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1   INTRODUCTION  

System of systems (SoS) (Maier, 1996) are an emerging class of complex, distributed and independent 

systems that are cooperating and interacting to accomplish specific goals, known as SoS missions, which 

neither of them can achieve nor obtain on its own. Various challenges have to be considered when 

modelling and specifying a SoS, as for instance: 1) Missions: they represent the main goal of a SoS and 

its desired behaviour that it needs to attend. Several constituent systems may combine their roles to 

achieve a certain mission. 2) Interactions: A mission of a SoS can only be achieved by a cooperation 

between its constituent systems. 3) Hierarchy: A SoS is constituted with a set of sub-systems. Each one 

may also be a SoS. These constituents are, autonomous and operating independently. Besides, they may 

operate to achieve the SoS mission. 4) Evolution: The constituent systems are constantly changing their 

interactions and role combinations, yielding to dynamic behaviours of a SoS. 5) Dynamic Controls: A 

SoS dynamic evolution should be controlled, to prohibit undesired behaviours that may occur in the SoS 

and in its constituents. 

In order to overcome these challenges and to capture the dynamic nature of a SoS, we have defined in 

a previous work ArchSoS (Seghiri et al., 2018), a formal Architectural Description Language (ADL). Its 

main purpose is to model hierarchical structures of these systems and their reconfigurations, as well as the 

ability to manage potential cooperation between their constituent systems. 

In this paper, we extend ArchSoS by a syntax-driven description, that has the ability to model SoS 

constituents, and the events affecting them, as well as their behavioural constraints. 

Particularly, the main objective of this paper is twofold. On one hand, a formal and graphical syntax, 

inspired by Bigraphic Reactive Systems (BRS) principle (Milner, 2001) is given to ArchSoS. This will 

offer a syntax-driven SoS description, dealing with the hierarchy concepts and interactions between 

systems. On the other hand, a guided rewriting-based operational semantic is associated to ArchSoS. 

Rewrite theories (Meseguer, 1996) seem to be appropriate for defining a SoS semantic. ArchSoS 

specifications are implemented using Maude language (Clavel et al., 2007) to execute and simulate them, 

while analyzing their pertinent properties. 



A Bigraphic Reactive System (BRS) is a formalism for describing and modelling computational 

systems. It contains a Bigraph model, representing the structural aspect of a system, and a set of Reaction 

Rules to describe how bigraphical components may be reconfigured, defining the semantic of a system. A 

Bigraph is defined by a set of nodes and a set of links between those nodes, known as edges. The nodes 

have the ability to be nested inside one another. A Bigraph may also have algebraic notations, which are 

equivalent to graphical ones. A reaction rule has the form R  R’, where R is called the redex (Bigraph 

before the state transition), and R' is the reactum (Bigraph after the state transition). Thus, in a transition 

of a Bigraph using a specified rule, the redex is the part of the Bigraph that is matched, and will be 

replaced by the matching part of the reactum.  

We have chosen BRS as a base for modeling SoS systems since it allows a formal and visual technique 

for designing SoS software architectures, it provides enough expressive ability to represent not only SoS 

components and elements, but also their dynamic specification through the use of reaction rules. 

On the other hand, Maude which is an implementation language based on Rewriting logic, is chosen as 

a formal semantic framework for ArchSoS. It uses a mathematical notations represented by a rewriting 

theory = (Σ,E,R, where the signature (Σ,E) describes its static structure, while the rewriting rules R 

describe its behaviour and evolution, our choice of using rewrite theories is justified by their ability of 

reasoning on concurrent systems, representing their states and their different transitions. Maude 

emphasizes simplicity, expressiveness and performance (Clavel et al., 2007), and offers a particular 

syntax using a set of sorts and operations to define concurrent computations between systems, allowing 

the execution of its formal specifications and formal verification. 

The rest of this paper is organized as follows: Section 2 discusses the Related Work. Section 3 

presents an overview of our approach. Section 4 presents ArchSoS and its concrete syntax, illustrated 

through a realistic example. In Section 5, an operational semantic for ArchSoS is given to define SoS 

evolutions. Section 6 is devoted to explain how to take benefit from the Maude tool to implement 

ArchSoS and to formally analyze some of ArchSoS qualitative properties using Linear Temporal Logic 

(LTL). Finally, Section 7 discusses future work and concludes the paper. 



2  RELATED WORK  

Table 1 provides a summary of various approaches dealing with SoS modelling in the context of 

software engineering. Only researchers using formal models in one of the stages of the SoS Engineering 

process are identified. They are classified according to the above-mentioned challenges. The focus 

concerns the hierarchical aspect of a SoS structure, the mobility of its links, its execution semantics and 

its formal analysis. 

In the literature, some researchers have opted for the use of model-based approaches to specify and 

design SoS; Systems Modeling Language (SysML) has been used in, (Dahmann et al., 2007), (Lane and 

Bohn, 2013), (Bryans et al., 2014) and (Hause, 2014), to represent SoS characteristics, diagrams are used 

to specify system’s structures and relations between them. SysML offers a good representation of a SoS 

hierarchical structure, alongside the links between constituent systems.  It is more used to deal with 

modelling and static aspects only; the evolution is implemented using programming languages and is 

limited to system restructuration.  

Formal techniques, such as Bigraphs, were alternatively used in (Stary and Wachholder, 2016) and 

(Gassara et al.,2017) to model SoS. (Gassara et al., 2017) adapted a multi-scale modeling methodology 

that was applied to a smart buildings SoS. In these approaches, the structure of a system is defined as a 

concrete Bigraph, while dynamics are represented by reaction (transition) rules. On the other hand, 

authors in (Nielsen and Larsen, 2012) proposed a formal approach based on the extension of an object-

oriented technique, the Vienna Development Method Real-Time (VDM-RT). This extension allows the 

initial architecture of a SoS to be changed during run-time through dynamic reconfiguration operations. 

Authors in (Woodcock et al., 2012) proposed a formal modeling language called CML (Compass 

Modelling language), based on Circus, focusing on the geographical distribution and the topology aspects 

of SoS. In (Derhamy et al., 2019), authors presented a graph model to build SoS architectures by adapting 

SOA theories and its query approach, SoS architectures are built. Constituent systems are composed to 

form SoS in a decentralized manner. 
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Authors in (Akhtar et al., 2019) proposed a formal architecture approach based on Colored Petri Nets 

(CPN) as a formal modelling tool. They specify some behavioural properties concerning a system’s 

safety, and verify them using Labelled Transition System (LTS) as a model-checking tool. The approach 

was applied to a Smart Flood Monitoring SoS. Similarly, authors in (Nilsson et al., 2020) specified an 

architectural framework based on an ontology that uses the Object Process Methodology (OPM) ISO 

19450. They model SoS-related concepts and relations along them to streamline collaboration among 

involved SoS stakeholders. 

Some dedicated approaches were based on ADLs to deal with few challenges on the design level of 

SoS, reducing their complexity (Guessi, 2015). For instance, (Neto, 2016) gave DEVS-based notations 

and functions as a simulation model for SoS behaviours. In the same thought, (Oquendo 2016) used the 

“π-Calculus for SoS” (Oquendo and Legay, 2015) to describe an ADL for SoS, focusing on the control 



of interactions between systems through the usage of mediators and bindings. It has been extended 

through (Silva, E et al., 2020) by introducing a verification method using the mission modeling language 

mKAOS and the DynBLTL formalism to verify mission-related properties.   

Authors in (Chaabane et al, 2019) extended the ISO/IEC/IEEE 42010 standard (ISO/IEC/IEEE, 2011) to 

express SoS characteristics by proposing an ADL based on multi-labeled graphs where Goal-Question-

Metric (GQM) was used to evaluate the effectiveness of the proposed models. 

By analyzing the previous related works, it is worth to notice that the hierarchical aspect is well 

defined especially in modelling approaches, such as SySML and Bigraphs. Unfortunately, a formal 

verification of SoS is not considered. It is also pointed that only few of these existing approaches deal 

with the semantical behaviour description, particularly no attention is paid to formalize behavioural 

constraints of SoS, nor their model execution and formal analysis.  

3  APPROACH PRINCIPLE  

For more details about the most useful concepts of the BRS and Maude language, involved in the 

process of defining ArchSoS, the reader may see (Milner, 2001) and (Clavel et al., 2007).  

The process of defining ArchSoS is divided into two steps: 

First, we give ArchSoS a formal syntax, inspired from BRS concepts which we extend to be able to 

represent the explicit roles of each sub-systems, as well as specific link points. Thus, SoS models in 

ArchSoS may be represented graphically or algebraically. 

In the second step, we define an operational semantic for ArchSoS, decorated by behavioural 

constraints controlling a system evolution. SoS may evolve using a Strategy, which is a state evolution of 

a SoS using a specific action, and controlled by a specific predicate stating whether the application of the 

action is allowed. ArchSoS semantic is implemented in Maude language, offering enough expressiveness 

and simulation with its executable rewriting logic. Maude is equipped with a Model-Checker, allowing 

the analysis of qualitative properties regarding a SoS behaviour and evolutions, as for instance, the 

mission consistency of a given SoS. 

 



 
Figure 1. ArchSoS definition process.  

Figure 1 sums up the principle of our ArchSoS formal description language. A designer initializes a 

SoS description by defining a hierarchical structure of a SoS, its constituents, their roles, the possible 

events/missions, and a set of behavioural constraints. This hierarchical structure of SoS is specified using 

both algebraic graphical forms inspired from Bigraph notations. A designer may simulate by adding, 

removing and replacing constituent systems, and may trigger events that occur in a SoS. ArchSoS 

semantic description is equipped with a set of actions affecting SoS evolution inspired from BRS reactive 

rules. For instance, constituent systems may be linked, according to a specific event triggered by the 

system designer, and their roles may be combined to achieve a new SoS role, thus achieving SoS 

missions. In order to guide the application of these actions, they are equipped with a set of predicates 

expressing application condition, creating a strategy rule that reduces the non-determinism in SoS 

behaviour evolution. Maude language enables the specification of a formal syntax as well as a semantic 

for SoS. Through its rewriting engine, the designer may simulate this specification and analyze it. 

ArchSoS properties are specified using LTL temporal logic and their satisfaction is achieved using 

Maude’s inbuilt Model-Checker.  

 

 

 



4  ARCHSOS CONCRETE SYNTAX  

ArchSoS syntax is inspired from Bigraphs, allowing both an algebraic and a graphical description of 

its concepts. In this paper, we extend Bigraphs by making the ports’ notation explicit: using the operator 

{…} that identifies the ports names in the algebraic and graphical forms. 

4.1 Algebraic Description 

A SoS is defined as a node of a SoS sort, nesting different systems: either other SoS  or sub-systems. 

Sub-systems are also nodes of sub-system sorts that are nested inside a SoS node. Inner names represent 

events that may occur, affecting the constituent systems of a SoS. To each SoS or sub-system is attached 

at least two different ports: 1) R port(s): describes the role of a system, sub-systems have pre-defined 

roles describing their functionalities, while SoS roles are explicit only when they are linked to at least two 

other sub-system (or sub-SoS) ports, thus expressing an emergent behavior for a SoS that is only active 

when it emerges. 2) L port(s): may be attached to an event and to another L port via an hyper-edge that 

indicates the nature of this link: ‘e’ hyper-edge: data-exchange, ‘a’ hype-edge: authority, ‘u’ hyper-edge: 

usage link. It allows a system to be linked to another system according to a specific event,  

Definition 1. The algebraic syntax of a SoS in ArchSoS is recursively defined using Backus Naur form 

(McCracken, 2003) by: 

<SoS> ::= <Events> <id_SoS> "{" <id_Role> "," <id_Link> "}" "." "(" <SoS>  "|" 

<SoS> ")"|<Events> <id_SoS> "{" <id_Role> "," <id_Link> "}" "." "(" <SoS> 

")" |<Events> <id_SoS> "{" <id_Role> "," <id_Link> "}" "."<Sub_systems> ")" 

<Sub_systems> ::= <id_Subsystem> "{" <Roles> "," <id_link> "}" | <id_Subsystem> "{" 

<Roles> "," <id_link> "}" "|" <sub_systems> 

<Roles> ::= <id_role> | <id_role> "," <Roles> 

<Event> ::= "\" <id_event> | "\" <id_event>  <Event> 

<id_event> ::= String <id_SoS> ::= String <id_Link> ::= String 

<id_Role> ::= String <id_Subsystem> ::= String 

We give the following notation of a SoS as an example: 

\Ei SoS{R, L}.(Si.{Ri, Rj, Li}|Sj.{Rk, Rl, Lj}) 

This indicates that a SoS (of name SoS), having the Role R and the link L (inside the operator 

"{…}"), contains two sub-systems Si and Sj via the nesting operator “.”. They are separated via 

the juxtaposition operator "|". They have the roles Ri, Rj and Rk, Rl respectively. L, Li and Lj 



are the link ports of the SoS, and the sub-systems Si and Sj respectively. The SoS has an unlinked 

event "Ei".  

4.2 Graphical Description 

Figure 2. Graphical description of a generic SoS example 

Figure 2 illustrates the graphical elements of ArchSoS syntax description, illustrated on the previous 

example noted:  \Ei SoS{R, L}.(Si.{Ri, Rj, Li}|Sj.{Rk, Rl, Lj}).The SoS node in this 

example has two nested nodes Si and Sj, representing atomic sub-systems, but may as well nest other SoS 

nodes. This graphical description allows a better view of a SoS constituents and their hierarchy. 

4.3  Behavioural constraints  

ArchSoS is extended with a set of behavioural constraints, prohibiting certain illegal interconnections 

between systems. They represent various conditions that need to be satisfied when dealing with a SoS 

dynamics and evolution of its constituent systems. We may note that these constrains are defined by a 

SoS designer, as they differ from one SoS to another. They are divided into two type of constraints: (1) 

Incompatible Links: This indicates that some systems cannot communicate with each other. The constraint 

has the syntax: ∼Link (Si, Sj, a), it states that two systems Si and Sj cannot be linked with a link of type 

‘a’. (2) Incompatible Roles: represent the illegal role combinations between constituent systems, it is 

noted as: ∼ [(Ri: Si),(Rj: Sj)], it states that the roles Ri and Rj, corresponding to systems Si and Sj 

respectively, cannot be combined together. 

 



4.4 Application Example  

The Crisis Response System of System (CRSoS) is chosen as a case study to validate and illustrate our 

approach. It contains four different SoS, which are: Health, Firefighting, Surveillance and the Police SoS, 

equipped with their own sub-systems (For instance, Crisis detection system is a sub-system of the 

surveillance SoS).  Each of them is, on one hand, operating for its own goals and purposes, and on the 

other hand interacting and communicating with other systems to achieve a common goal, thus creating 

new behaviours.  CRSoS has many missions, but in this paper, we present only one, which is the Fire-

Distinguish Mission. We have three possible events: Fire, FireSignal, and FireAppearance. Figure 3 

illustrates the graphical description of CRSoS.  

 
Figure 3. CRSoS Graphical description 

Behavioural constraints for CRSoS system are shown in Table 2. Some roles cannot be combined and 

specific systems cannot be linked together with a specific link type. For instance, ∼Link(Surveillance, 



Health, a) indicates that the Surveillance sub-system cannot have an authority over the health sub-system 

in CRSoS, when a fire event occurs.  

Table 2. CRSoS Behavioural constraints 
Constraint Conditions 

Incompatible Links 

∼Link(Surveillance, Health, Fire, a) 
  ∼Link(Surveillance, FireFighting, Fire, a) 

∼Link(Surveillance, Health, Fire, u) 

Incompatible Roles 
∼ [(Equipment : Equipment and logistics), (detection : Crisis Detection ) ] 

∼ [(DiseaseM : DiseaseManagement),( TrafficC: TrafficC)] 

 

5   ARCHSOS OPERATIONAL SEMANTICS  

In this section, we describe SoS behaviour modelling in ArchSoS. We define a SoS state and the 

appropriate semantics to specify its transition from one state to another. 

Definition 2. The state of a SoS ST is defined as the tuple: 

ST = (id_SoS, E), where: id_SoS is the identification of a SoS, E is an event that affects a SoS 

and its constituent systems. 

For example, a state for CRSoS affected by a Fire event is defined as ST = (CRSoS, Fire). 

5.1 Evolution Actions  

A SoS behaviour evolution is expressed by its transition from one state to another according to a 

certain event. The event provokes a link between constituent systems, enabling them to combine their 

specific roles to achieve SoS missions. This is done through a set of actions, serving as a transition mean 

for SoS states. Actions represent the ArchSoS execution of the BRS reaction rules; they include the 

Bigraphical extension of the explicit ports. An action may contain a set of parameters pr1, pr2,…, 

prn carrying values used in the action act. Each parameter can be considered as a variable. 

Definition 3. The behaviour evolution of a SoS is defined by the following rule when applying an action 

A:  A(pr1, pr2,…, prn) : ST  ST’, where :  

A may be of three types (see Table 3): 1) Link Actions: Create/destroy links between SoS constituents. 2) 

Role Actions: Combining (Deleting) roles of SoS constituents to emerge (delete) a specific SoS role.  3) 

Configuration Actions: To add (respectively Remove or Replace) SoS constituent systems. 

Table 3 summarizes the set of actions that can be applied to a SoS example to capture its evolution. For 

instance, a SoS that acquires a new role is defined through the acquire role action on the table: Both 

systems Si and Sj are already linked with a link of type ‘e’ (hyper-edge eij) directed from Si to Sj, 

indicating that Si is exchanging data with Sj. This link occurred due to an event Ei.  



Action 
Type 

Action Description Algebraic form 

L
in

k
s A

ctio
n
s 

Link System 
Link(Ei, 

e, Si  

Sj) 

Creates a link between two sub-
systems Si and Sj, by linking their 
Li and Lj ports respectively with 
the event Ei (LiEi and LjEi),  
the link is stated by the hyper-edge 
eij 

\Ei SoS{R, L}.(Si{Ri, Rj, 

Li}|Sj{Rk, Rl, Lj}) 

 SoS{R, L}.(Si{Ri, Rj, 

LiEi(eij)}|Sj{Rk, Rl, LjEi(eij)}) 

Destroy Link 
DL(Ei, e, 

Si  Sj) 

Removes a link between the two-

systems Si and Sj, by deleting the 

event Ei and the hyper-edge eij 

linking them 

SoS{R, L}.(Si{Ri, Rj, LiEi(ei 

j)}|Sj{Rk, Rl, LjEi(eij)}) 

 \Ei SoS{R, L}.(Si{Ri, Rj, 

Li}|Sj{Rk, Rl, Lj}) 

 

R
o
les A

ctio
n
s 

Acquire Role 
ARole(Ri:

Si,Rk:Sj) 

The ‘SoS’ role becomes active via 

the hyper-edge x, as roles Ri and 

Rk, belonging to the sub-systems 

Si and Sj respectively, are 

combined. 

SoS{R, L}.(Si{Ri, Rj, LiEi(eij)} 

|Sj{Rk, Rl, LjEi(eij)}) 

 SoS{R(x), L}.(Si{Ri(x), Rj, 

LiEi(eij)}|Sj{Rk(x), Rl, 

LjEi(eij)}) 

Delete  Role 
DRole(Ri:

Si,Rk:Sj,

x) 

Removes the active role of a SoS by 

removing the hyper-edge x linking 

its role with the sub-systems roles 

Ri and Rk 

SoS{R(x), L}.(Si{Ri(x), Rj, 

LiEi(eij)} 

|Sj{Rk(x), Rl, LjEi(eij)}) 

 SoS{R, L}.(Si{Ri, Rj, 

Li(eij)}|Sj{Rk, Rl, Lj(eij)}) 

C
o
n
fig

u
ratio

n
 A

ctio
n
s 

Add subsystem 
AddS(Sk, 

SoS) 

Adds a sub-system Sk to a specific 

SoS, this action is needed when all 

systems cannot be linked for 

example 

\Ei SoS{R, L}.(Si{Ri, Rj, Li} 

|Sj{Rk, Rl, Lj}) 

 \Ei SoS{R, L}.(Si{Ri, Rj, Li} 

|Sj{Rk, Rl, Lj}|Sk{Rm, Lk}) 

Remove sub-

system 
Remove(Sk

,SoS) 

Removes a sub-system Sj from a 

SoS, when the sub-system is not 

needed (cannot be linked to any of 

the other sub-systems for instance) 

\Ei SoS{R, L}.(Si{Ri, Rj, Li} 

|Sj{Rk, Rl, Lj}|Sk{Rm, Lk}) 

 \Ei SoS{R, L}.(Si{Ri, Rj, Li} 

|Sk{Rm, Lk}) 

Replace sub-

system 
Replace(S

j,Sk,SoS) 

When two systems have 

incompatible links, this action 

replaces a sub-system Sj with the 

sub-system Sk in order to have 

compatible links in SoS. 

SoS{R, L}.(Si{Ri, Rj, LiEi(eij)} 

|Sj{Rk, Rl, LjEi(eij)}) 

 SoS{R, L}.(Si{Ri, Rj, LiEi(ei 

k)}|Sk{Rm, LkEi(eik)}) 

Table 3. Evolution Actions description 

By applying this action, they have their roles combined (Ri and Rk in this case) into the SoS Role R, 

through an hyper-edge ‘x’, defined on the right side of the action.  

 

5.2 Formation Rules  

To guide and constraint the creation and evolution of ArchSoS models, formation rules are defined 

and have to be respected when designing an SoS using the ArchSoS model. Table 4 details the conditions 

of formation rules Ci for each specific node. Systems created using the ArchSoS, as well as the 



application of the defined actions on these systems are correct-by-definition, since they respect the 

structure of the Bigraphical model. 

Table 4. Formation rule conditions for ArchSoS’ Architecture 

Condition Description 

C0 All children of a SoS node have a sort SoS, or a Sort Sub-system 

C1 All SoS and Sub-system nodes are active 

C2 In a SoS node, the R port is always linked to at least two of its Sub-systems’ R nodes 

C3 In a Sub-system node, the R port is always linked to both another sub-system’s R port, and to a 
SoS’ R node 

C4 In a Sub-system node, the L port is always linked to both an inner name and to another L port of a 
Sub-system node 

C5 In a SoS node, the L port is always linked to both an inner name and to another L port of another 
SoS node 

 

5.3  SoS Evolution Scenario  

We propose an execution scenario to illustrate the application of the proposed actions. We consider the 

mission FireDistinguish of CRSoS. For a SoS state evolution example, we may identify a possible 

achieved mission in a distinguished state ST as: (Ei, Li, Ri), where: Ei is an event affecting a SoS, Li 

is a link connecting the systems as a response to the event Ei, Ri represent the combined roles belonging 

to the linked systems. 

Table 5 illustrates the missions, events, links and role combinations of this scenario. R is the CRSoS role 

resulting from combining R1 and R2, which are the active roles of the Surveillance and FireFighting SoS 

respectively. The resulted Bigraph after applying the above action on the scenario is shown on Figure 4. 

We note that this scenario does not violate the behavioural constraints of CRSoS, and permits to achieve 

the FireDistinguish mission. 

Table 5. CRSoS execution scenario 

Mission Event  Links  Role combinations 

FireAlert 

(Surveillance) 

FireAppearance Link(FireAppearance : e, 

CrisisDetection, 

CommunicationsandAlert) 

R1 : (Surveillance SoS) 

[(CrisisDetection:detection), 

(Communications and Alert 

:communication)] 

FieResponse 

(Firefighting) 

FireSignal Link(FireSignal  : u, FireService, 

Equipement) 

R2 : (FireFighting SoS) 

[(FireService:Ffightin

g), (Equipement and 

logistics:equipement)] 

FireDistinguish 

(CRSoS) 

Fire Link(Fire : e, 

Surveillance, 

FireFighting) 

R : CRSoS 

[(Surveillance:R1), 

(FireFighting:R2)] 

 



 

Figure 4. CRSoS final state of the scenario example 

Through the previous scenario, we show how we may apply different actions resulting in different 

behaviours; we notice that the CRSoS acquire new roles, which allows it to potentially achieve missions 

in response to specific events. We note that CRSoS syntax, alongside the actions applications, respect the 

defined formation rules, as well as the given behavioural constraints. 

5.4  Strategy Based Evolution  

In order to reduce and guide the non-deterministic behaviours evolution of SoS in ArchSoS, we define 

Strategy rules which associate to each action type, a set of predicates ϕ1... ϕn. Formally, this will be 

defined as follows: 

Definition 4. We define a SoS Strategy Rule SR as a guided evolution of a SoS: 

(Ai, ϕAi): ST  ST’ if ϕAi, ST is the state of a SoS, Ai is the applied action, ST’ is the resulting 

state, if the predicate ϕAi holds. 

Table 6 summarizes the main ArchSoS evolution control predicates. Each ϕi (i=1...9) constrains the 

application of a corresponding action (or a set of actions). For instance, ϕ4 checks if whether a specific 

system is linked or not.  We note that the negation of the predicates ϕ2 and ϕ6 allows to represent the 

behavioural constraints defined previously (incompatible roles / incompatible links). 



The main contribution of this strategy-based evolution in ArchSoS is that it allows a SoS to evolve 

naturally, in order to achieve some missions, according to specific events. This evolution is represented 

by a state transition, guided by a Strategy.  

Table 6. Evolution control predicates in ArchSoS 
Predicates Description Associated actions 

ϕ1 A SoS role is active Delete role, delete link, Acquire role  

ϕ2 Roles are compatible Acquire role  

ϕ3 All roles are not compatible Replace System  

ϕ4 A system is linked Link system, remove link, remove system  

ϕ5 Two systems are linked together Remove link , Link system 

ϕ6 A link is possible Link system  

ϕ7 All links are not compatible Add system  

ϕ8 A Sub-system can be added Add system  

ϕ9 A Sub-system can be removed Remove system  

6  MAUDE BASED EXECUTION SEMANTICS  

We choose to give a formal semantic to our proposed SoS language, based on Maude, which 

emphasizes ease of specifying distributed systems. It provides a large range of analysis techniques. Thus, 

we proceed to execute and simulate our ArchSoS specifications on Maude system and to gain more 

insurance about a SoS, we use Linear Temporal Logic (LTL) model-checking to verify SoS behaviours, 

and the consistency of SoS missions, through qualitative verification . 

6.1 Maude Encoding 
Specifically in this paper, the ArchSoS operational semantic is defined by using three distinct modules, 

offering a clear separation between structural and behavioural aspects of our ArchSoS language. The 

three modules permit the specification, modelling, and execution of an ArchSoS semantic respectively. 

For each element in ArchSoS, we associate a corresponding Maude definition. Table 7 summarizes the 

encoding of ArchSoS syntax into Maude. Figure 5 illustrates a step-by-step view of our Maude-based 

specification. It states the three modules that are detailed further below.  

Functional module ArchSoSSyntax: A functional module that specifies the structure of a system in an 

equational theory, in terms of constructs types (sorts, operators etc.) for each ArchSoS element; these 

elements are built according to a constructor (defined by the value ctor). LinkT is the sort that defines the 

three pre-definite types corresponding to our link types a, u and e. 

  



 
Figure 5. Step-by-Step View of the Maude-base specification and analysis of ArchSoS 

Table 7. Integration of ArchSoS concepts in Maude 
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ArchSoS concept Maude definition 

 

SoS 

sort SoS idSoS. 
op opSoS <_,_>.P[ _ ].L[ _ ].E[_ ] : 

IdSoS Role SubSyS Link Event ->SoS [ctor] . 
 op null :  SoS [ctor] .  

op _|_ : SoS SoS SoS [ctor assoc comm id: null] . 

 

Sub-System 

subsort subSyS <SoS . 
sort IdSubsystem . 
op opsubSyS<_,_>.L[_] : IdSubsystem Role Link  subSyS [ctor] . 

op _|_ : subSyS subSyS  subSyS [ctor assoc comm id: null] . 

 

Role 

sort Role . 
op ”RoleName” ->Role [ctor]. 
 op null : Role [ctor] . 

op _+_ : Role Role Role [ctor assoc comm id: null] . 

 

 

Links 

sorts Link LinkT. 

op link<_:_; _ _> : Event LinkT IdSoS IdSoS ->Link [ctor] . 
ops a, u, e : LinkT [ctor].  

Events Sort inside the opSoS construct. 

B
eh
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v
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Action Ai Maude’s Rewrite Rule 

State SoS sort with an active event 

SRi Rule 
Maude’s Conditioned Rewrite Rule  

crl [rewrite-rule-name] : State ->State’ if ϕi . 

 

Control Predicates ϕi 

Maude’s Conditional Equations: 
IsActive(SoS), CompRoles(Rolei, Rolej), NoComp(SoS) 

isLinked(Subsystemi), areLinked(Subsystemi, Subsystemj), 

PosLink( Subsystemi,Subsystemj, Event, Linktype), 

NoClinks(Si), CanAdd(SoS,SubSystemii) CanRemove(SoS,SubSystemii) 

Properties 
LTL Properties: Link Properties, Reconfiguration Properties, Roles Properties, 
Mission Property 



For instance: the SoS operator is defined as ‘op opSoS< _, _>.P[_].L[_].E[_])’ where : the SoS name 

(defined by the sort IdSoS) is the first identifier, followed by an attribute that specifies it’s role. The P 

part represent the constituent systems of a SoS, and the L part is the links that a SoS shares with other, 

while E indicates the possible events.  

System Module ArchSoSBehaviours: In this module, we identify: (1) a set of rewrite rules specifying 

the Ai actions dedicated to define the SoS behaviours in ArchSoS, these actions are conditioned by 

predicates to define a strategy rule. (2) SoS states as SoS sorts containing active events. Actions are 

applied to these states. (3) A set of conditional equations to define the ϕi control predicates. 

 As stated in table 7, the isActive predicate ϕ1 for instance is defined as: 

ceq isActive(opSoS < Sidi, Ri >.P[Si].L[Li].E[Ei]) = false if Ri == null. 

Where  Sidi  is  an  SoS  id,  Ri  it’s  roles,  Si  its constituent system(s), Li its current links, and Ei the 

current event, the equation returns false if the Ri role is null, meaning that a SoS is inactive at this state. 

Figure 6. Strategy rule of the Link System action 



The action illustrated in Figure 6 represents a link action rule on CRSoS, alongside its controlling 

predicates. It defines a Strategy rule for ArchSoS semantics, evolving a SoS from one state to another. 

System Module ArchSoSAnalysis: introduced to specify LTL properties in order to verify that 

ArchSoS desirable behaviours are achieved, and that no behavioural constraints are violated, the 

properties include: 

 Link Properties (Plink, Dlink): They affect links. They check if links are possible, and if links can be 

destroyed respectively.  

 Roles Properties (ARoles, RRoles): They affect roles by checking that only compatible roles are 

combined, and if they can be removed. 

 Reconfiguring Properties (RecReplace, RecA/R): Properties checking that the execution does not 

terminate in a deadlock situation by replacing, adding/removing systems. 

 Mission property (Consistency): It verifies if a SoS may reach a state where a mission is achieved, it 

checks the missions consistency. 

6.2 Formal Analysis  

The major benefit of adopting Maude as a semantical framework for ArchSoS is the exploitation of its 

rewriting engine and its LTL model-checker. The execution of the ArchSoS analysis module permits to 

check that our ArchSoS model satisfies some SoS inherent properties. Properties in this module are 

defined as LTL formulas.  LTL have many symbols and operators, which may be found in [Rozier, 2011]. 

We may note that ⇒ stands for an implication, |= defines a property validation, while ∧, ∨ and ∼ express 

Conjunction, Disjunction and Negation respectively. As for the operators O, ⬦ and □, they represent the 

next state, an eventual future state, and a globally/always state respectively.  These formulas are defined 

as symbolic properties that check whether a state transition is coherent, and that we only get desired 

behaviours from a SoS transition. They are verified through a Maude Model-checking. Each property 

depends on a set of predicates, to which is associated a symbolic property p1…p9, defined as a conditional 

equation. For instance, ϕ1 is encoded as the property:  ceq Si |= p1 = true if isActive(Si) == true. Each 

ArchSoS property formula is specified via a Maude equation, for instance:  

Plink: expresses that when a SoS is in a state when not all constituent systems cannot be linked (∼ p7), 

and (conjunction symbol ∧ ) there is a possible link between two systems (p6), and if two systems are not 



linked (∼ p5), eventually (⬦) we will have a state where these two systems are linked (p5). It is noted as: 

eq PLink = □ ( ∼ p7  ∧ p6  ∧ ∼ p5   ⇒  ⬦ p5 ). Similarely, we define the rest of the formulas: 

Dlink: eq DLink = □ ( ∼ p1 ∧  p4 ∧ p5   ⇒ O ∼ p4 ∧ ∼ p5 ) . 

ARoles: eq ARoles = □ ( ∼ p1  ∧ p2 ∧ ∼ p3⇒ ⬦ p1 ) . 

RRoles: eq RRoles = □ ( p1 ⇒ O ∼ p1 ) . 

RecReplace: eq RecReplace = [] (∼ p1 ∧ p3 ∧   ⇒ O ∼ p3). 

RecA/R: eq RecA/R = □ ( p7 ∧  ( p8  ∨  p9 ) ⇒ ⬦  ∼ p7 ). 

Consistency: checks if we may have a state where the corresponding tuple (event, links, and roles) of a 

mission holds. eq Consistency = □ (∼ p1 ⇒ ⬦ p1 ∧ Mission).  

To validate the consistency property, we have to define a new property for each mission. For example, 

a property called FireDistinguish, to define the FireDistinguish Mission (in Section 6.3) is shown on 

Figure 7. By replacing Mission with the FireDistinguish in the Consistency property, we get the 

following property:  

eq Consistency = □ ( ∼ p1 ⇒ ⬦ p1 ∧ FireDistinguish). 

Figure 7. FireDistinguish property definition 

Then, we apply the model Checker on the initial state of the CRSoS (where CRSoS is inactive), to 

verify the Consistency property of the FireDistinguish mission. The resulting execution is shown on 

Figure 8, it returns true, stating that Consistency property is satisfied, and that we eventually have a state 

where CRSoS achieved the defined FireDistinguish mission.  

Figure 8. Model-checking Result 



We may note that the proposed analysis aims to execute and prototype the CRSoS system. More 

interesting properties related to SoS challenges may be demonstrated in future work. 

7   CONCLUSION  

In this paper, we have proposed ArchSoS, an ADL to specify and execute SoS software architectures. 

Its syntax notation has been inspired from Bigraphs, well appropriate when giving formal and visual 

modelling of the SoS constituents and their evolution. Moreover, we have defined an operational semantic 

for ArchSoS, by describing a SoS state evolution, a set of actions that may affect this state; and a number 

of predicates that constraint the application of these actions. The defined set of predicates and constraints 

gives a rise to the definition of a new type of transition rules called strategies rules, which guide the 

evolution of a SoS behaviour. ArchSoS semantics is encoded into Maude language, to enable its 

execution. We have defined various properties for our scenario example; they have been checked via LTL 

Model-Checking of Maude system. They check whether the behaviour of a SoS is correct, and whether 

ArchSoS behavioural constraints are respected. They also allow us to check if a SoS achieves desirable 

missions. As future work, we plan to develop a practical environment around ArchSoS, which will make 

it possible to identify the performance of the proposed approach and to reason on its soundness. Other 

case studies are also possible to better illustrate the contributions of this language. 
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