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Abstract

Deforestation in the tropics is a critical issue that interacts with global environ-
mental changes, and the mediating role of negative agricultural shocks is ambigu-
ous. We investigate the impact of the massive epidemic of coffee leaf rust (CLR)
that affected Central America from 2012 on deforestation in Mexico. CLR is a
fungal disease that negatively affects coffee production. We exploit the gradual
and random diffusion of the epidemic across coffee-growing municipalities and esti-
mate a difference-in-difference model. We find that deforestation increased by 32%
in CLR-affected municipalities but we find no increase in agricultural land. Ef-
fects are driven by municipalities with low coffee yields, characterizing shade coffee
systems, and states where rustic coffee systems were predominant. These results
suggest that deforestation occurred within coffee cultivation areas and point out the
concurrent role of government subsidies and incentives through the PROCAFE pro-
gram, launched in 2014, that promoted the replacement of traditional coffee trees
by CLR-resistant hybrids. We study the dynamic effects of CLR and exploit the
delayed launch of PROCAFE to try to disentangle the impact of the epidemic from
that of the policy response. Our results emphasize the vulnerability of agroforestry
systems to exogenous shocks and suggest that PROCAFE, as a short-term response
to CLR, contributed to increasing deforestation and accelerating the transition of
Mexican traditional coffee landscapes to monoculture.
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1 Introduction

Forest preservation is rightly perceived as a key dimension to limit climate change, but the

role of forests, particularly in tropical areas, is not limited to carbon sequestration. The

2019 IPBES-IPCC assessment report on biodiversity (Brondizio et al., 2019) points out

the urgency to reduce its unprecedented decline before reaching the tipping point which

would have catastrophic consequences, particularly on the developing world. Tropical

forests support two-thirds of the world’s species (Bradshaw et al., 2009) and they are

constantly under pressure due to agricultural expansion and urbanization. Mexico is par-

ticularly concerned, since one of these tropical forest areas, the Mesoamerica biodiversity

hotspot, covering the Southern part of Mexico, Guatemala, and Honduras, lost 7% of

tree cover between 1992 and 2015 (Hu et al., 2021). Agricultural extension is by far the

main driver of deforestation in tropical and sub-tropical areas. In the 2000s, more than

90% of forest loss in Latin America is due to agriculture (Kissinger et al., 2012).

On the other hand, agriculture in those areas is increasingly vulnerable to shocks due

to the rise in temperatures and greater climate variability which are already visible conse-

quences of climate change. It is thus key to better understand the interrelations between

negative shocks and land conversion. The economic literature demonstrates that shocks

on agricultural yields affect land use, but their impacts on deforestation are ambiguous

as they are channeled by different mechanisms. For instance, a reduction of yields caused

by repeated droughts has been found to increase deforestation due to the expansion of

cropland to reach pre-shock production levels (Zaveri et al., 2020). But shocks may also

encourage off-farm work and enhance migration, thus lowering the pressure on forests

(Rodriguez-Solorzano, 2014). Repeated shocks, by signalling an increase in the risk as-

sociated with agricultural production may also reduce incentives for risk-averse farmers

to extend agricultural land (Desbureaux and Damania, 2018).

Our paper explores a rather undocumented issue in the literature - the mixed con-

sequences of both negative agricultural shocks and the short-term policy responses that

they generate, on deforestation. By shaping incentives, government policies may distort

household responses to an adverse shock and modify equilibrium outcomes. However,

the impact of a policy designed to cope with a negative shock is most often hard to

disentangle from the impact of the initial shock itself.

We investigate the impact of the recent outbreak of a fungal disease affecting coffee,

the coffee leaf rust (CLR), on deforestation in Mexico. This massive outbreak spread

gradually since 2012 in Central America and Mexico and caused severe decreases in

Arabica coffee yields. The severity of the epidemic can be related to favourable weather

conditions associated with climate change (Libert Amico et al., 2020), such as an increase
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in minimum temperatures (Avelino et al., 2015; Merle et al., 2020).

The Mexican government responded to this shock with a support program called

PROCAFE, which started in 2014. Part of the program was targeted at the replacement

of traditional coffee trees by CLR-resistant hybrids. While coffee in Mexico is tradition-

ally produced under shade trees in agroforestry systems, the hybrid Arabica varieties

promoted by the program are adapted to sunlight and do not need tree cover.

Although several environmental factors are believed to influence the intensity of the

disease, such as altitude, precipitation patterns, or temperatures, they interact in such a

complex manner that the local outbreaks of the CLR within Mexico from 2012 onwards

proved highly unpredictable (Avelino et al., 2015). We first exploit the quasi-random

nature of the CLR spread and intensity and provide estimates of the impact of the

epidemic on deforestation in Mexico in a difference-in-difference framework. Using de-

forestation data from Hansen et al. (2013), we find that deforestation increased by 32

percent in CLR-affected municipalities compared to municipalities that were not affected

by the disease. Focusing on land use, based on municipal level statistics provided by

the Mexican Ministry of Agriculture, we find that CLR had no significant impact on

pastures and non-coffee agricultural area and, if any, a small negative impact on coffee

area. Matching our dataset with land use data from the Mexican statistical institute,

we find that CLR increased deforestation in agricultural land. An heterogeneity analysis

reveals that CLR-induced deforestation increased more in municipalities with initially

low coffee yields. Taken together, these findings suggest that CLR-induced deforestation

cannot be explained by agricultural extension, but rather affects traditional coffee agro-

forestry systems, which invites us to question the role played by the PROCAFE program

launched in 2014. We take advantage of the late implementation of PROCAFE, to try to

disentangle the effects of CLR and PROCAFE on deforestation. We find that the impact

of CLR on deforestation was larger after 2014, and that deforestation increased to the

same extent in coffee municipalities whether affected or not by the disease compared to

non-coffee municipalities. An event-study analysis reveals that in municipalities affected

by the disease in 2012 and 2013, deforestation increased significantly only two to three

years after the outbreak, while deforestation jumped simultaneously with the CLR out-

break for municipalities that were affected by CLR after 2014. These convergent results

suggest that PROCAFE contributed to the observed increase in deforestation following

the CLR crisis in Mexico: by publicly advertising CLR-resistant hybrid varieties and

increasing their availability to coffee farmers most probably contributed to accelerate the

intensification of the coffee sector, at the expense of forest conservation and biodiversity.

Our study first relates to the literature that investigates the determinants of defor-

estation and the impact of diverse environment-oriented policy responses. The prevailing
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message that emerges from a review of recent studies in Latin or Central America is

the disappointingly weak efficiency of classic programs or legal instruments specifically

designed as a mean to preserve forests. Results are at best ambiguous, or dependent on

the local context, for example as regards property rights. Baragwanath and Bayi (2020)

find that property rights limit deforestation in the Brazilian Amazon, but Lipscomb and

Prabakaran (2020) find no overall impact of the Terra Legal property right reform in the

same geographic area. As regards payments for ecosystems services, Jayachandran (2013)

emphasizes the role of credit constraints that limit the effectiveness of such schemes pro-

viding periodic payments of limited amounts. Although promising, eco-certification does

not prove efficient in the case of Mexico, Blackman et al. (2018) finding no impact of the

Forest Stewardship Council (FSC) certification on deforestation. In the same context,

regulation, taking the form of timber extraction permits, has no significant impact on

national-level deforestation (Blackman and Villalobos, 2021). In a different context, the

success of a community management program in Nepal (Libois et al., 2021) contrasts

with previous findings and advocates for local rather than centralized response. The fact

that specifically designed tools fail to curb deforestation invites us to reconsider the prime

driver of deforestation, which is by far agriculture. We show in this paper that agricul-

tural shocks and policies interact to increase deforestation in a particularly vulnerable

agroforestry ecosystem.

In this specific context, the classical intensification vs extension tradeoff (Koch et al.,

2019; Abman and Carney, 2020) does not apply. Whereas the study by Koch et al. (2019),

focused on the Priority List program implemented in the Brazilian Amazon, suggests

that anti-deforestation programs are compatible with increased agricultural production

and yields through intensification, our results confirm that in agroforestry systems, in-

tensification leads to deforestation (Somarriba and López-Sampson, 2018). Our results

emphasize the need to account for diversity in forest environments. Rustic shade coffee

systems, although they represent a non-negligible environmental degradation compared

to native forests, perform much better than intensified plantations in preserving biodiver-

sity and ecosystems services (De Beenhouwer et al., 2013; Jha et al., 2014). Our findings

suggest that an agricultural crisis addressed with short-term oriented policy response may

hasten environmental degradation, that in turn, may prove detrimental to communities’

capacity to face future shocks. Indeed, as emphasized by Noack et al. (2019), biodiver-

sity and forests play a stabilizing role and contribute to limit income losses caused by

droughts.

Our work also relate to the debate on the environmental Kuznets curve Foster and

Rosenzweig (2003) and its recent developments uncovering the linkages between environ-

ment protection and poverty reduction. As illustrated in the case of Mexico by Alix-
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Garcia et al. (2015) and Alix-Garcia et al. (2013), or Heß et al. (2021) in Gambia, envi-

ronment preservation and poverty are two intertwined issues. Alix-Garcia et al. (2015)

show that a federal environmental program had positive effects on poverty reduction,

but proved more efficient in low poverty areas. Still in the case of Mexico, Alix-Garcia

et al. (2013) find that the large cash-transfer program, PROGRESA, aimed at allevi-

ating poverty, resulted in an increase in deforestation. Consistent with this literature,

our findings suggest that non-environmental programs may generate negative spillovers.

The PROCAFE program designed to help the coffee sector overcome the CLR crisis has

most probably directly contributed to increasing deforestation and indirectly resulted in

a greater vulnerability of coffee farmers and local communities to future shocks. These

results call for a global, preventive and long-term approach of negative agricultural shocks.

The paper is organized as follows. Section 2 introduces the characteristics of coffee

production in Mexico, presents the coffee leaf rust, and the main features of the PRO-

CAFE program. Section 3 describes the data and the estimation strategy. Section 4

presents estimates of the static and dynamic effects of CLR on deforestation. Section

5 investigates the channels through which CLR affects deforestation and intends to dis-

entangle the impact of CLR and PROCAFE by exploiting the late implementation of

PROCAFE. Finally, Section 6 concludes and discusses the implications of our findings

for policy design.

2 Coffee production and coffee leaf rust in Mexico

2.1 Characteristics of coffee production in Mexico

Historically, world coffee production is concentrated in three regions: Southeast Asia,

Africa, and Central and Latin America. The sector has been exposed to various crises

caused by pests and diseases, volatile prices, climate change, and institutional arrange-

ments (Rhiney et al., 2021), and has passed through landscape transformations (Jha

et al., 2014; Rhiney et al., 2021).

Central America accounts for 21% of global Arabica production Organization (2020),

and was known for high-quality beans and certified organic production before the 2012

CLR crisis. Mexico was the 9th largest producer in 2011, Mexican coffee production

accounting for 3.4% of world coffee production.

Coffee-growing landscape fall into two broad categories: shade-grown agroforests, and

open-sun systems. In rustic, high-density, traditional shade systems, coffee is cultivated

within the thinned native forest that covers most of the land. At the opposite end of the

spectrum, open-sun systems consist of coffee monoculture, or intensified production with
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very little or no shade trees. In between, low-density shade systems associate coffee to

other productive crops or activities (banana cultivation, timber activity) or service trees

that preserved or planted to provide shade to coffee plants. Traditional cultivation in

agroforests is associated with higher quality coffee and lower yields (Vaast et al., 2006;

Jezeer et al., 2017), is richer in terms of biodiversity and provide ecosystems services such

as carbon sequestration, pollination, and erosion control (Jha et al., 2014; Somarriba and

López-Sampson, 2018).

In most part of the world, open-sun coffee areas tend to grow at the expense of

shade coffee systems. In Latin America, between the 1970s and 1990s, nearly 50% of the

rustic canopy was converted to a low shade system (Jha et al., 2014), illustrating the

intensification of coffee cultivation and its transition towards monoculture.

In 2012, the Mexican coffee-growing landscape consisted of 80% of agroforestry (with

30% rustic and 50% low-diversity shade) and 20% of open-sun systems Jha et al. (2014).

The coffee sector provides livelihoods to three million individuals in ethnically diverse

regions of Southern Mexico, with a majority of smallholders and family production (92%

of producers cultivate less than 5 hectares of coffee) (Organization, 2020; Harvey et al.,

2021).

2.2 The 2012 coffee leaf rust epidemic

Coffee leaf rust (CLR) is a well-known disease in the coffee sector. Previous spreads

devastated the coffee industry in East Asia between 1870 and 1950 (McCook and Peterson,

2020). The disease particularly affected Ceylon since 1870 and forced 90% of the coffee

farmers to stop production and turn into other agricultural products (Rhiney et al., 2021).

After spreading to West Africa through the 1950s and 1960s, the CLR arrived in America

in the late 1960s but only in 2012 did a massive outbreak caused losses comparable to

those of the 1870s Ceylon outbreak (Rhiney et al., 2021).

The disease is caused by a fungus called Hemileia vastatrix. The development of

the fungus provokes defoliation and reduces the plant’s photosynthesis capacity (Avelino

et al., 2015), which negatively impacts production levels. CLR continues to alter coffee

production years after the initial infection by causing the death of productive branches.

In an experimental parcel in Costa Rica, Cerda et al. (2017) find a 57% reduction in

yields two years after the infection.

The pathogens are carried by wind, rain, animals, and humans. Weather conditions,

and in particular temperatures, are known to influence intensity of CLR outbreaks. More-

over, different coffee varieties naturally present heterogeneous resistance to CLR, Arabica

being more vulnerable than Robusta species. Central and Latin America, that are mostly

producing Arabica coffee are more at risk of an epidemic. However, until the 2012 epi-
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demic, the mountainous, high-altitude regions of Central America contributed to limit the

intensity of CLR (Avelino et al., 2015). Climate change plays an important role through

the increase in temperatures that favors fungal growth (Avelino et al., 2015; Merle et al.,

2020), and global warming contributes to explaining that previously intact high-altitude

regions were affected by the 2012 outbreak.1 Unlike temperatures, precipitations have an

ambiguous impact on CLR. The disease seems to be favored by wetness but is washed-off

by intense rainfall (Merle et al., 2020; Lasso et al., 2020). The timing of precipitations

also matters, as suggested by Avelino et al. (2015) who observe positive early rainfall

anomalies before the CLR epidemic in Guatemala, Honduras, and Nicaragua.

In addition, weather-related factors interact in complex ways with other environmental

characteristics such as altitude or shade to explain local variations in CLR intensity

(Liebig et al., 2019). The protecting or aggravating effect of shade trees is controversial:

(Liebig et al., 2019) observe a lower CLR intensity in high shade plots but only for farms in

higher altitudes, while (Avelino et al., 2020) find that shade reduces the washing capacity

of rain, thus increasing the propagation of CLR. By contrast, Castillo et al. (2020) mention

that shade could have a protective effect by lowering the level of physiological stress of

coffee plants, and Avelino and Anzueto (2020) advocate shade management as one of the

three pillars of strategies aimed at limiting the risk of resistance breakdown of hybrids.

Finally, economic factors play an important role in the 2012 CLR outbreak, since

plants’ vulnerability to diseases depends also partly on farmers’ management capacity

and resources. The pre-CLR years coincide with low international coffee prices and

increasing input costs in Central America (Avelino et al., 2015). In the case of Nicaragua,

Villarreyna et al. (2020) find that farmers, anticipating low or no profit reduced their

production costs by reducing the level of inputs such as fertilisers and fungicides or labor

intensive activities like pruning and monitoring. Furthermore, the low profitability of the

coffee sector delayed the replacement of old coffee trees, more vulnerable to CLR (Avelino

et al., 2015).

2.3 The PROCAFE program

The Mexican ministry of agriculture first responded to the CLR crisis in 2013 by promot-

ing the use of new fungicides to contain the disease. However, this new fungicide proved

poorly efficient and was soon abandoned (Renard Hubert and Larroa Torres, 2017).

The PROCAFE program launched in 2014 illustrated a change of direction in the

1Avelino et al. (2015) reports that before the 2012 epidemic, it was rare to observe high-intensity
CLR infection above 1100 meters. However, due to increasing temperatures, the CLR started to cause
equivalent damages in a 400-1400 meters altitude range in the Guatemalan landscape, generating yields
losses up to 1800 meters.
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government response to the CLR crisis. All coffee producers, either affected by CLR

or not, were eligible for the program and we indeed observe in our data that virtually

all coffee-producing municipalities received PROCAFE transfers. PROCAFE promoted

the replacement of traditional coffee varieties by CLR-resistant hybrids as a means to

combat CLR. Although the program was readjusted several times from 2014 to 2017, its

main line remained unchanged. The program comprises of several packages with different

beneficiaries (individual farmers, cooperatives, or hybrid producers). In the first two years

of the program, direct transfers were made to individuals farmers, while after 2015, most

funds were paid out to cooperatives. In addition, PROCAFE subsidized hybrid plant

producers (nurseries).

The development of CLR-resistant cultivars dates back to the 1960s. CLR-resistant

hybrids available on the market in the 2010s are derived from the Catimor variety that is

an hybrid of Robusta and Arabica, Robusta varieties being naturally resistant to CLR.

One key feature is that hybrids, similar in that to Robusta, need more sun than Arabica

varieties. Concerns about the lower cup quality and poor productivity of CLR-resistant

hybrids are mentioned in the literature (Renard Hubert and Larroa Torres, 2017). The

demand for CLR-resistant hybrids increased sharply after the 2012 outbreak and their

being promoted by public-private agencies (Valencia et al., 2018; Henderson, 2020; Lib-

ert Amico et al., 2020).

The replacement of traditional Arabica by hybrids as a relevant strategy to fight

CLR is questioned by phytopathologists, since the fungus responsible for the CLR has

a high evolutionary potential and has already broken down the resistance of deemed

CLR-resistant hybrid varieties (Avelino and Anzueto, 2020).

2.4 Measuring CLR diffusion

For lack of epidemiologic information about the diffusion of CLR, we infer the spread of

CLR from observed variations in coffee production in a similar vein as Banerjee et al.

(2010) who use wine production data to proxy for the dissemination of phylloxera in

French vineyards. We gather agricultural production statistics from SIAP (Servicio de

Información Agroalimentaria y Pesquera), a sub-government unit connected to the Agri-

culture Ministry of Mexico (SIAP, 2019). SIAP data contain municipality level informa-

tion on agricultural production (in tonnes), and planted and harvested areas (in hectares)

for 307 products, including coffee, over 2003-2018.2 We focus our analysis on the six

largest coffee-producing states from Southern Mexico (Chiapas, Veracruz de Ignacio de

la Llave, Oaxaca, Puebla, Guerrero, and Hidalgo), that represented more than 94% of

2Due to misreporting errors detected for year 2004, we choose to limit our analysis to 2005-2020,
however our results are robust to the inclusion of 2003 and 2004 in the pre-epidemic period.
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Mexican coffee production in 2011.

More specifically, we use coffee production data series available at municipality level

to detect abnormal drops in production that signal a local outbreak of CLR. We restrict

the pool of municipalities potentially affected by CLR to those where sown coffee area

represents at least 5% of agricultural area.3 In Mexico, CLR started to spread during

the 2012-2013 coffee season and caused significant production losses (Avelino et al., 2015;

Avelino and Anzueto, 2020). In Mexico, the coffee harvest period goes from October to

May. In what follows, for simplification purpose, year 2012 will refer to coffee harvest

season 2012-2013, and so on. In order to identify affected municipalities, we compare

production in 2012 and after to pre-CLR production level, accounting for the natural

variability in coffee production that cannot be attributed to CLR. Municipality i is defined

as affected by CLR in year t if there is a reduction of coffee production greater or equal

to one z-score in both year t and year t + 1. 4 Production z-scores are computed using

the mean and standard deviation of municipality level coffee production in the pre-CLR

period (2005-2011). Conditioning the definition of affected municipalities on two years of

production reduction limits the probability to capture temporary shocks other than CLR,

and is consistent with the documented impact of CLR on production, with secondary

losses in years following the outbreak due to weakened plants (Cerda et al., 2017; Avelino

and Anzueto, 2020).

Note however that CLR is perfectly observable to coffee farmers, due to the character-

istic rusty spots that appear on affected leaves, which justifies that we date the beginning

of the local outbreak to t and not t + 1. Evidence suggests that once established, the

disease remains. As a consequence, municipalities defined as affected in year t remain

affected until the end of the observation period (2018). Our treatment variable is thus

a dummy equal to one from the year municipality i is first affected by CLR. Note that

we obtain very similar findings when using yields instead of production. Yields are con-

structed as production divided by coffee planted area. Given that the two series are very

similar, we choose to constructed our CLR measure based on production in our main

specification to avoid multiplying potential misreporting errors.

We acknowledge that using a statistical method to detect CLR affected areas may

introduce noise in our treatment variable, and that it should ideally be corroborated by

field reports indicating the local prevalence of CLR. However, such data are not available

for Mexico. One particular concern raised by the method that we use is that we may fail

3This threshold being arbitrarily set to avoid capturing anecdotal or very isolated coffee zones, we
test the robustness of our results to an alternative threshold set at 1%. All results are unchanged (see
Table 14 in the Appendix).

4In alternative specifications, we choose an alternative cutoff point (1.5 zscore) and obtain consistent
results (see Table 15 in the Appendix and Section 5.3.3 for further discussion).
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to detect areas with low CLR intensity. We discuss this point below, when comparing

treated municipalities to non-treated coffee municipalities, and show that our results are

robust to choosing a less restrictive threshold in the definition of our CLR indicator (see

Section 6 and Appendix Table 16.

Figure 1 plots the average evolution of coffee production and yields in municipalities

affected by the CLR depending on the time since CLR is detected in the municipality

(based on the methodology exposed above). We observe a sharp decline in both series

in the first year of the epidemic that amounts to about 35% for production.5 As an

illustration of the persistence of the disease once installed, production and yields remained

low until the end of the observation period. Consistent with this graph, Figure 12, in the

Appendix, shows that the normalized production and yields follow the same pattern.

Figure 1: Evolution of average coffee yield and production in eventually treated group
by CLR start year

Note: The eventually treated group consists of 243 municipalities affected by CLR between
2012-2018.

5This figure is consistent with production losses reported by Avelino et al. (2015) for Colombia (31%)
affected in 2008-2011 by the same epidemic.
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To further validate our measure of CLR, we estimate the following equation:

Yit = β0CLRit + δi + φt + ψst + εit (1)

where Yit represents the inverse hyperbolic sine transformation of coffee production (in

tonnes of green beans), coffee planted area (in hectares), and coffee yields (in tonnes per

hectare). CLRit is a binary variable, the construction of which is described above. CLRit

is equal to one from year t to the end of the period if municipality i is first affected by

CLR in t (t ≥ 2012). δi, φt, and ψst are municipality, year, and state-year fixed-effects

respectively. We estimate equation 1 with OLS. Results are reported in Table 1 for two

different samples: first on the sample that includes all municipalities from the six major

coffee producing states (Panel A), then for the subsample of 351 municipalities where

coffee planted area represents at least 5% of total agricultural area (Panel B). We find

that CLR is associated with a 53% decrease in coffee production (column 1, panel A)

in the total sample and a 56% decrease in coffee municipalities (column 1, panel B), a

31% decrease in yields (column 3) and a 18% decrease in coffee planted area (column 2).6

Columns 4 to 7 additionally report regression results for production and agricultural area

for seven major perennial crops other than coffee and four major annual crops7. Columns

8 and 9 report results for total agricultural production and area excluding coffee and

pastures, the latter being separately analyzed in column 10. Results from columns 4

to 10 suggest that CLR-induced coffee production losses were not offset by concurrent

increases in the production of other crops.

6Dependent variables are inverse hyperbolic sine transformation of raw variables. To interpret coef-
ficients on the CLR dummy as the percentage change in the dependent variable due to a discrete change
in the CLR dummy we need to apply to following formula 100(exp(β̂) − 1) (Bellemare and Wichman,
2020).

7Those seven major perennial crops and four annual crops represent 63% of total agricultural pro-
duction (excluding coffee) and 83% of agricultural area in municipalities from the total sample
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3 Data and descriptive statistics

3.1 Deforestation data

We measure deforestation using satellite-derived data from the Global Forest Change

(GFC) project (Hansen et al., 2013). Data are available at a 30 × 30 meters resolution

at the equator. For each pixel we know the tree cover in percentage in 2000 and, for

each year starting from 2001, whether the pixel has been totally deforested. Trees in the

GFC data correspond to any vegetation taller than five meters.8 Therefore crops such

as bananas and palm oil are defined as trees. Note that cultivated coffee plants do not

exceed five meters. As a consequence, open-sun coffee fields will not be detected as forest.

By contrast, agroforestry systems where coffee is cultivated under the shade of taller trees

are defined as forest in the GFC data. Therefore, the complete removal of shade trees in

agroforest would be detected as deforestation. In order to exclude low shade cultivation

systems from our forest definition, we choose to focus on medium and high forest density

and count the deforestation that occurred in pixels with at least 30% of tree cover in 2000

when calculating deforestation per municipality.9

The GFC dataset has been frequently used in the literature to produce different

measures of deforestation. Raw deforestation (in hectares) is obtained by calculating

deforested area from the number of deforested pixels within given boundaries - munici-

palities in our setting. However, authors commonly use a functional transformation of the

variable, or divide deforested area by tree cover area at origin due to the skewness of the

raw deforestation variable (Abman and Carney, 2020; Desbureaux and Damania, 2018;

Heß et al., 2021). Other studies choose to focus on normalised deforestation variables

(Assunção et al., 2020). Since they all are equally relevant and provide complementary

information, we choose to use four municipality-level alternative measures of deforesta-

tion: raw deforestation (in hectares), the inverse hyperbolic sine transformation of raw

deforestation, normalised deforestation defined as a z-score, and deforested area out of

total forest area in 2000.

One limitation of the GFC data is that it does do not detect the partial deforestation

of a pixel. In order to be able to assess the impact of CLR at a finer scale, we use the

Global Forest Cover Change (GFCC) dataset (Townshend, 2016). Similar to the GFC

data in terms of spatial resolution and tree definition, the GFCC data provide information

on the percentage of tree cover of a pixel every five years (in 2000, 2005, 2010, and 2015).

We use GFCC to compute tree cover at the municipality level by aggregation of pixel-

8https://glad.earthengine.app/view/global-forest-change
9We show in Table 17 that our results are robust to including pixels with different shares of tree

cover - ranging from 10% to 90%.
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level information. In this second approach, we do not exclude pixel below a specific tree

cover threshold as we want to capture total tree cover dynamics.

Finally, we complement our analysis by using EC JRC data on forest degradation

(Vancutsem et al., 2021).10 This dataset specifically documents forest degradation in

tropical moist forests using satellite imagery and provides high-resolution (pixel size of

30 × 30 meters) annual data. Compared to GFC data, forest degradation data are able to

capture short-term disturbances and reflect the evolution of forest cover more accurately

than GFC in the case of tropical moist forests. Additional results on tree cover change

based on GFCC data and forest degradation are reported in Section 5.3 Table 3.

3.2 Sample description

In the subsequent analysis we exploit the diffusion of CLR across Mexican municipalities

over time to estimate its impact on deforestation in a staggered difference in differences

design. Our estimation sample consists of 778 municipalities from the top six coffee

producing states with at least 30% of forest cover in 2000. This threshold is arbitrary but

we further check that our main results are robust to different sample definitions, ie to

including municipalities with a share of forest cover varying from 10 to 50% (see Table 18

in the Appendix). Among those 778 municipalities, 243 are coffee growing municipalities

(ie coffee area represents at least 5% of municipality agricultural area) that are eventually

affected by CLR between 2012 and 2018, 427 are municipalities where coffee production

is null or marginal (less than 5% of municipality agricultural area) and that we consider

as being unaffected by CLR, and 108 are coffee growing municipalities (more than 5%

of municipality agricultural area) that were not affected by CLR over the observation

period. Note that within this group, some municipalities may indeed be affected by CLR

but undetected by our statistical method used to retrace ex-post the diffusion of the

disease. We discuss potential biases introduced in our results by this group of potentially

affected municipalities in Section 5.3.3 and provide additional robustness checks.

Appendix Table 12 compares eventually treated and control municipalities over the

pre-epidemic period (2005-2011). Municipalities affected by CLR have on average a

greater initial forest cover, receive lower amounts of PROCAMPO, and are affected by a

larger number of drought shocks. In terms of past deforestation averaged over 2005-2011,

the picture is less clear since different indicators yield opposite results.

Figure 2 represents deforestation trends for municipalities eventually affected by CLR

over the 2012-2018 period (blue line), and control municipalities broken into two sub-

10Forest degradation is defined as “a disturbance in the tree cover canopy that is visible from space
over a short time period (less than 2.5 years), leading to a loss of biodiversity and/or carbon storage”
(Vancutsem et al., 2021)
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groups (municipalities without significant coffee production - orange line - and coffee

municipalities for which we did not detect any CLR outbreak over 2012-2018 - green

line). Descriptive analysis suggests that deforestation trends in treated and control mu-

nicipalities were very similar before the CLR epidemic first outburst in Mexico in 2012

although the level of deforestation seems higher in treated municipalities. Notably, de-

forestation steeply increases in the treated group in 2013 and again in 2016, widening

the gap between treated and control municipalities. Note however that deforestation

also increases in 2016 in coffee municipalities that were not affected by CLR. This may

suggest that either CLR is present in those municipalities but its incidence is below our

detection levels, or that factors other than CLR and common to all coffee municipalities

influence deforestation at the end of the period. We further explore these two possibilities

in Section 6.3.

Figure 2: Deforestation in eventually-treated and control groups, 2005-2018

Note: Control group includes both non-coffee municipalities and coffee municipalities not affected by CLR. This graph presents separately these
two sub-groups. The eventually-treated group includes municipalities that experienced an outbreak of CLR between 2012 and 2018.

Appendix Figure 13 compares total deforestation in out of sample Mexican municipal-

ities to deforestation in control and treated municipalities. Note that as specified above

deforestation is defined based on deforested pixels with at least 30% of tree cover in 2000.

Yearly deforestation in out-of sample municipalities is about 125,000 hectares over the
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whole period, and deforestation in our sample (control plus treated) represents roughly

the same area than in all other Mexican municipalities at the end of the period. This

may seem disproportionate, but obviously, given the specific soil and weather conditions

suited to coffee cultivation, our sample comprises areas with a higher density of forests

than other parts of the country.

Our main estimation strategy exploits the unpredictable diffusion of the CLR epidemic

from 2012 to 2018. One major difference with the diffusion of phylloxera in France

documented by Banerjee et al. (2010) is that phylloxera is an insect that spread from

southern regions to the rest of the country, while CLR was already present in Central

America as early as in the 1970s, but its evolution was contained and its consequences

mostly unnoticed before the 2012-2013 outbreak. 11 The immediate causes of the massive

epidemic that reached Mexico in 2012-2013 are thoroughly discussed in Avelino et al.

(2015) and mentioned in Section 2.2 above. The fact that the fungus was already dormant

throughout all coffee areas in Southern Mexico explains the erratic geographical pattern

of local outbreaks of CLR from 2012 onwards. This quasi-random diffusion of the disease

is illustrated on a map in Figure 14, in the Appendix.

3.3 Additional data sources and variables

We use additional municipality-level information to control for time-varying character-

istics of municipalities that may be correlated with deforestation. First, local economic

development, urbanization and demographic trends are likely to affect deforestation. We

use nighttime lights data series from Li et al. (2020) as a proxy for municipality-year

level economic activity (Henderson et al., 2012; Bruederle and Hodler, 2018) for lack of

yearly information on municipality-level GDP or population. Nighttime light data cap-

ture the radiance of city lights at night with a spatial resolution of 30 arc second (which

is approximately equal to 0.86 square km (86 hectares) at the equator). We construct a

municipality-level measure of nighttime lights by aggregating relevant pixels and use the

inverse hyperbolic sine transformation of municipality-level nighttime light intensity to

take into account zero values.

Second, weather shocks are expected to directly impact agricultural prospects and

may consequently also affect deforestation. We use satellite-derived yearly precipitation

data from the CHIRPS project (Funk et al., 2015), available at a spatial resolution of

0.05 degrees. We calculate yearly precipitation for each municipality from 1981 to 2000.

11Avelino et al. (2015) explain that chemicals and high altitude contributed to limit the intensity of
the disease before the recent outbreak. Production losses occurring due to previous CLR epidemics could
be confounded with the natural alternation of good and bad harvests, due to the biennial production
pattern of coffee trees.
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We then normalise precipitations by calculating deviations to municipality-level average

precipitations over 1981-2012 divided by the municipality-level standard deviation of

precipitations over the same period. To account for the impact of weather shocks on

land use decisions and deforestation, we compute for each municipality the cumulative

number of drought shocks (defined as the number of years characterized by normalized

precipitations below −1).

Third, we use data on agricultural subsidies provided by the Mexican government

through the PROCAMPO program (renamed PROAGRO Productive in 2014). PRO-

CAMPO is the largest Mexican cash transfer program related to agriculture and was

launched in 1994 to compensate possible negative impacts of the North American Free

Trade Agreement (NAFTA) on agricultural producers (Sadoulet et al., 2001). Funds are

allocated to plots conditional on their being sown prior to August 1993 to one of a close

list of nine crops.12 Therefore the program does not cover all actually cultivated lands:

in 2009, only 62% of agricultural areas in Mexico was eligible to the program (Gonzalez

et al., 2017). Data on PROCAMPO/PROAGRO come from the Mexican Ministry of

agriculture (SADER, formerly SAGARPA). We adjust raw amounts to account for in-

flation and divide them by total agricultural area in each municipality. Although we do

not expect a priori any direct effect of PROCAMPO/PROAGRO subsidies on deforesta-

tion, funds received by farmers may be used to extend agricultural land or, conversely,

to intensify existing agricultural areas (Klepeis and Vance, 2003; Vance and Geoghegan,

2002).

Finally, we use data on the PROCAFE program coming from the Mexican Ministry

of agriculture (SADER, formerly SAGARPA). The data contain information on transfers

made to either individual beneficiaries or cooperatives from the launch of the program

in 2014 to 2017. For years 2014, 2015, and 2016, the municipality of each beneficiary is

provided in the dataset, whereas for 2017 we only know the state of beneficiaries. We

use PROCAFE amounts per coffee sown area as an additional municipality-level control

in an alternative specification (see Appendix Table 19)

4 Empirical Strategy

4.1 Impact of CLR on deforestation

In order to estimate the causal impact of CLR on deforestation, we first want to as-

sess whether deforestation increased (or decreased) in municipalities affected by CLR

compared to non-affected municipalities.

12Eligible crops are: corn, beans, rice, wheat, sorghum, barley, soybeans, cotton, and safflower.
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We first estimate the following base equation:

Yit = βCLRit +X ′itγ + δi + φt + ψst + εit (2)

where Yit represents deforestation in municipality i and year t. We use four alter-

native measures of deforestation: raw deforestation in hectares, deforestation as a share

of municipality-level forest area in 2000, the inverse hyperbolic sine transformation of

raw deforestation, and normalised deforestation, computed as a z-score.13 As described

above in Section 2.4, CLRit is a binary variable equal to 1 in municipality i if an out-

break of CLR has been detected in year τ ≤ t.14 Xit is a set of municipality level

time-varying controls including the inverse hyperbolic sine transformation of the indica-

tor of nighttime lights provided (Li et al., 2020) that proxies for growth and urbanization

trends, the cumulative number of drought shock in municipality i up to year t, and the

inflation-adjusted amount of agricultural subsidies received per hectare of agricultural

area. Amounts directly received by coffee producers to compensate production losses due

to CLR (PROCAFE program) are not included in our main estimations since they are

likely to be endogenously determined by CLR. We however re-estimate our main equation

adding the municipality level lagged inflation-adjusted amount of PROCAFE per coffee

planted hectare and find very similar results (see Table 2 in the Appendix).15 δi are

municipality fixed effects that control for time invariant characteristics of municipalities

that may be correlated with deforestation, φt are year fixed-effects that capture time

shocks common to all municipalities, and ψts are state-year fixed effects that control for

state-specific time trends. εit is the error term. Standard errors are clustered at the

municipality level to allow for correlation of errors over time within municipalities.16 In

this regression, the estimated β parameter represents the average yearly impact of CLR

on deforestation during the whole period of exposure to the disease.

Second, we estimate the dynamic effects of CLR on deforestation. We run an event-

study regression and estimate the following equation:

Yit = β−6CLRi,τ≤−6 +

τ≤6∑
τ=−5

βτCLRiτ +X ′itγ + δi + φt + ψst + εit (3)

13Deforestation z-score for municipality i and year t is raw deforestation in municipality i and year t
minus yearly average deforestation in municipality i over the whole observation period, divided by the
standard deviation of deforestation in i over the whole period.

14Banerjee et al. (2010) use in their main specification a measure of the intensity of the disease defined
as the production loss in affected municipalities, compared to the pre-phylloxera period. We replicate
our estimation with this continuous measure and find consistent results (see Appendix Table 20).

15Note that the estimation period is different since our PROCAFE data do not extend beyond 2016.
16Results are robust to clustering standard errors at the state level (6 states in our main estimation

sample), as shown in Table 21 in the Appendix.
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where Yit represents deforestation in municipality i and year t, CLRiτ is the same binary

variable for CLR as in the previous equation which equals one for any period τ contem-

poraneous or subsequent to the first outbreak of CLR in municipality i. τ indicates the

relative year to CLR outbreak, which varies from −13 to 6.17 The omitted period is

τ = −1. Xit represents the same set of time varying controls as in equation 2. δi, φt,

and ψst are respectively municipality, year, and state-year fixed effects. εit is the error

term and standard errors are clustered at the municipality level. The βτ coefficients of

interest represent the average change in deforestation between time τ and the previous

year relative to the change in deforestation over the same time period for unaffected mu-

nicipalities. β−6 to β−2 represent non parametric deforestation trends prior to the CLR

outbreak.

Our setting differs from the canonical DID model developed for two time periods

and two groups (treatment and control), and we need to take into account the staggered

nature of exposure to CLR which is described in Section 2.4 and is illustrated in Map

14 in the Appendix. We observe municipalities over 14 time periods (years), and we

have substantial variation in treatment timing, since the first municipalities to be hit by

CLR were affected in 2012, and the last ones in 2018. Table 11 in Appendix reports

the number of observation in each treatment group (depending on the year of the CLR

outbreak). The implicit assumption of constant treatment effect between groups and over

time in classic two-way fixed-effects estimators is unlikely to hold in this setting, and two-

way fixed-effects estimation may be biased (see Roth et al. (2022) and de Chaisemartin

and D’Haultfoeuille (2022) for a review). The latest contributions in the DID literature

point out the pitfalls in classic two-way fixed-effects estimators when the treatment is

staggered and/or when the treatment effect is heterogeneous (Callaway and Sant’Anna,

2021; De Chaisemartin and d’Haultfoeuille, 2020; Goodman-Bacon, 2021; Gardner, 2021;

Sun and Abraham, 2021a; Borusyak et al., 2021; Athey and Imbens, 2022). To account for

potential heterogeneous treatment issues in our setting, we use the estimators developed

by De Chaisemartin and d’Haultfoeuille (2020) and Callaway and Sant’Anna (2021) as

alternatives to the basic two-way-fixed-effects estimator.

4.2 Identification issues

The identification of a causal effect in a DID setup relies on two key assumptions: the

existence of parallel trends for the outcome variable between treated and control observa-

tions, and the absence of anticipation of the treatment. Adapted to our setting, the first

assumption implies that deforestation trends would have been similar in municipalities

17Due to the limited number of observations, time periods from −13 to −6 are grouped in a single
category.
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affected by CLR and those that were not affected if the epidemic had not broken out.

The second assumption means that not-yet-affected municipalities did not anticipate the

diffusion of the disease.

We discuss in this section the limits of those two assumptions in our setting and

potential estimation biases that may result. First, the parallel trends assumption cannot

be tested directly for lack of counterfactual data, but it is more credible if treated and

control units are as similar as possible in terms of observable characteristics before the

treatment. In our main analysis we only condition the inclusion of municipalities in

the control sample on a minimum of 30% of forest cover in 2000. As shown above in

Table 12, treated and control municipalities meaningfully differ over the pre-treatment

period (2005-2011) as regards some of their observable characteristics. Even though

graphical evidence presented by Figures 3 to 6 suggest that pre-treatment deforestation

trends are parallel in the eventually treated and control groups, differences in observed

pre-treatment characteristics may cast doubt on their counterfactual parallel time path in

the absence of CLR. We implement two robustness tests to manage this issue: first, we use

the synthetic control approach adapted to staggered treatment developed by Ben-Michael

et al. (2021), second, we use a propensity score matching approach. Results are reported

in Section 5.3.1 and 5.3.2 and are consistent with our main results. However, traditional

tests of parallel trends are criticized in the recent literature (see Sun and Abraham (2021b)

or Roth (2019)) for their lack of power and failure to detect even large violations in the

assumption of parallel pre-treatment trends. We follow the recommendations of Roth

(2019) and Rambachan and Roth (2022) and provide a sensitivity analysis of our main

results to violations of the parallel trend assumptions (see Appendix C).

The second assumption implies that the diffusion of CLR was not anticipated. Again,

the assumption cannot be tested directly. According to phytopathologists, the initial

outbreak of 2012 was highly unexpected (Avelino et al., 2015), however, it is possible

that in the subsequent years agents living in municipalities where we do not detect the

presence of CLR adapt their behavior in anticipation and deforest more. We propose

in Section 6.3.2 an indirect test of this anticipation effect based on the assumption that

anticipation effects or learning effects may be larger in municipalities that are not yet

affected by the disease and are neighbours of a municipality that was affected in the first

two years of the epidemic. Results reported in Table 10 suggest that deforestation is

similar in late treated municipalities, whether or not one of their neighbours was affected

by the disease in 2012 or 2013. Although we cannot rule out the possibility that the

diffusion of CLR was anticipated in the years following the initial unexpected outbreak,

two remarks limit the scope of the problem. First, if CLR-free municipalities anticipate

the treatment, this implies that deforestation will increase also in control municipalities,
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and that our estimates will be downward biased. Our results will thus tend to under-

estimate the impact of CLR rather than the opposite. Second, CLR is a disease that

affects only coffee, so that non-coffee municipalities included in the control sample cannot

be treated. Reassuringly, we find very similar results when restricting our control group

to non-coffee municipalities (see Appendix Table 13 and Section 5.3.3).

5 Results

5.1 CLR and deforestation

Estimation results of equation 2 are presented in Table 2. The coefficient on the CLR

binary variable is positive and significant in all specifications. The average yearly increase

in deforestation in CLR affected municipalities is 37 hectares (column 1), which represents

roughly 15% of the average yearly deforestation in 2016-2018 observed in municipalities

included in the treatment group (see Appendix Figure 13. According to column (2), in

CLR affected municipalities, annual deforestation as a share of the initial stock of forest is

0.10 percentage point higher. Results reported in column (3) indicate that deforestation

increased by about 32%18. Finally, column (4) suggests that deforestation z-score is 0.35

points larger in municipalities affected by the disease than in control municipalities.

18Since the dependent variable in column 3 is the inverse hyperbolic sine transformation of the raw
deforestation variable, the percentage change in the dependent variable due to a discrete change in the
CLR dummy is approximated by 100(exp(0.280)− 1) = 32, 313 (Bellemare and Wichman, 2020)
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Table 2: TWFE - CLR impact on deforestation - Period:
2005-2018

Deforestation

(1) (2) (3) (4)
Level (ha) Def. part (%) IHS def. ZS Def.

CLR dummy 37.014∗∗ 0.103∗∗∗ 0.280∗∗∗ 0.352∗∗∗

(14.887) (0.027) (0.051) (0.059)

Ihs(Nighttime lights) 32.775∗∗ 0.057∗∗ 0.101∗∗ 0.133∗∗∗

(13.806) (0.023) (0.040) (0.047)

Agri. subventions 0.184 -0.001 0.020 0.043∗

(1.806) (0.005) (0.019) (0.024)

Past drought shocks 49.992∗∗∗ 0.067∗∗∗ 0.078∗∗∗ 0.125∗∗∗

(13.434) (0.016) (0.021) (0.025)

Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Mean Y 108.570 0.354 3.419 -0.000
R2(within) 0.104 0.128 0.166 0.174

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered by
municipality. All regressions include municipality, year, and, state-year fixed effects. Units
of observation are municipality-years from 2005 to 2018.
Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data
from SIAP/SAGARPA, nighttime light data from Li et al. (2020), rainfall data from
CHIRPS (Funk et al., 2015).

Estimation results shown in Table 2 report estimates of the average yearly impact of

CLR on deforestation in affected municipalities over the whole treatment period. This

analysis needs to be supplemented by an event-study to illuminate the dynamic effects

of the disease. Figures 3 to 6 report the results of an event-study analysis with three

different estimators: the basic two-way fixed-effects estimator, and the robust estimators

developed by De Chaisemartin and d’Haultfoeuille (2020) and Callaway and Sant’Anna

(2021). First, estimated coefficients for pre-treatment years are not significantly different

from zero in all specifications, whatever the estimator used. This finding suggests that

there is no difference in pre-CLR trends in municipalities affected by CLR and control

municipalities. However the power of such test is questioned in the recent DID literature

(Sun and Abraham (2021b); Roth (2019); Rambachan and Roth (2022). We provide

additional sensitivity tests with regard to the parallel pre-trends assumption in Appendix

C.

Second, we find very similar estimated coefficients and confidence intervals with the

three estimators, which suggests that our baseline two-way fixed-effects results are not

subject to large biases due to heterogeneous treatment effects issues.

Third, we observe a similar inverse U-shape pattern for three of our four deforestation

variables (3 to 6): when the dependent variable is deforestation out of initial forest

area, the inverse hyperbolic sine transformation of raw deforestation or deforestation

z-score, we find that the estimated coefficient on the CLR binary variable gradually
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increases in the first post-treatment period, and then decreases while remaining positive

and significant up to five years after the initial outbreak. Results are not significant when

the dependent variable is raw deforestation in hectares due to large standard errors. The

dynamic analysis suggests that CLR-induced deforestation is not an immediate response:

the impact of CLR on deforestation appears to be the highest three to four years after

the local outbreak of the epidemic.
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5.2 CLR, tree cover and forest degradation

We complement our analysis with an exploration of the impact of CLR on alternative

measures of canopy and forest cover. Table 3 replaces our four baseline measures of

deforestation generated from GFC by the percentage of tree cover obtained from GFCC

data, available on a 5-year basis (Townshend, 2016) (col. (1) and (2)), and four measures

of forest degradation (col. (3) to (6)). Forest degradation indicators are calculated

from the EC JRC dataset (Vancutsem et al., 2021), which is available on a yearly basis.

Forest degradation differs from deforestation in that it captures short-term and/or partial

disturbances in tropical moist forests. Note that degraded forests in the EC JRC product

are still classified as forests.

In column (1), we use GFCC data for 2000, 2005, 2010, and 2015 and do not control

for agricultural subventions (not available in 2000). In column (2), we use the full set

of controls and limit the estimation period to 2005, 2010, and 2015. In both cases,

we observe a decrease in tree cover by 1.7 to 1.9 percentage points, which represents a

5% decrease with respect to median tree cover in 2000 (which is 38% in our sample).

Columns (3) to (6) replicate our main results with the same four indicators applied to

forest degradation instead of deforestation. We find that, in municipalities affected by

the disease, 75 additional hectares or 5% of tropical moist forest cover (col. (5)) are

degraded each year (col. (3)).

Table 3: TWFE - CLR impact on tree cover and forest degradation )

% tree cover Forest degradation (2005-2018)

(1) (2) (3) (4) (5) (6)
(2000-2015) (2005-2015) Level (ha) Part (%) IHS transformed Normalised

CLR dummy -1.746∗∗∗ -1.915∗∗∗ 75.716∗∗ 0.042 0.052∗∗∗ 0.280∗∗∗

(0.281) (0.272) (33.733) (0.093) (0.009) (0.082)

Ihs(Nighttime lights) -0.203 -0.588∗∗∗ -100.244∗∗∗ 0.068 0.020∗∗∗ 0.156∗∗

(0.205) (0.216) (31.695) (0.061) (0.008) (0.064)

Past drought shocks -0.253∗∗ -0.478∗∗∗ -101.795∗∗∗ -0.253∗∗∗ -0.027∗∗∗ -0.279∗∗∗

(0.106) (0.128) (25.388) (0.040) (0.005) (0.036)

Agri. subventions -0.029 5.796 -0.059 -0.001 -0.041
(0.036) (10.217) (0.042) (0.003) (0.037)

Observations 3,112 2,334 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778 778 778
Eventually treated 180 180 243 243 243 243
Mean Y 38.227 38.784 2,234.666 10.464 7.071 0.000
R2(within) 0.492 0.534 0.148 0.349 0.318 0.344

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered by municipality. All regressions include
municipality, year, and, state-year fixed effects. Units of observation are municipality-years for 2000, 2005, 2010 and 2015 for tree
cover (col. (1) and (2), source: GFCC data (Townshend, 2016)) and from 2005 to 2018 for forest degradation (source: EC JRC
(Vancutsem et al., 2021)).
Additional data sources: agricultural data from SIAP/SAGARPA, nighttime light data from Li et al. (2020), rainfall data from
CHIRPS (Funk et al., 2015).

These findings suggest that, in addition to total deforestation measured by GFC
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data, CLR also contributed to significantly decrease overall tree cover and increase forest

degradation.

5.3 Robustness tests

5.3.1 Synthetic control method

Although we find no evidence of differential deforestation trends in our group of treated

and control municipalities prior to the CLR epidemic, non-experimental data raise con-

cerns about the comparability of treated and control units. To further test the robust-

ness of our results, we replicate our event-study analysis with a synthetic control method

adapted to empirical designs with staggered treatment (Ben-Michael et al., 2021). Syn-

thetic control methods estimate a counterfactual untreated outcome using a weighted

average of control units, with weights set so as to minimize pre-trends differences be-

tween treated observations and this synthetic control.

Results of the event-study with synthetic control presented in Figures 7a to 7d are

similar to the results obtained with the classic two-way fixed-effects and robust DID

estimators displayed in Figures 3 to 6. There is no graphical evidence of differential

deforestation trends before the epidemic, and the effect of CLR presents an inverse-U-

shaped pattern. Consistent with our previous results, we find that the impact of CLR on

deforestation is the largest four to five years after the local epidemic outbreak.
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Difference-in-differences with augmented synthetic control adapted to staggered design

(a) Raw deforestation (ha)
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Note: We use multisynth function from augsynth package for R. Standard errors are
bootstrapped. Included controls are the same as those included in the baseline equation. The
v values are 0.39, 0.2, 0.09, and 0.14 respectively for raw deforestation, deforestation part, IHS
deforestation and normalised deforestation. The intercept shift is included.

27



5.3.2 Propensity score matching

In a closely related analysis, we conduct an additional robustness test by applying the

kernel-based propensity score matching (PSM) method (Heckman et al., 1997, 1998; Blun-

dell and Dias, 2009). The kernel method matches a treated unit with the control unit(s)

ranging in a specific bandwidth and assigns positive weights to these units depending on

the selected kernel function. The distance between units is based on propensity scores

constructed through the pre-treatment variables (Blundell and Dias, 2009). To be able to

apply the method, we modify our data to have classical DID setup with two time periods

(pre- and post-treatment) and two groups (treated and control). We thus construct two

7 years periods (2005-2011 and 2012-2018), and modify our outcome variables so that

they equal to total deforestation that occurred in each period. The treatment variable is

now equal to one for all municipalities that were affected by CLR any year from 2012 to

2018 regardless of the number of years they remained treated. Time-varying covariates

(nighttime lights, agricultural subventions, and past drought shocks) are averaged over

each of the 7-year periods. We use the Epanechnikov kernel function which puts more

weight on control units closest to matched treated observations. We specify bandwidth

with an automatic selector based on cross-validation with respect to the mean of the

propensity score (Jann, 2017).

Results are shown in Table 4. In columns (1) to (3), as a basis for comparison, we

report two-way fixed-effects estimates on two aggregate periods with a single treatment

group. Columns (4) to (6) report matching results with the lowest and highest 1% of

observation trimmed. while in matching column 2, we trim the lowest and highest 5% of

the observations according to their propensity scores. Overall, consistent with our main

findings, results reported in Table 4 show that deforestation increased more in treated

municipalities. The effect size increases in matched sample.
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5.3.3 Additional robustness tests

Appendix Table 13 presents results based on alternative definitions of treated and con-

trol groups. First, in columns (1) to (4), we restrict the analysis to municipalities from

the three Mexican states that are top coffee producers (Chiapas, Oaxaca, and Veracruz).

Second, as mentioned in Section 2.4, the statistical approach that we use to detect CLR

may lead us to misclassify coffee municipalities with low intensity of the disease as non-

affected, which may bias our estimates. We address this issue by excluding never-treated

coffee municipalities from the control group (columns (5) to (8)). In both cases sample

size is mechanically reduced but results are very similar to our main estimates. The mag-

nitude of the estimated effects is larger for the IHS transformed and z-score deforestation

variable on the two restricted samples, which could suggest that including in the sample

municipalities where coffee production is relatively marginal or including in the group of

control potentially affected municipalities could slightly downward bias our main results.

In Appendix Table 14, we change the threshold used to define coffee municipalities: in

our preferred sample definition we include in the pool of coffee municipalities (that may

either be treated or not) only those where coffee area represents at least 5% of municipality

agricultural area. Reducing this threshold to 1% does not change our results.

In Appendix Table 15, we vary the condition on reduction of coffee production used to

identify local CLR outbreaks. While our preferred specification identifies a CLR outbreak

when coffee production falls 1 standard deviation below 2005-2011 municipality average

for two consecutive years, we here impose a more restrictive condition using a 1.5 standard

deviation threshold. The number of treated municipalities decreases accordingly from

243 to 178, but with the exception of the coefficient on raw deforestation (column (1))

which is no longer significant, all other coefficients are similar in sign, significance, and

magnitude to our main estimates. Conversely, Appendix Table 16 tests the robustness

of our results when using a less restrictive threshold for CLR definition. Indeed, as

discussed above, a potential threat to identification is that the fact that we observe non-

affected coffee municipalities could result from our failure to detect low intensity epidemic

outbreaks. We thus set a less restrictive threshold at 0.5 standard deviation. With this

threshold, the number of municipalities increases by 17% (from 243 to 285 eventually

affected municipalities). Point estimates are slightly smaller but remain significantly

different from zero.

We vary conditions on the pixel-level share of tree cover in 2000 to calculate defor-

estation in Appendix Table 17, and on the municipality-level forest cover threshold that

determines the inclusion of municipalities in our sample in Appendix Table 18. Both are

set at 30% in our main specification, and Table 17 and Table 18 suggest that our results

are insensitive to alternative threshold choices.
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Results are also similar when we include lagged municipality-level PROCAFE amounts

received over 2014-2016 (see Appendix Table 19). Note that since we have municipality-

level PROCAFE data only until 2016, our estimation period is in this case restricted to

2005-2017.

Our results are robust to clustering at the state level instead of municipality level (see

Table 21 in the Appendix).

Finally, one potential concern with our main specification is that all municipalities

contribute in the same way to the estimation regardless of their area. Yet, there is

considerable heterogeneity in municipality area, as shown in Figure 14. In Appendix

Table 22, we report estimation results with each municipality being weighted by its area

in hectares. Although the coefficient on the CLR dummy is no longer significant for

the raw deforestation variable (column (1)), results are overall very similar to our main

estimates.

6 Heterogeneity analysis and mechanisms

6.1 Deforestation in cropland

As shown in Table 1 (in Section 2.4), CLR is not associated with an increase in total

agricultural area, nor in area devoted to the top permanent and annual crops cultivated

in those six states of Southern Mexico. If deforestation due to CLR were a response of

farmers trying to compensate coffee production losses by increasing agricultural area, we

would expect to find a positive impact of CLR on agricultural area. Results from Table 1

thus suggest that CLR-induced deforestation is due to other motives than agricultural

extension.

To further explore this issue, we use land use maps provided by INEGI19 and select

non-irrigated agricultural zones with either perennial crops or a combination of annual

and perennial crops. These categories should in theory include coffee plantations, either

in agroforestry or open-sun systems. We merge land use data with deforestation data

and construct the same four indicators of deforestation, restricted here to agricultural

areas. Indeed, forest and agricultural areas may overlap in the case of perennial crops

taller than five meters, or in agroforestry systems: such zones that are considered as

agricultural areas in the INEGI classification will appear as forests in the GFC data.

We then re-estimate our baseline model to analyse the impact of CLR on deforestation

in those areas. Results reported in Table 5 show that CLR increased deforestation in

areas defined as agricultural land allocated to permanent crops. These findings suggest

19https://www.inegi.org.mx/temas/usosuelo/
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that at least part of estimated CLR-induced deforestation occurred in areas planted with

permanent crops. Since we find no otherwise significant change in area or production

of permanent crops other than coffee (see Table 1), and since coffee is by far the main

crop cultivated in agroforestry systems in Mexico (Manson et al., 2017), our findings thus

suggest that deforestation caused by CLR occurred at least in part in coffee agroforestry

systems.

Table 5: TWFE - CLR impact on deforestation in cropland
- Period: 2005-2018

Deforestation

(1) (2) (3) (4)
Level (ha) Def. part (%) IHS def. Normalised

CLR dummy 7.345∗∗∗ 0.027∗∗∗ 0.214∗∗∗ 0.245∗∗∗

(2.480) (0.007) (0.041) (0.048)

Ihs(Nighttime lights) 0.988 0.003 0.008 0.020
(1.088) (0.003) (0.022) (0.026)

Agri. subventions 0.014 -0.000 -0.009 -0.012
(0.166) (0.001) (0.008) (0.009)

Past drought shocks 3.155∗∗ 0.008∗∗ -0.008 0.017
(1.523) (0.003) (0.017) (0.019)

Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Mean Y 9.843 0.045 1.029 0.000
R2(within) 0.074 0.083 0.120 0.108

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered by
municipality. All regressions include municipality, year, and, state-year fixed effects. Units of
observation are municipality-years from 2005 to 2018.
Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data
from SIAP/SAGARPA, nighttime light data from Li et al. (2020), rainfall data from CHIRPS
(Funk et al., 2015).

6.2 Heterogeneity analysis

For lack of data on the type of coffee landscape, we use data on yields to construct a

proxy for predominant coffee agroforestry systems. Rustic shade coffee is characterized

by a lower plant density, and thus lower yields per hectare than intensive monoculture

(Vaast et al., 2006; Jezeer et al., 2017). We construct a LowY ield dummy variable equal

to one for municipalities with coffee yields in the bottom quartile of the distribution

(computed over 2005-2011 for municipalities where coffee represents at least 5% of mu-

nicipality agricultural area). We then interact our measure for CLR with the LowY ield

binary variable and add this interaction term to our main equation. Estimation results

are reported in Table 6. For two of our deforestation measures, the coefficient on the

interaction term is positive and significant (col. (3) and (4)), which suggests that CLR

drove up deforestation more in municipalities with low yields. According to the results

shown in column (3), deforestation increases by 25% in municipalities with yields in the
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top three quartiles, while deforestation jumped by 61% in municipalities with coffee yields

in the bottom quartile. These result suggest that CLR pushed deforestation higher in

areas where traditional shade coffee was still predominant.

Table 6: TWFE - CLR impact on deforestation in munic-
ipalities with coffee yields in the bottom quartile - Period:
2005-2018

Deforestation

(1) (2) (3) (4)
Level (ha) Def. part (%) IHS def. ZS Def.

CLR dummy 39.455∗∗ 0.101∗∗∗ 0.227∗∗∗ 0.283∗∗∗

(16.995) (0.030) (0.056) (0.066)

CLRxLowYield -11.632 0.009 0.253∗∗∗ 0.330∗∗∗

(39.061) (0.061) (0.095) (0.116)

Ihs(Nighttime lights) 32.633∗∗ 0.057∗∗ 0.104∗∗ 0.138∗∗∗

(13.852) (0.023) (0.040) (0.047)

Agri. subventions 0.262 -0.002 0.019 0.041∗

(1.805) (0.005) (0.019) (0.024)

Past drought shocks 50.144∗∗∗ 0.067∗∗∗ 0.075∗∗∗ 0.121∗∗∗

(13.419) (0.016) (0.021) (0.025)

Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Mean Y 108.570 0.354 3.419 -0.000
R2(within) 0.104 0.128 0.167 0.175

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered by
municipality. All regressions include municipality, year, and, state-year fixed effects. Units
of observation are municipality-years from 2005 to 2018.
Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data
from SIAP/SAGARPA, nighttime light data from Li et al. (2020), rainfall data from
CHIRPS (Funk et al., 2015).

To further validate this interpretation, we estimate our regressions separately for the

three states that are the largest Mexican coffee producers. Table 7 displays estimation

results for Chiapas, Oaxaca, and Veracruz. We find positive and significant effects of CLR

on deforestation in Oaxaca and to a lesser extent in Chiapas, and no impact of CLR on

deforestation in Veracruz. These findings can be related to the transformation of coffee

landscape induced by the government-supported institute INMECAFE in the 1970s and

1980s that promoted the transition to lower density shade systems or open-sun cultivation

(Nestel, 1995).20 Data on coffee yield evolutions from 1970 to 1982 (Nestel, 1995) and

qualitative evidence (Potvin et al., 2005) suggest that the resulting intensification was

larger in the coastal state of Veracruz, and lower in more remote areas of Oaxaca. Rustic

coffee systems represented a larger part of coffee area in the latter state in the late 1990s

(Moguel and Toledo, 1999).

20The INMECAFE disappeared in 1990.
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6.3 CLR or PROCAFE?

The previous sections show that CLR increased deforestation, and strongly suggest that at

least part of CLR-induced deforestation took place in coffee agroforestry systems. These

findings invite us to reconsider the effect of CLR alone and question the concurrent role

of the PROCAFE program. Indeed, CLR induced a policy response that in itself may

have altered farmers’ incentives. As stated above, the Mexican government responded in

2014 to the crisis of the coffee sector caused by CLR with PROCAFE, a massive program

that promoted and subsidized CLR-resistant hybrid plants to replace traditional Arabica

plants that were sensitive to the disease. Hybrids share with Robusta cultivars a number

of characteristics, including resistance to CLR and adaptation to open-sun cultivation.

This latter feature may explain part of deforestation that occurred following the CLR

outbreak. In the remainder of this section, we try to disentangle the impacts of CLR and

PROCAFE on deforestation.

6.3.1 Sub-periods comparison

We first add to our baseline equation an interaction term between the CLR binary variable

and a post-2014 dummy to test whether CLR has a larger effect on deforestation after

PROCAFE is launched. Results are reported in Table 8. We find that the coefficient

on the CLR × Post-2014 variable is positive in all four specifications and significant in

columns (3) and (4), suggesting that CLR has a stronger effect on deforestation after

2014. This result may point to the joint responsibility of the PROCAFE program, but it

may also be explained by other mechanisms. In particular, while the disease was not well

known to coffee producers in the first year of the epidemic, awareness of its long-lived

consequences rose gradually in the subsequent years.
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Table 8: TWFE - Impact of CLR before and after 2014 - Period: 2005-2018

Deforestation

(1) (2) (3) (4)
Level (ha) Def. part (%) IHS def. ZS Def.

CLR dummy 20.771∗∗ 0.078∗∗∗ 0.169∗∗ 0.199∗∗

(10.054) (0.028) (0.066) (0.089)

CLR × Post 2014 18.812 0.030 0.128∗ 0.178∗

(11.950) (0.031) (0.068) (0.095)

Ihs(Nighttime lights) 32.609∗∗ 0.056∗∗ 0.099∗∗ 0.132∗∗∗

(13.834) (0.023) (0.040) (0.047)

Agri. subventions 0.178 -0.002 0.020 0.043∗

(1.806) (0.005) (0.019) (0.024)

Past drought shocks 49.978∗∗∗ 0.067∗∗∗ 0.078∗∗∗ 0.125∗∗∗

(13.433) (0.016) (0.021) (0.025)

Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Mean Y 108.570 0.354 3.419 -0.000
R2(within) 0.104 0.128 0.166 0.174
Sum CLR and CLR × Post 2014 coefficients 39.582 0.107 0.297 0.376
Sum CLR and CLR × Post 2014 P-val. 0.014 0.000 0.000 0.000

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered by municipality. All regressions
include municipality, year, and, state-year fixed effects. Units of observation are municipality-years from 2005 to
2018.
Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data from SIAP/SAGARPA,
nighttime light data from Li et al. (2020), rainfall data from CHIRPS (Funk et al., 2015).

In a complementary analysis, we compare our baseline results over the whole obser-

vation period (2005-2018) to estimation results over the period before the PROCAFE

program (2005-2013). Results are presented in Table 9 (Panel A). Estimates reported in

columns 5 to 8 over the period 2005 to 2013 (included) show that CLR has a positive and

significant impact on deforestation already in the first two years of the epidemic (that

started in 2012). The comparison of columns 5 to 8 to the first four columns of Table 9

that reproduce our baseline results presented in Table 2 reveals that the magnitude of the

effect is lower over 2005-2013 than over the whole period. This finding is fully consistent

with the dynamic pattern of CLR effects illustrated by Figures 3 to 6 showing that the

impact of CLR increases up to five years after the initial outbreak. The restriction of

the estimation period to 2005-2013 means that we observe at most two post-treatment

periods (2012 and 2013, for municipalities first affected in 2012), which explains that esti-

mated coefficients are smaller. However, an important result here, consistent with results

shown in Table 8, is the fact that CLR has a positive and significant impact on deforesta-

tion, even before PROCAFE is launched. Over 2005-2013, we are quite confident that

the effect that we estimate is that of CLR alone.

By contrast, results over the whole period may reflect a combination of the impact

of CLR with that of PROCAFE, launched in 2014. In order to try to disentangle CLR

from PROCAFE, we vary the composition of the control group and focus on coffee mu-
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nicipalities only. Control municipalities thus include not-yet-treated municipalities, and

never affected municipalities. The idea is that whereas CLR is expected to affect only

municipalities that experienced a local outbreak of the disease, PROCAFE promoted

from 2014 the replacement of traditional coffee plants by hybrids on a large scale includ-

ing as a preventive strategy in anticipation of an expansion of the disease. This implies

that only CLR-affected municipalities can be considered as treated if we investigate the

impact of the disease, while all coffee municipalities are virtually affected if PROCAFE is

the treatment. We then expect to find no different deforestation trends in CLR-affected

and CLR-free coffee municipalities if deforestation is mainly due to PROCAFE rather

than CLR alone. A first intuition of this is provided by Figure 2, shown in Section 3.2.

Indeed, as discussed above, descriptive evidence suggest that CLR-free coffee municipali-

ties experience a jump in deforestation in 2016 similar, although smaller in magnitude, to

that observed in CLR-affected municipalities. Note although PROCAFE was launched

in 2014, hybrids became commonly available only in 2015-2016.

Estimation results on coffee municipalities only are reported in Table 9, Panel B.

Columns 1 to 4 display estimation results over the whole period (2005-2018). We find

that on this restricted sample, point estimates for the impact of CLR on deforestation

are very small and never significantly different from zero. One may wonder whether

this finding could also be interpreted as a failure on our part to identify, among coffee

municipalities, those that are actually affected by CLR. However, as shown in columns 5 to

8 of Table 9, Panel B, we find that when restricting the estimation period to 2005-2013 the

coefficient on the CLR dummy is positive and significant for three of our four deforestation

variables. These findings suggest that CLR-affected municipalities deforest more than

unaffected coffee municipalities in the first two years of the epidemic, but this is no

longer the case over the whole period. Taken together, the results reported in Table 9 thus

strongly suggest that CLR explains deforestation prior to 2014, but that over the whole

period other factors common to all coffee municipalities, either affected by CLR or not,

contribute to explaining deforestation. Although determinants of deforestation common

to all coffee municipalities after 2014 may not solely be caused by PROCAFE, our findings

suggest that PROCAFE contributed to deforestation in coffee municipalities. Among

confounding factors common to all coffee municipalities that may cause an increase of

deforestation is coffee price. Indeed, a negative shock on coffee prices may affect decisions

of coffee farmer, and for example lead them to intensify coffee production in order to

increase coffee yields. Coffee price series for “Other Milds” that include Mexican coffee

made available by the International Coffee Organization21 suggest that after a drop in

2013, coffee prices tend to rebound in 2014, suggesting that price variations are unlikely

21https://www.ico.org/new_historical.asp
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to explain our results.

Table 9: TWFE - CLR impact on deforestation - Different control groups and time periods

2005-2018 2005-2013 (before PROCAFE)

(1) (2) (3) (4) (5) (6) (7) (8)
Level (ha) Def. part (%) IHS def. ZS Def. Level (ha) Def. part (%) IHS def. ZS Def.

Panel A: Total sample

CLR 37.014∗ 0.103∗∗∗ 0.280∗∗∗ 0.352∗∗∗ 25.804∗ 0.110∗∗∗ 0.173∗ 0.201∗

(14.887) (0.027) (0.051) (0.059) (12.749) (0.033) (0.074) (0.096)

Observations 10,892 10,892 10,892 10,892 7,002 7,002 7,002 7,002
Municipalities 778 778 778 778 778 778 778 778
Eventually treated 243 243 243 243 91 91 91 91
R2(within) 0.104 0.128 0.166 0.174 0.043 0.049 0.108 0.094

Panel B: Only coffee producers

CLR 13.635 -0.002 -0.059 -0.019 18.959 0.101∗∗ 0.156∗ 0.275∗∗

(22.825) (0.034) (0.057) (0.067) (14.150) (0.034) (0.077) (0.099)

Observations 4,914 4,914 4,914 4,914 3,159 3,159 3,159 3,159
Municipalities 351 351 351 351 351 351 351 351
Eventually treated 243 243 243 243 91 91 91 91
R2(within) 0.166 0.287 0.309 0.330 0.083 0.133 0.161 0.168

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered by municipality. All regressions include municipality, year, and,
state-year fixed effects. Units of observation are municipality-years from 2005 to 2018 in columns 1-4 and 2005-2013 in columns 5-8.
Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data from SIAP/SAGARPA, nighttime light data from Li et al.
(2020), rainfall data from CHIRPS (Funk et al., 2015).

To further investigate the possible impact of PROCAFE, we explore the dynamic

effects of CLR in two different groups of treatment: we separate event-study analyses

for municipalities affected by CLR in 2012 and 2013, before PROCAFE was launched,

and municipalities affected after 2014. Figures 8 to 11 display estimated coefficients

and confidence intervals for the two groups. The comparison of the two groups reveal

different time patterns: although confidence intervals overlap in most cases, the figures

suggest that for municipalities affected by the epidemic in 2012 or 2013 the effect of

CLR on deforestation became significantly different from zero only 3 years after the

initial outbreak. By contrast, in municipalities affected after 2014 CLR tends to have a

positive and significant effect on deforestation as early as the year following the outbreak

(Figures 10 and 11). These findings are consistent with the results from the event-

study analysis over the whole sample reported in Figures 3 to 6 and suggest that CLR

increased deforestation especially after 2015, which coincides with the full effectiveness

of the PROCAFE program.
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6.3.2 Learning effects

It is also possible that the different time patterns for municipalities infected late versus

early are due to a better knowledge of the disease and its characteristics. Learning effects

may thus explain that producers in municipalities affected late respond sooner to the

disease than those affected at the beginning of the epidemic who may be more likely to

wait and see. To test this, we estimate an augmented version of our baseline equation

including interactions between the CLR binary indicator, the post-2014 period, and a

dummy equal to one for municipalities affected after 2014 and neighbors to a municipality

affected by CLR in 2012 or 2013. The variant of equation 2 that we estimate in this section

formally writes:

Yit = βCLRCLRit + βPostCLRit × Post2014 + βPostNCLRit × Post2014×Neighbor(4)

+X ′itγ + δi + φt + ψst + εit

where Yit represents deforestation in municipality i and year t, X ′it, δi, φt, ψst are same

as in 2. Post2014 is a binary variable equal to one for year 2014 and beyond. Neighbor

equals one for municipalities that are neighbors to at least one municipality affected by

CLR in 2012 or 2013. We here assume that learning effects, if any, should be stronger

in municipalities that are not yet affected by the disease but are neighbors to at least

one municipality already affected. Under the assumption that learning effects are at least

partially channelled by neighbor effects, if the larger impact of CLR on deforestation

observed after 2014 is due to learning effects we expect to find more deforestation in late

affected municipalities neighbor to an already affected municipality than in late affected

municipalities surrounded by CLR-free municipalities, which means that we expect the

βPostN coefficient to be positive and significant.

Results are reported in Table 10. Consistent with results shown in Table 8, we find that

CLR has a stronger impact on deforestation after 2014 in two or our four specifications

(columns (3) and (4)), but the coefficient on the triple interaction between CLR, the

Post2014 dummy and the Neighbor dummy is always negative and not significant except

in column (2). Overall, these results suggest that learning effect transiting through

neighbors are unlikely to explain the larger impact of CLR after 2014.
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Table 10: TWFE - CLR impact after 2014 in municipalities
neighbor to already treated municipalities - Period: 2005-
2018

Deforestation

(1) (2) (3) (4)
Level (ha) Def. part (%) IHS def. ZS Def.

CLR dummy 24.007∗ 0.102∗∗∗ 0.179∗∗∗ 0.222∗∗

(13.207) (0.031) (0.069) (0.092)

CLRxPost2014 22.756 0.059∗ 0.141∗∗ 0.206∗∗

(15.213) (0.035) (0.067) (0.096)

CLRxPost2014xNeighbor -17.139 -0.127∗∗ -0.054 -0.124
(33.323) (0.052) (0.092) (0.108)

Ihs(Nighttime lights) 32.848∗∗ 0.058∗∗ 0.100∗∗ 0.134∗∗∗

(13.687) (0.023) (0.040) (0.047)

Agri. subventions 0.096 -0.002 0.020 0.042∗

(1.800) (0.006) (0.019) (0.024)

Past drought shocks 49.973∗∗∗ 0.067∗∗∗ 0.078∗∗∗ 0.125∗∗∗

(13.423) (0.016) (0.021) (0.025)

Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Mean Y 108.570 0.354 3.419 -0.000
R2(within) 0.104 0.130 0.166 0.174

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered by
municipality. All regressions include municipality, year, and, state-year fixed effects. Units of
observation are municipality-years from 2005 to 2018.
Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data from
SIAP/SAGARPA, nighttime light data from Li et al. (2020), rainfall data from CHIRPS (Funk
et al., 2015).

7 Conclusion

We analyze in this article the impact of the massive outbreak of coffee leaf rust (CLR) that

hit Central America from 2012 on deforestation in Mexico. We find that CLR increased

deforestation, but we find no evidence of any significant change in agricultural areas. Fur-

ther exploration suggests that deforestation increased in particular in areas where there

agriculture and forest overlap, that is in agroforestry systems. We find heterogeneous ef-

fects of CLR, deforestation increasing more in municipalities with low coffee yields, that

signal the predominance of agroforestry cultivation systems, and in states with a still high

share of shade coffee, and in particular in Oaxaca. The Mexican government responded

in 2014 to the spread of the CLR with the PROCAFE program providing incentives to

coffee farmers to adopt new varieties resistant to the fungal disease. Those varieties differ

from traditional ones with regard their cultivation needs, and especially their tolerance to

sun exposure. PROCAFE may have thus contributed to increase deforestation in coffee

shade cultivation systems. We exploit the late implementation of the program and the

comparison between coffee and non-coffee municipalities to try to disentangle the impact

of CLR from that of PROCAFE. Consistent with qualitative or field evidence (Ruiz-de
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Oña et al., 2019; Valencia et al., 2018), our findings suggest a drift from agroforestry prac-

tices and shade coffee production towards monoculture plantations through the combined

effect of a massive outbreak of a persistent fungal disease and a short-term government

response. While we are not able to measure the counterfactual deforestation that would

have resulted from the disease alone, our results suggest that the PROCAFE program

contributed to magnify the impact of CLR on deforestation and forest degradation by

promoting CLR-resistant hybrid coffee varieties. Our findings emphasize the particular

vulnerability of agroforests to a negative and persistent agricultural shock, with both

global and local irreversible consequences in terms of biodiversity loss and ecosystem

services, and reduced resilience of households to future shocks. This study emphasizes

the need to better account for long-term consequences and environmental spillovers of

agricultural programs, which involves the anticipation of future crises such as the CLR

epidemic whose frequency and severity is expected to increase due to climate change.
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Somarriba, E. and López-Sampson, A. (2018). Coffee and cocoa agroforestry systems:

pathways to deforestation, reforestation, and tree cover change. PROFOR, CATIE.

Sun, L. and Abraham, S. (2021a). Estimating dynamic treatment effects in event stud-

ies with heterogeneous treatment effects. Journal of Econometrics, 225(2):175–199.

Themed Issue: Treatment Effect 1.

Sun, L. and Abraham, S. (2021b). Estimating dynamic treatment effects in event studies

with heterogeneous treatment effects. Journal of Econometrics, 225(2):175–199.

Townshend, J. (2016). Global Forest Cover Change (GFCC) tree cover multi-year global

30 m V003.

Vaast, P., Bertrand, B., Perriot, J.-J., Guyot, B., and Genard, M. (2006). Fruit thinning

and shade improve bean characteristics and beverage quality of coffee (coffea arabica l.)

under optimal conditions. Journal of the Science of Food and Agriculture, 86(2):197–

204.
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Appendix

Appendix A: Agriculture data and CLR variable

Table 11: Sample composition

Observation number Group share Treatment coverage

Non coffee municipalities 427 0.55 .

Never treated coffee municipalities 108 0.14 .

Treated since 2012 48 0.06 0.50

Treated since 2013 43 0.06 0.43

Treated since 2014 36 0.05 0.36

Treated since 2015 53 0.07 0.29

Treated since 2016 44 0.06 0.21

Treated since 2017 15 0.02 0.14

Treated since 2018 4 0.01 0.07

Notes: The table reports the number and share of municipalities first affected by CLR for each year since 2012,
and the treatment coverage which represents the percentage of time periods (years) each group is considered treated
over the whole estimation period (2005-2018).
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Figure 12: Evolution of normalised coffee yield & production of eventually treated group
by CLR start year

Note: Outliers are excluded. The variables are normalised by using the pre-CLR average (2005-2011) and standard
deviation for 2005-2018.
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Table 12: Summary statistics - Comparison of eventually treated to control municipalities
- Yearly averages over 2005-2011 unless specified otherwise

(1) (2) T-test
Even. treated Control Difference

Variable Mean/SE Mean/SE (1)-(2)

Deforestation (ha) 113.157
(24.338)

85.076
(11.974)

28.080

Def. part (%) 0.283
(0.017)

0.323
(0.015)

-0.040*

Ihs(Deforestation) 3.909
(0.105)

3.268
(0.094)

0.641***

Tree cover % in 2000 79.754
(0.844)

58.591
(0.682)

21.163***

Coffee area (ha) 2447.318
(221.719)

265.944
(36.684)

2181.374***

Coffee production (tonnes) 4609.863
(473.891)

480.256
(67.814)

4129.608***

Nighttime light (raw) 4.456
(0.443)

4.397
(0.233)

0.059

Agri. subventions 0.608
(0.030)

0.842
(0.027)

-0.234***

Past drought shocks 4.309
(0.104)

3.989
(0.051)

0.320***

Municipality area (ha) 36572.840
(5530.199)

31710.467
(2004.904)

4862.372

N 243 535

Notes: Coffee production unit is green beans. Column (3) reports t-tests for the differences in the means across groups.
Standard errors are bootstrapped. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure 13: Total deforestation in Mexico, 2005-2018

Note: Out of sample group includes all Mexican municipalities that are not included in our sample. Eventually treated
and control groups are the same as above.
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Figure 14: Diffusion of CLR in Mexico (2012-2018): treated and control municipalities

Appendix B: Robustness tables
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Table 14: TWFE - CLR impact on deforestation (sample
with 1% as coffee producer threshold) - Period: 2005-2018

Deforestation

(1) (2) (3) (4)
Level (ha) Def. part (%) IHS def. ZS Def.

CLR dummy 43.013∗∗∗ 0.101∗∗∗ 0.270∗∗∗ 0.335∗∗∗

(14.223) (0.026) (0.049) (0.056)

Ihs(Nighttime lights) 32.984∗∗ 0.058∗∗ 0.103∗∗ 0.137∗∗∗

(13.747) (0.023) (0.040) (0.046)

Agri. subventions 0.191 -0.001 0.021 0.044∗

(1.780) (0.005) (0.019) (0.024)

Past drought shocks 49.764∗∗∗ 0.067∗∗∗ 0.078∗∗∗ 0.124∗∗∗

(13.392) (0.016) (0.021) (0.025)

Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Eventually treated 268 268 268 268
Mean Y 108.570 0.354 3.419 -0.000
R2(within) 0.104 0.128 0.166 0.173

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered by
municipality. All regressions include municipality, year, and, state-year fixed effects. Units
of observation are municipality-years from 2005 to 2018.
Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data
from SIAP/SAGARPA, nighttime light data from Li et al. (2020), rainfall data from
CHIRPS (Funk et al., 2015).

Table 15: TWFE - CLR impact on deforestation with CLRt = 1 if pro-
duction z-score < −1.5 in t and t+ 1 - Period: 2005-2018

Deforestation

(1) (2) (3) (4)
Level (ha) Def. part (%) IHS def. ZS Def.

CLR dummy (< −1.5zscore in t and t+ 1) 26.179 0.119∗∗∗ 0.339∗∗∗ 0.396∗∗∗

(16.702) (0.034) (0.060) (0.072)

Ihs(Nighttime lights) 33.433∗∗ 0.057∗∗ 0.102∗∗ 0.136∗∗∗

(13.784) (0.023) (0.040) (0.047)

Agri. subventions 0.691 -0.001 0.023 0.046∗

(1.843) (0.005) (0.019) (0.024)

Past drought shocks 50.452∗∗∗ 0.068∗∗∗ 0.081∗∗∗ 0.129∗∗∗

(13.477) (0.016) (0.021) (0.026)

Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Eventually treated 178 178 178 178
Mean Y 108.570 0.354 3.419 -0.000
R2(within) 0.102 0.128 0.166 0.173

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered by municipality. All regressions
include municipality, year, and, state-year fixed effects. Units of observation are municipality-years from 2005 to
2018.
Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data from SIAP/SAGARPA,
nighttime light data from Li et al. (2020), rainfall data from CHIRPS (Funk et al., 2015).
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Table 16: TWFE - CLR impact on deforestation
with CLR = 1 if production z-score < −0.5 in t
and t+ 1 - Period: 2005-2018

Deforestation

(1) (2) (3) (4)
Level (ha) Def. part (%) IHS def. ZS Def.

CLR dummy 26.737∗∗ 0.090∗∗∗ 0.266∗∗∗ 0.314∗∗∗

(13.065) (0.024) (0.048) (0.054)

Ihs(Nighttime lights) 33.007∗∗ 0.057∗∗ 0.100∗∗ 0.133∗∗∗

(13.858) (0.023) (0.040) (0.047)

Agri. subventions 0.229 -0.002 0.019 0.042∗

(1.814) (0.005) (0.019) (0.024)

Past drought shocks 50.055∗∗∗ 0.067∗∗∗ 0.078∗∗∗ 0.124∗∗∗

(13.480) (0.016) (0.021) (0.025)

Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Eventually treated 285 285 285 285
Mean Y 108.570 0.354 3.419 -0.000

R2(within) 0.103 0.127 0.166 0.173

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clus-
tered by municipality. All regressions include municipality, year, and, state-year
fixed effects. Units of observation are municipality-years from 2005 to 2018.
Data sources: Deforestation data come from GFC (Hansen et al., 2013), agri-
cultural data from SIAP/SAGARPA, nighttime light data from Li et al. (2020),
rainfall data from CHIRPS (Funk et al., 2015).
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Table 19: TWFE - CLR impact on deforestation, control-
ling for lagged inflation-adjusted PROCAFE amounts per
coffee planted hectare - Period: 2005-2017

Deforestation

(1) (2) (3) (4)
Level (ha) Def. part (%) IHS def. ZS Def.

CLR dummy 27.728 0.112∗∗∗ 0.279∗∗∗ 0.348∗∗∗

(18.633) (0.028) (0.052) (0.060)

Ihs(Nighttime lights) 27.061∗∗ 0.048∗∗ 0.076∗ 0.114∗∗

(13.224) (0.020) (0.040) (0.045)

Agri. subventions 1.026 0.003 0.027 0.052∗∗

(2.091) (0.004) (0.019) (0.025)

Past drought shocks 47.619∗∗∗ 0.063∗∗∗ 0.094∗∗∗ 0.140∗∗∗

(13.808) (0.018) (0.023) (0.027)

Lagged PROCAFE -2.526 -0.004∗∗ 0.001 -0.007
(1.556) (0.002) (0.005) (0.006)

Observations 10,114 10,114 10,114 10,114
Municipalities 778 778 778 778
Mean Y 104.394 0.338 3.375 -0.060
R2(within) 0.093 0.118 0.135 0.141

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered by
municipality. All regressions include municipality, year, and, state-year fixed effects. Units
of observation are municipality-years from 2005 to 2018.
Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data
from SIAP/SAGARPA, nighttime light data from Li et al. (2020), rainfall data from
CHIRPS (Funk et al., 2015).

Table 20: TWFE - CLR impact on deforestation by
production loss - Period: 2005-2018

Deforestation

(1) (2) (3) (4)
Level (ha) Def. part (%) IHS def. ZS Def.

CLRxPL 0.512∗∗ 0.002∗∗∗ 0.005∗∗∗ 0.006∗∗∗

(0.255) (0.000) (0.001) (0.001)

Ihs(Nighttime lights) 33.248∗∗ 0.058∗∗ 0.103∗∗ 0.136∗∗∗

(13.834) (0.023) (0.041) (0.047)

Agri. subventions 0.340 -0.001 0.020 0.043∗

(1.836) (0.005) (0.019) (0.024)

Past drought shocks 49.863∗∗∗ 0.067∗∗∗ 0.076∗∗∗ 0.122∗∗∗

(13.510) (0.016) (0.021) (0.026)

Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Mean Y 108.570 0.354 3.419 -0.000
Median PL 50.726 50.726 50.726 50.726

R2(within) 0.103 0.127 0.165 0.173

† p < 0.15, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parenthe-
ses are clustered by municipality. All regressions include municipality, year, and,
state-year fixed effects. Units of observation are municipality-years from 2005 to
2018.
Data sources: Deforestation data come from GFC (Hansen et al., 2013), agri-
cultural data from SIAP/SAGARPA, nighttime light data from Li et al. (2020),
rainfall data from CHIRPS (Funk et al., 2015).
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Table 21: TWFE - CLR impact on deforestation, with
standard errors clustered by state - Period: 2005-2018

Deforestation

(1) (2) (3) (4)
Level (ha) Def. part (%) IHS def. ZS Def.

CLR dummy 37.014∗∗ 0.103∗∗∗ 0.280∗ 0.352∗

(13.785) (0.022) (0.117) (0.138)

Ihs(Nighttime lights) 32.775 0.057 0.101 0.133∗

(21.217) (0.029) (0.065) (0.065)

Agri. subventions 0.184 -0.001 0.020 0.043
(3.450) (0.008) (0.020) (0.027)

Past drought shocks 49.992 0.067 0.078∗∗ 0.125∗∗

(39.751) (0.044) (0.030) (0.045)

Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
States 6 6 6 6
Mean Y 108.570 0.354 3.419 -0.000
R2(within) 0.104 0.128 0.166 0.174

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered by
state. All regressions include municipality, year, and, state-year fixed effects. Units of
observation are municipality-years from 2005 to 2018.
Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data
from SIAP/SAGARPA, nighttime light data from Li et al. (2020), rainfall data from
CHIRPS (Funk et al., 2015).

Table 22: TWFE - CLR impact on deforestation
(weighted by municipality area) - Period: 2005-2018

Deforestation

(1) (2) (3) (4)
Level (ha) Def. part (%) IHS def. ZS Def.

CLR dummy -37.352 0.125∗∗ 0.206∗∗ 0.301∗∗

(162.126) (0.051) (0.080) (0.126)

Ihs(Nighttime lights) 172.148 0.021 0.079 0.124
(134.732) (0.038) (0.063) (0.093)

Agri. subventions 43.709 0.017 0.046∗ 0.075∗

(43.064) (0.015) (0.027) (0.041)

Past drought shocks 191.725∗∗∗ 0.081∗∗∗ 0.058∗∗ 0.127∗∗∗

(68.331) (0.023) (0.026) (0.039)

Observations 10,892 10,892 10,892 10,892
Municipalities 778 778 778 778
Mean Y 610.202 0.505 5.402 0.000
R2(within) 0.279 0.221 0.250 0.258

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses are clustered by
municipality. Observations are weighted by municipality area (ha). All regressions include
municipality, year, and, state-year fixed effects. Units of observation are municipality-years
from 2005 to 2018.
Data sources: Deforestation data come from GFC (Hansen et al., 2013), agricultural data
from SIAP/SAGARPA, nighttime light data from Li et al. (2020), rainfall data from
CHIRPS (Funk et al., 2015).

Appendix C: Sensitivity analysis

We here apply the method developed by Rambachan and Roth (2022) to assess the

sensitivity of the significance of our results to violations of the parallel trend assumption.
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We use results by Zaveri et al. (2020) to interpret our graphs. They find that in developing

countries one additional year with dry anomalies within the past 10 years decreases

forested areas by 0.1%. If we focus on the effect of CLR one year after the shock for the

inverse hyperbolic sine transformation of raw deforestation (Figure 16), the confidence

interval increases with the value of M and includes zero for a value of M above 0.03.

This means that our estimated coefficient remains significantly positive as long as the

slope of the differential trend between CLR-affected and control municipalities does not

change from one period to the other by more than the equivalent of one third of the

impact of a drought over the past ten years. Note that this equivalent in terms of

drought shocks is used only as a reference point to assess the magnitude of the violation

of the parallel trends that is allowed for our results to remain significant. We control in

all specifications by past drought shocks so that those shocks are unlikely to generate

different post-treatment trends. Moreover, estimates by (Zaveri et al., 2020) are obtained

over all developing countries and thus, are not context specific.

63



S
en

si
ti

v
it

y
an

al
y
si

s
-

B
as

el
in

e
d
y
n
am

ic
T

W
F

E
es

ti
m

at
es

fo
r

IH
S

d
ef

or
es

ta
ti

on

F
ig

u
re

15
:

IH
S

d
ef

.
-

T
0

F
ig

u
re

16
:

IH
S

d
ef

.
-

T
1

F
ig

u
re

17
:

IH
S

d
ef

.
-

T
2

F
ig

u
re

18
:

IH
S

d
ef

.
-

T
3

F
ig

u
re

19
:

IH
S

d
ef

.
-

T
4

F
ig

u
re

20
:

IH
S

d
ef

.
-

T
5

N
o
te

:
P

o
in

t
e
st

im
a
te

s
a
n
d

c
o
n
fi

d
e
n
c
e

in
te

rv
a
ls

fr
o
m

b
a
se

li
n
e

d
y
n
a
m

ic
T

W
F

E
e
st

im
a
ti

o
n

a
re

re
p
re

se
n
te

d
in

b
lu

e
.

C
o
n
fi

d
e
n
c
e

in
te

rv
a
ls

ro
b
u
st

to
d
e
v
ia

ti
o
n

in
p
a
ra

ll
e
l

tr
e
n
d

a
re

re
p

o
rt

e
d

in
re

d
.

R
e
su

lt
s

a
re

p
re

se
n
te

d
fo

r
th

e
fi

rs
t

6
p

o
st

-t
re

a
tm

e
n
t

y
e
a
rs

.

64



S
en

si
ti

v
it

y
an

al
y
si

s
-

B
as

el
in

e
d
y
n
am

ic
T

W
F

E
es

ti
m

at
es

fo
r

n
or

m
al

is
ed

d
ef

or
es

ta
ti

on

F
ig

u
re

21
:

N
o
rm

a
li
se

d
d

ef
.

-
T

0
F

ig
u
re

22
:

N
o
rm

a
li
se

d
d

ef
.

-
T

1
F

ig
u
re

23
:

N
o
rm

a
li
se

d
d

ef
.

-
T

2

F
ig

u
re

24
:

N
o
rm

a
li
se

d
d

ef
.

-
T

3
F

ig
u
re

25
:

N
o
rm

a
li
se

d
d

ef
.

-
T

4
F

ig
u
re

26
:

N
o
rm

a
li
se

d
d

ef
.

-
T

5

N
o
te

:
P

o
in

t
e
st

im
a
te

s
a
n
d

c
o
n
fi

d
e
n
c
e

in
te

rv
a
ls

fr
o
m

b
a
se

li
n
e

d
y
n
a
m

ic
T

W
F

E
e
st

im
a
ti

o
n

a
re

re
p
re

se
n
te

d
in

b
lu

e
.

C
o
n
fi

d
e
n
c
e

in
te

rv
a
ls

ro
b
u
st

to
d
e
v
ia

ti
o
n

in
p
a
ra

ll
e
l

tr
e
n
d

a
re

re
p

o
rt

e
d

in
re

d
.

R
e
su

lt
s

a
re

p
re

se
n
te

d
fo

r
th

e
fi

rs
t

6
p

o
st

-t
re

a
tm

e
n
t

y
e
a
rs

.

65


	Introduction
	Coffee production and coffee leaf rust in Mexico
	Characteristics of coffee production in Mexico
	The 2012 coffee leaf rust epidemic
	The PROCAFE program
	Measuring CLR diffusion

	Data and descriptive statistics
	Deforestation data
	Sample description
	Additional data sources and variables

	Empirical Strategy
	Impact of CLR on deforestation
	Identification issues

	Results
	CLR and deforestation
	CLR, tree cover and forest degradation
	Robustness tests
	Synthetic control method
	Propensity score matching
	Additional robustness tests


	Heterogeneity analysis and mechanisms
	Deforestation in cropland
	Heterogeneity analysis
	CLR or PROCAFE?
	Sub-periods comparison
	Learning effects


	Conclusion

