
HAL Id: hal-03658631
https://univ-pau.hal.science/hal-03658631v1

Submitted on 4 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formal Language for Modelling and Verifying
Systems-of-Systems Software Architectures

Akram Seghiri, Faiza Belala, Nabil Hameurlain

To cite this version:
Akram Seghiri, Faiza Belala, Nabil Hameurlain. A Formal Language for Modelling and Verifying
Systems-of-Systems Software Architectures. International journal of systems and service-oriented
engineering (IJSSOE), 2022, 12 (1), pp.1-17. �10.4018/IJSSOE.297137�. �hal-03658631�

https://univ-pau.hal.science/hal-03658631v1
https://hal.archives-ouvertes.fr

1 INTRODUCTION

System of systems (SoS) (Maier, 1996) are an emerging class of complex, distributed and independent

systems that are cooperating and interacting to accomplish specific goals, known as SoS missions, which

neither of them can achieve nor obtain on its own. Various challenges have to be considered when

modelling and specifying a SoS, as for instance: 1) Missions: they represent the main goal of a SoS and

its desired behaviour that it needs to attend. Several constituent systems may combine their roles to

achieve a certain mission. 2) Interactions: A mission of a SoS can only be achieved by a cooperation

between its constituent systems. 3) Hierarchy: A SoS is constituted with a set of sub-systems. Each one

may also be a SoS. These constituents are, autonomous and operating independently. Besides, they may

operate to achieve the SoS mission. 4) Evolution: The constituent systems are constantly changing their

interactions and role combinations, yielding to dynamic behaviours of a SoS. 5) Dynamic Controls: A

SoS dynamic evolution should be controlled, to prohibit undesired behaviours that may occur in the SoS

and in its constituents.

In order to overcome these challenges and to capture the dynamic nature of a SoS, we have defined in

a previous work ArchSoS (Seghiri et al., 2018), a formal Architectural Description Language (ADL). Its

main purpose is to model hierarchical structures of these systems and their reconfigurations, as well as the

ability to manage potential cooperation between their constituent systems.

In this paper, we extend ArchSoS by a syntax-driven description, that has the ability to model SoS

constituents, and the events affecting them, as well as their behavioural constraints.

Particularly, the main objective of this paper is twofold. On one hand, a formal and graphical syntax,

inspired by Bigraphic Reactive Systems (BRS) principle (Milner, 2001) is given to ArchSoS. This will

offer a syntax-driven SoS description, dealing with the hierarchy concepts and interactions between

systems. On the other hand, a guided rewriting-based operational semantic is associated to ArchSoS.

Rewrite theories (Meseguer, 1996) seem to be appropriate for defining a SoS semantic. ArchSoS

specifications are implemented using Maude language (Clavel et al., 2007) to execute and simulate them,

while analyzing their pertinent properties.

A Bigraphic Reactive System (BRS) is a formalism for describing and modelling computational

systems. It contains a Bigraph model, representing the structural aspect of a system, and a set of Reaction

Rules to describe how bigraphical components may be reconfigured, defining the semantic of a system. A

Bigraph is defined by a set of nodes and a set of links between those nodes, known as edges. The nodes

have the ability to be nested inside one another. A Bigraph may also have algebraic notations, which are

equivalent to graphical ones. A reaction rule has the form R  R’, where R is called the redex (Bigraph

before the state transition), and R' is the reactum (Bigraph after the state transition). Thus, in a transition

of a Bigraph using a specified rule, the redex is the part of the Bigraph that is matched, and will be

replaced by the matching part of the reactum.

We have chosen BRS as a base for modeling SoS systems since it allows a formal and visual technique

for designing SoS software architectures, it provides enough expressive ability to represent not only SoS

components and elements, but also their dynamic specification through the use of reaction rules.

On the other hand, Maude which is an implementation language based on Rewriting logic, is chosen as

a formal semantic framework for ArchSoS. It uses a mathematical notations represented by a rewriting

theory = (Σ,E,R, where the signature (Σ,E) describes its static structure, while the rewriting rules R

describe its behaviour and evolution, our choice of using rewrite theories is justified by their ability of

reasoning on concurrent systems, representing their states and their different transitions. Maude

emphasizes simplicity, expressiveness and performance (Clavel et al., 2007), and offers a particular

syntax using a set of sorts and operations to define concurrent computations between systems, allowing

the execution of its formal specifications and formal verification.

The rest of this paper is organized as follows: Section 2 discusses the Related Work. Section 3

presents an overview of our approach. Section 4 presents ArchSoS and its concrete syntax, illustrated

through a realistic example. In Section 5, an operational semantic for ArchSoS is given to define SoS

evolutions. Section 6 is devoted to explain how to take benefit from the Maude tool to implement

ArchSoS and to formally analyze some of ArchSoS qualitative properties using Linear Temporal Logic

(LTL). Finally, Section 7 discusses future work and concludes the paper.

2 RELATED WORK

Table 1 provides a summary of various approaches dealing with SoS modelling in the context of

software engineering. Only researchers using formal models in one of the stages of the SoS Engineering

process are identified. They are classified according to the above-mentioned challenges. The focus

concerns the hierarchical aspect of a SoS structure, the mobility of its links, its execution semantics and

its formal analysis.

In the literature, some researchers have opted for the use of model-based approaches to specify and

design SoS; Systems Modeling Language (SysML) has been used in, (Dahmann et al., 2007), (Lane and

Bohn, 2013), (Bryans et al., 2014) and (Hause, 2014), to represent SoS characteristics, diagrams are used

to specify system’s structures and relations between them. SysML offers a good representation of a SoS

hierarchical structure, alongside the links between constituent systems. It is more used to deal with

modelling and static aspects only; the evolution is implemented using programming languages and is

limited to system restructuration.

Formal techniques, such as Bigraphs, were alternatively used in (Stary and Wachholder, 2016) and

(Gassara et al.,2017) to model SoS. (Gassara et al., 2017) adapted a multi-scale modeling methodology

that was applied to a smart buildings SoS. In these approaches, the structure of a system is defined as a

concrete Bigraph, while dynamics are represented by reaction (transition) rules. On the other hand,

authors in (Nielsen and Larsen, 2012) proposed a formal approach based on the extension of an object-

oriented technique, the Vienna Development Method Real-Time (VDM-RT). This extension allows the

initial architecture of a SoS to be changed during run-time through dynamic reconfiguration operations.

Authors in (Woodcock et al., 2012) proposed a formal modeling language called CML (Compass

Modelling language), based on Circus, focusing on the geographical distribution and the topology aspects

of SoS. In (Derhamy et al., 2019), authors presented a graph model to build SoS architectures by adapting

SOA theories and its query approach, SoS architectures are built. Constituent systems are composed to

form SoS in a decentralized manner.

Table 1. SoS Modelling Approaches
 SoS Syntax Description SoS Semantic

Description
Formal Execution

and Verification

Existing Approaches

Based on :

Hierarchy Links Missions Evolution
Behavioural
Constraints

Implementation

SYSML
(Dahmann et al., 2007), (Lane

and Bohn, 2013), (Bryans et al.,

2014), (Hause, 2014)

++

++

-

+

-

-

Bigraphs
(Stary and Wachholder, 2016)

(Gassara et al.,2017)

+++

+++

++

++

+

-

+

+

-

-

-

-

VDM-RT
(Nielsen and Larsen, 2012)

+ ++ - +++ - +

CML (Woodcock et al., 2012) - + - + - -

SOA (Derhamy et al., 2019) + ++ + + - -

CPN (Akhtar et al., 2019) + + - ++ + +

Ontologies (Nilsson et al., 2020) + ++ - + - -

ADL
π-Calculus for SoS (Oquendo
and Legay, 2015),

(Oquendo, 2016)

SoSADL – DEVS (Neto, 2016)

Sos-ADL (Silva et al., 2020)

Multi-labeled graphs ADL
(Chaabane et al., 2019)

-

+

-

++

+++

+++

+++

+++

++

+

+++

-

++

++

+

++

++

-

++

-

-

-

+

-
+++: Highly Supported, ++ : Supported, + : Partially Supported, - : Not Supported

Authors in (Akhtar et al., 2019) proposed a formal architecture approach based on Colored Petri Nets

(CPN) as a formal modelling tool. They specify some behavioural properties concerning a system’s

safety, and verify them using Labelled Transition System (LTS) as a model-checking tool. The approach

was applied to a Smart Flood Monitoring SoS. Similarly, authors in (Nilsson et al., 2020) specified an

architectural framework based on an ontology that uses the Object Process Methodology (OPM) ISO

19450. They model SoS-related concepts and relations along them to streamline collaboration among

involved SoS stakeholders.

Some dedicated approaches were based on ADLs to deal with few challenges on the design level of

SoS, reducing their complexity (Guessi, 2015). For instance, (Neto, 2016) gave DEVS-based notations

and functions as a simulation model for SoS behaviours. In the same thought, (Oquendo 2016) used the

“π-Calculus for SoS” (Oquendo and Legay, 2015) to describe an ADL for SoS, focusing on the control

of interactions between systems through the usage of mediators and bindings. It has been extended

through (Silva, E et al., 2020) by introducing a verification method using the mission modeling language

mKAOS and the DynBLTL formalism to verify mission-related properties.

Authors in (Chaabane et al, 2019) extended the ISO/IEC/IEEE 42010 standard (ISO/IEC/IEEE, 2011) to

express SoS characteristics by proposing an ADL based on multi-labeled graphs where Goal-Question-

Metric (GQM) was used to evaluate the effectiveness of the proposed models.

By analyzing the previous related works, it is worth to notice that the hierarchical aspect is well

defined especially in modelling approaches, such as SySML and Bigraphs. Unfortunately, a formal

verification of SoS is not considered. It is also pointed that only few of these existing approaches deal

with the semantical behaviour description, particularly no attention is paid to formalize behavioural

constraints of SoS, nor their model execution and formal analysis.

3 APPROACH PRINCIPLE

For more details about the most useful concepts of the BRS and Maude language, involved in the

process of defining ArchSoS, the reader may see (Milner, 2001) and (Clavel et al., 2007).

The process of defining ArchSoS is divided into two steps:

First, we give ArchSoS a formal syntax, inspired from BRS concepts which we extend to be able to

represent the explicit roles of each sub-systems, as well as specific link points. Thus, SoS models in

ArchSoS may be represented graphically or algebraically.

In the second step, we define an operational semantic for ArchSoS, decorated by behavioural

constraints controlling a system evolution. SoS may evolve using a Strategy, which is a state evolution of

a SoS using a specific action, and controlled by a specific predicate stating whether the application of the

action is allowed. ArchSoS semantic is implemented in Maude language, offering enough expressiveness

and simulation with its executable rewriting logic. Maude is equipped with a Model-Checker, allowing

the analysis of qualitative properties regarding a SoS behaviour and evolutions, as for instance, the

mission consistency of a given SoS.

Figure 1. ArchSoS definition process.

Figure 1 sums up the principle of our ArchSoS formal description language. A designer initializes a

SoS description by defining a hierarchical structure of a SoS, its constituents, their roles, the possible

events/missions, and a set of behavioural constraints. This hierarchical structure of SoS is specified using

both algebraic graphical forms inspired from Bigraph notations. A designer may simulate by adding,

removing and replacing constituent systems, and may trigger events that occur in a SoS. ArchSoS

semantic description is equipped with a set of actions affecting SoS evolution inspired from BRS reactive

rules. For instance, constituent systems may be linked, according to a specific event triggered by the

system designer, and their roles may be combined to achieve a new SoS role, thus achieving SoS

missions. In order to guide the application of these actions, they are equipped with a set of predicates

expressing application condition, creating a strategy rule that reduces the non-determinism in SoS

behaviour evolution. Maude language enables the specification of a formal syntax as well as a semantic

for SoS. Through its rewriting engine, the designer may simulate this specification and analyze it.

ArchSoS properties are specified using LTL temporal logic and their satisfaction is achieved using

Maude’s inbuilt Model-Checker.

4 ARCHSOS CONCRETE SYNTAX

ArchSoS syntax is inspired from Bigraphs, allowing both an algebraic and a graphical description of

its concepts. In this paper, we extend Bigraphs by making the ports’ notation explicit: using the operator

{…} that identifies the ports names in the algebraic and graphical forms.

4.1 Algebraic Description

A SoS is defined as a node of a SoS sort, nesting different systems: either other SoS or sub-systems.

Sub-systems are also nodes of sub-system sorts that are nested inside a SoS node. Inner names represent

events that may occur, affecting the constituent systems of a SoS. To each SoS or sub-system is attached

at least two different ports: 1) R port(s): describes the role of a system, sub-systems have pre-defined

roles describing their functionalities, while SoS roles are explicit only when they are linked to at least two

other sub-system (or sub-SoS) ports, thus expressing an emergent behavior for a SoS that is only active

when it emerges. 2) L port(s): may be attached to an event and to another L port via an hyper-edge that

indicates the nature of this link: ‘e’ hyper-edge: data-exchange, ‘a’ hype-edge: authority, ‘u’ hyper-edge:

usage link. It allows a system to be linked to another system according to a specific event,

Definition 1. The algebraic syntax of a SoS in ArchSoS is recursively defined using Backus Naur form

(McCracken, 2003) by:

<SoS> ::= <Events> <id_SoS> "{" <id_Role> "," <id_Link> "}" "." "(" <SoS> "|"

<SoS> ")"|<Events> <id_SoS> "{" <id_Role> "," <id_Link> "}" "." "(" <SoS>

")" |<Events> <id_SoS> "{" <id_Role> "," <id_Link> "}" "."<Sub_systems> ")"

<Sub_systems> ::= <id_Subsystem> "{" <Roles> "," <id_link> "}" | <id_Subsystem> "{"

<Roles> "," <id_link> "}" "|" <sub_systems>

<Roles> ::= <id_role> | <id_role> "," <Roles>

<Event> ::= "\" <id_event> | "\" <id_event> <Event>

<id_event> ::= String <id_SoS> ::= String <id_Link> ::= String

<id_Role> ::= String <id_Subsystem> ::= String

We give the following notation of a SoS as an example:

\Ei SoS{R, L}.(Si.{Ri, Rj, Li}|Sj.{Rk, Rl, Lj})

This indicates that a SoS (of name SoS), having the Role R and the link L (inside the operator

"{…}"), contains two sub-systems Si and Sj via the nesting operator “.”. They are separated via

the juxtaposition operator "|". They have the roles Ri, Rj and Rk, Rl respectively. L, Li and Lj

are the link ports of the SoS, and the sub-systems Si and Sj respectively. The SoS has an unlinked

event "Ei".

4.2 Graphical Description

Figure 2. Graphical description of a generic SoS example

Figure 2 illustrates the graphical elements of ArchSoS syntax description, illustrated on the previous

example noted: \Ei SoS{R, L}.(Si.{Ri, Rj, Li}|Sj.{Rk, Rl, Lj}).The SoS node in this

example has two nested nodes Si and Sj, representing atomic sub-systems, but may as well nest other SoS

nodes. This graphical description allows a better view of a SoS constituents and their hierarchy.

4.3 Behavioural constraints

ArchSoS is extended with a set of behavioural constraints, prohibiting certain illegal interconnections

between systems. They represent various conditions that need to be satisfied when dealing with a SoS

dynamics and evolution of its constituent systems. We may note that these constrains are defined by a

SoS designer, as they differ from one SoS to another. They are divided into two type of constraints: (1)

Incompatible Links: This indicates that some systems cannot communicate with each other. The constraint

has the syntax: ∼Link (Si, Sj, a), it states that two systems Si and Sj cannot be linked with a link of type

‘a’. (2) Incompatible Roles: represent the illegal role combinations between constituent systems, it is

noted as: ∼ [(Ri: Si),(Rj: Sj)], it states that the roles Ri and Rj, corresponding to systems Si and Sj

respectively, cannot be combined together.

4.4 Application Example

The Crisis Response System of System (CRSoS) is chosen as a case study to validate and illustrate our

approach. It contains four different SoS, which are: Health, Firefighting, Surveillance and the Police SoS,

equipped with their own sub-systems (For instance, Crisis detection system is a sub-system of the

surveillance SoS). Each of them is, on one hand, operating for its own goals and purposes, and on the

other hand interacting and communicating with other systems to achieve a common goal, thus creating

new behaviours. CRSoS has many missions, but in this paper, we present only one, which is the Fire-

Distinguish Mission. We have three possible events: Fire, FireSignal, and FireAppearance. Figure 3

illustrates the graphical description of CRSoS.

Figure 3. CRSoS Graphical description

Behavioural constraints for CRSoS system are shown in Table 2. Some roles cannot be combined and

specific systems cannot be linked together with a specific link type. For instance, ∼Link(Surveillance,

Health, a) indicates that the Surveillance sub-system cannot have an authority over the health sub-system

in CRSoS, when a fire event occurs.

Table 2. CRSoS Behavioural constraints
Constraint Conditions

Incompatible Links

∼Link(Surveillance, Health, Fire, a)
 ∼Link(Surveillance, FireFighting, Fire, a)

∼Link(Surveillance, Health, Fire, u)

Incompatible Roles
∼ [(Equipment : Equipment and logistics), (detection : Crisis Detection)]

∼ [(DiseaseM : DiseaseManagement),(TrafficC: TrafficC)]

5 ARCHSOS OPERATIONAL SEMANTICS

In this section, we describe SoS behaviour modelling in ArchSoS. We define a SoS state and the

appropriate semantics to specify its transition from one state to another.

Definition 2. The state of a SoS ST is defined as the tuple:

ST = (id_SoS, E), where: id_SoS is the identification of a SoS, E is an event that affects a SoS

and its constituent systems.

For example, a state for CRSoS affected by a Fire event is defined as ST = (CRSoS, Fire).

5.1 Evolution Actions

A SoS behaviour evolution is expressed by its transition from one state to another according to a

certain event. The event provokes a link between constituent systems, enabling them to combine their

specific roles to achieve SoS missions. This is done through a set of actions, serving as a transition mean

for SoS states. Actions represent the ArchSoS execution of the BRS reaction rules; they include the

Bigraphical extension of the explicit ports. An action may contain a set of parameters pr1, pr2,…,

prn carrying values used in the action act. Each parameter can be considered as a variable.

Definition 3. The behaviour evolution of a SoS is defined by the following rule when applying an action

A: A(pr1, pr2,…, prn) : ST  ST’, where :

A may be of three types (see Table 3): 1) Link Actions: Create/destroy links between SoS constituents. 2)

Role Actions: Combining (Deleting) roles of SoS constituents to emerge (delete) a specific SoS role. 3)

Configuration Actions: To add (respectively Remove or Replace) SoS constituent systems.

Table 3 summarizes the set of actions that can be applied to a SoS example to capture its evolution. For

instance, a SoS that acquires a new role is defined through the acquire role action on the table: Both

systems Si and Sj are already linked with a link of type ‘e’ (hyper-edge eij) directed from Si to Sj,

indicating that Si is exchanging data with Sj. This link occurred due to an event Ei.

Action
Type

Action Description Algebraic form

L
in

k
s A

ctio
n
s

Link System
Link(Ei,

e, Si 

Sj)

Creates a link between two sub-
systems Si and Sj, by linking their
Li and Lj ports respectively with
the event Ei (LiEi and LjEi),
the link is stated by the hyper-edge
eij

\Ei SoS{R, L}.(Si{Ri, Rj,

Li}|Sj{Rk, Rl, Lj})

 SoS{R, L}.(Si{Ri, Rj,

LiEi(eij)}|Sj{Rk, Rl, LjEi(eij)})

Destroy Link
DL(Ei, e,

Si  Sj)

Removes a link between the two-

systems Si and Sj, by deleting the

event Ei and the hyper-edge eij

linking them

SoS{R, L}.(Si{Ri, Rj, LiEi(ei

j)}|Sj{Rk, Rl, LjEi(eij)})

 \Ei SoS{R, L}.(Si{Ri, Rj,

Li}|Sj{Rk, Rl, Lj})

R
o
les A

ctio
n
s

Acquire Role
ARole(Ri:

Si,Rk:Sj)

The ‘SoS’ role becomes active via

the hyper-edge x, as roles Ri and

Rk, belonging to the sub-systems

Si and Sj respectively, are

combined.

SoS{R, L}.(Si{Ri, Rj, LiEi(eij)}

|Sj{Rk, Rl, LjEi(eij)})

 SoS{R(x), L}.(Si{Ri(x), Rj,

LiEi(eij)}|Sj{Rk(x), Rl,

LjEi(eij)})

Delete Role
DRole(Ri:

Si,Rk:Sj,

x)

Removes the active role of a SoS by

removing the hyper-edge x linking

its role with the sub-systems roles

Ri and Rk

SoS{R(x), L}.(Si{Ri(x), Rj,

LiEi(eij)}

|Sj{Rk(x), Rl, LjEi(eij)})

 SoS{R, L}.(Si{Ri, Rj,

Li(eij)}|Sj{Rk, Rl, Lj(eij)})

C
o
n
fig

u
ratio

n
 A

ctio
n
s

Add subsystem
AddS(Sk,

SoS)

Adds a sub-system Sk to a specific

SoS, this action is needed when all

systems cannot be linked for

example

\Ei SoS{R, L}.(Si{Ri, Rj, Li}

|Sj{Rk, Rl, Lj})

 \Ei SoS{R, L}.(Si{Ri, Rj, Li}

|Sj{Rk, Rl, Lj}|Sk{Rm, Lk})

Remove sub-

system
Remove(Sk

,SoS)

Removes a sub-system Sj from a

SoS, when the sub-system is not

needed (cannot be linked to any of

the other sub-systems for instance)

\Ei SoS{R, L}.(Si{Ri, Rj, Li}

|Sj{Rk, Rl, Lj}|Sk{Rm, Lk})

 \Ei SoS{R, L}.(Si{Ri, Rj, Li}

|Sk{Rm, Lk})

Replace sub-

system
Replace(S

j,Sk,SoS)

When two systems have

incompatible links, this action

replaces a sub-system Sj with the

sub-system Sk in order to have

compatible links in SoS.

SoS{R, L}.(Si{Ri, Rj, LiEi(eij)}

|Sj{Rk, Rl, LjEi(eij)})

 SoS{R, L}.(Si{Ri, Rj, LiEi(ei

k)}|Sk{Rm, LkEi(eik)})

Table 3. Evolution Actions description

By applying this action, they have their roles combined (Ri and Rk in this case) into the SoS Role R,

through an hyper-edge ‘x’, defined on the right side of the action.

5.2 Formation Rules

To guide and constraint the creation and evolution of ArchSoS models, formation rules are defined

and have to be respected when designing an SoS using the ArchSoS model. Table 4 details the conditions

of formation rules Ci for each specific node. Systems created using the ArchSoS, as well as the

application of the defined actions on these systems are correct-by-definition, since they respect the

structure of the Bigraphical model.

Table 4. Formation rule conditions for ArchSoS’ Architecture

Condition Description

C0 All children of a SoS node have a sort SoS, or a Sort Sub-system

C1 All SoS and Sub-system nodes are active

C2 In a SoS node, the R port is always linked to at least two of its Sub-systems’ R nodes

C3 In a Sub-system node, the R port is always linked to both another sub-system’s R port, and to a
SoS’ R node

C4 In a Sub-system node, the L port is always linked to both an inner name and to another L port of a
Sub-system node

C5 In a SoS node, the L port is always linked to both an inner name and to another L port of another
SoS node

5.3 SoS Evolution Scenario

We propose an execution scenario to illustrate the application of the proposed actions. We consider the

mission FireDistinguish of CRSoS. For a SoS state evolution example, we may identify a possible

achieved mission in a distinguished state ST as: (Ei, Li, Ri), where: Ei is an event affecting a SoS, Li

is a link connecting the systems as a response to the event Ei, Ri represent the combined roles belonging

to the linked systems.

Table 5 illustrates the missions, events, links and role combinations of this scenario. R is the CRSoS role

resulting from combining R1 and R2, which are the active roles of the Surveillance and FireFighting SoS

respectively. The resulted Bigraph after applying the above action on the scenario is shown on Figure 4.

We note that this scenario does not violate the behavioural constraints of CRSoS, and permits to achieve

the FireDistinguish mission.

Table 5. CRSoS execution scenario

Mission Event Links Role combinations

FireAlert

(Surveillance)

FireAppearance Link(FireAppearance : e,

CrisisDetection,

CommunicationsandAlert)

R1 : (Surveillance SoS)

[(CrisisDetection:detection),

(Communications and Alert

:communication)]

FieResponse

(Firefighting)

FireSignal Link(FireSignal : u, FireService,

Equipement)

R2 : (FireFighting SoS)

[(FireService:Ffightin

g), (Equipement and

logistics:equipement)]

FireDistinguish

(CRSoS)

Fire Link(Fire : e,

Surveillance,

FireFighting)

R : CRSoS

[(Surveillance:R1),

(FireFighting:R2)]

Figure 4. CRSoS final state of the scenario example

Through the previous scenario, we show how we may apply different actions resulting in different

behaviours; we notice that the CRSoS acquire new roles, which allows it to potentially achieve missions

in response to specific events. We note that CRSoS syntax, alongside the actions applications, respect the

defined formation rules, as well as the given behavioural constraints.

5.4 Strategy Based Evolution

In order to reduce and guide the non-deterministic behaviours evolution of SoS in ArchSoS, we define

Strategy rules which associate to each action type, a set of predicates ϕ1... ϕn. Formally, this will be

defined as follows:

Definition 4. We define a SoS Strategy Rule SR as a guided evolution of a SoS:

(Ai, ϕAi): ST  ST’ if ϕAi, ST is the state of a SoS, Ai is the applied action, ST’ is the resulting

state, if the predicate ϕAi holds.

Table 6 summarizes the main ArchSoS evolution control predicates. Each ϕi (i=1...9) constrains the

application of a corresponding action (or a set of actions). For instance, ϕ4 checks if whether a specific

system is linked or not. We note that the negation of the predicates ϕ2 and ϕ6 allows to represent the

behavioural constraints defined previously (incompatible roles / incompatible links).

The main contribution of this strategy-based evolution in ArchSoS is that it allows a SoS to evolve

naturally, in order to achieve some missions, according to specific events. This evolution is represented

by a state transition, guided by a Strategy.

Table 6. Evolution control predicates in ArchSoS
Predicates Description Associated actions

ϕ1 A SoS role is active Delete role, delete link, Acquire role

ϕ2 Roles are compatible Acquire role

ϕ3 All roles are not compatible Replace System

ϕ4 A system is linked Link system, remove link, remove system

ϕ5 Two systems are linked together Remove link , Link system

ϕ6 A link is possible Link system

ϕ7 All links are not compatible Add system

ϕ8 A Sub-system can be added Add system

ϕ9 A Sub-system can be removed Remove system

6 MAUDE BASED EXECUTION SEMANTICS

We choose to give a formal semantic to our proposed SoS language, based on Maude, which

emphasizes ease of specifying distributed systems. It provides a large range of analysis techniques. Thus,

we proceed to execute and simulate our ArchSoS specifications on Maude system and to gain more

insurance about a SoS, we use Linear Temporal Logic (LTL) model-checking to verify SoS behaviours,

and the consistency of SoS missions, through qualitative verification .

6.1 Maude Encoding
Specifically in this paper, the ArchSoS operational semantic is defined by using three distinct modules,

offering a clear separation between structural and behavioural aspects of our ArchSoS language. The

three modules permit the specification, modelling, and execution of an ArchSoS semantic respectively.

For each element in ArchSoS, we associate a corresponding Maude definition. Table 7 summarizes the

encoding of ArchSoS syntax into Maude. Figure 5 illustrates a step-by-step view of our Maude-based

specification. It states the three modules that are detailed further below.

Functional module ArchSoSSyntax: A functional module that specifies the structure of a system in an

equational theory, in terms of constructs types (sorts, operators etc.) for each ArchSoS element; these

elements are built according to a constructor (defined by the value ctor). LinkT is the sort that defines the

three pre-definite types corresponding to our link types a, u and e.

Figure 5. Step-by-Step View of the Maude-base specification and analysis of ArchSoS

Table 7. Integration of ArchSoS concepts in Maude

S
y

n
ta

x

ArchSoS concept Maude definition

SoS

sort SoS idSoS.
op opSoS <_,_>.P[_].L[_].E[_] :

IdSoS Role SubSyS Link Event ->SoS [ctor] .
 op null :  SoS [ctor] .

op _|_ : SoS SoS SoS [ctor assoc comm id: null] .

Sub-System

subsort subSyS <SoS .
sort IdSubsystem .
op opsubSyS<_,_>.L[_] : IdSubsystem Role Link  subSyS [ctor] .

op _|_ : subSyS subSyS  subSyS [ctor assoc comm id: null] .

Role

sort Role .
op ”RoleName” ->Role [ctor].
 op null : Role [ctor] .

op _+_ : Role Role Role [ctor assoc comm id: null] .

Links

sorts Link LinkT.

op link<_:_; _ _> : Event LinkT IdSoS IdSoS ->Link [ctor] .
ops a, u, e : LinkT [ctor].

Events Sort inside the opSoS construct.

B
eh

a
v

io
u

r

Action Ai Maude’s Rewrite Rule

State SoS sort with an active event

SRi Rule
Maude’s Conditioned Rewrite Rule

crl [rewrite-rule-name] : State ->State’ if ϕi .

Control Predicates ϕi

Maude’s Conditional Equations:
IsActive(SoS), CompRoles(Rolei, Rolej), NoComp(SoS)

isLinked(Subsystemi), areLinked(Subsystemi, Subsystemj),

PosLink(Subsystemi,Subsystemj, Event, Linktype),

NoClinks(Si), CanAdd(SoS,SubSystemii) CanRemove(SoS,SubSystemii)

Properties
LTL Properties: Link Properties, Reconfiguration Properties, Roles Properties,
Mission Property

For instance: the SoS operator is defined as ‘op opSoS< _, _>.P[_].L[_].E[_])’ where : the SoS name

(defined by the sort IdSoS) is the first identifier, followed by an attribute that specifies it’s role. The P

part represent the constituent systems of a SoS, and the L part is the links that a SoS shares with other,

while E indicates the possible events.

System Module ArchSoSBehaviours: In this module, we identify: (1) a set of rewrite rules specifying

the Ai actions dedicated to define the SoS behaviours in ArchSoS, these actions are conditioned by

predicates to define a strategy rule. (2) SoS states as SoS sorts containing active events. Actions are

applied to these states. (3) A set of conditional equations to define the ϕi control predicates.

 As stated in table 7, the isActive predicate ϕ1 for instance is defined as:

ceq isActive(opSoS < Sidi, Ri >.P[Si].L[Li].E[Ei]) = false if Ri == null.

Where Sidi is an SoS id, Ri it’s roles, Si its constituent system(s), Li its current links, and Ei the

current event, the equation returns false if the Ri role is null, meaning that a SoS is inactive at this state.

Figure 6. Strategy rule of the Link System action

The action illustrated in Figure 6 represents a link action rule on CRSoS, alongside its controlling

predicates. It defines a Strategy rule for ArchSoS semantics, evolving a SoS from one state to another.

System Module ArchSoSAnalysis: introduced to specify LTL properties in order to verify that

ArchSoS desirable behaviours are achieved, and that no behavioural constraints are violated, the

properties include:

 Link Properties (Plink, Dlink): They affect links. They check if links are possible, and if links can be

destroyed respectively.

 Roles Properties (ARoles, RRoles): They affect roles by checking that only compatible roles are

combined, and if they can be removed.

 Reconfiguring Properties (RecReplace, RecA/R): Properties checking that the execution does not

terminate in a deadlock situation by replacing, adding/removing systems.

 Mission property (Consistency): It verifies if a SoS may reach a state where a mission is achieved, it

checks the missions consistency.

6.2 Formal Analysis

The major benefit of adopting Maude as a semantical framework for ArchSoS is the exploitation of its

rewriting engine and its LTL model-checker. The execution of the ArchSoS analysis module permits to

check that our ArchSoS model satisfies some SoS inherent properties. Properties in this module are

defined as LTL formulas. LTL have many symbols and operators, which may be found in [Rozier, 2011].

We may note that ⇒ stands for an implication, |= defines a property validation, while ∧, ∨ and ∼ express

Conjunction, Disjunction and Negation respectively. As for the operators O, ⬦ and □, they represent the

next state, an eventual future state, and a globally/always state respectively. These formulas are defined

as symbolic properties that check whether a state transition is coherent, and that we only get desired

behaviours from a SoS transition. They are verified through a Maude Model-checking. Each property

depends on a set of predicates, to which is associated a symbolic property p1…p9, defined as a conditional

equation. For instance, ϕ1 is encoded as the property: ceq Si |= p1 = true if isActive(Si) == true. Each

ArchSoS property formula is specified via a Maude equation, for instance:

Plink: expresses that when a SoS is in a state when not all constituent systems cannot be linked (∼ p7),

and (conjunction symbol ∧) there is a possible link between two systems (p6), and if two systems are not

linked (∼ p5), eventually (⬦) we will have a state where these two systems are linked (p5). It is noted as:

eq PLink = □ (∼ p7 ∧ p6 ∧ ∼ p5 ⇒ ⬦ p5). Similarely, we define the rest of the formulas:

Dlink: eq DLink = □ (∼ p1 ∧ p4 ∧ p5 ⇒ O ∼ p4 ∧ ∼ p5) .

ARoles: eq ARoles = □ (∼ p1 ∧ p2 ∧ ∼ p3⇒ ⬦ p1) .

RRoles: eq RRoles = □ (p1 ⇒ O ∼ p1) .

RecReplace: eq RecReplace = [] (∼ p1 ∧ p3 ∧ ⇒ O ∼ p3).

RecA/R: eq RecA/R = □ (p7 ∧ (p8 ∨ p9) ⇒ ⬦ ∼ p7).

Consistency: checks if we may have a state where the corresponding tuple (event, links, and roles) of a

mission holds. eq Consistency = □ (∼ p1 ⇒ ⬦ p1 ∧ Mission).

To validate the consistency property, we have to define a new property for each mission. For example,

a property called FireDistinguish, to define the FireDistinguish Mission (in Section 6.3) is shown on

Figure 7. By replacing Mission with the FireDistinguish in the Consistency property, we get the

following property:

eq Consistency = □ (∼ p1 ⇒ ⬦ p1 ∧ FireDistinguish).

Figure 7. FireDistinguish property definition

Then, we apply the model Checker on the initial state of the CRSoS (where CRSoS is inactive), to

verify the Consistency property of the FireDistinguish mission. The resulting execution is shown on

Figure 8, it returns true, stating that Consistency property is satisfied, and that we eventually have a state

where CRSoS achieved the defined FireDistinguish mission.

Figure 8. Model-checking Result

We may note that the proposed analysis aims to execute and prototype the CRSoS system. More

interesting properties related to SoS challenges may be demonstrated in future work.

7 CONCLUSION

In this paper, we have proposed ArchSoS, an ADL to specify and execute SoS software architectures.

Its syntax notation has been inspired from Bigraphs, well appropriate when giving formal and visual

modelling of the SoS constituents and their evolution. Moreover, we have defined an operational semantic

for ArchSoS, by describing a SoS state evolution, a set of actions that may affect this state; and a number

of predicates that constraint the application of these actions. The defined set of predicates and constraints

gives a rise to the definition of a new type of transition rules called strategies rules, which guide the

evolution of a SoS behaviour. ArchSoS semantics is encoded into Maude language, to enable its

execution. We have defined various properties for our scenario example; they have been checked via LTL

Model-Checking of Maude system. They check whether the behaviour of a SoS is correct, and whether

ArchSoS behavioural constraints are respected. They also allow us to check if a SoS achieves desirable

missions. As future work, we plan to develop a practical environment around ArchSoS, which will make

it possible to identify the performance of the proposed approach and to reason on its soundness. Other

case studies are also possible to better illustrate the contributions of this language.

REFERENCES
Akhtar, N., & Khan, S. (2019). Formal architecture and verification of a smart flood monitoring system-of-

systems. Int. Arab J. Inf. Technol., 16(2), 211-216.

Bryans, J., Fitzgerald, J., Payne, R., Miyazawa, A., and Kristensen, K. (2014). Sysml contracts for systems of

systems. In 2014 9th International Conference on System of Systems Engineering (SOSE), pages 73–78.

IEEE.

Cavalcante, E. (2015). On the architecture-driven development of software-intensive systems-of-systems. In

Proceedings of the 37th International Conference on Software Engineering-Volume 2, pages 899–902. IEEE

Press.

Chaabane, M., Rodriguez, I. B., Colomo-Palacios, R., Gaaloul, W., & Jmaiel, M. (2019). A modeling approach for

Systems-of-Systems by adapting ISO/IEC/IEEE 42010 Standard evaluated by Goal-Question-Metric. Science

of Computer Programming, 184, 102305.

Clavel, M., Durn, F., Eker, S., Lincoln, P., Mart-Oliet, N., Meseguer, J., and Talcot, C. (2007) All About

Maude- A High-Performance Logical Framework : How to Specify, Program, and Verify Systems in

Rewriting Logic. Programming and Software Engineering, 4350. Springer-Verlag Berlin Heidelberg.

Dahmann, J., Markina-Khusid, A., Doren, A., Wheeler, T., Cotter, M., and Kelley, M. (2017). Sysml executable

systems of system architecture definition: A working example. In Systems Conference (SysCon), 2017 Annual

IEEE International, pages 1–6. IEEE.

Derhamy, H., Eliasson, J., & Delsing, J. (2019). System of system composition based on decentralized service-

oriented architecture. IEEE Systems Journal, 13(4), 3675-3686.

Gassara, A., Rodriguez, I. B., Jmaiel, M., and Drira, K. (2017). A bigraphical multi-scale modeling methodology

for system of systems. Computers & Electrical Engineering, 58:113–125.

Guessi, M., Neto, V. V., Bianchi, T., Felizardo, K. R., Oquendo, F., and Nakagawa, E. Y. (2015). A systematic

literature review on the description of software architectures for systems of systems. In Proceedings of the

30th Annual ACM Symposium on Applied Computing, pages 1433–1440.

Hause, M. C. (2014). Sos for sos: A new paradigm for system of systems modeling. In Aerospace Conference,

2014 IEEE, pages 1–12. IEEE.

ISO/IEC/IEEE (2011). Systems and Software Engineering – Architecture Description, ISO/IEC/IEEE

42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000), pp.1–46.

Lane, J. A. and Bohn, T. (2013). Using sysml modeling to understand and evolve systems of systems. Systems

Engineering, 16(1):87–98.

Maier, M. W. (1996). Architecting principles for systemsof-systems. In INCOSE International Symposium,

volume 6, pages 565–573. Wiley Online Library.

McCracken, D. D., & Reilly, E. D. (2003). Backus-naur form (bnf). In Encyclopedia of Computer Science (pp.

129-131).

Meseguer, J. (1996). Rewriting logic as a semantic framework for concurrency: a progress report. In International

Conference on Concurrency Theory, pages 331–372. Springer.

Milner, R.: Bigraphical reactive systems. In: International Conference on Concurrency Theory. pp. 16{35.

Springer (2001)

Neto, V. V. G. (2016). Validating emergent behaviours in systems-of-systems through model transformations. In

SRC@ MoDELS.

Nielsen, C. B. and Larsen, P. G. (2012). Extending vdm-rt to enable the formal modelling of system of systems. In

System of Systems Engineering (SoSE), 2012 7th International Conference on, pages 457–462. IEEE.

Nilsson, R., Dori, D., Jayawant, Y., Petnga, L., Kohen, H., & Yokell, M. (2020, July). Towards an Ontology for

Collaboration in System of Systems Context. In INCOSE International Symposium (Vol. 30, No. 1, pp. 666-

679).

Oquendo, F. (2016). pi-calculus for SoS: A foundation for formally describing software-intensive systems-of-

systems. System of Systems Engineering Conference (SoSE), 11th.

Oquendo, F. and Legay, A. (2015). Formal architecture description of trustworthy systems-of-systems with

SoSADL. ERCIM News, (102).

Rozier, K. Y. (2011). Linear temporal logic symbolic model checking. Computer Science Review, 5(2):163–203.

Seghiri, A., Belala, F., Benzadri, Z., and Hameurlain, N. (2018). A maude based specification for sos architecture.

In 2018 13th Annual Conference on System of Systems Engineering (SoSE), pages 45–52. IEEE.

Silva, E., Batista, T., & Oquendo, F. (2020). On the verification of mission-related properties in software-intensive

systems-of-systems architectural design. Science of Computer Programming, 192, 102425.

Stary, C. and Wachholder, D. (2016). System-of-systems supporta bigraph approach to interoperability and

emergent behavior. Data & Knowledge Engineering, 105:155–172.

Woodcock, J., Cavalcanti, A., Fitzgerald, J., Larsen, P., Miyazawa, A., and Perry, S. (2012). Features of cml: A

formal modelling language for systems of systems. In System of Systems Engineering (SoSE), 2012 7th

International Conference on, pages 1–6. IEEE.

