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Abstract

Deforestation in the tropics is a critical issue that interacts with global environmental
changes, and the mediating role of negative agricultural shocks is ambiguous. We investigate
the impact of the massive epidemic of coffee leaf rust (CLR) that affected Mexico from
2012 on deforestation. CLR is a fungal disease that negatively affects coffee production.
We exploit the gradual spread of the epidemic across coffee-growing municipalities and
estimate a difference-in-difference model. We find that deforestation increased by 32% in
CLR-affected municipalities but we find no increase in agricultural land. Effects are driven
by municipalities with low coffee yields, characterizing shade coffee systems, and states
where rustic coffee systems were predominant. These results suggest that deforestation
occurred within coffee cultivation areas and point out the concurrent role of government
subsidies and incentives through the PROCAFE program, launched in 2014, that promoted
the replacement of traditional coffee trees by CLR-resistant hybrids. We study the dynamic
effects of CLR and exploit the delayed launch of PROCAFE to try to disentangle the impact
of the epidemic from that of the policy response. Our results emphasize the vulnerability
of agroforestry systems to exogenous shocks and suggest that PROCAFE, as a short-term
response to CLR, contributed to increasing deforestation and accelerating the transition of
Mexican traditional coffee landscapes to monoculture.
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1 Introduction

Forest preservation is rightly perceived as a key dimension to limit climate change, but the role of forests,
particularly in tropical areas, is not limited to carbon sequestration. The 2019 IPBES-IPCC assessment
report on biodiversity (Brondizio et al., 2019) points out the urgency to reduce its unprecedented decline
before reaching the tipping point which would have catastrophic consequences, particularly on the devel-
oping world. Tropical forests support two-thirds of the world’s species (Bradshaw et al., 2009) and they
are constantly under pressure due to agricultural expansion and urbanization. Mexico is particularly
concerned, since one of these tropical forest areas, the Mesoamerica biodiversity hotspot, covering the
Southern part of Mexico, Guatemala, and Honduras, lost 7% of tree cover between 1992 and 2015 (Hu
et al., 2021). Agricultural expansion is by far the main driver of deforestation in tropical and sub-tropical
areas. In the 2000s, more than 90% of forest loss in Latin America is due to agriculture (Kissinger et al.,
2012).

On the other hand, agriculture in those areas is increasingly vulnerable to shocks due to the rise in
temperatures and greater climate variability which are already visible consequences of climate change.
It is thus key to better understand the interrelations between negative shocks and land conversion. The
economic literature demonstrates that shocks on agricultural yields affect land use, but their impacts on
deforestation are ambiguous as they are channeled by different mechanisms. For instance, a reduction
of yields caused by repeated droughts has been found to increase deforestation due to the expansion
of cropland to reach pre-shock production levels (Zaveri et al., 2020). But shocks may also encourage
off-farm work and enhance migration, thus lowering the pressure on forests (Rodriguez-Solorzano, 2014).
Repeated shocks, by signalling an increase in the risk associated with agricultural production may also
reduce incentives for risk-averse farmers to extend agricultural land (Desbureaux and Damania, 2018).

Our paper explores a rather undocumented issue in the literature - the mixed consequences of both
negative agricultural shocks and the short-term policy responses that they generate, on deforestation.
By shaping incentives, government policies may distort household responses to an adverse shock and
modify equilibrium outcomes. However, the impact of a policy designed to cope with a negative shock
is most often hard to disentangle from the impact of the initial shock itself.

We investigate the impact of the recent outbreak of a fungal disease affecting coffee, the coffee leaf
rust (CLR), on deforestation in Mexico. This massive outbreak spread gradually since 2012 in Central
America and Mexico and caused severe decreases in Arabica coffee yields. The severity of the epidemic
can be related to favourable weather conditions associated with climate change (Libert Amico et al.,
2020), such as an increase in minimum temperatures (Avelino et al., 2015; Merle et al., 2020).

The Mexican government responded to this shock with a support program called PROCAFE, which
started in 2014. Part of the program was targeted at the replacement of traditional coffee trees by CLR-
resistant hybrids. While coffee in Mexico is traditionally produced under shade trees in agroforestry
systems, the hybrid Arabica varieties promoted by the program are adapted to sunlight and do not need
tree cover.

Although several environmental factors are believed to influence the intensity of the disease, such as
altitude, precipitation patterns, or temperatures, they interact in such a complex manner that the local
outbreaks of the CLR within Mexico from 2012 onwards proved highly unpredictable (Avelino et al.,
2015). We first exploit the quasi-random nature of the CLR spread and intensity and provide estimates
of the impact of the epidemic on deforestation in Mexico in a difference-in-difference framework. Using

deforestation data from Hansen et al. (2013), we find that deforestation increased by 32 percent in



CLR-affected municipalities compared to municipalities that were not affected by the disease. Focusing
on land use, based on municipal level statistics provided by the Mexican Ministry of Agriculture, we
find that CLR had no significant impact on pastures and non-coffee agricultural area and, if any, a
small negative impact on coffee area. Matching our dataset with land use data from the Mexican
statistical institute, we find that CLR increased deforestation in agricultural land. An heterogeneity
analysis reveals that CLR-induced deforestation increased more in municipalities with initially low coffee
yields. Taken together, these findings suggest that CLR~induced deforestation cannot be explained by
agricultural expansion, but rather affects traditional coffee agroforestry systems, which invites us to
question the role played by the PROCAFE program launched in 2014. We take advantage of the late
implementation of PROCAFE, to try to disentangle the effects of CLR and PROCAFE on deforestation.
We find that the impact of CLR on deforestation was larger after 2014, and that deforestation increased
to the same extent in coffee municipalities whether affected or not by the disease compared to non-coffee
municipalities. An event-study analysis reveals that in municipalities affected by the disease in 2012 and
2013, deforestation increased significantly only two to three years after the outbreak, while deforestation
jumped simultaneously with the CLR outbreak for municipalities that were affected by CLR after 2014.
These convergent results suggest that PROCAFE contributed to the observed increase in deforestation
following the CLR crisis in Mexico: by publicly advertising CLR-resistant hybrid varieties and increasing
their availability to coffee farmers most probably contributed to accelerate the intensification of the coffee
sector, at the expense of forest conservation and biodiversity.

Our study first relates to the literature that investigates the determinants of deforestation and the
impact of diverse environment-oriented policy responses. The prevailing message that emerges from a
review of recent studies in Latin America is the disappointingly weak efficiency of classic programs or
legal instruments specifically designed as a mean to preserve forests. Results are at best ambiguous, or
dependent on the local context, for example as regards property rights. Baragwanath and Bayi (2020)
find that property rights limit deforestation in the Brazilian Amazon, but Lipscomb and Prabakaran
(2020) find no overall impact of the Terra Legal property right reform in the same geographic area. As
regards payments for ecosystems services (PES), Alix-Garcia et al. (2012) find evidence an impact of
PES on deforestation in Mexico that is moderate to low, partly due to spillover effects reducing the
effectiveness of the program. In a different context, Jayachandran (2013) emphasizes the role of credit
constraints that limit the effectiveness of such schemes providing periodic payments of limited amounts.
Although promising, eco-certification does not prove efficient in the case of Mexico, Blackman et al.
(2018) finding no impact of the Forest Stewardship Council (FSC) certification on deforestation. In
the same context, regulation, taking the form of timber extraction permits, has no significant impact
on national-level deforestation (Blackman and Villalobos, 2021). In a different context, the success of
a community management program in Nepal (Libois et al., 2021) contrasts with previous findings and
advocates for local rather than centralized response. The fact that specifically designed tools fail to curb
deforestation invites us to reconsider the prime driver of deforestation, which is by far agriculture. We
show in this paper that agricultural shocks and policies interact to increase deforestation in a particularly
vulnerable agroforestry ecosystem.

In this specific context, the classical intensification vs expansion tradeoff (Koch et al., 2019; Abman
and Carney, 2020) does not apply. Whereas the study by Koch et al. (2019), focused on the Priority List
program implemented in the Brazilian Amazon, suggests that anti-deforestation programs are compati-
ble with increased agricultural production and yields through intensification, our results confirm that in
agroforestry systems, intensification leads to deforestation (Somarriba and Lépez-Sampson, 2018). Our

results emphasize the need to account for diversity in forest environments. Rustic shade coffee systems,



although they represent a non-negligible environmental degradation compared to native forests, perform
much better than intensified plantations in preserving biodiversity and ecosystems services (De Been-
houwer et al., 2013; Jha et al., 2014; Davidson, 2004). Our findings suggest that an agricultural crisis
addressed with short-term oriented policy response may hasten environmental degradation, that in turn,
may prove detrimental to communities’ capacity to face future shocks. Indeed, as emphasized by Noack
et al. (2019), biodiversity and forests play a stabilizing role and contribute to limit income losses caused
by droughts.

Our work also relate to the debate on the environmental Kuznets curve Foster and Rosenzweig
(2003) and its recent developments uncovering the linkages between environment protection and poverty
reduction. As illustrated in the case of Mexico by Alix-Garcia et al. (2015) and Alix-Garcia et al. (2013),
or HeB et al. (2021) in Gambia, environment preservation and poverty are two intertwined issues. Alix-
Garcia et al. (2015) show that a federal environmental program had positive effects on poverty reduction,
but proved more efficient in low poverty areas. Still in the case of Mexico, Alix-Garcia et al. (2013) find
that the large cash-transfer program, PROGRESA, aimed at alleviating poverty, resulted in an increase
in deforestation. Consistent with this literature, our findings suggest that non-environmental programs
may generate negative spillovers. The PROCAFE program designed to help the coffee sector overcome
the CLR crisis has most probably directly contributed to increasing deforestation and indirectly resulted
in a greater vulnerability of coffee farmers and local communities to future shocks. These results call for
a global, preventive and long-term approach of negative agricultural shocks.

The paper is organized as follows. Section 2 introduces the characteristics of coffee production in
Mexico, presents the coffee leaf rust, and the main features of the PROCAFE program. Section 3 de-
scribes the data and the estimation strategy. Section 4 presents estimates of the static and dynamic effects
of CLR on deforestation. Section 5 investigates the channels through which CLR affects deforestation
and intends to disentangle the impact of CLR and PROCAFE by exploiting the late implementation of
PROCAFE. Finally, Section 6 concludes and discusses the implications of our findings for policy design.

2 Coffee production and coffee leaf rust in Mexico

2.1 Characteristics of coffee production in Mexico

Historically, world coffee production is concentrated in three regions: Southeast Asia, Africa, and Latin
America. The sector has been exposed to various crises caused by pests and diseases, volatile prices,
climate change, and institutional arrangements (Rhiney et al., 2021), and has passed through landscape
transformations (Jha et al., 2014; Rhiney et al., 2021).

Latin America accounts for 21% of global Arabica production (International Coffee Organization,
2020), and was known for high-quality beans and certified organic production before the 2012 CLR crisis.
Mexico was the 9th largest producer in 2011, Mexican coffee production accounting for 3.4% of world
coffee production.

Coffee-growing landscape falls into two broad categories: shade-grown agroforests, and open-sun
systems.(Moguel and Toledo, 1999; Toledo and Moguel, 2012) In rustic, traditional shade systems with
a high-density of shade trees, coffee is cultivated within the thinned native forest that covers most of the
land. At the opposite end of the spectrum, open-sun systems consist of coffee monoculture, or intensified
production with very little or no shade trees and high coffee tree density. In between, low-density shade

systems associate coffee to other productive crops or activities (banana cultivation, timber activity)



or service trees that preserved or planted to provide shade to coffee plants. Traditional cultivation in
agroforests is associated with higher quality coffee and lower yields (Vaast et al., 2006; Jezeer et al.,
2017), is richer in terms of biodiversity and provide ecosystems services such as carbon sequestration,
pollination, and erosion control (Jha et al., 2014; Somarriba and Lépez-Sampson, 2018; Davidson, 2004).

In most part of the world, open-sun coffee areas tend to grow at the expense of shade coffee systems.
In Latin America, between the 1970s and 1990s, nearly 50% of the rustic canopy was converted to a
low shade system (Jha et al., 2014), illustrating the intensification of coffee cultivation and its transition
towards monoculture.

In 2012, the Mexican coffee-growing landscape consisted of 80% of agroforestry (with 30% rustic
and 50% low-diversity shade) and 20% of open-sun systems Jha et al. (2014). The coffee sector provides
livelihoods to three million individuals in ethnically diverse regions of Southern Mexico, with a major-
ity of smallholders and family production (92% of producers cultivate less than 5 hectares of coffee)
(International Coffee Organization, 2020; Harvey et al., 2021).

2.2 The 2012 coffee leaf rust epidemic

Coffee leaf rust (CLR) is a well-known disease in the coffee sector. Previous spreads devastated the coffee
industry in East Asia between 1870 and 1950. The disease particularly affected Ceylon since 1870 and
forced 90% of the coffee farmers to stop production and turn into other agricultural products (Rhiney
et al., 2021). After spreading to West Africa through the 1950s and 1960s, the CLR arrived in America
in the late 1960s but only in the 2000s did massive outbreaks caused losses comparable to those of the
1870s Ceylon outbreak (Rhiney et al., 2021). In particular, Colombia was severely affected in 2008-2013
(Avelino et al., 2015), and Mexico from 2012.

The disease is caused by a fungus called Hemileia vastatriz. The development of the fungus pro-
vokes defoliation and reduces the plant’s photosynthesis capacity (Avelino et al., 2015), which negatively
impacts production levels. CLR continues to alter coffee production years after the initial infection by
causing the death of productive branches. In an experimental parcel in Costa Rica, Cerda et al. (2017)
find a 57% reduction in yields two years after the infection.

The pathogens are carried by wind, rain, animals, and humans. Weather conditions, and in particular
temperatures, are known to influence intensity of CLR outbreaks. Moreover, different coffee varieties
naturally present heterogeneous resistance to CLR, Arabica being more vulnerable than Robusta species.
Latin America, that is mostly producing Arabica coffee is more at risk of an epidemic. However, until
the 2012 epidemic, the mountainous, high-altitude characteristics of coffee producing regions in Latin
America contributed to limit the intensity of CLR (Avelino et al., 2015). Climate change plays an
important role through the increase in temperatures that favors fungal growth (Avelino et al., 2015;
Merle et al., 2020), and global warming contributes to explaining that previously intact high-altitude
regions were affected by the 2012 outbreak.! Unlike temperatures, precipitations have an ambiguous
impact on CLR. The disease seems to be favored by wetness but is washed-off by intense rainfall (Merle
et al., 2020; Lasso et al., 2020). The timing of precipitations also matters, as suggested by Avelino et al.

(2015) who observe positive early rainfall anomalies before the CLR epidemic in Central America.

L Avelino et al. (2015) reports that before the 2012 epidemic, it was rare to observe high-intensity
CLR infection above 1100 meters. However, due to increasing temperatures, the CLR started to cause
equivalent damages in a 400-1400 meters altitude range in the Guatemalan landscape, generating yields
losses up to 1800 meters.



In addition, weather-related factors interact in complex ways with other environmental characteristics
such as altitude or shade to explain local variations in CLR intensity (Liebig et al., 2019). The protecting
or aggravating effect of shade trees is controversial: Liebig et al. (2019) observe a lower CLR intensity
in high shade plots but only for farms in higher altitudes, while Avelino et al. (2020) find that shade
reduces the washing capacity of rain, thus increasing the propagation of CLR. By contrast, Castillo et al.
(2020) mention that shade could have a protective effect by lowering the level of physiological stress of
coffee plants, and Avelino and Anzueto (2020) advocate shade management as one of the three pillars of
strategies aimed at limiting the risk of resistance breakdown of hybrids.

Finally, economic factors play an important role in the 2012 CLR outbreak, since plants’ vulner-
ability to diseases depends also partly on farmers’ management capacity and resources. The pre-CLR
years coincide with low international coffee prices and increasing input costs in Latin America and the
Caribbean (Avelino et al., 2015). In the case of Nicaragua, Villarreyna et al. (2020) find that farmers,
anticipating low or no profit reduced their production costs by reducing the level of inputs such as fer-
tilisers and fungicides or labor intensive activities like pruning and monitoring. Furthermore, the low
profitability of the coffee sector delayed the replacement of old coffee trees, more vulnerable to CLR
(Avelino et al., 2015).

2.3 The PROCAFE program

The Mexican Ministry of Agriculture first responded to the CLR crisis in 2013 by promoting the use of
new fungicides to contain the disease. However, this new fungicide proved poorly efficient and was soon
abandoned (Renard Hubert and Larroa Torres, 2017).

The PROCAFE program launched in 2014 illustrated a change of direction in the government re-
sponse to the CLR crisis. All coffee producers, either affected by CLR or not, were eligible for the program
and we indeed observe in our data that virtually all coffee-producing municipalities received PROCAFE
transfers. PROCAFE promoted the replacement of traditional coffee varieties by CLR-resistant hybrids
as a means to combat CLR. Although the program was readjusted several times from 2014 to 2017, its
main line remained unchanged. The program comprises of several packages with different beneficiaries
(individual farmers, cooperatives, or hybrid producers). In the first two years of the program, direct
transfers were made to individuals farmers, while after 2015, most funds were paid out to cooperatives.
In addition, PROCAFE subsidized hybrid plant producers (nurseries).

The development of CLR-resistant cultivars dates back to the 1960s. CLR-resistant hybrids available
on the market in the 2010s are derived from the Catimor variety that is a cross of Timor hybrid (itself
a cross of Robusta (Coffea canephora) and Arabica) and the Caturra Arabica coffee variety. Robusta
coffee plants are naturally resistant to CLR. One key feature of CLR-resistant hybrids, similar in that
to Robusta, is that they tolerate well full-sun cultivation, as opposed to Arabica varieties that are shade
adapted. Concerns about the lower cup quality and poor productivity of CLR-resistant hybrids are
mentioned in the literature (Renard Hubert and Larroa Torres, 2017). The demand for CLR-resistant
hybrids increased sharply after the 2012 outbreak and their being promoted by public-private agencies
(Valencia et al., 2018; Henderson, 2020; Libert Amico et al., 2020).

The replacement of traditional Arabica by hybrids as a relevant strategy to fight CLR is questioned
by phytopathologists, since the fungus responsible for the CLR has a high adaptation potential and has
already broken down the resistance of deemed CLR-resistant hybrid varieties (Avelino and Anzueto,
2020).



2.4 Measuring CLR spread

For lack of epidemiologic information, we infer the dissemination of CLR from observed variations in
coffee production in a similar vein as Banerjee et al. (2010) who use wine production data to proxy
for the dissemination of phylloxera in French vineyards. We gather agricultural production statistics
from STIAP (Servicio de Informacién Agroalimentaria y Pesquera), a sub-government unit connected to
the Agriculture Ministry of Mexico. SIAP data contain municipality level information on agricultural
production, and planted and harvested areas (in hectares) for 307 products, including coffee, over 2003-
2018.2 We focus our analysis on the six largest coffee-producing states from Southern Mexico (Chiapas,
Veracruz de Ignacio de la Llave, Oaxaca, Puebla, Guerrero, and Hidalgo), that represented more than
94% of Mexican coffee production in 2011.

More specifically, we use coffee production data series available at municipality level to detect ab-
normal drops in production that signal a local outbreak of CLR. We restrict the pool of municipalities
potentially affected by CLR to those where sown coffee area represents at least 5% of agricultural area.?
In Mexico, although already present since the 1980s, CLR started to spread massively during the 2012-
2013 coffee season and caused significant production losses (Avelino et al., 2015; Avelino and Anzueto,
2020). The coffee harvest period in Mexico goes from August to May depending on regional characteris-
tics. In what follows, for simplification purpose, year 2012 will refer to coffee harvest season 2012-2013,
and so on. In order to identify affected municipalities, we compare production in 2012 and after to
pre-CLR production level, accounting for the natural variability in coffee production that cannot be
attributed to CLR. Municipality i is defined as affected by CLR in year t if there is a reduction of
coffee production greater or equal to one z-score in both year ¢t and year ¢t + 1.* Production z-scores
are computed using the mean of municipality level coffee production in the pre-CLR period (2005-2011)
and standard deviation over 2005-2018. Conditioning the definition of affected municipalities on two
years of production reduction limits the probability to capture temporary shocks other than CLR, and is
consistent with the documented impact of CLR on production, with secondary losses in years following
the outbreak due to weakened plants (Cerda et al., 2017; Avelino and Anzueto, 2020).

Note however that CLR is perfectly observable to coffee farmers, due to the characteristic rusty
spots that appear on affected leaves, which justifies that we date the beginning of the local outbreak to
t and not t + 1. Evidence suggests that after the 2012 outbreak, once established in a specific area, the
disease remains. As a consequence, municipalities defined as affected in year ¢ are considered affected
until the end of the observation period, i.e. 2018. Our treatment variable is thus a dummy equal to one
from the year municipality i is first severely affected by CLR. Note that we obtain very similar findings
when using yields instead of production. Yields are constructed as production divided by coffee planted
area. Given that the two series are very similar, we choose to constructed our CLR measure based on
production in our main specification to avoid multiplying potential misreporting errors.

We acknowledge that using a statistical method to detect CLR affected areas may introduce noise
in our treatment variable, and that it should ideally be corroborated by field reports indicating the local

prevalence of CLR. However, such data are not available for the whole area and time period under study.

2Due to misreporting errors detected for year 2004, we choose to limit our analysis to 2005-2020,
however our results are robust to the inclusion of 2003 and 2004 in the pre-epidemic period.

3This threshold being arbitrarily set to avoid capturing anecdotal or very isolated coffee zones, we
test the robustness of our results to an alternative threshold set at 1%. All results are unchanged (see
Table 16 in the Appendix).

4In alternative specifications, we choose an alternative cutoff point (1.5 z-score) and obtain consistent
results (see Table 17 in the Appendix and Section 5.3.3 for further discussion).
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One particular concern raised by the indirect method that we use to detect CLR is that we may wrongly
interpret as CLR outbreaks mere decreases in production that would be due to other causes (bad weather
conditions, other adverse income shocks, etc.). In order to check the validity of our measure of CLR, we
focus on the 2005-2010 period, i.e. prior to CLR massive epidemic outbreak in Mexico, and construct
municipality-level placebo outbreaks. Applying the same rule as exposed above (i.e. a reduction of coffee
production greater or equal to one z-score in both year ¢ and year ¢ + 1), no municipality appears as
treated. This finding suggests that our method truly detects CLR and does not capture the impact of
other shocks.

Another concern is that we may fail to detect areas with low CLR intensity. We discuss this point
below, when comparing treated municipalities to non-treated coffee municipalities, and show that our
results are robust to choosing a less restrictive threshold in the definition of our CLR indicator (see
Section 6 and Appendix Table 18.

Figure 1 plots the average evolution of coffee production and yields in municipalities affected by the
CLR depending on the time since CLR is detected in the municipality (based on the methodology exposed
above). We observe a sharp decline in both series in the first year of the epidemic that amounts to about
35% for production.’ As an illustration of the persistence of the disease once installed, production and
yields remained low until the end of the observation period. Consistent with this graph, Figure 12, in

the Appendix, shows that the normalized production and yields follow the same pattern.

SThis figure is consistent with production losses reported by Avelino et al. (2015) for Colombia (31%)
affected in 2008-2011 by the same epidemic.



Figure 1: Evolution of average coffee yield and production in eventually treated group
by CLR start year
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Note: The eventually treated group consists of 243 municipalities affected by CLR between
2012-2018.

To further validate our measure of CLR, we estimate the following equation:
Yit = BoCLRit + 6; + ¢¢ + st + €3¢ (1)

where Y;; represents the inverse hyperbolic sine transformation of coffee production (in tonnes of green
beans), coffee planted area (in hectares), and coffee yields (in tonnes per hectare) for year t. CLR;
is a binary variable, the construction of which is described above. C'LR;; is equal to one from year ¢
to the end of the period if municipality 4 is first affected by CLR in ¢ (¢ > 2012). ¢;, ¢, and g are
municipality, year, and state-year fixed-effects respectively. We estimate equation 1 with OLS. Results
are reported in Table 1 for two different samples: first on the sample that includes all municipalities
from the six major coffee producing states (panel A), then for the subsample of 351 municipalities where
coffee planted area represents at least 5% of total agricultural area (panel B). We find that CLR is
associated with a 53% decrease in coffee production (column 1, panel A) in the total sample and a 56%
decrease in coffee municipalities (column 1, panel B), a 31% decrease in yields (column 3) and a 18%

decrease in coffee planted area (column 2).5 Columns 4 to 7 additionally report regression results for

SDependent variables are inverse hyperbolic sine transformation of raw variables. To interpret coef-
ficients on the CLR dummy as the percentage change in the dependent variable due to a discrete change
in the CLR dummy we need to apply to following formula 100(exp(5) — 1) (Bellemare and Wichman,



production and agricultural area for seven major perennial crops other than coffee and four major annual
crops.” Columns 8 and 9 report results for total agricultural production and area excluding coffee and
pastures, the latter being separately analyzed in column 10. Results from columns 4 to 10 suggest that
CLR-induced coffee production losses were not offset by concurrent increases in the production of other

Crops.

2020).
"Those seven major perennial crops and four annual crops represent 63% of total agricultural pro-
duction (excluding coffee) and 83% of agricultural area in municipalities from the total sample
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3 Data and descriptive statistics

3.1 Deforestation data

We measure deforestation using satellite-derived data from the Global Forest Change (GFC) project
(Hansen et al., 2013). Data are available at a 30 x 30 meters resolution at the equator. For each pixel
we know the tree cover in percentage in 2000 and, for each year starting from 2001, whether the pixel has
been totally deforested. Trees in the GFC data correspond to any vegetation taller than five meters.®
Therefore crops such as bananas and oil palm trees are defined as trees. Note that cultivated coffee
plants do not exceed five meters. As a consequence, open-sun coffee fields will not be detected as forest.
By contrast, agroforestry systems where coffee is cultivated under the shade of taller trees are defined as
forest in the GFC data. Therefore, the complete removal of shade trees in agroforest would be detected
as deforestation. In order to exclude low shade cultivation systems from our forest definition, we choose
to focus on medium and high forest density and count the deforestation that occurred in pixels with at
least 30% of tree cover in 2000 when calculating deforestation per municipality.’

The GFC dataset has been frequently used in the literature to produce different measures of defor-
estation. Raw deforestation (in hectares) is obtained by calculating deforested area from the number of
deforested pixels within given boundaries - municipalities in our setting. However, authors commonly
use a functional transformation of the variable, or divide deforested area by tree cover area at origin due
to the skewness of the raw deforestation variable (Abman and Carney, 2020; Desbureaux and Damania,
2018; Hef et al., 2021). Other studies choose to focus on normalised deforestation variables (Assuncao
et al., 2020). Since they all are equally relevant and provide complementary information, we choose
to use four municipality-level alternative measures of deforestation: raw deforestation (in hectares), the
inverse hyperbolic sine transformation of raw deforestation, normalised deforestation defined as a z-score,
and deforested area out of total forest area in 2000.

One limitation of the GFC data is that it does do not detect the partial deforestation of a pixel. In
order to be able to assess the impact of CLR at a finer scale, we use the Global Forest Cover Change
(GFCC) dataset (Townshend, 2016). Similar to the GFC data in terms of spatial resolution and tree
definition, the GFCC data provide information on the percentage of tree cover of a pixel every five years
(in 2000, 2005, 2010, and 2015). We use GFCC to compute tree cover at the municipality level by
aggregation of pixel-level information. In this second approach, we do not exclude pixel below a specific
tree cover threshold as we want to capture total tree cover dynamics.

Finally, we complement our analysis by using EC JRC data on forest degradation (Vancutsem et al.,
2021).1% This dataset specifically documents forest degradation in tropical moist forests using satellite
imagery and provides high-resolution (pixel size of 30 x 30 meters) annual data. Compared to GFC
data, forest degradation data are able to capture short-term disturbances and reflect the evolution of
forest cover more accurately than GFC in the case of tropical moist forests. Additional results on tree

cover change based on GFCC data and forest degradation are reported in Section 5.3 Table 3.

8https://glad.earthengine.app/view/global-forest-change

9We show in Table 19 that our results are robust to including pixels with different shares of tree
cover - ranging from 10% to 90%.

10Forest degradation is defined as “a disturbance in the tree cover canopy that is visible from space
over a short time period (less than 2.5 years), leading to a loss of biodiversity and/or carbon storage”
(Vancutsem et al., 2021).
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3.2 Sample description

In the subsequent analysis we exploit the propagation of CLR across Mexican municipalities over time to
estimate its impact on deforestation in a staggered difference in differences design. Our estimation sample
consists of 778 municipalities from the top six coffee producing states with at least 30% of forest cover
in 2000. This threshold is arbitrary but we further check that our main results are robust to different
sample definitions, i.e. to including municipalities with a share of forest cover varying from 10 to 50% (see
Table 20 in the Appendix). Among those 778 municipalities, 243 are coffee growing municipalities (i.e.
coffee area represents at least 5% of municipality agricultural area) that are eventually affected by CLR
between 2012 and 2018, 427 are municipalities where coffee production is null or marginal (less than 5%
of municipality agricultural area) and that we consider as being unaffected by CLR, and 108 are coffee
growing municipalities (more than 5% of municipality agricultural area) that were not affected by CLR
over the observation period. Note that within this group, some municipalities may indeed be affected
by CLR but undetected by our statistical method used to retrace ex-post the spread of the disease. We
discuss potential biases introduced in our results by this group of potentially affected municipalities in
Section 5.3.3 and provide additional robustness checks.

Appendix Table 12 compares eventually treated and control municipalities over the pre-epidemic
period (2005-2011). Municipalities affected by CLR have on average a greater initial forest cover, receive
lower amounts of PROCAMPO, and are affected by a larger number of drought shocks. In terms of past
deforestation averaged over 2005-2011, the picture is less clear since different indicators yield opposite
results.

Figure 2 represents deforestation trends for municipalities eventually affected by CLR over the 2012-
2018 period (blue line), and control municipalities broken into two sub-groups (municipalities without
significant coffee production - orange line - and coffee municipalities for which we did not detect any
CLR outbreak over 2012-2018 - green line). Descriptive analysis suggests that deforestation trends in
treated and control municipalities were very similar before the CLR, epidemic first outburst in Mexico
in 2012 although the level of deforestation seems higher in treated municipalities. Notably, deforestation
steeply increases in the treated group in 2013 and again in 2016, widening the gap between treated and
control municipalities. Note however that deforestation also increases in 2016 in coffee municipalities
that were not affected by CLR. This may suggest that either CLR is present in those municipalities but
its incidence is below our detection levels, or that factors other than CLR and common to all coffee
municipalities influence deforestation at the end of the period. We further explore these two possibilities

in Section 6.3.

13



Figure 2: Deforestation in eventually-treated and control groups, 2005-2018
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Note: Control group includes both non-coffee municipalities and coffee municipalities not affected by CLR. This graph presents separately these
two sub-groups. The eventually-treated group includes municipalities that experienced an outbreak of CLR between 2012 and 2018.

Appendix Figure 13 compares total deforestation in out of sample Mexican municipalities to de-
forestation in control and treated municipalities. Note that as specified above deforestation is defined
based on deforested pixels with at least 30% of tree cover in 2000. Yearly deforestation in out-of sample
municipalities is about 125,000 hectares over the whole period, and deforestation in our sample (control
plus treated) represents roughly the same area than in all other Mexican municipalities at the end of the
period. This may seem disproportionate, but obviously, given the specific soil and weather conditions
suited to coffee cultivation, our sample comprises areas with a higher density of forests than other parts
of the country.

Our main estimation strategy exploits the unpredictable spread of the CLR epidemic from 2012 to
2018. One major difference with the propagation of phylloxera in France documented by Banerjee et al.
(2010) is that phylloxera is an insect that spread from southern regions to the rest of the country, while
CLR was already present in Latin America as early as in the 1970s'!, but its evolution was contained
and its consequences mostly unnoticed before the 2012-2013 outbreak.'? The immediate causes of the

massive epidemic that reached Mexico in 2012-2013 are thoroughly discussed in Avelino et al. (2015)

Tt was first detected in Nicaragua in 1976 (Schuppener et al., 1977).

12 Avelino et al. (2015) explain that chemicals and high altitude contributed to limit the intensity of
the disease before the recent outbreak. Production losses occurring due to previous CLR epidemics could
be confounded with the natural alternation of good and bad harvests, due to the biennial production
pattern of coffee trees.
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and mentioned in Section 2.2 above. The fact that the fungus was already dormant throughout all coffee
areas in Southern Mexico explains the erratic geographical pattern of local outbreaks of CLR from 2012

onwards. The geographic spread of the disease is illustrated on a map in Figure 14, in the Appendix.

3.3 Additional data sources and variables

We use additional municipality-level information to control for time-varying characteristics of munici-
palities that may be correlated with deforestation. First, local economic development, urbanization and
demographic trends are likely to affect deforestation. We use nighttime lights data series from Li et al.
(2020) as a proxy for municipality-year level economic activity (Henderson et al., 2012; Bruederle and
Hodler, 2018) for lack of yearly information on municipality-level GDP or population. Nighttime light
data capture the radiance of city lights at night with a spatial resolution of 30 arc second (which is
approximately equal to 0.86 square km (86 hectares) at the equator). We construct a municipality-level
measure of nighttime lights by aggregating relevant pixels and use the inverse hyperbolic sine transfor-
mation of municipality-level nighttime light intensity to take into account zero values.

Second, weather shocks are expected to directly impact agricultural prospects and may consequently
also affect deforestation. We use satellite-derived yearly precipitation data from the CHIRPS project
(Funk et al., 2015), available at a spatial resolution of 0.05 degrees. We calculate yearly precipitation
for each municipality from 1981 to 2000. We then normalise precipitations by calculating deviations
to municipality-level average precipitations over 1981-2012 divided by the municipality-level standard
deviation of precipitations over the same period. To account for the impact of weather shocks on land
use decisions and deforestation, we compute for each municipality the cumulative number of drought
shocks (defined as the number of years characterized by normalized precipitations below —1).

Third, we use data on agricultural subsidies provided by the Mexican government through the PRO-
CAMPO program (renamed PROAGRO Productive in 2014). PROCAMPO is the largest Mexican cash
transfer program related to agriculture and was launched in 1994 to compensate possible negative im-
pacts of the North American Free Trade Agreement (NAFTA) on agricultural producers (Sadoulet et al.,
2001). Funds are allocated to plots conditional on their being sown prior to August 1993 to one of a close
list of nine crops.!® Therefore the program does not cover all actually cultivated lands: in 2009, only
62% of agricultural areas in Mexico was eligible to the program (Gonzalez et al., 2017). Data on PRO-
CAMPO/PROAGRO come from the Mexican Ministry of Agriculture (SADER, formerly SAGARPA).
We adjust raw amounts to account for inflation and divide them by total agricultural area in each mu-
nicipality. Although we do not expect a priori any direct effect of PROCAMPO/PROAGRO subsidies
on deforestation, funds received by farmers may be used to extend agricultural land or, conversely, to
intensify existing agricultural areas (Klepeis and Vance, 2003; Vance and Geoghegan, 2002).

Finally, we use data on the PROCAFE program coming from the Mexican Ministry of Agriculture
(SADER, formerly SAGARPA). The data contain information on transfers made to either individual
beneficiaries or cooperatives from the launch of the program in 2014 to 2017. For years 2014, 2015, and
2016, the municipality of each beneficiary is provided in the dataset, whereas for 2017 we only know the
state of beneficiaries. We use PROCAFE amounts per coffee sown area as an additional municipality-level

control in an alternative specification (see Appendix Table 21).

13Eligible crops are: corn, beans, rice, wheat, sorghum, barley, soybeans, cotton, and safflower.
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4 Empirical Strategy

4.1 Impact of CLR on deforestation

In order to estimate the causal impact of CLR on deforestation, we first want to assess whether deforesta-
tion increased (or decreased) in municipalities affected by CLR compared to non-affected municipalities.

We first estimate the following base equation:
Yit = BOLRy + Xy + 0 + ¢ + st + €1t (2)

where Y;; represents deforestation in municipality ¢ and year t. We use four alternative measures of
deforestation: raw deforestation in hectares, deforestation as a share of municipality-level forest area in
2000, the inverse hyperbolic sine transformation of raw deforestation,'* and normalised deforestation,
computed as a z-score.'® As described above in Section 2.4, CLR;; is a binary variable equal to 1 in
municipality ¢ if an outbreak of CLR has been detected in year 7 < ¢.16 X, is a set of municipality
level time-varying controls including the inverse hyperbolic sine transformation of the nighttime lights
indicator provided (Li et al., 2020) that proxies for growth and urbanization trends, the cumulative
number of drought shock in municipality 7 up to year ¢, and the inflation-adjusted amount of agricultural
subsidies received per hectare of agricultural area. Amounts directly received by coffee producers to
compensate production losses due to CLR (PROCAFE program) are not included in our main estimations
since they are likely to be endogenously determined by CLR. We however re-estimate our main equation
adding the municipality level lagged inflation-adjusted amount of PROCAFE per coffee planted hectare
and find very similar results (see Table 2 in the Appendix).!” §; are municipality fixed effects that control
for time invariant characteristics of municipalities that may be correlated with deforestation, ¢; are year
fixed-effects that capture time shocks common to all municipalities, and ;s are state-year fixed effects
that control for state-specific time trends. ¢;; is the error term. Standard errors are clustered at the
municipality level to allow for correlation of errors over time within municipalities.In this regression, the
estimated § parameter represents the average yearly impact of CLR on deforestation during the whole
period of exposure to the disease.

Second, we estimate the dynamic effects of CLR on deforestation. We run a regression with an

1Our dependent variable is characterized by a small proportion of zero values (707 out of 10892
observations, approximately 6.5% of the total). Aihounton and Henningsen (2021) caution against using
the THS transformation when more than 50% of observations are equal to zero while Bellemare and
Wichman (2020) advise against IHS transformation and suggest using alternative models (Tobit or
negative binomial for example) that account for selection into non-zero values when the share of zero-
valued observations exceeds one-third of all observations.

5Deforestation z-score for municipality ¢ and year ¢ is raw deforestation in municipality ¢ and year
t minus yearly average deforestation in municipality ¢ over the whole observation period, divided by
the standard deviation of deforestation in ¢ over the whole period. One further complexity of the THS
transformation is that coefficients are sensitive to the choice of measurement unit. We apply the criteria
suggested by Aihounton and Henningsen (2021) based on the R? and the test statistic of the Ramsey
Regression Equation Specification Error Test that validate the use of hectares as our measurement unit
of deforestation.

6Banerjee et al. (2010) use in their main specification a measure of the intensity of the disease defined
as the production loss in affected municipalities, compared to the pre-phylloxera period. We replicate
our estimation with this continuous measure and find consistent results (see Appendix Table 22).

1"Note that the estimation period is different since our PROCAFE data do not extend beyond 2016.
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event-study design and estimate the following equation:

7<6
Vit = B6CLRir< 6+ »_ B-CLRir + X[yy + 8i + b1 + bt + €it (3)

T=-—5

where Y;; represents deforestation in municipality ¢ and year t, CLR;, is the same binary variable for
CLR as in the previous equation which equals one for any period 7 contemporaneous or subsequent
to the first outbreak of CLR in municipality i. 7 indicates the relative year to CLR outbreak, which
varies from —13 to 6.'® The omitted period is 7 = —1. Xj; represents the same set of time varying
controls as in equation 2. §;, ¢, and 4 are respectively municipality, year, and state-year fixed effects.
€;¢ is the error term and standard errors are clustered at the municipality level. The (3, coefficients of
interest represent the average change in deforestation between time 7 and the previous year relative to
the change in deforestation over the same time period for unaffected municipalities. 8_¢ to B_5 represent
non parametric deforestation trends prior to the CLR outbreak.

Our setting differs from the canonical DID model developed for two time periods and two groups
(treatment and control), and we need to take into account the staggered nature of exposure to CLR which
is described in Section 2.4 and is illustrated in Map 14 in the Appendix. We observe municipalities over
14 time periods (i.e. years), and we have substantial variation in treatment timing, since the first
municipalities to be hit by CLR were affected in 2012, and the last ones in 2018. Table 11 in Appendix
reports the number of observation in each treatment group (depending on the year of the CLR outbreak).
The implicit assumption of constant treatment effect between groups and over time in two-way fixed-
effects estimators is unlikely to hold in this setting, and two-way fixed-effects estimation may be biased
(see Roth et al. (2022) and De Chaisemartin and D’Haultfoeuille (2022) for a review). The latest
contributions in the DID literature point out the pitfalls in two-way fixed-effects estimators when the
treatment is staggered and/or when the treatment effect is heterogeneous (Callaway and Sant’Anna, 2021;
De Chaisemartin and d’Haultfoeuille, 2020; Goodman-Bacon, 2021; Gardner, 2021; Sun and Abraham,
2021; Borusyak et al., 2021; Athey and Imbens, 2022). To account for potential heterogeneous treatment
issues in our setting, we use the estimators developed by De Chaisemartin and d’Haultfoeuille (2020)

and Callaway and Sant’Anna (2021) as alternatives to the two-way-fixed-effects estimator.

4.2 Identification issues

The identification of a causal effect in a DID setup relies on two key assumptions: the existence of
parallel trends for the outcome variable between treated and control observations, and the absence of
anticipation of the treatment. Adapted to our setting, the first assumption implies that deforestation
trends would have been similar in municipalities affected by CLR and those that were not affected if the
epidemic had not broken out. The second assumption means that not-yet-affected municipalities did not
anticipate the propagation of the disease.

We discuss in this section the limits of those two assumptions in our setting and potential estima-
tion biases that may result. First, the parallel trends assumption cannot be tested directly for lack of
counterfactual data, but it is more credible if treated and control units are as similar as possible in terms
of observable characteristics before the treatment. In our main analysis we only condition the inclusion

of municipalities in the control sample on a minimum of 30% of forest cover in 2000. As shown above

8Due to the limited number of observations, time periods from —13 to —6 are grouped in a single
category.
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in Table 12, treated and control municipalities meaningfully differ over the pre-treatment period (2005-
2011) as regards some of their observable characteristics. Even though graphical evidence presented by
Figures 3 to 6 suggest that pre-treatment deforestation trends are parallel in the eventually treated and
control groups, differences in observed pre-treatment characteristics may cast doubt on their counterfac-
tual parallel time path in the absence of CLR. We implement two robustness tests to manage this issue:
first, we use the synthetic control approach adapted to staggered treatment developed by Ben-Michael
et al. (2021), second, we use a propensity score matching approach. Results are reported in Section
5.3.1 and 5.3.2 and are consistent with our main results. However, traditional tests of parallel trends are
criticized in the recent literature (see Sun and Abraham (2021) or Roth (2019)) for their lack of power
and failure to detect even large violations in the assumption of parallel pre-treatment trends. We follow
the recommendations of Roth (2019) and Rambachan and Roth (2022) and provide a sensitivity analysis
of our main results to violations of the parallel trend assumptions (see Appendix C).

The second assumption implies that the propagation of CLR was not anticipated. Again, the as-
sumption cannot be tested directly. According to phytopathologists, the initial outbreak of 2012 was
highly unexpected (Avelino et al., 2015), however, it is possible that in the subsequent years agents
living in municipalities where we do not detect the presence of CLR adapt their behavior in anticipation
and deforest more. We propose in Section 6.3.2 an indirect test of this anticipation effect based on the
assumption that anticipation effects or learning effects may be larger in municipalities that are not yet
affected by the disease and are neighbours of a municipality that was affected in the first two years of the
epidemic. Results reported in Table 10 suggest that deforestation is similar in late treated municipalities,
whether or not one of their neighbours was affected by the disease in 2012 or 2013. Although we cannot
rule out the possibility that the propagation of CLR was anticipated in the years following the initial
unexpected outbreak, two remarks limit the scope of the problem. First, if CLR-free municipalities
anticipate the treatment, this implies that deforestation will increase also in control municipalities, and
that our estimates will be downward biased. Our results will thus tend to under-estimate the impact
of CLR rather than the opposite. Second, CLR is a disease that affects only coffee, so that non-coffee
municipalities included in the control sample cannot be treated. Reassuringly, we find very similar re-
sults when restricting our control group to non-coffee municipalities (see Appendix Table 15 and Section
5.3.3).

We explore further the dynamics of CLR propagation by focusing on the subsample of coffee munic-
ipalities. We run a cross-sectional regression using our CLR outbreak indicator as an outcome variable
(equal to one for municipalities affected at any time by CLR over 2012-2018) on a number of municipality
level indicators such as area, tree cover at the beginning of the period, elevation'®, population, economic
activity proxied by nighttime lights, rainfall (averaged over 2012-2018), and a coffee suitability index
from the FAO/GAEZ database (version 4)?° (Fischer et al., 2021) for the period 1981-2010. To match
agricultural conditions from Southern Mexico, we select index values for low-input and rain-fed condi-
tions. Results are reported in Appendix Table 7. We find that municipalities with a larger tree cover in
2000 are more likely to be affected by CLR. This is not surprising, since those municipalities are more
likely to host rustic shade coffee farms planted with CLR-sensitive Arabica coffee. Second, municipalities
with a larger population and/or economic activity are also more likely to be affected. We control for
nighttime lights in our main specification, and we control for time invariant community characteristics
through municipality fixed-effects. Elevation or agro-climatic suitability have no significant effect on

the probability to be affected by CLR. However, we may expect local conditions such as elevation or

19We calculate median elevation for each municipality using the NASA JPL (2020) dataset.
2nttps://gaez.fao.org/pages/theme-details-theme-4
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coffee suitability to play a different impact on CLR propagation and deforestation over time. We explore

further this issue in Section 5.3.3.

5 Results

5.1 CLR and deforestation

Estimation results of equation 2 are presented in Table 2. The coefficient on the CLR binary variable
is positive and significant in all specifications. The average yearly increase in deforestation in CLR
affected municipalities is 37 hectares (column 1), which represents roughly 15% of the average yearly
deforestation in 2016-2018 observed in municipalities included in the treatment group (see Appendix
Figure 13). According to column (2), in CLR affected municipalities, annual deforestation as a share of
the initial stock of forest is 0.10 percentage point higher. Results reported in column (3) indicate that
deforestation increased by about 32%.2! Finally, column (4) suggests that deforestation z-score is 0.35

points larger in municipalities affected by the disease than in control municipalities.

Table 2: TWFE - CLR impact on deforestation - Period:

2005-2018
Deforestation
(1) @) 3) @)
Level (ha) Def. part (%) IHS def.  ZS Def.
CLR dummy 37.014** 0.103*** 0.280***  0.352***
(14.887) (0.027) (0.051) (0.059)
Ths(Nighttime lights) 32.775%* 0.057** 0.101**  0.133***
(13.806) (0.023) (0.040) (0.047)
Agri. subventions 0.184 -0.001 0.020 0.043*
(1.806) (0.005) (0.019) (0.024)
Past drought shocks 49.992%** 0.067*** 0.078***  0.125%**
(13.434) (0.016) (0.021) (0.025)
Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Mean Y 108.570 0.354 3.419 -0.000
R?(within) 0.104 0.128 0.166 0.174

*

p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses are clustered by

municipality. All regressions include municipality, year, and, state-year fixed effects. Units
of observation are municipality-years from 2005 to 2018.
Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data
from SIAP/SAGARPA, nighttime light data from Li et al. (2020), rainfall data from

CHIRPS (Funk et al., 2015).

Estimation results shown in Table 2 report estimates of the average yearly impact of CLR on de-
forestation in affected municipalities over the whole treatment period. This analysis needs to be sup-
plemented by an event-study to illuminate the dynamic effects of the disease. Figures 3 to 6 report the
results of an event-study analysis with three different estimators: the two-way fixed-effects estimator,
and the robust estimators developed by De Chaisemartin and d’Haultfoeuille (2020) and Callaway and

21Since the dependent variable in column 3 is the inverse hyperbolic sine transformation of the raw
deforestation variable, the percentage change in the dependent variable due to a discrete change in the
CLR dummy is approximated by 100(exp(0.280) — 1) = 32,313 (Bellemare and Wichman, 2020).
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Sant’Anna (2021). First, estimated coefficients for pre-treatment years are not significantly different from
zero in all specifications, whatever the estimator used. This finding suggests that there is no difference in
pre-CLR trends in municipalities affected by CLR and control municipalities. However the power of such
test is questioned in the recent DID literature (Sun and Abraham, 2021; Roth, 2019; Rambachan and
Roth, 2022). We provide additional sensitivity tests with regard to the parallel pre-trends assumption
in Appendix C.

Second, we find very similar estimated coefficients and confidence intervals with the three estimators,
which suggests that our baseline two-way fixed-effects results are not subject to large biases due to
heterogeneous treatment effects issues.

Third, we observe a similar inverse U-shape pattern for three of our four deforestation variables (3
to 6): when the dependent variable is deforestation out of initial forest area, the inverse hyperbolic sine
transformation of raw deforestation or deforestation z-score, we find that the estimated coefficient on
the CLR binary variable gradually increases in the first post-treatment period, and then decreases while
remaining positive and significant up to five years after the initial outbreak. Results are not significant
when the dependent variable is raw deforestation in hectares due to large standard errors. The dynamic
analysis suggests that CLR-induced deforestation is not an immediate response: the impact of CLR on

deforestation appears to be the highest three to four years after the local outbreak of the epidemic.
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5.2 CLR, tree cover and forest degradation

We complement our analysis with an exploration of the impact of CLR on alternative measures of canopy
and forest cover. Table 3 replaces our four baseline measures of deforestation generated from GFC by the
percentage of tree cover obtained from GFCC data, available on a 5-year basis (Townshend, 2016) (col.
(1) and (2)), and four measures of forest degradation (col. (3) to (6)). Forest degradation indicators
are calculated from the EC JRC dataset (Vancutsem et al., 2021), which is available on a yearly basis.
Forest degradation differs from deforestation in that it captures short-term and/or partial disturbances
in tropical moist forests. Note that degraded forests in the EC JRC product are still classified as forests.

In column (1), we use GFCC data for 2000, 2005, 2010, and 2015 and do not control for agricultural
subventions (not available in 2000). In column (2), we use the full set of controls and limit the estimation
period to 2005, 2010, and 2015. In both cases, we observe a decrease in tree cover by 1.7 to 1.9 percentage
points, which represents a 5% decrease with respect to median tree cover in 2000 (which is 38% in
our sample). Columns (3) to (6) replicate our main results with the same four indicators applied to
forest degradation instead of deforestation. We find that, in municipalities affected by the disease, 75

additional hectares or 5% of tropical moist forest cover (col. (5)) are degraded each year (col. (3)). These

Table 3: TWFE - CLR impact on tree cover and forest degradation )

% tree cover Forest degradation (2005-2018)

(1) (2) 3) (4) () (6)
(2000-2015)  (2005-2015)  Level (ha)  Part (%) IHS transformed Normalised

CLR dummy -1.746*** -1.915%*** 75.716%* 0.042 0.052%** 0.280***
(0.281) (0.272) (33.733) (0.093) (0.009) (0.082)
Ths(Nighttime lights) -0.203 -0.588*** -100.244*** 0.068 0.020%*** 0.156**
(0.205) (0.216) (31.695) (0.061) (0.008) (0.064)
Past drought shocks -0.253** -0.478*** -101.795%**  -0.253*** -0.027*** -0.279***
(0.106) (0.128) (25.388) (0.040) (0.005) (0.036)
Agri. subventions -0.029 5.796 -0.059 -0.001 -0.041
(0.036) (10.217) (0.042) (0.003) (0.037)
Observations 3,112 2,334 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778 778 778
Eventually treated 180 180 243 243 243 243
Mean Y 38.227 38.784 2,234.666 10.464 7.071 0.000
R?(within) 0.492 0.534 0.148 0.349 0.318 0.344

* p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses are clustered by municipality. All regressions include
municipality, year, and, state-year fixed effects. Units of observation are municipality-years for 2000, 2005, 2010 and 2015 for tree
cover (col. (1) and (2), source: GFCC data (Townshend, 2016)) and from 2005 to 2018 for forest degradation (source: EC JRC
(Vancutsem et al., 2021)).

Additional data sources: agricultural data from SIAP/SAGARPA, nighttime light data from Li et al. (2020), rainfall data from
CHIRPS (Funk et al., 2015).

findings suggest that, in addition to total deforestation measured by GFC data, CLR also contributed
to significantly decrease overall tree cover and increase forest degradation.

5.3 Robustness tests

5.3.1 Synthetic control method

Although we find no evidence of differential deforestation trends in our group of treated and control

municipalities prior to the CLR epidemic, non-experimental data raise concerns about the comparability
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of treated and control units. To further test the robustness of our results, we replicate our event-study
analysis with a synthetic control method adapted to empirical designs with staggered treatment (Ben-
Michael et al., 2021). The synthetic control method estimates a counterfactual untreated outcome using
a weighted average of control units, with weights set so as to minimize pre-trends differences between
treated observations and this synthetic control.

Results of the event-study with synthetic control presented in Figures 7a to 7d are similar to the
results obtained with the two-way fixed-effects and robust DID estimators displayed in Figures 3 to 6.
Again, the effect of CLR presents an inverse-U-shaped pattern. Consistent with our previous results, we
find that the impact of CLR on deforestation is the largest four to five years after the local epidemic

outbreak.

5.3.2 Propensity score matching

In a closely related analysis, we conduct an additional robustness test by applying the kernel-based
propensity score matching (PSM) method (Heckman et al., 1997, 1998; Blundell and Dias, 2009). The
kernel method matches a treated unit with the control unit(s) ranging in a specific bandwidth and assigns
positive weights to these units depending on the selected kernel function. The distance between units is
based on propensity scores constructed through the pre-treatment variables (Blundell and Dias, 2009).
To be able to apply the method, we modify our data to have classical DID setup with two time periods
(pre- and post-treatment) and two groups (treated and control). We thus construct two 7 years periods
(2005-2011 and 2012-2018), and modify our outcome variables so that they equal to total deforestation
that occurred in each period. The treatment variable is now equal to one for all municipalities that
were affected by CLR any year from 2012 to 2018 regardless of the number of years they remained
treated. Time-varying covariates (nighttime lights, agricultural subventions, and past drought shocks)
are averaged over each of the 7-year periods. We use the Epanechnikov kernel function which puts more
weight on control units closest to matched treated observations. We specify bandwidth with an automatic
selector based on cross-validation with respect to the mean of the propensity score (Jann, 2017).
Results are shown in Table 4. In columns (1) to (3), as a basis for comparison, we report two-way
fixed-effects estimates on two aggregate periods with a single treatment group. Columns (4) to (6) report
matching results with the lowest and highest 1% of observation trimmed while in matching column 2,
we trim the lowest and highest 5% of the observations according to their propensity scores. Overall,
consistent with our main findings, results reported in Table 4 show that deforestation increased more in

treated municipalities. The effect size increases in matched sample.
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Figure 7: Difference-in-differences with augmented synthetic control adapted to staggered
design

(a) Raw deforestation (ha) (b) Def. part (%)

100 ' 03

DID estimate
DID estimate

-0 -8 -4 -2 0 2 4 6 B -8 -6 -4 -2 2
Years since CLR outbreak Years since CLR outbreak

(c) IHS deforestation (d) Normalised def.

DID estimate

10 8 3 4 6 10 8 6

4 2 0
Years since CLR outbreak

Note: We use multisynth function from augsynth package for R. Standard errors are
bootstrapped. Included controls are the same as those included in the baseline equation. The
v values are 0.39, 0.2, 0.09, and 0.14 respectively for raw deforestation, deforestation part, IHS
deforestation and normalised deforestation. The intercept shift is included.
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5.3.3 Additional robustness tests

As explained in section 4.2, the propagation of CLR may be correlated with characteristics of munici-
palities that could also affect local deforestation. We control for time-invariant observed and unobserved
characteristics of municipalities with municipality fixed-effects in our main specification but do not ac-
count for potential time-varying effect of local characteristics such as elevation or agro-climatic suitability
for coffee that would result in more or less vulnerability to CLR. As a robustness check, we re-estimate our
initial model augmented with THS transformed measures of population in 2005, tree cover in 2000, me-
dian elevation, and coffee suitability interacted with year fixed effects. Results are reported in Appendix
Table 14. Estimated coefficients on the CLR dummy are slightly smaller than in our main specification
but remain significant at the 1% level (except in col. 1 with raw deforestation measured in level (ha)).

Appendix Table 15 presents results based on alternative definitions of treated and control groups.
First, in columns (1) to (4), we restrict the analysis to municipalities from the three Mexican states
that are top coffee producers (Chiapas, Oaxaca, and Veracruz). Second, as mentioned in Section 2.4,
the statistical approach that we use to detect CLR may lead us to misclassify coffee municipalities with
low intensity of the disease as non-affected, which may bias our estimates. We address this issue by
excluding never-treated coffee municipalities from the control group (columns (5) to (8)). In both cases
sample size is mechanically reduced but results are very similar to our main estimates. The magnitude
of the estimated effects is larger for the THS transformed and z-score deforestation variable on the
two restricted samples, which could suggest that including in the sample municipalities where coffee
production is relatively marginal or including in the group of control potentially affected municipalities
could slightly downward bias our main results.

In Appendix Table 16, we change the threshold used to define coffee municipalities: in our preferred
sample definition we include in the pool of coffee municipalities (that may either be treated or not) only
those where coffee area represents at least 5% of municipality agricultural area. Reducing this threshold
to 1% does not change our results.

In Appendix Table 17, we vary the condition on reduction of coffee production used to identify local
CLR outbreaks. While our preferred specification identifies a CLR outbreak when coffee production falls
1 standard deviation below 2005-2011 municipality average for two consecutive years, we here impose a
more restrictive condition using a 1.5 standard deviation threshold. The number of treated municipalities
decreases accordingly from 243 to 178, but with the exception of the coefficient on raw deforestation
(column (1)) which is no longer significant, all other coefficients are similar in sign, significance, and
magnitude to our main estimates. Conversely, Appendix Table 18 tests the robustness of our results
when using a less restrictive threshold for CLR definition. Indeed, as discussed above, a potential threat
to identification is that the fact that we observe non-affected coffee municipalities could result from
our failure to detect low intensity epidemic outbreaks. We thus set a less restrictive threshold at 0.5
standard deviation. With this threshold, the number of municipalities increases by 17% (from 243 to 285
eventually affected municipalities). Point estimates are slightly smaller but remain significantly different
from zero.

We vary conditions on the pixel-level share of tree cover in 2000 to calculate deforestation in Ap-
pendix Table 19, and on the municipality-level forest cover threshold that determines the inclusion of
municipalities in our sample in Appendix Table 20. Both are set at 30% in our main specification, and
Table 19 and Table 20 suggest that our results are insensitive to alternative threshold choices.

Results are also similar when we include lagged municipality-level PROCAFE amounts received over
2014-2016 (see Appendix Table 21). Note that since we have municipality-level PROCAFE data only
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until 2016, our estimation period is in this case restricted to 2005-2017.

Another potential concern with our main specification is that all municipalities contribute in the same
way to the estimation regardless of their area. Yet, there is considerable heterogeneity in municipality
area, as shown in Figure 14. In Appendix Table 23, we report estimation results with each municipality
being weighted by its area in hectares. Although the coefficient on the CLR dummy is no longer significant
for the raw deforestation variable (column (1)), results are overall very similar to our main estimates.

Finally, although the propagation of the disease does not follow obvious spatial patterns (see Figure
14), we replicate our main results accounting for potential spatial correlation in the data by using Conley
standard errors. As shown by Appendix Table 25, the statistical significance of our results is unaffected

by this correction.

6 Heterogeneity analysis and mechanisms

6.1 Deforestation in cropland

As shown in Table 1 (in Section 2.4), CLR is not associated with an increase in total agricultural area,
nor in area devoted to the top permanent and annual crops cultivated in those six states of Southern
Mexico. If deforestation due to CLR were a response of farmers trying to compensate coffee production
losses by increasing agricultural area, we would expect to find a positive impact of CLR on agricultural
area. Results from Table 1 thus suggest that CLR-induced deforestation is due to other motives than
agricultural expansion.

To further explore this issue, we use land use maps provided by INEGI?? constructed based on a
combination of field observation made during April-June 2012 and satellite images from 2011. We select
non-irrigated agricultural zones with either perennial crops or a combination of annual and perennial
crops. These categories should in theory include coffee plantations, either in agroforestry or open-sun
systems. We merge land use data with deforestation data and construct the same four indicators of
deforestation, restricted here to agricultural areas. Indeed, forest and agricultural areas may overlap
in the case of perennial crops taller than five meters, or in agroforestry systems: such zones that are
considered as agricultural areas in the INEGI classification will appear as forests in the GFC data. We
then re-estimate our baseline model to analyse the impact of CLR on deforestation in those areas. Results
reported in Table 5 show that CLR increased deforestation in areas defined as agricultural land allocated
to permanent crops. These findings suggest that at least part of estimated CLR-induced deforestation
occurred in areas planted with permanent crops. Since we find no otherwise significant change in area
or production of permanent crops other than coffee (see Table 1), and since coffee is by far the main
crop cultivated in agroforestry systems in Mexico (Manson et al., 2017), our findings thus suggest that

deforestation caused by CLR occurred at least in part in coffee agroforestry systems.

6.2 Heterogeneity analysis

For lack of data on the type of coffee landscape, we use data on yields to construct a proxy for predominant
coffee agroforestry systems. Rustic shade coffee is characterized by a lower plant density, and thus lower

yields per hectare than intensive monoculture (Vaast et al., 2006; Jezeer et al., 2017). We construct

22https://www.inegi.org.mx/temas/usosuelo/
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Table 5: TWFE - CLR impact on deforestation in cropland
- Period: 2005-2018

Deforestation

(1) (2) 3) (4)
Level (ha) Def. part (%) IHS def. Normalised

CLR dummy 7.345%** 0.027*** 0.214%*** 0.245***
(2.480) (0.007) (0.041) (0.048)
Ths(Nighttime lights) 0.988 0.003 0.008 0.020
(1.088) (0.003) (0.022) (0.026)
Agri. subventions 0.014 -0.000 -0.009 -0.012
(0.166) (0.001) (0.008) (0.009)
Past drought shocks 3.155** 0.008** -0.008 0.017
(1.523) (0.003) (0.017) (0.019)
Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Mean Y 9.843 0.045 1.029 0.000
R?(within) 0.074 0.083 0.120 0.108

* p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses are clustered by
municipality. All regressions include municipality, year, and, state-year fixed effects. Units of
observation are municipality-years from 2005 to 2018.

Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data
from SIAP/SAGARPA, nighttime light data from Li et al. (2020), rainfall data from CHIRPS
(Funk et al., 2015).

a LowYield dummy variable equal to one for municipalities with coffee yields in the bottom quartile
of the distribution (computed over 2005-2011 for municipalities where coffee represents at least 5%
of municipality agricultural area). We then interact our measure for CLR with the LowY'ield binary
variable and add this interaction term to our main equation. Estimation results are reported in Table 6.
For two of our deforestation measures, the coefficient on the interaction term is positive and significant
(col. (3) and (4)), which suggests that CLR drove up deforestation more in municipalities with low
yields. According to the results shown in column (3), deforestation increases by 25% in municipalities
with yields in the top three quartiles, while deforestation jumped by 61% in municipalities with coffee
yields in the bottom quartile. These result suggest that CLR pushed deforestation higher in areas where
traditional shade coffee was still predominant.

To further validate this interpretation, we estimate our regressions separately for the three states
that are the largest Mexican coffee producers. Appendix Table 24 displays estimation results for Chiapas,
Oaxaca, and Veracruz. We find positive and significant effects of CLR on deforestation in Oaxaca and
to a lesser extent in Chiapas, and no impact of CLR on deforestation in Veracruz. These findings
can be related to the transformation of coffee landscape induced by the government-supported institute
INMECAFE in the 1970s and 1980s that promoted the transition to lower density shade systems or
open-sun cultivation (Nestel, 1995).2% Data on coffee yield evolutions from 1970 to 1982 (Nestel, 1995)
and qualitative evidence (Potvin et al., 2005) suggest that the resulting intensification was larger in the
coastal state of Veracruz, and lower in more remote areas of Oaxaca. Rustic coffee systems represented

a larger part of coffee area in the latter state in the late 1990s (Moguel and Toledo, 1999).

23The INMECAFE disappeared in 1990.
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Table 6: TWFE - CLR impact on deforestation in munic-
ipalities with coffee yields in the bottom quartile - Period:

2005-2018
Deforestation
1) (2) (3) (4)
Level (ha) Def. part (%) IHS def.  ZS Def.
CLR dummy 39.455** 0.101*** 0.227***  0.283***
(16.995) (0.030) (0.056)  (0.066)
CLRxLowYield -11.632 0.009 0.253***  0.330***
(39.061) (0.061) (0.095) (0.116)
Ths(Nighttime lights) 32.633** 0.057** 0.104**  0.138***
(13.852) (0.023) (0.040) (0.047)
Agri. subventions 0.262 -0.002 0.019 0.041*
(1.805) (0.005) (0.019) (0.024)
Past drought shocks 50.144*** 0.067*** 0.075***  0.121***
(13.419) (0.016) (0.021)  (0.025)
Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Mean Y 108.570 0.354 3.419 -0.000
R?(within) 0.104 0.128 0.167 0.175

*

p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses are clustered by
municipality. All regressions include municipality, year, and, state-year fixed effects. Units
of observation are municipality-years from 2005 to 2018.

Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data
from SIAP/SAGARPA, nighttime light data from Li et al. (2020), rainfall data from
CHIRPS (Funk et al., 2015).

6.3 CLR or PROCAFE?

The previous sections show that CLR increased deforestation, and strongly suggest that at least part
of CLR-induced deforestation took place in coffee agroforestry systems. These findings invite us to
reconsider the effect of CLR alone and question the concurrent role of the PROCAFE program. Indeed,
CLR induced a policy response that in itself may have altered farmers’ incentives. As stated above, the
Mexican government responded in 2014 to the crisis of the coffee sector caused by CLR with PROCAFE,
a massive program that promoted and subsidized CLR-resistant hybrid plants to replace traditional
Arabica plants that were sensitive to the disease. Hybrids share with Robusta cultivars a number of
characteristics, including resistance to CLR and adaptation to open-sun cultivation. This latter feature
may explain part of deforestation that occurred following the CLR outbreak. In the remainder of this
section, we try to disentangle the impacts of CLR and PROCAFE on deforestation. Since we cannot
directly investigate the impact of PROCAFE on deforestation, due to obvious endogeneity concerns
regarding PROCAFE, we exploit the different timing of CLR outbreaks and the launch of the program.

6.3.1 Interactions between CLR and PROCAFE

Launched in 2014 as a response to CLR, the PROCAFE program initially directly transferred cash
to individual coffee producers. We first investigate whether PROCAFE funds were targeted to CLR
affected municipalities. We estimate a cross-sectional regression on the subsample of coffee producing

municipalites to explore the correlation between being affected by CLR and PROCAFE amounts (per

29



5.2% Results are reported in Table 7. In columns (1), (3),

coffee planted area) received in 2014 and 201
and (5), the CLR variable is a dummy equal to one for municipalities first affected by CLR in 2012 or
2013, and the dependent variable refers to PROCAFE amounts received in 2014. In columns (2), (4),
and (6), the CLR variable is a dummy equal to one for municipalities first affected by CLR in 2012,
2013 or 2014, and the dependent variable refers to PROCAFE amounts received in 2015. We find that
municipalities with an epidemic outbreak in 2012 and 2013 tend to receive less PROCAFE funds per
hectare in 2014. When broadening the scope to municipalities affected up to 2014, we find no correlation
with PROCAFE amounts received in 2015 : municipalities first affected by CLR in 2012, 2013 or 2014 did
not receive more PROCAFE amounts per coffee planted area than municipalities that were not affected.
This finding is consistent with the orientation of the program, aimed at promoting CLR-resistant plants

even in non-affected areas in anticipation of a predictable epidemic outbreak.

Table 7: CLR relation with PROCAFE per ha (coffee producing mu-

nicipalities)
OLS (Raw PROCAFE) OLS (IHS PROCAFE) PPML (Raw PROCAFE)
(1) (2) (3) (4) (5) (6)
2014 2015 2014 2015 2014 2015
CLR -192.544%** -71.890 -0.792%** -0.210 -0.443*** -0.150
(61.839) (72.571) (0.267) (0.228) (0.159) (0.110)
Ths(NTL) 80.285 293.084™** 0.259 0.362 0.161 0.406***
(70.043) (108.706) (0.348) (0.340) (0.139) (0.129)
Agri. subventions 26.106 267.146* -0.556 -0.141 0.043 0.381**
(74.706) (148.797) (0.449) (0.382) (0.143) (0.176)
Past drought shocks 19.299 32.795 0.070 0.122** 0.040 0.052
(17.106) (26.299) (0.066) (0.055) (0.033) (0.037)
Observations 351 351 351 351 351 351
Treated units 91 127 91 127 91 127
Mean Y 500.910 690.588 5.900 6.320 500.910 690.588
R? 0.045 0.148 0.140 0.118 0.088 0.198

* p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses are clustered by municipality. All
regressions include state fixed effects. Units of observation are municipalities. We present adjusted R? for
OLS and pseudo R? for PPML.

Data sources: PROCAFE data come from SAGARPA (Secretariat of Agriculture and Rural Development).
Agricultural data from SIAP/SAGARPA, nighttime light data from Li et al. (2020), rainfall data from CHIRPS
(Funk et al., 2015). Dependent variable is a binary variable indicating the eventually treated municipalities.
CLR variable is equal to 1 if municipality is treated in 2012 or 2013 for column 1, 3 and 5 and for columns 2,
4 and 6 the CLR variable is equal to 1 if municipality is treated in 2012, 2013 or 2014.

A second related issue is whether PROCAFE payments were associated with a lower vulnerability to
CLR in the following years for municipalities that had not been affected yet. We investigate this issue in
a cross-sectional regression on the subsample of coffee municipalities that had not been affected by CLR
prior to 2016. The dependent variable is a binary measure for CLR if municipalities were affected in
2016 or later. Results reported in Table 26 suggest a negative correlation between PROCAFE amounts
(per coffee planted hectare) received in 2014 and 2015 and the probability to be affected by CLR over
2016-2018, but the coefficients are not significant at conventional levels in two of our specifications and
significant only at the 10% level (col. 1) when we use raw PROCAFE amounts.

These results suggest that PROCAFE payments in 2014 and 2015 were not specifically directed to
CLR-impacted areas and had little impact on the probability to suffer from an epidemic outbreak in
the later period for municipalities that had resisted so far. This latter point is important. If we had
found evidence of a protective effect of PROCAFE, i.e. that areas receiving more PROCAFE funds were

24We do not include PROCAFE transfers for later years since from 2016 PROCAFE funds were
mainly directed to cooperatives (see Appendix Figure 15) that operate over multiple municipalities. The
georeferencing of PROCAFE funds is thus less precise from 2016.
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significantly less likely to be affected by CLR in later years, using the same definition for our treatment
variable before and after the launch of PROCAFE would lead us to miss municipalities that received more
PROCAFE and for which the CLR epidemic entailed lower damages on production: those municipalities
would have fallen below our detection threshold. Reassuringly, results from Table 26 that PROCAFE is

unlikely to interact with our definition of treated municipalities.

6.3.2 Sub-periods comparison

We first add to our baseline equation an interaction term between the CLR binary variable and a post-
2014 dummy to test whether CLR has a larger effect on deforestation after PROCAFE is launched.
Results are reported in Table 8. We find that the coefficient on the CLR, x Post-2014 variable is positive
in all four specifications and significant in columns (3) and (4), suggesting that CLR has a stronger effect
on deforestation after 2014. This result may point to the joint responsibility of the PROCAFE program,
but it may also be explained by other mechanisms. In particular, while the disease was not well known to
coffee producers in the first year of the epidemic, awareness of its long-lived consequences rose gradually

in the subsequent years.

Table 8: TWFE - Impact of CLR before and after 2014 - Period: 2005-2018

Deforestation
(1) @) 3) )
Level (ha) Def. part (%) IHS def.  ZS Def.
CLR dummy 20.771** 0.078*** 0.169** 0.199**
(10.054) (0.028) (0.066) (0.089)
CLR x Post 2014 18.812 0.030 0.128* 0.178*
(11.950) (0.031) (0.068) (0.095)
Ths(Nighttime lights) 32.609** 0.056** 0.099** 0.132%**
(13.834) (0.023) (0.040) (0.047)
Agri. subventions 0.178 -0.002 0.020 0.043*
(1.806) (0.005) (0.019) (0.024)
Past drought shocks 49.978%** 0.067*** 0.078***  0.125***
(13.433) (0.016) (0.021) (0.025)
Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Mean Y 108.570 0.354 3.419 -0.000
R?(within) 0.104 0.128 0.166 0.174
Sum CLR and CLR x Post 2014 coefficients 39.582 0.107 0.297 0.376
Sum CLR and CLR x Post 2014 P-val. 0.014 0.000 0.000 0.000

* p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses are clustered by municipality. All regressions
include municipality, year, and, state-year fixed effects. Units of observation are municipality-years from 2005 to
2018.

Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data from SIAP/SAGARPA,
nighttime light data from Li et al. (2020), rainfall data from CHIRPS (Funk et al., 2015).

In a complementary analysis, we compare our baseline results over the whole observation period
(2005-2018) to estimation results over the period before the PROCAFE program (2005-2013). Results
are presented in Table 9 (Panel A). Estimates reported in columns 5 to 8 over the period 2005 to 2013
(included) show that CLR has a positive and significant impact on deforestation already in the first
two years of the epidemic (that started in 2012). The comparison of columns 5 to 8 to the first four
columns of Table 9 that reproduce our baseline results presented in Table 2 reveals that the magnitude

of the effect is lower over 2005-2013 than over the whole period. This finding is fully consistent with the
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dynamic pattern of CLR effects illustrated by Figures 3 to 6 showing that the impact of CLR increases
up to five years after the initial outbreak. The restriction of the estimation period to 2005-2013 means
that we observe at most two post-treatment periods (2012 and 2013, for municipalities first affected
in 2012), which explains that estimated coefficients are smaller. However, an important result here,
consistent with results shown in Table 8, is the fact that CLR has a positive and significant impact on
deforestation, even before PROCAFE is launched. Over 2005-2013, we are quite confident that the effect
that we estimate is that of CLR alone.

By contrast, results over the whole period may reflect a combination of the impact of CLR with
that of PROCAFE, launched in 2014. In order to try to disentangle CLR from PROCAFE, we vary
the composition of the control group and focus on coffee municipalities only. Control municipalities thus
include not-yet-treated and never affected coffee municipalities. The idea is that whereas CLR is expected
to affect only municipalities that experienced a local outbreak of the disease, PROCAFE promoted from
2014 the replacement of traditional coffee plants by hybrids on a large scale as a preventive strategy in
anticipation of an expansion of the disease. This implies that only CLR-affected municipalities can be
considered as treated if we investigate the impact of the disease, while all coffee municipalities are virtually
affected if PROCAFE is the treatment. We then expect to find no different deforestation trends in CLR-
affected and CLR-free coffee municipalities if deforestation is mainly due to PROCAFE rather than CLR
alone. A first intuition of this is provided by Figure 2, shown in Section 3.2. Indeed, as discussed above,
descriptive evidence suggest that CLR-free coffee municipalities experience a jump in deforestation in
2016 similar, although smaller in magnitude, to that observed in CLR-affected municipalities. Note
although PROCAFE was launched in 2014, hybrids became commonly available only in 2015-2016.

Estimation results on coffee municipalities only are reported in Table 9, Panel B. Columns 1 to 4
display estimation results over the whole period (2005-2018). We find that on this restricted sample, point
estimates for the impact of CLR on deforestation are very small and never significantly different from
zero. One may wonder whether this finding could also be interpreted as a failure on our part to identify,
among coffee municipalities, those that are actually affected by CLR. However, as shown in columns 5 to
8 of Table 9, Panel B, we find that when restricting the estimation period to 2005-2013 the coefficient on
the CLR dummy is positive and significant for three of our four deforestation variables. These findings
suggest that CLR-affected municipalities deforest more than unaffected coffee municipalities in the first
two years of the epidemic, but this is no longer the case over the whole period. Taken together, the results
reported in Table 9 thus strongly suggest that CLR explains deforestation prior to 2014, but that over the
whole period other factors common to all coffee municipalities, either affected by CLR or not, contribute
to explaining deforestation. Although determinants of deforestation common to all coffee municipalities
after 2014 may not solely be caused by PROCAFE, our findings suggest that PROCAFE contributed
to deforestation in coffee municipalities. Among confounding factors common to all coffee municipalities
that may cause an increase of deforestation is coffee price. Indeed, a negative shock on coffee prices may
affect decisions of coffee farmer, and for example lead them to intensify coffee production in order to
increase coffee yields. Coffee price series for “Other Milds” that include Mexican coffee made available by
the International Coffee Organization® suggest that after a drop in 2013, coffee prices tend to rebound
in 2014, suggesting that price variations are unlikely to explain our results.

To further investigate the possible impact of PROCAFE, we explore the dynamic effects of CLR
in two different groups of treatment: we separate event-study analyses for municipalities affected by
CLR in 2012 and 2013, before PROCAFE was launched, and municipalities affected after 2014. Figures

Phttps://www.ico.org/new_historical.asp
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Table 9: TWFE - CLR impact on deforestation - Different control groups and time periods

2005-2018 2005-2013 (before PROCAFE)

(1) (2 (3) (4) (5) (6) (7) (8)
Level (ha) Def. part (%) IHS def. ZS Def.  Level (ha) Def. part (%) IHS def. ZS Def.

Panel A: Total sample

CLR 37.014* 0.103*** 0.280***  0.352*** 25.804* 0.110*** 0.173* 0.201*
(14.887) (0.027) (0.051)  (0.059)  (12.749) (0.033) (0.074)  (0.096)
Observations 10,892 10,892 10,892 10,892 7,002 7,002 7,002 7,002
Municipalities 778 778 778 778 778 778 778 778
Eventually treated 243 243 243 243 91 91 91 91
R?(within) 0.104 0.128 0.166 0.174 0.043 0.049 0.108 0.094

Panel B: Only coffee producers

CLR 13.635 -0.002 -0.059 -0.019 18.959 0.101** 0.156* 0.275%*
(22.825) (0.034) (0.057) (0.067) (14.150) (0.034) (0.077) (0.099)
Observations 4,914 4,914 4,914 4,914 3,159 3,159 3,159 3,159
Municipalities 351 351 351 351 351 351 351 351
Eventually treated 243 243 243 243 91 91 91 91
R?(within) 0.166 0.287 0.309 0.330 0.083 0.133 0.161 0.168

* p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses are clustered by municipality. All regressions include municipality, year, and,
state-year fixed effects. Units of observation are municipality-years from 2005 to 2018 in columns 1-4 and 2005-2013 in columns 5-8.

Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data from SIAP/SAGARPA, nighttime light data from Li et al.
(2020), rainfall data from CHIRPS (Funk et al., 2015).

8 to 11 display estimated coefficients and confidence intervals for the two groups. The comparison
of the two groups reveal different time patterns: although confidence intervals overlap in most cases,
the figures suggest that for municipalities affected by the epidemic in 2012 or 2013 the effect of CLR on
deforestation became significantly different from zero only 3 years after the initial outbreak. By contrast,
in municipalities affected after 2014 CLR tends to have a positive and significant effect on deforestation
as early as the year following the outbreak (Figures 10 and 11). These findings are consistent with
the results from the event-study analysis over the whole sample reported in Figures 3 to 6 and suggest
that CLR increased deforestation especially after 2015, which coincides with the full effectiveness of the
PROCAFE program.
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6.3.3 Discussion: CLR intensity and learning effects

Our interpretation of sub-period differences in the impact of CLR implicitly relies on the assumption that
our CLR variable is actually measuring the same reality over the whole period. One particular concern
is thus that our measure or CLR could capture different intensities of the disease at the beginning and at
the end of the period. This could be the case in particular if PROCAFE payments had a protective effect
(which they do not seem to have, as discussed above), or if the intensity of the disease increased over time
due to a larger quantity of inoculum. In this case, we would attribute to PROCAFE changes in impact of
CLR on deforestation over time that may be due to different reactions to different treatment intensities.
We report in Appendix Table 27 for each treatment year the median and mean production used to detect
CLR (averaged over t and ¢ + 1 as explained in Section 2.4), compared to pre-CLR production levels
(over 2005-2011), and the mean and median z-scores for production.?® Reassuringly we find no specific
time pattern nor difference in the mean and median z-score in the groups of early affected municipalities

compared to the late affected ones.

Table 10: TWFE - CLR impact after 2014 in municipalities
neighbor to already treated municipalities - Period: 2005-

2018
Deforestation
(1) (2) (3) 4)
Level (ha) Def. part (%) IHS def.  ZS Def.
CLR dummy 24.007* 0.102*** 0.179*** 0.222**
(13.207) (0.031) (0.069) (0.092)
CLRxPost2014 22.756 0.059* 0.141** 0.206**
(15.213) (0.035) (0.067) (0.096)
CLRxPost2014xNeighbor -17.139 -0.127** -0.054 -0.124
(33.323) (0.052) (0.092)  (0.108)
Ths(Nighttime lights) 32.848** 0.058** 0.100**  0.134***
(13.687) (0.023) (0.040) (0.047)
Agri. subventions 0.096 -0.002 0.020 0.042*
(1.800) (0.006) (0.019) (0.024)
Past drought shocks 49.973*** 0.067*** 0.078***  0.125%**
(13.423) (0.016) (0.021) (0.025)
Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Mean Y 108.570 0.354 3.419 -0.000
R?(within) 0.104 0.130 0.166 0.174

* p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses are clustered by
municipality. All regressions include municipality, year, and, state-year fixed effects. Units of
observation are municipality-years from 2005 to 2018.

Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data from
SIAP/SAGARPA, nighttime light data from Li et al. (2020), rainfall data from CHIRPS (Funk
et al., 2015).

It is also possible that the different time patterns for municipalities infected late versus early are
due to a better knowledge of the disease and its characteristics. Learning effects may thus explain that
producers in municipalities affected late respond sooner to the disease than those affected at the beginning

of the epidemic who may be more likely to wait and see. To test this, we estimate an augmented version

26Remember that a municipality is defined as affected by CLR if the coffee production z-score falls
below —1 for two consecutive years (¢ and ¢ + 1).
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of our baseline equation including interactions between the CLR binary indicator, the post-2014 period,
and a dummy equal to one for municipalities affected after 2014 and neighbors to a municipality affected

by CLR in 2012 or 2013. The variant of equation 2 that we estimate in this section formally writes:

Yy = BerLrCLR;; + BpostCLR;; X Post2014 + BposinCLR;; X Post2014 x Neighbor (4)
+ X[y 4 0 + P bt + €t

where Y;; represents deforestation in municipality ¢ and year t, X/,,d;, ¢1, %5 are same as in 2.
Post2014 is a binary variable equal to one for year 2014 and beyond. Neighbor equals one for mu-
nicipalities that are neighbors to at least one municipality affected by CLR in 2012 or 2013. We here
assume that learning effects, if any, should be stronger in municipalities that are not yet affected by
the disease but are neighbors to at least one municipality already affected. Under the assumption that
learning effects are at least partially channelled by neighbor effects, if the larger impact of CLR on
deforestation observed after 2014 is due to learning effects we expect to find more deforestation in late
affected municipalities neighbor to an already affected municipality than in late affected municipalities
surrounded by CLR-free municipalities, which means that we expect the Sp,s:n coefficient to be positive
and significant.

Results are reported in Table 10. Consistent with results shown in Table 8, we find that CLR has a
stronger impact on deforestation after 2014 in two or our four specifications (columns (3) and (4)), but
the coeflicient on the triple interaction between CLR, the Post2014 dummy and the Neighbor dummy
is always negative and not significant except in column (2). Overall, these results suggest that learning
effect transiting through neighbors are unlikely to explain the larger impact of CLR after 2014.

7 Conclusion

We analyze in this article the impact of the massive outbreak of coffee leaf rust (CLR) that hit Mexico
from 2012 on deforestation. We find that CLR increased deforestation in Mexico, but we find no evidence
of any significant change in agricultural areas. Further exploration suggests that deforestation increased
in particular in areas where there agriculture and forest overlap, that is in agroforestry systems. We
find heterogeneous effects of CLR, deforestation increasing more in municipalities with low coffee yields,
that signal the predominance of agroforestry cultivation systems, and in states with a still high share of
shade coffee, and in particular in Oaxaca. The Mexican government responded in 2014 to the spread
of the CLR with the PROCAFE program providing incentives to coffee farmers to adopt new varieties
resistant to the fungal disease. Those varieties differ from traditional ones with regard their cultivation
needs, and especially their tolerance to sun exposure. PROCAFE may have thus contributed to increase
deforestation in coffee shade cultivation systems. We exploit the late implementation of the program
and the comparison between coffee and non-coffee municipalities to try to disentangle the impact of
CLR from that of PROCAFE. Counsistent with qualitative or field evidence (Ruiz-de Onia et al., 2019;
Valencia et al., 2018), our findings suggest a drift from agroforestry practices and shade coffee production
towards monoculture plantations through the combined effect of a massive outbreak of a persistent fungal
disease and a short-term government response. While we are not able to measure the counterfactual
deforestation that would have resulted from the disease alone, our results suggest that the PROCAFE
program contributed to magnify the impact of CLR on deforestation and forest degradation by promoting

CLR-resistant hybrid coffee varieties. A rough calculation based on our main estimation results suggests
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that CLR and PROCAFE combined directly caused the deforestation of 42,000 hectares over 2012-2018,
which represents 2.7% of total deforestation in Mexico over the same period. Our findings emphasize the
particular vulnerability of agroforests to a negative and persistent agricultural shock, with both global
and local irreversible consequences in terms of biodiversity loss and ecosystem services, and reduced
resilience of households to future shocks. This study emphasizes the need to better account for long-
term consequences and environmental spillovers of agricultural programs, which involves the anticipation
of future crises such as the CLR epidemic whose frequency and severity is expected to increase due to

climate change.
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Appendix

Appendix A: Agriculture data, CLR variable and PROCAFE

Table 11: Sample composition

Observation number  Group share Treatment coverage

Non coffee municipalities 427 0.55

Never treated coffee municipalities 108 0.14

Treated since 2012 48 0.06 0.50
Treated since 2013 43 0.06 0.43
Treated since 2014 36 0.05 0.36
Treated since 2015 53 0.07 0.29
Treated since 2016 44 0.06 0.21
Treated since 2017 15 0.02 0.14
Treated since 2018 4 0.01 0.07

Notes: The table reports the number and share of municipalities first affected by CLR for each year since 2012,
and the treatment coverage which represents the percentage of time periods (years) each group is considered treated
over the whole estimation period (2005-2018).
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Figure 12: Evolution of normalised coffee yield & production of eventually treated group
by CLR start year
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Note: Outliers are excluded. The variables are normalised by using the pre-CLR average (2005-2011) and standard
deviation for 2005-2018.
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Table 12: Summary statistics - Comparison of eventually treated to control municipalities
- Yearly averages over 2005-2011 unless specified otherwise

(1) (2) T-test
Even. treated Control Difference
Variable Mean/SE Mean/SE (1)-(2)
Deforestation (ha) 113.157 85.076 28.080
(24.338) (11.974)
Def. part (%) 0.283 0.323 -0.040*
(0.017) (0.015)
Ths(Deforestation) 3.909 3.268 0.641%**
(0.105) (0.094)
Tree cover % in 2000 79.754 58.591 21.163%**
(0.844) (0.682)
Coffee area (ha) 2447.318 265.944 2181.374%%*
(221.719) (36.684)
Coffee production (tonnes) 4609.863 480.256 4129.608%**
(473.891) (67.814)
Nighttime light (raw) 4.456 4.397 0.059
(0.443) (0.233)
Agri. subventions 0.608 0.842 -0.234%**
(0.030) (0.027)
Past drought shocks 4.309 3.989 0.320%**
(0.104) (0.051)
Municipality area (ha) 36572.840 31710.467 4862.372
(5530.199) (2004.904)
N 243 535

Notes: Coffee production unit is green beans. Column (3) reports t-tests for the differences in the means across groups.
Standard errors are bootstrapped. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure 13: Total deforestation in Mexico, 2005-2018
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Note: Out of sample group includes all Mexican municipalities that are not included in our sample. Eventually treated
and control groups are the same as above.
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Figure 14: CLR spread in Mexico (2012-2018): treated and control municipalities
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Table 13: Differences between treatment and control group (cross-section OLS - Sample:
Coffee producing municipalities)

Treated probability (Eventually treated)

(1) (2) (3) (4) (5) (6) (7 (8) (9 (10)
All together
Ths(Area) 0.075%** -0.184
(0.020) (0.182)
Ihs(Tree cover in 2000) 0.082*** 0.349*
(0.021) (0.178)
Ihs(Tree cover % in 2000) 0.078
(0.136)
Ihs(Elevation) -0.003 0.016
(0.027) (0.038)
Ihs(Population) 0.075*** -0.053
(0.024) (0.057)
Ihs(Pop. density in 2010) -0.036
(0.031)
Ths(NTL) 0.002 0.150**
(0.037) (0.065)
Ihs(Precipitation) -0.074 -0.055
(0.089) (0.107)
Ths(Coffee suitability) 0.047 -0.009
(0.036) (0.046)
Observations 351 351 351 351 351 351 351 351 351 351
Treated units 243 243 243 243 243 243 243 243 243 243
Mean Y 0.692 0.692 0.692 0.692 0.692 0.692 0.692 0.692 0.692 0.692
Rz(within) 0.043 0.047 0.011 0.010 0.035 0.013 0.010 0.012 0.014 0.054

* p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses are clustered by municipality. All regressions include state fixed effects.
Units of observation are municipalities. Tree cover is from 2000. Population, nighttime light, precipitation data from 2010.
Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data from SIAP/SAGARPA, nighttime light data from Li et al.
(2020), rainfall data from CHIRPS (Funk et al., 2015), population from 2010 Mexican census, coffee suitability from FAO/GAEZ (Fischer et al.,
2021), elevation data from NASA (NASA JPL, 2020). Dependent variable is a binary variable indicating the eventually treated municipalities.
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Appendix B: Robustness tables

Table 14: TWFE - CLR impact on deforestation -
Period: 2005-2018

Deforestation
(1) (2) (3) (4)
Level (ha) Def. part (%) ITHS def. ZS Def.
CLR dummy 15.602 0.092*** 0.249***  0.294***
(18.831) (0.027) (0.051) (0.057)
Ihs(Nighttime lights) 7.589 0.040* 0.066 0.035
(10.168) (0.023) (0.049) (0.054)
Agri. subventions 1.930 -0.002 0.018 0.042*
(2.449) (0.005) (0.019) (0.024)
Past drought shocks 40.073*** 0.076*** 0.090*** 0.131%**
(11.192) (0.016) (0.023) (0.025)
Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Mean Y
R2(within) 0.153 0.147 0.194 0.207

* p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses are clus-
tered by municipality. All regressions include municipality, year, and, state-year
fixed effects. Units of observation are municipality-years from 2005 to 2018. We
interact 2005 population, tree cover in 2000, median elevation and coffee suitabil-
ity index variables (all inverse hyperbolic sine transformed) with year FEs.

Data sources: Deforestation data come from GFC (Hansen et al., 2013), agri-
cultural data from SIAP/SAGARPA, nighttime light data from Li et al. (2020),
rainfall data from CHIRPS (Funk et al., 2015), population from 2005 Mexican
intermediate census, coffee suitability from FAO/GAEZ (Fischer et al., 2021),
median elevation data from NASA (NASA JPL, 2020).
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Table 16: TWFE - CLR impact on deforestation (sample
with 1% as coffee producer threshold) - Period: 2005-2018

Deforestation
(1) 2 (3) (4)
Level (ha) Def. part (%) IHS def.  ZS Def.
CLR dummy 43.013*** 0.101*** 0.270***  0.335%**
(14.223) (0.026) (0.049)  (0.056)
Ths(Nighttime lights) 32.984** 0.058** 0.103** 0.137***
(13.747) (0.023) (0.040) (0.046)
Agri. subventions 0.191 -0.001 0.021 0.044*
(1.780) (0.005) (0.019) (0.024)
Past drought shocks 49.764*** 0.067*** 0.078***  0.124***
(13.392) (0.016) (0.021) (0.025)
Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Eventually treated 268 268 268 268
Mean Y 108.570 0.354 3.419 -0.000
R2(within) 0.104 0.128 0.166 0.173

* p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses are clustered by
municipality. All regressions include municipality, year, and, state-year fixed effects. Units
of observation are municipality-years from 2005 to 2018.

Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data
from SIAP/SAGARPA, nighttime light data from Li et al. (2020), rainfall data from
CHIRPS (Funk et al., 2015).

Table 17: TWFE - CLR impact on deforestation with CLR; = 1 if pro-
duction z-score < —1.5 in ¢ and t 4+ 1 - Period: 2005-2018

Deforestation
(1) ) 3) (4)
Level (ha) Def. part (%) IHS def.  ZS Def.
CLR dummy (< —1.5zscore in t and t + 1) 26.179 0.119*** 0.339***  0.396***
(16.702) (0.034) (0.060) (0.072)
Ths(Nighttime lights) 33.433** 0.057** 0.102**  0.136***
(13.784) (0.023) (0.040) (0.047)
Agri. subventions 0.691 -0.001 0.023 0.046*
(1.843) (0.005) (0.019) (0.024)
Past drought shocks 50.452%** 0.068*** 0.081***  0.129***
(13.477) (0.016) (0.021) (0.026)
Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Eventually treated 178 178 178 178
Mean Y 108.570 0.354 3.419 -0.000
R?(within) 0.102 0.128 0.166 0.173

* p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses are clustered by municipality. All regressions
include municipality, year, and, state-year fixed effects. Units of observation are municipality-years from 2005 to
2018.

Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data from SIAP/SAGARPA,
nighttime light data from Li et al. (2020), rainfall data from CHIRPS (Funk et al., 2015).
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Table 18: TWFE - CLR impact on deforestation
with CLR = 1 if production z-score < —0.5 in ¢t
and t 4+ 1 - Period: 2005-2018

Deforestation
1 @) 3) (4)
Level (ha) Def. part (%) THS def. ZS Def.
CLR dummy 26.737%* 0.090*** 0.266***  0.314%**
(13.065) (0.024) (0.048) (0.054)
Ihs(Nighttime lights) 33.007** 0.057** 0.100** 0.133***
(13.858) (0.023) (0.040) (0.047)
Agri. subventions 0.229 -0.002 0.019 0.042*
(1.814) (0.005) (0.019) (0.024)
Past drought shocks 50.055*** 0.067*** 0.078*** 0.124***
(13.480) (0.016) (0.021) (0.025)
Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Eventually treated 285 285 285 285
Mean Y 108.570 0.354 3.419 -0.000
R2(withi'n) 0.103 0.127 0.166 0.173

* p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses are clus-
tered by municipality. All regressions include municipality, year, and, state-year
fixed effects. Units of observation are municipality-years from 2005 to 2018.

Data sources: Deforestation data come from GFC (Hansen et al., 2013), agri-
cultural data from SIAP/SAGARPA, nighttime light data from Li et al. (2020),
rainfall data from CHIRPS (Funk et al., 2015).
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Table 21: TWFE - CLR impact on deforestation, control-
ling for lagged inflation-adjusted PROCAFE amounts per
coffee planted hectare - Period: 2005-2017

Deforestation
(1) @) 3) )

Level (ha) Def. part (%) IHS def.  ZS Def.
CLR dummy 27.728 0.112%** 0.279***  (0.348***
(18.633) (0.028) (0.052)  (0.060)
Ths(Nighttime lights) 27.061** 0.048** 0.076* 0.114**
(13.224) (0.020) (0.040) (0.045)
Agri. subventions 1.026 0.003 0.027 0.052**
(2.091) (0.004) (0.019) (0.025)
Past drought shocks 47.619*** 0.063*** 0.094***  0.140***
(13.808) (0.018) (0.023) (0.027)

Lagged PROCAFE -2.526 -0.004** 0.001 -0.007
(1.556) (0.002) (0.005)  (0.006)

Observations 10,114 10,114 10,114 10,114

Municipalities 778 778 778 778
Mean Y 104.394 0.338 3.375 -0.060
R?(within) 0.093 0.118 0.135 0.141

* p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses are clustered by
municipality. All regressions include municipality, year, and, state-year fixed effects. Units
of observation are municipality-years from 2005 to 2018.

Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data
from SIAP/SAGARPA, nighttime light data from Li et al. (2020), rainfall data from
CHIRPS (Funk et al., 2015).

Table 22: TWFE - CLR impact on deforestation by
production loss - Period: 2005-2018

Deforestation
&) @) 3) (4)
Level (ha) Def. part (%) IHS def. ZS Def.
CLRxPL 0.512** 0.002*** 0.005*** 0.006***
(0.255) (0.000) (0.001) (0.001)
Ihs(Nighttime lights) 33.248** 0.058™** 0.103** 0.136***
(13.834) (0.023) (0.041) (0.047)
Agri. subventions 0.340 -0.001 0.020 0.043*
(1.836) (0.005) (0.019) (0.024)
Past drought shocks 49.863*** 0.067*** 0.076*** 0.122%**
(13.510) (0.016) (0.021) (0.026)
Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Mean Y 108.570 0.354 3.419 -0.000
Median PL 50.726 50.726 50.726 50.726
R2(within) 0.103 0.127 0.165 0.173

T p<0.15 * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parenthe-
ses are clustered by municipality. All regressions include municipality, year, and,
state-year fixed effects. Units of observation are municipality-years from 2005 to

2018.

Data sources: Deforestation data come from GFC (Hansen et al., 2013), agri-
cultural data from SIAP/SAGARPA, nighttime light data from Li et al. (2020),
rainfall data from CHIRPS (Funk et al., 2015).
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Table 23: TWFE - CLR impact on deforestation
(weighted by municipality area) - Period: 2005-2018

Deforestation

(1) (2 (3) (4)
Level (ha)  Def. part (%) IHS def. ZS Def.

CLR dummy -37.352 0.125** 0.206** 0.301**
(162.126) (0.051) (0.080) (0.126)
Ihs(Nighttime lights) 172.148 0.021 0.079 0.124
(134.732) (0.038) (0.063)  (0.093)
Agri. subventions 43.709 0.017 0.046* 0.075*
(43.064) (0.015) (0.027) (0.041)
Past drought shocks 191.725%** 0.081*** 0.058**  0.127***
(68.331) (0.023) (0.026) (0.039)
Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Mean Y 610.202 0.505 5.402 0.000
R2(within) 0.279 0.221 0.250 0.258

5

p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses are clustered by
municipality. Observations are weighted by municipality area (ha). All regressions include
municipality, year, and, state-year fixed effects. Units of observation are municipality-years
from 2005 to 2018.

Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data
from SIAP/SAGARPA, nighttime light data from Li et al. (2020), rainfall data from
CHIRPS (Funk et al., 2015).

Appendix C: Sensitivity analysis

We here apply the method developed by Rambachan and Roth (2022) to assess the sensitivity of the
significance of our results to violations of the parallel trend assumption. We use results by Zaveri et al.
(2020) to interpret our graphs. They find that in developing countries one additional year with dry
anomalies within the past 10 years decreases forested areas by 0.1%. If we focus on the effect of CLR
one year after the shock for the inverse hyperbolic sine transformation of raw deforestation (Figure 17),
the confidence interval increases with the value of M and includes zero for a value of M above 0.03. This
means that our estimated coefficient remains significantly positive as long as the slope of the differential
trend between CLR-affected and control municipalities does not change from one period to the other by
more than the equivalent of one third of the impact of a drought over the past ten years. Note that
this equivalent in terms of drought shocks is used only as a reference point to assess the magnitude of
the violation of the parallel trends that is allowed for our results to remain significant. We control in
all specifications by past drought shocks so that those shocks are unlikely to generate different post-
treatment trends. Moreover, estimates by (Zaveri et al., 2020) are obtained over all developing countries
and thus, are not context specific.
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Table 25: TWFE - CLR impact on deforestation
(with Conley SEs) - Period: 2005-2018

Deforestation

(1) (2) (3) (4)
Level (ha) Def. part (%) IHS def. ZS Def.
CLR dummy 37.014%** 0.103*** 0.280*** 0.352%**
(11.888) (0.031) (0.066) (0.104)
Ths(Nighttime lights) 32.775%* 0.057** 0.101%* 0.133**
(12.895) (0.027) (0.052) (0.057)
Agri. subventions 0.184 -0.001 0.020 0.043**
(1.625) (0.006) (0.014) (0.017)
Past drought shocks 49.992%** 0.067*** 0.078%** 0.125%**
(16.819) (0.021) (0.022) (0.029)
Observations 10,892 10,892 10,892 10,892

Municipalities 778 778 778 778

*p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered using Conley
(1999) error with spatial correlation kernal cutoff of 200 km and serial correlation
kernal cutoff of 5 periods. We use reg2hdfespatial package (Fetzer, 2014) based on
ols_spatial_ HAC (Hsiang, 2010) command. All regressions include municipality,
year, and, state-year fixed effects. Units of observation are municipality-years
from 2005 to 2018.

Data sources: Deforestation data come from GFC (Hansen et al., 2013), agri-
cultural data from SIAP/SAGARPA, nighttime light data from Li et al. (2020),
rainfall data from CHIRPS (Funk et al., 2015).

Table 26: PROCAFE distributed in 2014 and 2015 im-
pact on treatment probabiltiy post-2015 (Sample: Coffee
producing municipalities without those treated pre-2016)

DV: Treatment probability post-2015

(1) (2)
Ths(PROCAFE) Median dummy

PROCAFE per ha distributed in 2014 & 2015 -0.080 -0.106
(0.060) (0.079)
Ths(NTL) -0.194 -0.189
(0.133) (0.133)
Agri. subventions 0.179 0.172
(0.152) (0.152)
Past drought shocks 0.012 0.014
(0.021) (0.021)
Observations 171 171
Treated units 63 63
Mean Y 0.368 0.368
R? 0.013 0.014

* p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses are clustered by
municipality. All regressions include state fixed effects. Units of observation are municipal-
ities. We present adjusted within R2.

Data sources: PROCAFE data come from SAGARPA (Secretariat of Agriculture and Ru-
ral Development). Agricultural data from SIAP/SAGARPA, nighttime light data from Li
et al. (2020), rainfall data from CHIRPS (Funk et al., 2015). Dependent variable is a binary
variable equals to 1 if municipality is treated after 2015.
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Table 27: Mean and median production (in tons) for treated municipalities by treatment timing
groups and for pre-treatment period

Obs. number Mean prod. Median prod. Mean prod. Median prod. Mean z-score prod. Median z-score prod.
(2005-2011) (2005-2011) (t,t41) (t,t41) (t,t41) (t,t41)
Treated since 2012 48 4952.09 2542.05 2731.12 1223.93 -1.36 -1.31
Treated since 2013 43 5619.37 1840.45 3007.05 1149.50 -1.42 -1.38
Treated since 2014 36 6673.36 2500.00 3893.35 1175.00 -1.52 -1.49
Treated since 2015 53 2230.11 840.00 959.87 368.48 -1.72 -1.75
Treated since 2016 44 3531.52 1747.22 1803.66 1006.16 -1.63 -1.60
Treated since 2017 15 6606.38 2278.00 4453.11 794.94 -1.63 -1.40
Treated since 2018 4 6986.03 7753.09 5389.50 5876.08 -2.11 -2.02

Notes: The table lists the mean and median coffee production and ZS production by the treatment timing groups.
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