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Abstract

We study the inverse problem of the reconstruction of an obstacle in an elastic
media from boundary measurements. We assume that the data is noised and that
a statistical model for the data is at hand. We propose and study a reconstruction
algorithm based a weighted combination of the first two moments of the Kohn-
Vogelius criterion. By numerical results in dimension two, the applicability and
feasibility of our approach is demonstrated.

1 Introduction

This work is devoted to the mathematical study of an inverse problem in linear elasticity,
namely the identification of an unknown inclusion in an elastic body from measurements
performed on the boundary of the object. This type of inverse problem has many prac-
tical applications: for example, in field of geophysical exploration and medical imaging.
The problem under consideration is a special case of the reconstruction problem and is
severely ill-posed.

Among the numerous approaches in order the solve this type of problem, we focuss
on the shape optimization point of view introduced by Roche & Sokolowski, [15], then
developped in a large literature (see for example Caubet, Dambrine, and Harbrecht [2],
Afraites, Dambrine, and Kateb [1], Meftahi & Zolesio [13], and Lazarev & Rudoy, [12]).
Inverse problems are then solved by minimizing an appropriate objective function by the
gradient method. This is a standard strategy in handling a mismatch between model
predictions and real measurements. To this end, it is necessary to calculate the gradient
of the objective function with respect to the shape variations.

The main feature of this work is that we allow noise in the measurements of displace-
ments at the border. We assume that the noise on measurement has a special structure
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and our objective in this article is to take advantage of properties of the noise to con-
struct a deterministic formulation which incorporates this knowledge. We assume that
the measured flux is given as a random field that models the measurement errors. We
then aim at minimizing a combination of the expectation and the variance of the Kohn-
Vogelius functional as presented approach in [3, 4]. As we will show, both quantities
can easily be computed via deterministic quantities. The associated shape gradients can
likewise be deterministically computed.

There are at least two canonical choice of objective to study the problem. The first
was developed by Kohn & Vogelius [11], Roche & Sokolowski [15], and by Eppler &
Harbrecht [6]. It is based on the analysis of the optimization problem for the Kohn-
Vogelius functional. The second approach is the consideration of least-squares tracking
functionals as developed by Afraites, Dambrine, and Kateb [1], and by Rudoy [16].

The remarkable property of the the Kohn-Vogelius functional is that the expression
for its shape gradient does not contain the shape derivative of solutions to the governing
equations. In this work, we follow this point of view. The shape derivative of the Kohn-
Vogelius functional can be represented as integral of quadratic form, depending on the
gradient of the governing equations, over the boundary of inclusion. This integral is
well defined only for sufficiently smooth inclusions. Hence the problem of calculation
of shape derivatives for this functional is, in some sense, ill-posed and might never be
resolved in general case. This fact was mentioned by Eppler, Harbrecht, and Schneider
[7], and first analyzed by Eppler & Harbrecht [6]. Moreover because of the flatness
of the reconstruction objective in the vicinity of its minimizers analyzed in the works
[6, 1], the standard gradient descent method no longer shows a satisfactory behavior.
In this work, we propose to combine Nesterov inertial scheme to accelerate the descent
and a regularization by projection on a finite dimensional space the admissible class of
domains.

The organization of the paper is as follows. In Section 2, we formulate the identifi-
cation elastic inclusion problem as a shape optimization problem for the Kohn-Vogelius
functional. We prove the existence of solutions to the corresponding optimization prob-
lem in the class of inclusions satisfying the Feireisl type condition, [8]. This restriction
is natural and provides the compactness of the set of inclusions in the Hausdorff metric.

Section 3 is devoted to a detailed calculation of shape gradient of the Kohn-Vogelius
functional. In particular, we also derive the expression for the shape derivative of so-
lutions to the governing elastic equations. Finally, we give two representations for the
shape gradient of the Kohn-Vogelius functional in the distributed and singular forms.

Section 4 is concerned with the discretization of the shape optimization problem.
We assume that the elastic inclusion is a star-shaped domain which enables us to ap-
proximate it by a finite Fourier series. We present a numerical method for solving the
problem. A distinctive feature of this methods is the systematic use of Nesterov’s adap-
tive restart algorithm. In Section 4, we also present numerical results. Finally, in Section
5, we state concluding remarks. Technical proofs are gathered in Section 6.
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2 Problem formulation

The problem is formulated as follows to reconstruct an unknown inclusion in an elastic
body from additional Dirichlet data containing noise. There is existence but we can say
nothing about uniqueness. Moreover, the problems of reconstructing the inclusions are
severely unstable. Especially, in the case with the noised measured data.

Notations. Let D ⊂ R2 be a simply connected domain with Lipschitz boundary Γ,
which is divided into two subsets ΓD and ΓN such that Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅
and the measure of ΓD is non negative. Moreover it is assumed that there is unknown
inclusion S ⊂ D with regular boundary Σ.

In what follows, we use the following notation for the derivatives of the vector field
in R2 and the deformation tensor ε(φ):

∂φi
∂xj
≡ φi,j , εij(φ) =

1

2
(φi,j + φj,i) =

1

2

(
∇φ+ (∇φ)>

)
,

for normal derivative ∂nu and jump [u]:

∂nu = ∇u · n, [u] = lim
ε→0

(u(x+ εn(x))− u(x− εn(x))),

where n represents the exterior unit normal vector on ∂D.
We assume that the region D is filled with inhomogeneous elastic material, the state

of which is completely characterized by the vector field of displacements u = (u1, u2) :
D → R2. Material properties are fully characterized by fourth order tensor C = {cijkl},
i, j, k, l = 1, 2. The inhomogeneity of the body is that the inclusion characteristics differ
from the other part. This is expressed in the following property of C

C(x) =

{
C1(x) if x ∈ D \ S,
C2(x) if x ∈ S.
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We assume that C satisfies the following symmetry conditions

cijkl = cjikl = cklij ,

and the ellipticity condition

c−1|ξ|2 ≤ cklij ξij ξkl ≤ c|ξ|2. (2.1)

Also it should be noted that we consider case when c1,2
ijkl is positive constants. The stress

tensor is determined by the relations

σ(φ) = Cε(φ), σij(φ) = cjikl εkl(φ).

Here f ∈ H−
1
2 (ΓN ) - force applied to the unsecured part of the boundary.

Direct problem Differential equations and boundary conditions (2.2) - (2.4) describe
the equilibrium of an elastic body fixed on a part of the boundary under the action of an
external surface force with an elastic inclusion. In mathematical terms, for some fixed
domain D and function f ∈ H−

1
2 (ΓN ) find u ∈ H1(D) satisfying the equations of linear

elasticity
−div σ(u) = 0 in D, (2.2)

u = 0 on ΓD, (2.3)

σ(u)n = f on ΓN . (2.4)

We assume that f 6= 0. The problem has a variational formulation. We define space of
displacements

V (D) = {φ ∈ H1(D) : φ = 0 on ΓD},

endowed with the energetic norm

‖φ‖2V (D) =

∫
D
σ(φ) : ε(φ) dx.

Indeed, since for elements of the space V (D) the field of displacements vanishes on ΓD,
then Korn’s inequality and the ellipticity condition (2.1) imply that

c−1‖φ‖2H1(D) ≤
∫
D
σ(φ) : ε(φ) dx ≤ c‖φ‖2H1(D). (2.5)

Thus, V (D) is isomorphic to a subspace of the Hilbert space H1(D) The total energy of
the body has the form

Π(φ) =
1

2

∫
D
σ(φ) : ε(φ) dx−

∫
ΓN

f · φds =
1

2
‖φ‖2V (D) −

∫
ΓN

f · φds. (2.6)

Then the boundary value problem (2.2) - (2.4) can be formulated as a minimization
problem: find u ∈ V (D) such that the functional Π reaches its minimum :

Π(u) −→ inf .

4



Since, according to (2.6), the functional Π(D; ·) is strictly convex and coercive in the
Hilbert space V (D), it implies that there is unique solution u ∈ V (D) of equilibrium
problem with some fixed domain D, i.e,

Π(u) = inf
φ∈V (D)

Π(φ).

Also the solution satisfies the following variationnal equation∫
D
σ(u) : ε(φ) =

∫
ΓN

f · φ ∀φ ∈ V (D).

Formulation of the inverse problem We assume that we can measure displacements
on the boundary ΓN and that we have some knowledge on the errors which are caused
by the measurement of g. Let (Ω,S,P) be a complete probability space and assume that

g : ΓN × Ω→ R is a random field which belongs to the Bochner space L2
P(Ω, H

1
2 (ΓN ))

The problem is formulated as follows find the inclusion S with regular boundary Σ,
and dist(Σ,Γ) > 0, such that there exists a function u ∈ H1(D) satisfying (2.2), (2.3)
and (2.4) with the additional condition

u = g(ω) on ΓN . (2.7)

The system (2.2) - (2.7) is an overdetermined boundary value problem since two different
boundary conditions are prescribed on the boundary ΓN . Notice that the data (f, g(.))
may be incompatible for some realizations ω since we model the measurement error with
the process g.

Reformulation of the deterministic problem in term of shape optimization.
Let us consider the deterministic case with fixed ω, then g(x;ω) = g(x) ∈ H

1
2 (ΓN ). We

now reformulate the inverse problem as a shape optimisation problem. First following
Feireisl [8], we define the class of admissible domains for some h > 0

Ph = {x ∈ R2
∣∣ dist(x,Σ) < h}.

Then we introduce class of admissible inclusions S ⊂ D for some positive ρ and η ∈
C[0,∞)

Aρ(η) = {S ∈ D
∣∣ |Ph| ≤ η(h) for any h > 0 and dist(Σ,Γ) > ρ}, (2.8)

where | · | is Lebesgue measure in R2. The function η(h) give us some conditions for
boundary of inclusion. For example, taking η(h) = Ch, where C is some positive con-
stant, we obtain the class of inclusions with a ”uniformly bounded perimeter”.

Next we consider the auxiliary functions v and w, satisfying

−div σ(v) = 0 −div σ(w) = 0 in D,

v = 0 w = 0 on ΓD, (2.9)
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σ(v)n = f w = g on ΓN ,

Then we define Kohn-Vogelius functional J : Aρ(η)→ R

J(S) =

∫
D
σ(v − w) : ε(v − w) dx =

∫
ΓN

(f − σ(w)n) · (v − g) ds.

The reconstruction problem can be formulated as follows shape optimization problem:
find domain S ∈ Aρ(η) such that functional J reaches its minimum

J(S) = ‖v − w‖2V (D) −→ inf .

Our first result is that this shape optimization admits solution.

Theorem 1. For any η ∈ C[0,∞), finite ρ and α ∈ [0, 1] there exists at least one
solution S∗ to the shape optimization problem under considerations, i.e.,

J(S∗) = inf
S∈Aρ(η)

J(S).

First, we do not claim the equivalence between the inverse problem and the previous
minimization problem (2). If S∗ is a minimizer of J such that J(S∗) = 0, then S∗ is
a solution of the inverse problem but Theorem 1 says nothing about the value at the
minimizer. It should also be noted that this problem does not have a unique solution in
general.

To prove the existence result Theorem 1, we follow the direct method of the calculus
of variations. Let us introduce the Hausdorff topology in which we will work:

dist(S1, S2) = max
{

sup
x∈D\S1

dist(x,D \ S2), sup
x∈D\S2

dist(x,D \ S1)
}
.

We need to recall several Lemmas dues to Feireisl [8].

Lemma 1. Let Sn ∈ Aρ(η) be a sequence of open sets such that Sn
H−→ S. Then

|S̄n \ S| → 0.

Lemma 2. The class of open sets Aρ(η is closed with respect to the Hausdorff topology,

i.e. if Sn ∈ Aρ(η) and Sn
H−→ S, then S ∈ Aρ(η).

Next, we need to show the strong convergence of solutions to problems corresponding
to the sequence of inclusions.

Propostion 1. Let sequence of open sets Sn ∈ Aρ(η) converges to S in sense of Haus-
dorff topology, vn and wn satisfy conditions (2.9) with inclusion Sn, then vn → v and
wn → w strongly in H1(D), where v and w satisfy conditions (2.9) for inclusion S.
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Proof. Let us consider sequence of open sets Sn and corresponding fields vn and wn
defined by (2.9).

First we need to note that tensor C can be represented as follows C = 1D\S C1+1S C2,

where 1 is corresponding indicator function. From Lemma 1, we deduce that if Sn
H−→ S

then
1D\Sn → 1D\S and 1Sn → 1S in L1(D). (2.10)

Notice then that there exists some function G ∈ V (D) such that G|ΓN = g and w̄n =
wn −G belongs to H1

0 (D).
We can formulate relations (2.5) both for w̄n and vn from which we conclude that

there exist v ∈ H1(D) and w ∈ H1
0 (D) such that ε(vn) ⇀ ε(v) and ε(w̄n) ⇀ ε(w).

Then, by (2.10), we can obtain Cnε(φ) → Cε(φ) in L2(D) for all φ ∈ H1(D), where
Cn = 1D\Sn C1 + 1Sn C2.

Considering all of the above, we can write the following

lim
n→∞

∫
D
Cnε(vn) : ε(vn) dx = lim

n→∞

∫
ΓN

f · vn ds =

∫
ΓN

f · v ds =

∫
D
Cε(v) : ε(v) dx

and

lim
n→∞

∫
D
Cnε(w̄n) : ε(wn) dx =

∫
D
Cε(w) : ε(w) dx,

It allows us to conclude strong converges of vn and wn to v and w which satisfy
conditions (2.9) for inclusion S in weak sense, what finalize the proof.

Finally we can prove easily Theorem 1. From Proposition 1 we obtain continuity of
J and from Lemma 2 we get compactness of Aρ(η), after what we can conclude to the
existence of a solution to the minimization problem.

Random model Since the data g ∈ L2
P(Ω, H

1
2 (ΓN )) is random w(ω) also will be a

random field from L2
P(Ω, H1(D)). It satisfies by linearity of the considering equations.

Consequently, the functional J(S;ω) becomes a random process.

J(S;ω) =

∫
D
σ(v − w(ω)) : ε(v − w(ω)) dx =

∫
ΓN

(f − σ(w(ω))n) · (v − g(ω)) ds.

To tackle the problem considering the noise, we choose to minimize a combination of
the expectation and the variance of the shape functional J . More precisely, we seek an
inclusion S (inside the domain D) in argminFα where Fα defined as

Fα(S) = (1− α)E[J(S;ω)] + αV[J(S;ω)]

with α ∈ [0, 1].
Next we make the assumption that the Dirichlet data g corresponds to a centered

stochastic process, that can be represented as
∑∞

i=1 gi(x)Yi(ω), where the random vari-
ables Yi(ω) are independent and identically distributed random variables, Yi ∼ Y , being
centred, E[Y ] = 0, normalized, V[Y ] = 1, and having finite fourth order moments. In
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order to simplify the theoretical arguments to get existence and the numerical resolution,
we assume in the present work that g can be presented with a finite dimensional noise
in the form

g(x;ω) = g0(x) +
M∑
i=1

gi(x)Yi(ω),

where M > 0 some integer. From this expression, we immediately get identities

E[g(x;ω)] = g0(x) and V[g(x;ω)] =
M∑
i=1

g2
i (x). (2.11)

The linearity of equations implies

w(x;ω) = w0(x) +
M∑
i=1

wi(x)Yi(ω), (2.12)

where wi, i = 0..M solves
−div σ(wi) = 0 in D,

wi = 0 on ΓD, (2.13)

wi = gi on ΓN .

Then, we can compute expectation and the variance of functional the random shape
J(S;ω) from deterministic quantities.

Propostion 2 (Expression of the expectation). It holds

E[J(S;ω)] =

∫
ΓN

(
(f − σ(w0)n) · (v − g0) +

M∑
i=1

σ(wi)n · gi
)
ds.

Propostion 3 (Expression of the variance). It holds

V[J(S;ω)] = (E[Y 4]− 1)
M∑
i=1

(∫
ΓN

σ(wi)n · gi ds
)2

− 4E[Y 3]

M∑
i=1

(∫
ΓN

σ(wi)n · gi ds
)(∫

ΓN

σ(wi)n · (v − g0) ds

)

+ 2
M∑
i,j=1

(∫
ΓN

σ(wi)n · gj ds
)2

+ 4
M∑
i=1

(∫
ΓN

σ(wi)n · (v − g0) ds

)2

.

The proofs of theses two Propositions are postponed to Section 6.

Corollary 1. If g is a Gaussian random field, then

V[J(S;ω)] = 2
M∑
i,j=1

(∫
ΓN

σ(wi)n · gj ds
)2

+ 4
M∑
i=1

(∫
ΓN

σ(wi)n · (v − g0) ds

)2
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Proof. It obviously follows from proposition (3) and the fact that if Y ∼ N (0, 1) then
E[Y 4] = 3 and E[Y 3] = 0.

Finally we can fully formulate the robust obstacle reconstruction problem:
for f ∈ H−

1
2 (ΓN ) and gi ∈ H

1
2 (ΓN ), i = 0..M find the inclusion S ∈ Aρ(η),

defined by (2.8), such that Fα(S) −→ inf, where Fα is the convex combination of the
first moments:

Fα(S) = (1− α)E[J(S;ω)] + αV[J(S;ω)]

In terms of the data, it can be written as

Fα(S) = (1− α)

∫
ΓN

(
(f − σ(w0)n) · (v − g0) +

M∑
i=1

σ(wi)n · gi
)
ds + (2.14)

α

(
2

M∑
i,j=1

(∫
ΓN

σ(wi)n · gj ds
)2

+ 4

M∑
i=1

(∫
ΓN

σ(wi)n · (v − g0) ds

)2
)
,(2.15)

v and wi, i = 0..M satisfy (2.9) and (2.13), respectively. Similarly to the exitence
Theorem 1 for the deterministic case, we also have the following statement following
exitence result for the random averaged case.

Theorem 2. For any η ∈ C[0,∞), finite ρ and any α ∈ [0, 1] there exists at least one
solution S∗ to the robust obstacle reconstruction problem under considerations provided
that g is a Gaussian random field, i.e.,

Fα(S∗) = inf
S∈Aρ(η)

Fα(S) = inf
S∈Aρ(η)

E[J(S;ω)].

Proof. Let us consider functional

Φ(S) =

∫
D
σ(wi) : ε(v),

where v and wi defined by (2.9) and (2.13). From Proposition 1 we can conclude that
this Φ is continuous, which give us continuously of E[J(S;ω)]. Then it is obviously
that Φ2 is continuous too, which give us continuously of V[J(S;ω)] in case of Gaussian
random field g. Since Fα is convex combination of expectation and variance of J we
conclude Theorem statement.

3 Shape calculus

In this section, we will compute the shape gradient of the shape functional to get the
necessary conditions of the optimal inclusion. Let us consider transformation of area D:
Ψt, which depends on the parameter, such that Ψ0(D) = D. Then, the following limit:

dJ(S)〈θ〉 = lim
t→0

J(St)− J(S)

t
,

where St = Ψt(S) is called by the shape gradient of J . For more details, we refer to the
monographs [5, 10].
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3.1 Basic identities

Let θ : D → R2 be a C∞ vector field such that θ vanishes in a neighborhood of Γ, i.e.,
θ ∈ C∞0 (D). There is t0 > 0, depending on θ such that for every t ∈ [0, t0] the mapping

Ψt(x) = x+ tθ(x), x ∈ D,

takes diffeomorphically the domain D onto itself. Moreover,

∇Ψt = I + t∇θ

admits the estimates

0 < c−1 ≤ |(∇Ψt)
−1| ≤ c, t ∈ [0, t0],

where c is independent of t. We set

u = u0, Ut = ut ◦Ψt and U̇ =
∂

∂t
Ut

∣∣∣
t=0

(3.1)

Obviously U0 = u. The quantity U̇ is the classical material derivative (see more details
in [17]).

Next define the family of inclusions St, t ∈ [0, t0] by the equality St = Ψt(S). The
corresponding tensor Ct and the stress tensor σt(u) are defined by the equalities

Ct = 1D\St C1 + 1St C2 and σt(u) = Ctε(u).

Lemma 3. Under the above assumptions, we have

d

dt

∫
D
σt(ut(y)) : ε(ht(y)) dy

∣∣∣
t=0

= (3.2)∫
D

(
σ(U ′)− CE(u, θ) + div θ σ(u)

)
: ε(h) dx +

∫
D
σ(u) :

(
ε(H ′)− E(h, θ)

)
dx,

where

E(u, θ) =
1

2

(
∇u∇θ + (∇u∇θ)>

)
, u = u0, C = C0 and σ = σ0.

Its proof is postponed to Section 6. In order to derive the equations for shape
derivatives of solutions to the elasticity equations we will use the following identity.

Lemma 4. Let all assumptions of Lemma 3 be satisfied.Let ϕ ∈ V (D) and

ht(y) = ϕ ◦Ψ−1
t (y).

Then

d

dt

∫
D
σt(ut(y)) : ε(ht(y)) dy

∣∣∣
t=0

=∫
D

(
σ(U ′)− CE(u, θ) + div θ σ(u)

)
: ε(ϕ) dx

∫
D
b(u, θ) : ∇ϕdx, (3.3)

where
b(u, θ) = σ(u) (∇θ)>.
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Proof. We begin with the observation that Ht = ϕ(x) is independent of t. It follows
from this H ′ = 0 and h = ϕ. Hence identity (3.2) reads

d

dt

∫
D
σt(ut(y)) : ε(ht(y)) dy

∣∣∣
t=0

=∫
D

(
σ(U ′)− CE(u, θ) + div θ σ(u)

)
: ε(ϕ) dx −

∫
D
σ(u) : E(ϕ, θ) dx, (3.4)

Next notice that

σ(u) : E =
1

2
σij (∇ϕik∇θkj +∇ϕjk∇θki) = σij∇ϕik∇θkj

= (σ∇θ>)ik∇ϕik = (σ∇θ>) : ∇ϕ = b(u, θ) : ∇ϕ.

Substituting this equality in (3.4) we obtain desired identity (3.3).

Next we derive formulas for material derivatives of solutions to two basic boundary
value problems.

Lemma 5. For a given vector field f ∈ H−
1
2 (ΓN ) consider a mixed boundary value

problem for linear elasticity equations in variational formulation∫
D
σt(vt) : ε(ϕ) dx =

∫
ΓN

f · ϕds ∀φ ∈ V (D). (3.5)

Then material derivative V ′ satisfies∫
D

(
σ(V ′)− CE(v, θ) + div θ σ(v)

)
: ε(ϕ) dx −

∫
D
b(v, θ) : ∇ϕdx = 0 ∀φ ∈ V (D).

(3.6)

Proof. Differentiating both sides of equality (3.5) with respect to t at t = 0 and applying
Lemma 4 we arrive at the necessary equality (3.6).

Lemma 6. For a given vector field g ∈ H
1
2 (Γ) such that g = 0 on ΓD, consider Dirich-

let boundary value problem for linear elasticity equations in variational formulation.∫
D
σt(vt) : ε(ϕ) dx = 0 ∀φ ∈ Vg(D), (3.7)

where
Vg(D) = {φ ∈ H1(D) : φ = g on Γ}.

Then the material derivative Ẇ satisfies∫
D
σ(Ẇ ) : ε(ϕ) dx =

∫
D

(CE(w, θ)− div θσ(w)) : ε(ϕ) dx

+

∫
D
b(w, θ) : ∇ϕdx+

∫
ΓN

(σ(Ẇ )n) · ϕds ∀φ ∈ V (D). (3.8)
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Proof. Differentiating both sides of equality (3.7) with respect to t at t = 0 and applying
Lemma 4 we arrive at the equality∫
D

(
σ(W ′)−CE(w, θ) + div θ σ(w)

)
: ε(ϕ) dx −

∫
D
b(w, θ) : ∇ϕdx = 0 ∀φ ∈ Vg(D).

(3.9)
Integral identity (3.9) holds for all functions ϕ ∈ Vg(D). However, our main functional
space is V (D). Let us now consider the extension of (3.9) to ϕ ∈ V (D). Set

A = CE(w, θ)− div θ σ(w) + b(w, θ).

Then, by Green’s formula, we obtain∫
D
σ(W ′) : ε(ϕ) dx = −

∫
D

div A · ϕdx+

∫
Γ
(σ(W ′)n) · ϕds. (3.10)

Since A vanishes in a neighbourhood of Γ, we have

−
∫
D

div A · (ϕ) dx =

∫
D
A : ∇(ϕ) dx

=

∫
D

(CE(w, θ)− div θ σ(w)) : ∇(ϕ) dx+

∫
D
b(w, θ) : ∇(ϕ) dx

(3.11)

=

∫
D

(CE(w, θ)− div θ σ(w)) : ε(ϕ) dx+

∫
D
b(w, θ) : ∇(ϕ) dx.

Substituting this equality into (3.10), we finally arrive at the identity∫
D
σ(W ′) : ε(ϕ) dx =

∫
D

(CE(w, θ)− div θ σ(w)) : ε(ϕ) dx

+

∫
D
b(w, θ) : ∇ϕdx+

∫
ΓN

(σ(W ′)n) · ϕds,

which holds true for all ϕ ∈ V (D).

3.2 Shape gradient

After proving all the necessary assumptions finally we can calculate shape gradient of
functional J(S), i.e. in deterministic case with fixed event.

Theorem 3 (Volume expression of shape gradient). The shape gradient of J(S) has
following expression

dJ(S)〈θ〉 = 2

∫
D
σ(v) : E(v, θ) dx− 2

∫
D
σ(w) : E(w, θ) dx

−
∫
D

div θ
(
σ(v) : ε(v)− σ(w) : ε(w)

)
dx. (3.12)
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The last step in the derivation of the formula for dJ is to obtain the canonical
boundary expression of the shape gradient according to the structure Theorem [10].

Corollary 2 (Boundary expression of the shape gradient). It holds

dJ(S)〈θ〉 = 2

∫
Σ

(
(σ(v)n) · [∂n(v)]− (σ(w)n) · [∂n(w)]

)
θ · nds

−
∫

Σ
[σ(v) : ε(v)− σ(w) : ε(w)] θ · nds.

Here we can see the main feature of the Kohn-Vogelius functional: the absence of
derivatives of the solutions of the state equation in the expression of the shape gradi-
ent. This fact greatly facilitates the numerical implementation. These results can be
compared with those with those of [1].

Now we can write necessary condition of an optimal solution S∗ of shape optimization
problem with deterministic additional data g(x) ∈ H

1
2 (ΓN ) for every sufficiently smooth

variation fields θ
dJ(S∗)〈θ〉 = 0.

To finalize computing of shape gradient we need to compute shape gradient of the
expectation.

Propostion 4. It holds

d

dt
(E[J(S;ω)])〈θ〉 =2

∫
D
σ(v) : E(v, θ) dx− 2

∫
D

M∑
i=0

σ(wi) : E(wi, θ) dx

−
∫
D

div θ
(
σ(v) : ε(v)−

M∑
i=0

σ(wi) : ε(wi)
)
dx

=

∫
Σ

[σ(v) : ε(v)−
M∑
i=0

σ(wi) : ε(wi)] θ · nds

− 2

∫
Σ

(
(σ(v)n) · [∂n(v)]−

M∑
i=0

(σ(wi)n) · [∂n(wi)]
)
θ · nds.

Proof. Proof is based on the fact that

d

dt
(E[J(S;ω)])〈θ〉 = E

[
d

dt
J(S;ω)〈θ〉

]
.

We then repeat technique from proof of Proposition 2 to result of Theorem 3 and Corol-
lary 2 which give us required expression.

The derivative of variance looks a little more complicated.
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Propostion 5 (Shape gradient of the variance). It holds

d

dt
(V[J(S;ω)])〈θ〉 =

4
M∑
i,j=1

(∫
ΓN

σ(wi)n · gj ds
)(

2

∫
D
σ(wi) : E(wj , θ) dx −

∫
D

div θ σ(wi) : ε(wj) dx

)

+ 8

M∑
i=1

(∫
ΓN

σ(wi)n · (v − g0) ds

)(
2

∫
D
σ(wi) : E(v, θ) dx− 2

∫
D
σ(wi) : E(w0, θ) dx

−
∫
D

div θ
(
σ(wi) : ε(v)− σ(wi) : ε(w0)

)
dx

)
= 4

M∑
i,j=1

(∫
ΓN

σ(wi)n · gj ds
)(∫

Σ
[σ(wi) : ε(wj)] θ · nds− 2

∫
Σ

(σ(wi)n) · [∂n(wj)]θ · nds
)

+ 8
M∑
i=1

(∫
ΓN

σ(wi)n · (v − g0) ds

)(∫
Σ

[σ(wi) : ε(v)− σ(wi) : ε(w0)] θ · nds

− 2

∫
Σ

(
(σ(wi)n) · [∂n(v)]− (σ(wi)n) · [∂n(w0)]

)
θ · nds

)
.

Finally we can write shape gradient of Fα(S) in area integral form in the case of g is
Gaussian random field in boundary integral form

dFα(S)〈θ〉 = (1− α)d(E[J(S;ω)])〈θ〉+ αd(V[J(S;ω)])〈θ〉

= (1− α)

(
2

∫
Σ

(
(σ(v)n) · [∂n(v)]−

M∑
i=0

(σ(wi)n) · [∂n(wi)]
)
θ · nds

−
∫

Σ
[σ(v) : ε(v)−

M∑
i=0

σ(wi) : ε(wi)] θ · nds
)

+ α

(
4

M∑
i,j=1

(∫
ΓN

σ(wi)n · gj ds
)(∫

Σ
[σ(wi) : ε(wj)] θ · nds − 2

∫
Σ

(σ(wi)n) · [∂n(wj)]θ · nds
)

+ 8
M∑
i=1

(∫
ΓN

σ(wi)n · (v − g0) ds

)(∫
Σ

[σ(wi) : ε(v)− σ(wi) : ε(w0)] θ · nds

− 2

∫
Σ

(
(σ(wi)n) · [∂n(v)]− (σ(wi)n) · [∂n(w0)]

)
θ · nds

))
.

4 Numerical examples.

In this part, we will give a numerical method for solving the problem and a comparison
of various optimization methods, thanks to which we can better see the various features
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of the problem under consideration.

4.1 Discretization

Since the considering problem is infinite dimensional optimization problem we are not
able to solve it directly. Thus we replace it by a finite dimensional problem. For the
numerical computations, we restrict ourselves to inclusions which are star-shaped with
respect to the origin 0. Then, the boundary of an inclusion can be parametrized by the
Fourier series based on polar coordinates. Hence, it is reasonable to approximate the
radial function by a truncated Fourier series

rN (φ) = a0 +

N∑
n=1

an cos(nφ) + a−n sin(nφ).

Since rN admits 2N + 1 degrees of freedom we can reformulate problem as optimi-
sation problem in set

AN = {a = (a−N , a1−N , ..., aN ) ∈ R2N+1}.

We can set a correspondence between the vector a and the inclusion S, then we can write
that J(S) = J(S(a)) = J̃(a). Finally for numerical realization we will consider following
problem: find vector a ∈ AN such that functional J̃ reaches its minimum

J̃(a) −→ inf .

In what follows, we will use the notation J instead of J̃
Usually for solving optimization problems applied classic gradient descent method

at+1 = at − htdJ(at),

with convergence rate O(1/t).
But as noted earlier, the problem is extremely ill-posed. In our case we can say

that the considered objective functional is practically ”flat”, which is why the gradient
descent method is not efficient enough, which will be shown below. Therefore, we will
consider other more effective methods for, or rather methods based on the Nesterov’s
method

at+1 = ãt − htdJ(ãt),

ãt+1 = at+1 +
t

t+ 3
(at+1 − at), ã0 = a0.

It should be noted that this method is theoretically when funded only in the case of a
convex objective functional, which is the considered Kohn-Vogelius functional J . Con-
verges rate is in that case the famous O(1/t2) (see [14]). This method is much faster,
but it is not a descent method, i.e. it can be that J(at+1) > J(at). Which is a sig-
nificant difficulty, since on the way of minimizing the functional, intermediate solutions
can correspond to an unacceptable form, which will immediately stop the algorithm. To
avoid this problem we will use adaptive restart method

15



at+1 = ãt − htdJ(ãt),

ãt+1 = at+1 +
ηt − 1

ηt+1
(at+1 − at), ã0 = a0,

ηt+1 =
1 +

√
1 + 4η2

t

2
, η0 = 1

with restart, if J(at) > J(at−1) : a0 ← at, ã0 ← at, η0 ← 1.

Coefficient ηt−1
ηt+1

= 1 − 3
t + o

(
1
t

)
, which is asymptotically equivalent to t

t+3 , which is

present in Nesterov’s method. Converges rate is same as for Nesterov’s method O(1/t2).
For more details look in [12].

The associated gradient has to be computed with respect to all directions under
consideration:

θ(φ) = sin(Nφ)er(φ), sin((N − 1)φ)er(φ), .., cos(Nφ)er(φ),

where er(φ) = (cosφ, sinφ).

4.2 Numerical experiments

The region was chosen in the form of an ellipse with rx = 1.5 and ry = 1. The inclusion
S with unknown shape considered with known center located at the point (0, 0). We put
f = (0,−1).

On the lower half of the ellipse, the Neumann condition was imposed, and on the
remaining zero Dirichlet condition, see figure below.

Model of the plane-stressed state of the Lame of an isotropic solid is given in terms
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of the stress tensor:

σ11(u) = (2µ+ λ)ε11(u) + λε22(u), σ12(u) = σ21(u) = 2µε12(u),

σ22(u) = λε11(u) + (2µ+ λ)ε22(u),

µ =
E

2(1 + ν)
, λ =

2µν

1− 2ν
,

Was chosen the following material parameters of the part of the body D \ S:

ν1 = 0.2, E1 = 15,

and inclusion S:
ν2 = 0.35, E2 = 40.

We put N = 3. We chose small number of coefficients, since with a large number,
significant difficulties are observed even with the adaptive restart method. The main
problems are self-crossing of boundaries during the operation of the algorithm. Usually,
in identification problems in the case of elasticity simpler cases are considered. For
example, the identification of the position of an inclusion with a known shape or the
radii of an ellipse (see [13] for example). For Nesterov’s and adaptive restart method
ht = 1, for gradient descent method ht = argminhJ(at+1). Finally, we used FreeFem to
solve the state problem [9].

4.2.1 Case without noise

First, we considered the problem in the deterministic case, that is, with a fixed event ω,
i.e. g choosen as solution to problem with an known inclusion, which is an exact solution
to the problem of obstacle reconstruction. We show the advantage of the adaptive restart
method over the other methods. The picture 1 shows the values of the functional at each
step over 30 iterations for the considering methods. The picture emphasizes how the
adaptive restart method converges faster than gradient descent. It is worth noting that
the descent speed is constantly decreasing and cannot always achieve the accuracy of
the adaptive restart algorithm. One can observe that the oscillations of the Nesterov’s
method are much stronger than in the case of adaptive restart. It is important to
emphasize that after the 30th iteration, the coefficients in the case of the Nesterov’s
method became such that the form allowed self-intersections, after which the algorithm
could not continue working, the adaptive restart method did not allow this.

One can see how the path to the desired shape runs through an impossible geometry
with self-suppression in the case of Nesterov’s method in the picture 2. In the picture
3 you can see good results of the adaptive restart method. You can also compare the
work of the algorithms in picture 1.

The observed results show how ill-posed the problem is. Therefore, the effect of noise
will be extremely high in problems of this type.
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Figure 1: Decrease of the functional J . Blue: adaptive restart, green: Nesterov’s, red:
gradient descent.

4.2.2 Case with noise

For experiments we choose additional noised data as

g(x;ω) = ge(x) + gn(x;ω),

where ge(x) is solution to problem with an inclusion, which is an exact solution to the
obstacle reconstruction problem, and gn(x, ω) is noise. Noise was modeling by Karhunen-
Loeve expansion, see (2.11), where gn is a Gaussian random field

gn = g0 +

M∑
i=1

rigi, g0 =
1

M

M∑
i=1

gi and gi = β sin(iφ), i = 1..M,

where ri, i = 1..M are generated by random numbers and β is noise scaling coefficient,
which was chosen to get corresponding percent of noise, i.e. ‖gn‖2L(D) is corresponding
percent of ‖ge‖2L(D). We took M = 10 in the experiments.
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a) b) c)

d) e) f)

g) h)

Figure 2: Nesterov’s method. Exact - red, initial - green and approximate - blue solutions
for different iterations: a) initial position, b) 4 iteration, c) 8 iteration, d) 12 iteration,
e) 16 iteration, f) 20 iteration, g) 24 iteration, h) 30 iteration.

In the picture 4, we plot graph of functional J on each step of the adaptive restart
method. We observe that classical approach give a great variance of the reconstructions
with noise about 5%. Also note that when the noise was more than 5%, even the adaptive
restart algorithm stopped converging. The picture 5 shows noise influence on the results
after 30 iterations for functional J .
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a) b) c)

d) e) f)

g) h)

Figure 3: Adaptive restart method. Red: exact, green: initial and blue: approximate
solutions for different iterations: a) initial position, b) 4 iteration, c) 8 iteration, d) 12
iteration, e) 16 iteration, f) 20 iteration, g) 24 iteration, h) 30 iteration.

Then, we took Fα as target functional instead of J . First we choose α = 0, i.e. we
work with expectation of Kohn-Vogelius functional. In pictures 6 and 7 you can see how
much the situation improves even in the case of 7.5% noise.

Parameter α In this paragraph we consider the dependence of the reconstruction
algorithm on the parameter α. We fixed the noise level 5% and launch algorithm with
different α: 0, 0.1, 0.2, 0.3, 0.4.

In the picture 8 we observe increasing the parameter improves convergence, but after
α = 0.3 the algorithm stops converging. The functional becomes more flat as α increases
and there is some critical point, after which realization of minimization becomes difficult.
Picture 9 shows results after 30 iterations for functional Fα.

5 Conclusion

In the present work, we have proposed a method that enables to reconstruct inclusions
in elastic bodies in both cases: with usual and noised additional data. A comprehensive
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Figure 4: Decrease of the functional J for noise levels. Yellow: 0%, blue: 1%, green:
2.5%, red: 5%.

a) b)

d) e)

Figure 5: Noise influence. Exact - red and approximate - blue solutions for noise levels:
a) 0%, b) 1%, c) 2.5%, d) 5%.
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Figure 6: Decrease of the functional F0 for noise levels. Blue: 1%, green: 2.5%, red: 5%,
yellow: 7.5%.

a) b)

d) e)

Figure 7: Noise influence. Exact - red and approximate - blue solutions for noise levels:
a) 1%, b) 2.5%, c) 5%, d) 7.5%.
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Figure 8: Decrease of the functional Fα for noise level 5% with different α. Blue: 0,
green: 0.1, red: 0.2, yellow: 0.3, black: 0.4.

a) b)

d) e)

Figure 9: Parameter α influence. Exact - red and approximate - blue solutions for α: a)
0, b) 0.1, c) 0.2, d) 0.3.
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study of the problem was carried out: the existence of a solution to the problem was
presented, a necessary condition for an optimal solution was formulated, a method for
numerical implementation was also proposed, and various numerical methods were com-
pared. The incorrectness of the problem was clearly shown. It should be noted that in
the problem of identifying inclusions in elasticity models, simple variations of the sought
objects are usually considered: an unknown center or ellipse radius. In this paper, more
complex shapes of inclusions have been considered, but significant difficulties are still
observed. This shows the need for further study of such problems. The main problems
in the numerical solution arise from the lack of taking into account the constraints in the
algorithm on the coefficients that determine the shape, which can cause self-intersections
of boundary. Also, the problem clearly requires a detailed second-order analysis, which
was done for simpler models, but not for the elasticity model.

6 Technical proofs.

6.1 Computation of the expectation of the objective. Proof of Propo-
sition 2.

Since σ(φ) : ε(φ) is non negative function from Fubini’s theorem we get following ex-
pression for the expectation of J(S;ω)

E[J(S;ω)] =

∫
Ω

∫
D
σ(v − w(ω)) : ε(v − w(ω)) dx dP(ω)

=

∫
D

∫
Ω
σ(v − w(ω)) : ε(v − w(ω)) dP(ω) dx

=

∫
D

(∫
Ω
〈σ(v(x)− w(x;ω)), ε(v(y)− w(y, ω))〉 dP(ω)

)
x=y

dx.

Using form of w (2.12) under assumption that Yi, i = 1..M are independent and identi-
cally distributed random variables, we conclude that∫

Ω
〈σ(v(x)− w(x;ω)), ε(v(y)− w(y, ω))〉 dP(ω)

=

∫
Ω
〈σ(v(x)− w0(x)−

M∑
i=1

wi(x)Yi(ω)), ε(v(y)− w0(y)−
M∑
i=1

wi(y)Yi(ω))〉 dP(ω)

= 〈σ(v(x)− w0(x)), ε(v(y)− w0(y))〉 − 2
M∑
i=1

〈σ(wi(x)), ε(v(y)− w0(y))〉E[Yi]

+

M∑
i,j=1

〈σ(wi(x)), ε(wj(y))〉E[YiYj ].

Then we use Yi ∼ Y, i = 1..M which is centred and normalized to arrive at

E[J(S;ω)] =

∫
D

(
σ(v − w0) : ε(v − w0) +

M∑
i=1

σ(wi) : ε(wi)
)
dx.
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After using Green’s formula we immediately get the expression that was required to
prove.

6.2 Computation of the variance of the objective. Proof of Proposition
3.

The variance can be computed as difference between uncentered second moment and
square of expectation:

V[J(S ω)] = E[J(S;ω)2]− E2[J(S;ω)]. (4.1)

The uncentred second moment can be expressed as follows

E[J(S;ω)2] =

∫
Ω

(∫
D
σ(v − w(ω)) : ε(v − w(ω)) dx

)2

dP(ω)

=

∫
D

∫
D

∫
Ω

(
σ(v(x)− w(x;ω)) : ε(v(x)− w(x;ω))

)
(
σ(v(y)− w(y;ω)) : ε(v(y)− w(y;ω))

)
dP(ω) dy dx.

Using expressions (2.13) and (6.1), we obtain∫
Ω

(
σ(v(x)− w(x;ω)) : ε(v(x)− w(x;ω))

)(
σ(v(y)− w(y;ω)) : ε(v(y)− w(y;ω))

)
dP(ω)

=

M∑
i,j,k,l=1

〈σ(wi(x)), ε(wj(x))〉〈σ(wk(y)), ε(wl(y))〉E[YiYjYkYl]

− 4
M∑

i,j,k=1

〈σ(wi(x)), ε(wj(x))〉〈σ(wk(y)), ε(v(y)− w0(y))〉E[YiYjYk]

+
M∑
i,j=1

{
2〈σ(wi(x)), ε(wj(x))〉〈σ(v(y)− w0(y))), ε(v(y)− w0(y))〉

+ 4〈σ(wi(x)), ε(v(x)− w0(x))〉〈σ(wj(y)), ε(v(y)− w0(y))〉
}
E[YiYj ]

− 4
M∑
i=1

〈σ(wi(x)), ε(v(x)− w0(x))〉〈σ(v(y)− w0(y)), ε(v(y)− w0(y))〉E[Yi]

+ 〈σ(v(x)− w0(x)), ε(v(x)− w0(x))〉〈σ(v(y)− w0(y)), ε(v(y)− w0(y))〉

Then from fact that Yi ∼ Y, i = 1..M and E[Y ] = 0, V[Y ] = 1 it holds

E[J(S;ω)2] =E[Y 4]

M∑
i=1

(∫
D
σ(wi) : ε(wi) dx

)2

+ E[Y 2]2
{

2

M∑
i 6=j

(∫
D
σ(wi) : ε(wj) dx

)2

+
M∑
i 6=j

(∫
D
σ(wi) : ε(wi) dx

)(∫
D
σ(wj) : ε(wj) dx

)}
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− 4E[Y 3]

M∑
i=1

(∫
D
σ(wi) : ε(wi) dx

)(∫
D
σ(wi) : ε(v − w0) dx

)

+ E[Y 2]

{
2
M∑
i=1

(∫
D
σ(wi) : ε(wi) dx

)(∫
D
σ(v − w0) : ε(v − w0) dx

)

+ 4
M∑
i=1

(∫
D
σ(wi) : ε(v − w0) dx

)2}
+

(∫
D
σ(v − w0) : ε(v − w0) dx

)2

= E2[J(S;ω)] +

(
E[Y 4]− 1

) M∑
i=1

(∫
D
σ(wi) : ε(wi) dx

)2

− 4E[Y 3]
M∑
i=1

(∫
D
σ(wi) : ε(wi) dx

)(∫
D
σ(wi) : ε(v − w0) dx

)2

+ 2
M∑
i 6=j

(∫
D
σ(wi) : ε(wj) dx

)2

+ 4
M∑
i=1

(∫
D
σ(wi) : ε(v − w0) dx

)2

Next from (6.1) and (4.1) we obtain

V[J(S;ω)] =

(
E[Y 4]− 3

) M∑
i=1

(∫
D
σ(wi) : ε(wi) dx

)2

− 4E[Y 3]

M∑
i=1

(∫
D
σ(wi) : ε(wi) dx

)(∫
D
σ(wi) : ε(v − w0) dx

)2

+ 2
M∑
i,j=1

(∫
D
σ(wi) : ε(wj) dx

)2

+ 4
M∑
i=1

(∫
D
σ(wi) : ε(v − w0) dx

)2

(4.2)

Finally from Green’s formula we get expression for variance.

6.3 Proof of Lemma 3.

We begin with the observation that for y = Ψt(x) we have∫
D
σt(ut(y)) : ε(ht(y)) dy =

1

4

∫
D

(
C(x(y))(∇yut(y) + (∇yut(y))>)

)
:
(
∇yht(y) + (∇yht(y))>

)
dy

After change of variables y → x we obtain∫
D
σt(ut(y)) : ε(ht(y)) dy =
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1

4

∫
D

(
C(∇yut(y(x)) + (∇yut(y(x)))>)

)
:
(
∇yht(y(x)) + (∇yht(y(x)))>

) ∂y
∂x

dx. (4.3)

Notice that
Ut(x) = ut(y(x)), Ht(x) = ht(y(x)),

which yields
∇xUt = ∇yut(y(x))∇xy(x) = ∇yut(y(x))M(x)

∇xHt = ∇yht(y(x))∇xy(x) = ∇yht(y(x))M(x),

or
∇yut(y(x)) = ∇xUtM(x)−1, ∇yht(y(x)) = ∇xHtM(x)−1,

where

M(x) = ∇xy(x) = ∇Ψt(x) = I + t∇θ(x),
∂y

∂x
= detM.

Substituting obtained formula into (4.3) we arrive at the identity∫
D
σt(ut(y)) :ε(ht(y)) dy =

1

4

∫
D

(
C(∇UtM−1 + (∇UtM−1)>)

)
:
(
∇HtM

−1 + (∇HtM
−1)>

)
detM dx.

(4.4)

It is easily seen that

∂tM(x)
∣∣∣
t=0

= ∇θ(x), ∂tM
−1(x)

∣∣∣
t=0

= −∇θ(x), ∂t detM(x)
∣∣∣
t=0

= div θ. (4.5)

Differentiating both sides of (4.4) with respect to t at point t = 0 and using the relations
(3.1) and (4.5) we arrive at desired identity (3.2).

6.4 Computation of the volume expression of the shape gradient. Proof
of Theorem 3.

Let vt, wt ∈ H1
D(St) be solutions to the boundary value problems (2.9) corresponding

to body with inclusion St. Then the Kohn-Vogelius functional J(St) is defined by the
equality

J(St) =

∫
D
σt(vt − wt) : ε(vt − wt) dx. (4.6)

Let us set as before

ut = vt − wt, Ut = Vt −Wt, Vt = vt ◦Ψt, Wt = wt ◦Ψt,

U ′ = V ′ −W ′, V ′ = ∂tVt|t=0, W ′ = ∂tWt|t=0,

u = v − w = u0 = v0 − w0, C = C0, S = S0.

27



Substituting these equalities in identity (3.2) we obtain

dJ(S)〈θ〉 =

∫
D

(
σ(V ′ −W ′)− CE(v − w, θ) + div θ σ(v − w)

)
: ε(v − w) dx

+

∫
D
σ(v − w) :

(
ε(V ′ −W ′)− E(v − w, θ)

)
dx, (4.7)

Since the coefficient tensor C is symmetric, we have∫
D
σ(v − w) :

(
ε(V ′ −W ′)− E(v − w, θ)

)
dx =∫

D

(
σ(V ′ −W ′)− CE(v − w, θ)

)
: ε(v − w) dx

Substituting this equality in (4.7) we obtain

dJ(S)〈θ〉 = 2

∫
D

(
σ(V ′ −W ′)− CE(v − w, θ) +

1

2
div θ σ(v − w)

)
: ε(v − w) dx. (4.8)

Our next task is to eliminate V ′ and W ′. To this end we use equalities (3.6) and (3.8),
setting ϕ = v − w we obtain and subtracting one from the other we get∫

D
σ(V ′ −W ′) : ε(v − w) dx

= −
∫
D

(
CE(v − w, θ)− div θ σ(v − w)

)
: ε(v − w) dx+ (4.9)

+

∫
D
b(v − w, θ) : ∇(v − w) dx−

∫
ΓN

(σ(W ′)n) · (v − w) ds

Substituting (4.9) into (4.8) we obtain

dJ(S)〈θ〉 = 2

∫
D

(
CE(v − w, θ)− div θ σ(v − w)

)
: ε(v − w) dx

+2

∫
D
b(v − w, θ) : ∇(v − w) dx− 2

∫
ΓN

(σ(W ′)n) · (v − w) ds

+2

∫
D

(
− CE(v − w, θ) +

1

2
div θ σ(v − w)

)
: ε(v − w) dx.

which gives

dJ(S)〈θ〉 = 2

∫
D
b(v − w, θ) : ∇(v − w) dx−∫

D
div θ σ(v − w) : ε(v − w) dx− 2

∫
ΓN

(σ(W ′)n) · (v − w) ds. (4.10)

Next we use the following formula∫
ΓN

(σ(φ)n) · ψ ds−
∫

ΓN

(σ(ψ)n) · φds =

∫
D

( div σ(φ)) · ψ dx−
∫
D

( div σ(ψ)) · φdx
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φ = v − w, ψ = W ′

and note that
W ′ = 0 on Γ, div σ(v − w) = 0.

We get from this that∫
ΓN

(σ(W ′)n) · (v − w) ds =

∫
D

( div σ(W ′)) · (v − w) dx

It follows from (3.8) and Green’s formula that div σ(W ′) = div A. Thus we get∫
ΓN

(σ(W ′)n) · (v − w) ds =

∫
D

div A · (v − w) dx

From (3.11), we obtain that

−
∫

ΓN

(σ(W ′)n)·(v−w) ds =

∫
D

(CE(w, θ)−div θσ(w)) : ε(v−w) dx+

∫
D
b(w, θ) : ∇(v−w) dx.

Substituting this equality in (4.10), it holds

dJ(S)〈θ〉 = 2

∫
D
b(v − w, θ) : ∇(v − w) dx−

∫
D

div θ σ(v − w) : ε(v − w) dx+

2

∫
D

(C0E(w, θ)− div θ σ(w)) : ε(v − w) dx+ 2

∫
D
b(w, θ) : ∇(v − w) dx =

2

∫
D
b(v, θ) : ∇(v − w) dx−

∫
D

div θ σ(v) : ε(v) dx+∫
D

div θ σ(w) : ε(w) dx+ 2

∫
D
C0E(w, θ) : ε(v − w) dx.

Noting that ∫
D
b(v, θ) : ∇(v − w) =

∫
D
CE(v − w, θ) : ε(v)

we obtain

dJ(S)〈θ〉 = 2

∫
D
CE(v, θ) : ε(v) dx−2

∫
D
CE(w, θ) : ε(w) dx−

∫
D

div θ
(
σ(v) : ε(c)−σ(w) : ε(w)

)
dx

or equivalently

dJ(S)〈θ〉 = 2

∫
D
σ(v) : E(v, θ) dx−2

∫
D
σ(w) : E(w, θ) dx−

∫
D

div θ
(
σ(v) : ε(v)−σ(w) : ε(w)

)
dx.
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6.5 Proof of the surface expression of shape gradient.

Step 1. We have in D \ Σ

σ(v) : E(v, θ) =
1

2

(
∂j(θk∂kviσij) + ∂i(θk∂kvjσij)

)
− 1

2
θk∂k(σ(v) : ε(v)) (4.11)

and

σ(w) : E(w, θ) =
1

2

(
∂j(θk∂kwiσij) + ∂i(θk∂kwjσij)

)
− 1

2
θk∂k(σ(w) : ε(w)). (4.12)

Integrating both sides of (4.11) and (4.12) over D \ Σ we obtain∫
D

(
σ(v) : E(v, θ)− σ(w) : E(w, θ)

)
dx = −1

2

∫
Σ

(
njθk[∂kviσij(v)− ∂kwiσij(w))]

)
ds−

1

2

∫
Σ

(
niθk[∂kvjσij(v)− ∂kwjσij(w))]

)
ds− 1

2

∫
D
θk
(
∂k(σ(v) : ε(v))− ∂k(σ(w) : ε(w)

)
dx.

(4.13)

Notice that(
njθk[∂kviσij(v)− ∂kwiσij(w))]

)
+
(
niθk[∂kvjσij(v)− ∂kwjσij(w))]

)
=

2θk[∂k(v) · (σ(v)n)]− 2θk[∂k(w) · (σ(w)n)] = 2[(∇v θ) · (σ(v)n)− (∇w θ) · (σ(w)n)].

Substituting this result in (4.13) we arrive at the equality∫
D

(
σ(v) : E(v, θ)− σ(w) : E(w, θ)

)
dx (4.14)

= −
∫

Σ
[(∇vθ) · (σ(v)n)− (∇wθ) · (σ(w)n)]ds − 1

2

∫
D
θk
(
∂k(σ(v) : ε(v))− ∂k(σ(w) : ε(w))

)
dx.

Step 2. Next, consider the integral∫
D

div θ
(
σ(v) : ε(v)− σ(w) : ε(w)

)
dx. (4.15)

We have

div θ
(
σ(v) : ε(v)− σ(w) : ε(w)

)
dx =

∂k
(
θk
(
σ(v) : ε(v)− σ(w) : ε(w))

)
− θk∂k

(
σ(v) : ε(v)− σ(w) : ε(w)

)
,

Substituting this equality in (4.15) and integrating by parts we obtain∫
D

div θ
(
σ(v) :ε(v)− σ(w) : ε(w)

)
dx = (4.16)

−
∫

Σ
[σ(v) : ε(v)− σ(w) : ε(w)] θ · nds

∫
D
θk ∂k

(
σ(v) : ε(v)− σ(w) : ε(w)

)
dx.
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Step 3. Substituting expressions (4.14) and (4.16) into (3.12) we obtain

dJ(S)〈θ〉 =

∫
Σ

[σ(v) : ε(v)−σ(w) : ε(w)] θ·nds−2

∫
Σ

[(∇vθ)·(σ(v)n)−(∇wθ)·(σ(w)n)]ds.

(4.17)
Noticing thanks to regularity assumption that σ(v)n and σ(w)n have a continuous trace
on Σ we obtain∫

Σ
[(σ(v)n) · (∇vθ)] ds =

∫
Σ

(σ(v)n) · [∇vθ] ds =

∫
Σ

(σ(v)n) · [∂n(v)]θn ds,

and ∫
Σ

[(σ(w)n) · (∇wθ)] ds =

∫
Σ

(σ(w)n) · [∇wθ] ds =

∫
Σ

(σ(w)n) · [∂n(w)]θn ds.

Substituting expressions into (4.17) we finally obtain

dJ(S)〈θ〉 =

∫
Σ

[σ(v) : ε(v)−σ(w) : ε(w)] θ·nds−2

∫
Σ

(
(σ(v)n)·[∂n(v)]−(σ(w)n)·[∂n(w)]

)
θ·nds.

6.6 Computation of the shape gradient of the variance. Proof of propo-
sition 5.

We will consider variance in following form

V[J(S;ω)] = 2

M∑
i,j=1

(∫
D
σ(wi) : ε(wj) dx

)2

+ 4

M∑
i=1

(∫
D
σ(wi) : ε(v − w0) dx

)2

.

Then by chain rule we obtain

d(V[J(S;ω)])〈θ〉 = 4

M∑
i,j=1

(∫
D
σ(wi) : ε(wj) dx

)
d

dt

(∫
D
σ(wi) : ε(wj) dx

)

+ 8
M∑
i=1

(∫
D
σ(wi) : ε(v − w0) dx

)
d

dt

(∫
D
σ(wi) : ε(v − w0) dx

)
.

Following the proof of the Theorem 3 we obtain for every i, j = 1..M

d

dt

(∫
D
σ(wi) : ε(wj) dx

)
〈θ〉 = 2

∫
D
σ(wi) : E(wj , θ) dx −

∫
D

div θ σ(wi) : ε(wj) dx

=

∫
Σ

[σ(wi) : ε(wj)] θ · nds− 2

∫
Σ

(σ(wi)n) · [∂n(wj)]θ · nds

and similarly

d

dt

(∫
D
σ(wi) : ε(v − w0) dx

)
〈θ〉
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= 2

∫
D
σ(wi) : E(v, θ) dx− 2

∫
D
σ(wi) : E(w0, θ) dx −

∫
D

div θ
(
σ(wi) : ε(v)− σ(wi) : ε(w0)

)
dx

=

∫
Σ

[σ(wi) : ε(v)− σ(wi) : ε(w0)] θ · nds − 2

∫
Σ

(
(σ(wi)n) · [∂n(v)]− (σ(wi)n) · [∂n(w0)]

)
θ · nds.

Then, we get the final expression by Green’s formula.
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A geometrical analysis, English version of the French publication [ MR2512810] with
additions and updates.

[11] R. Kohn and M. Vogelius. Determining conductivity by boundary measurements.
Communications on pure and applied mathematics, 37(3):289–298, 1984.

32



[12] N. P. Lazarev and E. M. Rudoy. Shape sensitivity analysis of Timoshenko’s plate
with a crack under the nonpenetration condition. ZAMM Journal of Applied
Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik,
94(9):730–739, 2015.

[13] H. Meftahi and J. P. . Zolesio. Sensitivity analysis for some inverse problems in
linear elasticity via minimax differentiability. Applied Mathematical Modelling,,
39(5-6):1554–1576., 2015.

[14] Y. Nesterov. A method of solving a convex programming problem with convergence
rate o(1 \ k2). 27(2).

[15] J. R. Roche and J. Soko lowski. Numerical methods for shape identification prob-
lems. Control and Cybernetics, 25(5):866–894, 1996. Cited By :31.

[16] E. M. Rudoy. Shape derivative of the energy functional in a problem for a thin rigid
inclusion in an elastic body. Zeitschrift fur angewandte Mathematik und Physik,
66(4):1923–1937, 2015.

[17] J. Sokolowski and J. P. & Zolesio. Introduction to shape optimization. Springer,
Berlin, Heidelberg.,9, 1992.

33


