplankton (algae and cyanobacteria) in mercury cycling and transformations in the aquatic 

20 environment. Important research advances revealed that different microalgal species and 

21 cyanobacteria contribute to biotic reduction of inorganic mercury to elemental mercury, as well 

22 as methylemercury demethylation and transformation of inorganic mercury into metacinnabar, as 

23 well as  produce different biomolecules which can contribute to abiotic mercury reduction. 

24

25
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27 Abstract 

28 Phytoplankton may directly influence biogeochemical cycling and transformations of mercury 

29 (Hg) through biotic transformations of the accumulated metal via methylation/demethylation and 

30 reduction/oxidation, and indirectly, through the excretion of low and high molecular mass ligands, 

31 likely triggering or influencing different abiotic transformation pathways as well as the 

32 transformations carried by bacteria. However, unlike the extensive work already done on the role 

33 of bacteria in Hg transformations, the current knowledge about the influence of phytoplankton 

34 (algae and cyanobacteria) on such processes is still limited. 

35 Critical evaluation of the existing advances in the research topic revealed that different microalgal 

36 species and cyanobacteria contribute to biotic reduction of inorganic mercury (iHg) into Hg0, 

37 monomethylmercury (MeHg) demethylation, and transformation of iHg into metacinnabar. The 

38 low and high molecular mass biomolecules released by phytoplankton can complex Hg species 

39 and contribute to abiotic mercury reduction. Despite these advances, the underlying mechanisms 

40 and their importance in the aquatic environment are to be explored and confirmed. The 

41 development of the novel molecular, stable isotope-based, and multi-omics approaches would 

42 provide the further impetus for the understanding of the key interactions between Hg species and 

43 phytoplanton. Such understanding will be of utmost importance for the improvement of the Hg 

44 biogeochemical modelling, mitigation strategies, and rational environmental risk assessment in 

45 changing aquatic environment.  

46

47

48 Keywords:  Mercury cycling, methylmercury, speciation, methylation, demethylation, reduction, 

49 oxidation, algae, cyanobacteria

50
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51 1. Introduction 

52 Mercury is naturally present in the environment, however, since the industrial revolution, 

53 anthropogenic activities have increased the global Hg emissions by a factor of 2-15 and disturbed 

54 Hg biogeochemical cycle (Ariya et al., 2015; Asaduzzaman et al., 2019; Branfireun et al., 2020; 

55 Driscoll et al., 2013), leading to a significant increase in the concentration of various Hg 

56 compounds in the aquatic environment. Once entered into the aquatic environment, Hg 

57 compounds interact with different biotic and abiotic components and undergo numerous 

58 transformations. The major transformation pathways involve the reduction/oxidation of inorganic 

59 mercury (iHg)/elemental mercury (Hg0) and the methylation/demethylation of 

60 iHg/monomethylmercury (MeHg,  CH3Hg). iHg and MeHg can accumulate in the aquatic 

61 organisms and MeHg biomagnifies along the food webs, presenting a hazard to higher consumers, 

62 including humans (Sheehan et al., 2014; Yang et al., 2020). The bioconcentration of Hg by 

63 phytoplankton represents one of the main entry steps of Hg into the food web (Dranguet et al., 

64 2014; Le Faucheur et al., 2014; Wu et al., 2019). The knowledge of various transformation 

65 processes determined by photochemical, chemical, and biologically mediated reactions (such as 

66 the ones performed by phytoplankton) is also crucial for understanding the global Hg0 fluxes 

67 (Jiskra et al., 2021). 

68 Exploring mercury transformations in aquatic environment is an active research area. Extensive 

69 studies have been already done on the role of bacteria in Hg transformations, as comprehensively 

70 reviewed (Hsu-Kim et al., 2013). Several recent reviews deal with specific transformation 

71 mechanisms and influencing factors, including advances in the knowledge regarding the 

72 methylation (Gallorini and Loizeau, 2021; Paranjape and Hall, 2017; Wang et al.), demethylation 

73 (Barkay and Gu, 2021), production/degradation of MeHg in the cryosphere (Ghimire et al., 2019), 

74 biotic and abiotic degradation of MeHg (Du et al., 2019) and photochemical transformation of Hg 

75 species (Luo et al., 2020). The role of phytoplankton (cyanobacteria and algae) in Hg cycling (i. 

76 e., alteration of Hg redox state, Hg scavenging, potential for methylation), as well as the 
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77 description of the cellular and molecular targets involved in the toxicity of Hg in phototrophs, 

78 were thoroughly discussed (Beauvais-Flück et al., 2018; Grégoire and Poulain, 2014).  Hg 

79 bioavailability to phytoplankton (Dranguet et al., 2014; Le Faucheur et al., 2014) and its effects 

80 to primary producers  were also reviewed. In this context, the importance of phytoplankton in 

81 aquatic mercury transformations was always questioned but never systematically addressed. 

82

83

84 Figure 1. Conceptual view of main processes involved in aquatic Hg transformations by  
85 phytoplankton. 
86

87 In the present review paper, we focussed on the controls exerted by phytoplankton on the key 

88 transformations of mercury in the aquatic environment (Fig. 1), in particular their role in the 

89 complexation, abiotic and biotic transformations of Hg species.

90 2. Mercury speciation in aquatic environment 

91 In natural waters, mercury is commonly found as iHg, MeHg and Hg0 with their relative 

92 abundances being controlled by chemical, physical and biological processes (Brian et al., 2020). 

93 At environmental conditions, it will be rare to find mercury compounds as a free ion (< 10-26 mol 

94 L-1 )(Le Faucheur et al., 2014) but rather forming complexes having different biological reactivity 
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95 (Ravichandran, 2004). In aquatic environments mercury species are found to be complexed by the 

96 dissolved organic matter (DOM) (Jiang et al., 2017; Klapstein and O’Driscoll, 2018; Lavoie et al., 

97 2019; Liem-Nguyen et al., 2017; Poulin et al., 2019; Ravichandran, 2004; Wang et al., 2015) 

98 without distinction of the origin or the molecular weight of the organic matter (Chen et al., 2013; 

99 Jiskra et al., 2017; Wang et al., 2022). Among all chemical functional groups present in DOM, 

100 mercury bounds to the hydrophobic and hydrophilic acids including the –SH, –NH2, –COOH, –

101 OH (Ravichandran, 2004). The speciation is dependent on  the medium composition and will 

102 affect the bioavailability and thus the interactions of mercury species with phytoplankton 

103 organisms (Le Faucheur et al., 2014; Luo et al., 2020). 

104  

105 3. Effect of biomolecules excreted by phytoplankton on Hg speciation

106 Phytoplankton produces various small molecules, including fatty acids, carboxylic acids, amino 

107 acids, and extracellular polymeric substances (EPS, such as polysaccharides, nucleic acid, and 

108 proteins) (Seymour et al., 2017). EPS represents up to 25% of natural organic matter in 

109 freshwaters, especially during algal blooms (Shou et al., 2018; Wilkinson et al., 1997). The EPS 

110 components comprise diverse anionic groups (e.g., –SH, –NH2, –COOH, –PO4
3-), thus providing 

111 metal-binding properties (Babiak and Krzemińska, 2021). Phytoplankton is also known to release 

112 small thiols with strong capacities to bind metals in their ambient environment (Liu et al., 2020), 

113 which are expected to affect the speciation and thus Hg abiotic and biotic transformations. The 

114 nature and concentration of such small biomolecules vary with the algal species and 

115 environmental factors (Mangal et al., 2019a). For example, the diatom Phaeodactylum 

116 tricornutum has been reported to release cysteine-like exudates, whereas the coccolithophore 

117 Emiliana huxleyi excreted both glutathione- and cysteine-like compounds (Vasconcelos et al., 

118 2002). The effects of biomolecules released by algae on Hg speciation have been examined in the 

119 field, where dissolved organic carbon and algal exudates are the predominant ligands of Hg in the 

120 rivers and lakes of Long Island Sound (USA)(Lamborg et al., 2004). Six thiols (mercaptoacetic 
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121 acid, cysteine, homocysteine, N-acetyl-cysteine, mercaptoethane-sulfonate, and glutathione) were 

122 detected with total concentrations of 7-153 nM in boreal lake waters (Bouchet and Björn, 2014; 

123 Liem-Nguyen et al., 2015). Recent studies have shown that several green algae excrete some 

124 ligands, particularly thiol-containing ligands that form strong complexes with Hg species and thus 

125 modify Hg speciation and bioavailability. 

126 The interaction of Hg species with EPS is poorly documented although recognized to have a 

127 unique molecular character (Ly et al., 2017; Mangal et al., 2016). EPS were shown to play a 

128 significant role in phytoplankton protection against metal stress (Naveed et al., 2019), suggesting 

129 that the EPS complexes metals, including Hg. For example, EPS protected cyanobacteria from Hg 

130 uptake (Chen et al., 2014). Hg was shown to bind to protein-like material produced by 

131 Chloroccochus (molecular weight, MW > 3.5kDa) (Song et al., 2014), and EPS from activated 

132 sludge (MW > 3.5kDa) was shown to bind Hg presumably by electrostatic interactions (Zhang et 

133 al., 2013). Biomolecules released by several microalgae with apparent molecular mass > 1kDa, 

134 likely prevented the induction of Hg microbial biosensor, whereas the presence of smaller 

135 biomolecules (MW 0.3kDa-1kDa) allowed the induction of Hg controlled fluorescence (Mangal 

136 et al., 2019a). Nevertheless, further studies are necessary to explore the relative importance of the 

137 biomolecules released by the phytoplankton species, including thiols and EPS, in Hg speciation 

138 and their role in its transformations in aquatic environments.

139   

140 4. Extracellular transformation pathways of mercury triggered by phytoplankton

141 In oxic waters, Hg species can be subjected to a series of abiotic transformations, such as 

142 methylation/demethylation and reduction/oxidation, as influenced or not by incident light. The 

143 extent of these transformations depends on the environmental factors and biological activity of 

144 aquatic living microorganisms (Grégoire and Poulain, 2014; Hsu-Kim et al., 2013). 

145

146 4.1. Abiotic reduction 
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147 Photochemical reactions are responsible for the reduction of iHg to Hg0 and Hg0 oxidation to iHg 

148 (Vost et al., 2012). The extent of these reactions depends on the intensity of ultraviolet radiation 

149 (Black et al., 2012) and the ambient water composition (Lalonde et al., 2001; Whalin et al., 2007). 

150 Although the importance of each reaction is not resolved yet, it is recognized that their kinetics is 

151 strongly affected by Hg speciation, which in turn is modulated by the nature and concentrations 

152 of ligands present in surface waters (Tai et al., 2014; Zhang and Hsu-Kim, 2010). Biogenic DOM 

153 produced by the marine diatom Chaetoceros sp. was involved in the photoreduction of iHg  

154 (Lanzillotta et al., 2004). A recent review highlighted that the photooxidation of Hg0 is mainly 

155 mediated by reactive oxygen species (ROS) (Luo et al., 2020). The ROS generation can also occur 

156 by the absorption of Ultraviolet-B radiation by humic and fulvic-like DOM resulting in various 

157 photochemical transformations involving oxygen. On the other hand, the Hg redox cycle in oxic 

158 surface waters is mainly dominated by the photochemical Hg (II) reduction (Amyot et al., 1997). 

159 Indeed high production of dissolved gaseous mercury (DGM) was correlated to the high 

160 concentration of DOM, in particular thiols binding sites (Ariya et al., 2015).

161

162 4.2. Abiotic methylation/demethylation

163 Abiotic methylation can occur through transmethylation with organometallic species (methylated 

164 Pb, I, etc.) and methyl donors such as methylcobalamin, but these pathways are not considered 

165 predominant compared to biotic methylation (Celo et al., 2006; Weber, 1993). Physico-chemical 

166 parameters of the aquatic environment greatly impact the extent of abiotic methylation. For 

167 example, in Canadian Lakes, DOM having molecular sizes lower than 5 kDa and between 30 kDa 

168 and 300 kDa have been reported to mitigate abiotic methylation occurring through solar irradiation 

169 (Siciliano et al., 2005). 

170 Demethylation occurs by multiple and complex processes, which can be mediated by different 

171 biotic and abiotic mechanisms (Barkay and Gu, 2021). Two abiotical processes are commonly 

172 evocated: (i) photochemical demethylation, which is believed to be responsible for a significant 
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173 part of MeHg degradation in surface waters (Hammerschmidt and Fitzgerald, 2010; Zhang and 

174 Hsu-Kim, 2010); and (ii) chemical demethylation, most likely due to e.g. reaction with H2S or 

175 sulfide minerals (Jonsson et al., 2016; Kanzler et al., 2018) and selenoamino acids (Khan and 

176 Wang, 2010). The photodemethylation of MeHg and DMeHg is well-described and considered to 

177 be central in the MeHg degradation in surface waters (Barkay and Gu, 2021). The extent of MeHg 

178 photodemethylation was observed to depend on the type of solar radiation and the concentration 

179 of DOM and structure of MeHg binding sites, which  in turn could influence the generation of free 

180 radicals and ROS (e.g. ●OH or 1O2) (Hammerschmidt and Fitzgerald, 2006; Lehnherr and Louis, 

181 2009; Luo et al., 2020; Sellers et al., 1996).  However, there are still some controversies about the 

182 role of DOM in photodemethylation. For example, low DOM concentration promoted, whereas 

183 high DOM concentration inhibited MeHg photodemethylation due to the photons quenching by 

184 DOM (Klapstein and O’Driscoll, 2018). The photodemethylation of MeHg to iHg was shown 

185 increase in the presence of fulvic acids while this process was limited in the presence of humic 

186 acids (Luo et al., 2020). Labile Fe and photochemically produced ROS were shown to play a role 

187 in MeHg photo-decomposition(Hammerschmidt and Fitzgerald, 2010)  although demonstrated to 

188 be not compulsory as thiol and phenyl may be the major moities in DOM-mediated MeHg 

189 photodegradation (Zhang et al., 2018).

190  

191 4.3. Effect of biomolecules on the activity of other organisms 

192 Production of biomolecules by phytoplankton was also shown to affect the Hg transformations 

193 indirectly by affecting mercury methylation by bacteria. For example, organic matter derived from 

194 phytoplankton is considered “a fuel” for methylating organisms and shapes the community 

195 structures of periphytic biofilms (Xing et al., 2018). The symbiotic presence of Chlorella 

196 increased the methylation by Geobacter sulfurreducens PCA (Zhao et al., 2021). However, the 

197 presence of Chlorella vulgaris cells strongly inhibited iHg methylation by G. anodireducens SD-

198 1 and slightly enhanced iHg methylation by D. desulfuricans. Biomolecules released by Chlorella 
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199 had only limited effects on iHg methylation by G.sulfurreducens PCA but significantly increased 

200 the MeHg production by D. desulfuricans (Yin et al., 2022). A clear positive correlation between 

201 the productivity of methylating microorganisms in sediments and algal productivity was proven 

202 in several aqueous systems (Bravo et al., 2017; Ortega et al., 2018; Wu et al., 2022). However, 

203 further studies are needed since the quality and quantity of the produced biomolecules are species-

204 specific.

205

206 5.  Biotic transformation pathways mediated by phytoplankton 

207 5.1. Biouptake of mercury by phytoplankton species 

208 Biotic transformations of Hg are considered as intracellular processes (Hsu-Kim et al., 2013), 

209 therefore the uptake of iHg and MeHg species by phytoplankton is an important first step in the 

210 overall transformation processes. Nonetheless, the uptake pathways and their kinetics are still not 

211 well understood for phytoplankton species. Evidence are supporting passive diffusion of neutral 

212 charge complexes (Bienvenue et al., 1984; Kim et al., 2014; Mason et al., 1996), facilitated 

213 diffusion (Le Faucheur et al., 2011; Moreno et al., 2014; Wang et al., 2004) as well as possible 

214 active transport pathways (Miles et al., 2001; Moye et al., 2002; Pickhardt and Fisher, 2007). 

215 Passive transport by diatoms, chlorophyte, dinoflagellate, and coccolithophore to acquire MeHg 

216 is considered the most plausible mechanism, related to the surface-area-to-volume ratio of algal 

217 cells (Lee and Fisher, 2016), however, the uptake of MeHg by dinoflagellate Prorocentrum 

218 minimum was suggested to be an active process.

219 Thiols such as 2-mercaptoethanol, dithiothreitol, and glutathione reduced the uptake of MeHg by 

220 a cyanobacterium, Nostoc calcicole (Pant et al., 1995). MeHg uptake by a green alga Selenastrum 

221 capricornutum was decreased in the presence of cysteine, mercaptoacetic acid, 2-

222 mercaptopropionic acid, glutathione, N-acetyl-L-cysteine and N-acetyl-penicillamine (Skrobonja 

223 et al., 2019). 

224 The complexation between mercury species and DOM also affects the interactions between Hg 
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225 and aquatic microorganisms (Brian et al., 2020; Chiasson-Gould et al., 2014; Grégoire et al., 

226 2018). However, the influence of the EPS on the mercury species’ bioavailability is much less 

227 understood.  EPS produced by 5 algae (S. obliquus, C. vulgaris, C. reinhardtii, E. gracilis, and E. 

228 mutabilis) were shown to reduce the Hg gene lux induction used as a surrogate for the uptake for 

229 modified E. coli but in a way which depends on the species and molecular mass of the EPS: low 

230 molecular mass (LMM) fraction likely participate to bacterial Hg uptake, whereas the highest 

231 molecular mass (HMM) fractions seem to decrease it, for DOM components > 300Da (Mangal et 

232 al., 2019b). 

233

234 5.2. Cellular transformations and sequestration of Hg 

235 Phytoplankton was reported to trigger different mercury transformation processes, including 

236 reduction, demethylation, and sequestration of Hg as -HgS. 

237 5.2.1. Cellular reduction and oxidation of mercury species 

238 The reduction of iHg to gaseous Hg0 has been demonstrated in laboratory experiments with several 

239 phytoplankton species (Grégoire and Poulain, 2014, 2016; Kelly et al., 2006; Mason et al., 1995; 

240 Morelli et al., 2009; Oh et al., 2011; Poulain et al., 2004; Poulain et al., 2007). The volatilization 

241 rates varied between the algal species, Hg concentration and exposure duration (Devars et al., 

242 2000; Morelli et al., 2009). Early works demonstrated that the exposure of various phytoplankton 

243 species to very high iHg concentrations (Ben-Bassat and Mayer, 1975; Ben-Bassat et al., 1972; 

244 Kelly et al., 2007; Macka et al., 1978; Wilkinson et al., 1989) resulted to Hg0 production, 

245 observation often linked to the detoxification mechanisms. Diatom T. weissflogii was shown to 

246 produce DGM under light and dark conditions suggesting that biological processes rather than 

247 photochemical processes or photosynthetic metabolites mediate this process (Morelli et al., 2009). 

248 Production of DGM was observed for 3 other diatoms species, together with the formation of the 

249 phytochelatin PCs-Hg complexes and β-HgS (Wu and Wang, 2014), suggesting an important role 

250 of intracellular thiols. The reduction of iHg was, however, observed in cultures of Chlorella 
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251 vulgaris, but the organic matter released or obtained after cell degradation was shown to reduce 

252 more iHg than living algal cells themselves (Liang et al., 2022).  Nevertheless, the fundamental 

253 mechanisms involved in the biological reduction process remain poorly understood. 

254 Recent advances revealed the activation of a MerR-like transcription factor, Slr0701 when 

255 cyanobacterium Synechocystis sp. PCC6803 is exposed to iHg (Singh et al., 2019). The activation 

256 of this transcription factor promotes the expression of the mercuric reductase, MerA-like coded 

257 by the Slr1849 gene, which allows the reduction of iHg into the volatile form Hg0 (Boyd and 

258 Barkay, 2012; Singh et al., 2019). This process of Hg reduction could enhance the Hg tolerance 

259 of this cyanobacterium. The reduction of iHg to Hg0 followed by its volatilization is the process 

260 responsible for the evasion of Hg from both terrestrial and aquatic systems (Gonzalez-Raymat et 

261 al., 2017). Hg0 production by phytoplankton has been thus evidenced in the field (Grégoire and 

262 Poulain, 2014)  and the formation of DGM was correlated with phytoplankton dynamics and 

263 blooms (Poulain et al., 2004; Poulain et al., 2007). It was also shown that phototrophic bacteria 

264 use iHg as an electron sink to maintain redox homeostasis to produce  Hg0 (Grégoire and Poulain, 

265 2016). However, it is still unclear whether algae and cyanobacteria are directly involved in DGM 

266 production or if their release of biogenic organic ligands indirectly mediate it.

267

268 5.2.2. Methylation/demethylation of mercury species by phytoplankton 

269 Hg methylation/demethylation by phytoplankton was investigated in the laboratory. For instance, 

270 the potential MeHg demethylation was seen in the cyanobacterium Nostoc paludosum, (Franco et 

271 al., 2018), green algae Chlamydomonas reinhardtii (Bravo et al., 2014) and four different types 

272 of phytoplankton Chlorella vulgaris, Nostoc sp., Microcystis sp, Synechocystis sp. (Yin et al., 

273 2022), different species of algae (Li et al., 2022), however, no evidences of methylation were 

274 found. Indeed, a specific gene cluster (hgcAB) used as a proxy for the microorganism’s capability 

275 to methylate iHg (Gilmour et al., 2013), is not found in phytoplankton species. Similarly, no 

276 methylation was observed by pico-nanoplankton from eutrophic lake (Cossart et al., 2021).  
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277 Although there is no direct evidence that phytoplankton microorganisms can methylate Hg itself, 

278 several studies have highlighted the importance of algae in MeHg production (Lázaro et al., 2019). 

279 Several studies have reported a positive correlation between phototrophic productivity and an 

280 increase in MeHg (Lazaro et al., 2019; Lázaro et al., 2013; Tsui et al., 2010; Xing et al., 2018). 

281 Strong links have been uncovered between methylation rates in open oceans and the presence of 

282 nano- and pico-phytoplankton (Heimbürger et al., 2010). Hg methylation rates were measured at 

283 the maximum chlorophyll depth in oxic surface seawater was measured and influenced by pelagic 

284 microorganism abundance and activities (phyto- and bacterioplankton)(Monperrus et al., 2007). 

285 iHg methylation in the water column was shown to account for around 47% of the MeHg present 

286 in polar marine waters (Lehnherr et al., 2011). 

287 Phytoplankton was shown to negatively contribute to methylation rates by sequestering Hg, 

288 retarding its transformation by methylating organisms (Ding et al., 2019). Algal bloom in an 

289 estuary has been thus reported to decrease dissolved MeHg concentration and to increase 

290 particulate MeHg concentration due to algal uptake (Luengen and Flegal, 2009). However, once 

291 phytoplankton dies off, they ultimately sink alongside the accumulated Hg, bringing it to the 

292 anoxic zones enabling the activity of methylators (Coelho et al., 2005). The Hg methylation rates 

293 have been linked with the presence of thiols produced by phytoplankton species and the 

294 decomposition of algal-derived organic matter (Bouchet et al., 2018; Bravo et al., 2017; Zhao et 

295 al., 2021). 

296 Demethylation in oxic surface waters has been reported to be partially biologically mediated 

297 besides being induced by solar radiation (Whalin et al., 2007). Reduction and demethylation of 

298 Hg were also demonstrated in the diatom T. weissflogii (Devars et al., 2000; Morelli et al., 2009) 

299 and green alga C. reinhardii (Bravo et al., 2014) , diatom Isochrysis galbana (Kritee et al., 2017). 

300 However, the transformation yields and demethylation rate constants are still to be elucidated and 

301 quantified. If followed by iHg reduction, phototrophic demethylation is considered a pathway 

302 allowing phototrophs to detoxify Hg species by decreasing cellular Hg concentrations. Very 
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303 recently, the demethylation capacity of 15 algae species was investigated, and 6 out of 15 species 

304 (dinoflagellates, chrysophytes, and diatoms) tested were able to demethylate MeHg (Li et al., 

305 2022). The demethylation was also demonstrated in natural pico-nanoplankton communities from 

306 an eutrophic lake (Cossart et al., 2021). Overall, the current understanding of methylation and 

307 demethylation of Hg species by phytoplakton is rather limited. Yet, recent results have highlighted 

308 phytoplanton direct or indirect implications for both processes. 

309

310 5.2.3. Hg intracellular speciation and sequestration by phytoplankton

311 Phytoplankton species could control intracellular Hg speciation and thus affect the intracellular 

312 transformations by cytosolic ligands. It has been shown that the quantity and the quality of the 

313 intracellular metabolites, which could interact with Hg species, are altered by iHg exposure 

314 (Mangal et al., 2022). Glutathione (GSH), which is the most prevalent thiol in algae, was found 

315 to increase in algae exposed to iHg (Devars et al., 2000; Howe and Merchant, 1992; Morelli et al., 

316 2009). MeHg exposure was also seen to induce the synthesis of GSH in Thalassiosira weissflogii, 

317 but it was iHg that contributed to higher levels of other thiol compounds such as cysteine and PCs 

318 (Wu and Wang, 2012, 2013).  More recently, GSH was identified as the main low molecular 

319 weight binding ligand to iHg and MeHg in the cytosolic cyanobacterium Synechocystis sp. PCC 

320 6803 (Garcia-Calleja et al., 2021). Phytochelatins (PCs) enzymatically produced from glutathione 

321 are additional thiols used by algae to counteract Hg negative effects (Mehra et al., 1996). For 

322 example, the phytochelatins PC2-3 have been reported to be synthesized by T. weissfloggi when 

323 exposed to 5 and 150 nM Hg while MeHg seems to be a poor inducer (Ahner and Morel, 1995; 

324 Howe and Merchant, 1992; Knauer et al., 1998; Morelli et al., 2009). A comparison of 

325 Thalassiosira weissflogii with green alga Chlorella autotrophica revealed that PCs induction is 

326 highly dependent on the phytoplanktonic species with higher biological responses seen in T. 

327 weissflogii, and low PCs induction observed for C. autotrophica (Wu and Wang, 2014). The 

328 sequestration of iHg binding PCs was identified in the microalga Chlorella sorokiniana exposed 
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329 to high iHg concentrations (Gómez-Jacinto et al., 2015). However, the role of these thiols in 

330 cellular iHg and MeHg transformations still needs to be confirmed under lower environmentally 

331 realistic exposure Hg concentrations. 

332 Hg sequestration as -HgS has been demonstrated as a detoxification mechanism in a variety of 

333 cyanobacteria Limnothrix planctonica, Synechococcus leopoldiensis, and Phormidium limnetica 

334 (Kelly et al., 2006; Kelly et al., 2007). Green algae Chlorella autotrophica, flagellate Isochrysis 

335 galbana, and marine diatom Thalassiosira weissflogii) could transform iHg into cinnabar (β-HgS) 

336 (Wu and Wang, 2014). The sunlight was also shown to facilitate the transformation of Hg to less 

337 bioavailable species, such as β-HgS and Hg-phytochelatins (Liang et al., 2022). Overall, 

338 phytoplankton can sequester high quantities of Hg as a detoxification strategy without apparent 

339 harmful effects. The tolerance to Hg species toxicity has been related to the capacity of the 

340 phytoplankton to capture Hg in subcellular compartments as vacuoles which serve as a sink for 

341 mineralized form or LMW thiol compounds. Nevertheless, no information has been ever provided 

342 at environmentally relevant concentrations. 

343

344 The examples presented above demonstrated the important role of thiol-compounds in 

345 intracellular handling of iHg and MeHg and the existing research gaps in understanding the 

346 underlying mechanisms and interplay between iHg and MeHg transformation and thiol-pathways. 

347 The lack of tailored analytical methods for thiols identification and quantification has until now 

348 precluded experiments to investigate their influence on Hg accumulation. However, the recent 

349 developments allowing direct quantification of both LMW and HMW thiols and their Hg 

350 complexes (Garcia-Calleja et al., 2021; Pedrero et al., 2011; Pedrero Zayas et al., 2014), open new 

351 opportunities for exploring the role of intra- and extracellular ligands in Hg uptake and biotic 

352 transformation. On the other hand, the exposure of Chlamydomonas reinhardtii to low (50 nM ) 

353 and high (5 nM) iHg and MeHg concentrations induced metabolic perturbations in amino acid and 

354 nucleotide synthesis and degradation, fatty acids, carbohydrates, tricarboxylic acid, antioxidants 
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355 and photorespiration (Slaveykova et al., 2021). 

356

357 6. Conclusion and perspectives

358 Important research advances confirmed that phytoplankton could affect Hg speciation and 

359 transformations directly e.g. via biotic transformations of the accumulated mercury species and/or 

360 indirectly via the release of low and high molecular mass molecules which could complex mercury 

361 and affect both abiotic and biotic transformations of Hg compounds. The up-to-date studies 

362 revealed that different microalgal species and cyanobacteria contribute to iHg biotic reduction into 

363 Hg0, as well as MeHg demethylation and transformation of iHg into metacinnabar, as well as  

364 produce different biomolecules which can contribute to abiotic mercury reduction. Numerous 

365 questions remain open concerning the underlying mechanisms of Hg species interactions with 

366 phytoplankton in terms of their uptake mechanisms and cellular handling, including the release of 

367 biomolecules, which will be the focus of future research.

368 The role of the phytoplankton in biotic transformations of mercury species and their significance 

369 compared to other microorganisms such as bacteria are overlooked and need to be further 

370 explored. Therefore, further studies which quantitatively examine different transformation 

371 processes and identify the phytoplankton species or groups of species able to demethylate or 

372 reduce mercury in situ are highly sought. 

373 The development and application of novel state-of-the-art techniques would greatly facilitate such 

374 studies. The development of the Hg stable isotope fractionation approach opens up the possibility 

375 to discifer further the contribution of interconnected abiotic and biotic transformation (Kritee et 

376 al., 2013).  Since the biotic transformations are considered prevailing, the development of the new 

377 -omics approaches would provide key information on the interactions between Hg and 

378 phytoplankton species (Beauvais-Flück et al., 2018; Beauvais-Flück et al., 2016; Mangal et al., 

379 2022; Slaveykova et al., 2021).

380 The understanding of the cellular transformations and speciation is central for the elucidation of 
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381 the role of phytoplankton in Hg biogeochemical cycles and is of high importance to better predict 

382 the long-term changes in Hg bioavailability to food webs. Indeed, a global circulation 3D model 

383 of MeHg in seawater showed that diatoms and picocyanobacterium Synechococcus spp. are the 

384 most important phytoplankton categories for the transfer of MeHg from seawater to herbivorous 

385 zooplankton, contributing 35% and 25%, respectively (Zhang et al., 2020).

386 Given the interconnection between the global change and biogeochemical cycling of mercury 

387 (Chetelat et al., 2022), a deeper understanding of the mercury transformation processes triggered 

388 by phytoplankton, measured both in the laboratory and in situ and the development of mechanistic 

389 models coupling primary production,  Hg transport, and transformations and climate models 

390 would allow projections under various climate change scenarios at a global scale. This will further 

391 constrain the efficiency of the measures taken by the Minamata convention to reduce mercury 

392 emissions. This is important given continuous anthropogenic Hg inputs to aquatic ecosystems and 

393 considerable shifts in the phytoplankton dynamics predicted with global change. 
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