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Abstract

The paper deals with stochastic homogenization of a system modelling immiscible compressible two-
phase, such as water and gas, flow in random porous media. The problem is written in terms of the phase
formulation, i.e. the saturation of one phase and the pressure of the second phase are primary unknowns.
This formulation leads to a coupled system consisting of a nonlinear degenerate parabolic equation for the
gas pressure and a nonlinear degenerate parabolic diffusion-convection equation for the liquid saturation,
subject to appropriate boundary and initial conditions. We consider the behavior of compressible two-phase
flow in heterogeneous reservoirs with permeability and porosity being realizations of given statistically
homogeneous random fields. We derive the effective (macroscopic) problem and prove the convergence of
solutions. Our approach relies on stochastic two-scale convergence techniques, the realization-wise notion
of stochastic two-scale convergence being used. Also, we exploit various a priori estimates as well as
monotonicity and compactness arguments. To our best knowledge, this is the first stochastic homogenization
result in the case of compressible two-phase flow in random porous media.

AMS Subject Classification: 35R60; 35K65; 60H15; 62M40; 76M50; 76S05; 76T10.
Keywords: heterogeneous porous media; random media; two-phase compressible flow; homogenization;

stochastic.

1 Introduction

The problem of the description of two-phase flows through highly heterogeneous media is faced in many
branches of engineering and applied sciences such as groundwater hydrology, petroleum engineering, envi-
ronmental sciences. More recently, multiphase flow attracted an essential interest of engineers and researchers
dealing with gas migration in a nuclear waste repository [37] and sequestration of CO2 [35].
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These applications involve a detailed description of the underground reservoir and running the simulation
on the created detailed model. This can be challenging and time consuming for complex systems of flows in
highly heterogeneous porous media because of lack of information and description of details that require high
computational time.

Since in the subsurface permeability heterogeneity occurs on many different length scales, numerical mod-
els of flow cannot, in general, resolve all the plurality of scales. Therefore, approaches based on upscaling or
homogenization are required to represent the effect of subgrid scale variations on larger scale flow.

The problem of homogenization of multiphase flow through heterogeneous porous media has quite a long
history, a number of methods and approaches have been elaborated. There is a vast literature on this topic.
Here we will merely mention some references to mathematical homogenization results for flow and transport
in porous media. There were a number of works devoted to the qualitative theory of systems of equations
describing incompressible immiscible two-phase flow in porous media. Among them are [1, 9, 10, 17, 18, 19,
20, 23, 33], where the questions of existence, uniqueness and regularity of a weak solution were investigated.
Important qualitative results such as existence and regularity of weak solutions for compressible immiscible
two-phase flow in heterogeneous porous media were obtained in [5, 24, 25, 26, 32], and in the case of dis-
continuous capillary pressure in [6]. For the results on homogenization of incompressible and compressible
two-phase flow in porous media, we refer for instance to [2, 3, 4, 7, 8, 29, 30] and the references therein.

The mentioned articles considered homogenization problems in porous media with a periodic microstruc-
ture. In particular, the rigorous homogenization results obtained in these papers are valid under the assumption
that the corresponding porous medium is periodic or locally periodic. Although the results obtained for systems
with periodic coefficients provide an important information on the effective behavior of the two-phase flow of
interest, the description of the effective behavior of the flow based on the periodicity assumption usually cannot
be accurate except for some special cases.

The properties of the medium, such as the porosity and the permeability, are not known in any precise way
due to the lack and accuracy of available measurements. Due to this fact, subsurface flow and transport pre-
dictions are plagued by uncertainty. The need for assessing and quantifying uncertainty in subsurface flow has
driven research in the stochastic aspects of hydrology and multiphase flow physics, see for instance [22, 27, 34].
The complex nature of subsurface systems, together with inherent incomplete information about their proper-
ties, have resulted in the surge of probabilistic modelling of these uncertainties. Quantifying the uncertainty
of the model parameters and modelling them as random variables means that the coefficients of the governing
partial differential equation (PDEs) are stochastic rather than deterministic. In order to assess the resulting
output uncertainty, a stochastic method is required. One possible option is homogenization which was applied
successfully for single phase flow in [12, 14, 16, 28, 38] and incompressible immiscible two-phase flow uncer-
tainty quantification in [13, 36]. In connection with these problems a new technique called stochastic two-scale
convergence in the mean was developed, see [15].

In the case of natural reservoirs the assumption that the porous media are random statistically homogeneous
is much more realistic and allows to provide more accurate description of the effective characteristics. This
paper focuses on modeling and effective descriptions of immiscible compressible two-phase flows through het-
erogeneous reservoirs with random statistically homogeneous geometric structure. We will be concerned with
a nonlinear degenerate system of convection-diffusion equations in a domain modeling the flow and transport
of immiscible compressible fluids through heterogeneous random porous media, taking into account capillary
and gravity effects.

More precisely, we consider the flow of an incompressible wetting phase (water) and a compressible non-
wetting phase (gas) in a porous reservoir. Here we consider a single rock-type model. The original microscopic
model is defined in a domain with random statistically homogeneous ergodic microstructure. In our context
it means that both the porosity and the absolute permeability are rapidly oscillating statistically homogeneous
random functions of the microscopic variable y = x/ε, where x is the macroscopic variable, and ε > 0 is
a small parameter that represents the characteristic length scale of the medium. The problem is formulated
in terms of the wetting saturation phase (water) and the nonwetting pressure phase (gas). The corresponding
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system of equations is derived from the mass conservation laws of both fluids on the one side and from the re-
lations between the velocities and the pressure gradients as well as the gravitational forces. These relations are
provided by the Darcy-Muskat law. The resulting system consists of a nonlinear equation for the gas pressure
coupled with a degenerate parabolic convection-diffusion equation for the water saturation, both equations are
subject to appropriate boundary and initial conditions.

In this system the diffusion operator degenerates due to the capillary effects, the degeneracy of this type can
be observed both in compressible and incompressible flows. Another type of degeneracy occurs in the region
where the gas saturation vanishes. In this region the gas density cannot be determined by its evolution since the
gas phase is not presented.

The degeneracy and strong coupling of the equations in the system of interest make the proof of homog-
enization result rather involved especially in the case of random coefficients. In particular, we are not able to
obtain uniform estimates for the gradients of the phase pressures. To overpass this difficulty we reformulate the
studied problem in terms of the global pressure and the saturation. This leads to a weaker coupling between
the equations of the system. However, we still do not have uniform estimates for the saturation gradient. In
addition, due to degeneracy, solutions do not possess much regularity. As a result, passing to the limit in the
studied system is not direct and requires rather delicate arguments.

Homogenization problem for incompressible two-phase flow in a random medium was treated successfully
in [13]. However, to our best knowledge, rigorous homogenization results for an immiscible compressible
multiphase flow in a random medium are missed in the existing literature.

The paper is organized as follows. Section 2 deals with problem setup. We describe the physical model,
introduce the corresponding system of equations and provide the assumptions on the data. In Section 3 we
recall the results on the existence of a solution and obtain a number of a priori estimates. Finally, in Section 4
we formulate and prove the homogenization theorem.

2 Problem setup

In this Section we formulate the problem of interest. First, in Subsection 2.1 we introduce the system of
equations that describes isothermal immiscible compressible two-phase flow in a random porous medium.
Subsection 2.2 provides the main assumption on the data. In Subsection 2.3, we provide two examples of the
random model. Finally, the notion of the global pressure is briefly recalled and useful relations are also recalled
in Subsection 2.4.

2.1 Governing equations

We consider an immiscible compressible two-phase flow model in a heterogeneous porous medium with a
random statistically homogeneous microstructure. We suppose that the porous medium occupies a porous
reservoir Q ⊂ Rd, d = 1, 2, 3, being a bounded connected Lipschitz domain. We focus on the phases water
and gas, but the consideration below is also valid for a general wetting phase and a non-wetting phase, each
consisting of one component. For presentation simplicity we assume that there are no source/sink terms.

To introduce a random microstructure we assume that (Ω,F ,P) is a standard probability space equipped
with an ergodic dynamical system Tx, x ∈ Rd, that is

• Tx+y = Tx ◦ Ty, x , y ∈ Rd, T0 = Id;

• P(Tx(A)) = P(A) for all x ∈ Rd, A ∈ F ;

• T· : Rd × Ω 7→ Ω is a measurable mapping from Rd × Ω to Ω, with Rd being equipped with the Borel
σ-algebra.
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The ergodicity of T· means that the probability of any set A ∈ F which is invariant with respect to all Tx,
x ∈ Rd, is equal to zero or one.

Also we assume that there are a positive random variable Φ = Φ(ω) and a positive definite random matrix
K = K(ω) and denote

Φ(·, ω) = Φ(Txω), K(·, ω) = K(Txω),

that is Φ(·, ω) and K(·, ω) are realizations of the random porosity function Φ and random global permeability
tensorK.

We then scale this random structure with a parameter ε which represents the ratio of the typical size of local
inhomogeneities to the size of the whole regionQ, and define the porosity and the absolute permeability tensor
by

Φε(x, ω) = Φ
(x
ε
, ω
)

= Φ(Tx
ε
ω), Kε(x, ω) = K

(x
ε
, ω
)

= K(Tx
ε
ω), (2.1)

we assume that 0 < ε � 1 is a small parameter that tends to zero. Prior to writing down the equations of the
model, we introduce the following notation. Let Sε = Sεl (x, t) and Sεg = Sεg(x, t) = 1− Sε be the saturations
of the wetting and the nonwetting phases, respectively; kr,l = kr,l(S

ε
l ) and kr,g = kr,g(S

ε
g) stand for the relative

permeabilities of the corresponding phases; pεl = pεl (x, t), pεg = pεg(x, t) are their pressures; and %l, %g are the
corresponding densities. In what follows we assume that the density of the wetting phase is a constant, without
loss of generality this constant is equal to 1 so that %l(pεl ) = 1. We then fix an arbitrary time interval [0, T ],
T > 0, and denote QT = Q×]0, T [. Standard flow models consist of equations for mass conservation of each
phase, the multiphase extension of Darcy’s law for fluid flow in porous media and by the capillary pressure law
(see, e.g., [9, 18, 21]):

0 6 Sε 6 1 a.e. in QT ,

Φε(x, ω)
∂Sε

∂t
− div

{
Kε(x, ω)λl(S

ε)
(
∇pεl − ~g

)}
= 0 in QT ;

Φε(x, ω)
∂Θε

∂t
− div

{
Kε(x, ω)λg(S

ε)%g(p
ε
g)
(
∇pεg − %g(pεg)~g

)}
= 0 in QT ;

Pc(S
ε) = pεg − pεl in QT ,

(2.2)

where Θε is the function given by
Θε def

= %g(p
ε
g)(1− Sε), (2.3)

and the velocities of the wetting and the nonwetting phases ~qεl and ~qεg satisfy the Darcy-Muskat law:

~qεl = −Kε(x, ω)λl(S
ε)

(
∇pεl − ~g

)
with λl(s) =

kr,l
µl

(s); (2.4)

~qεg = −Kε(x, ω)λg(S
ε
g)

(
∇pεg − %g(pεg)~g

)
with λg(s) =

kr,g
µg

(s). (2.5)

Here the subscripts l and g correspond to liquid or wetting phase and to gas or nonwetting phase; ~g, µl, µg and
λl, λg stand for the gravity vector, the viscosities and the mobilities of the wetting and the nonwetting phases,
respectively.

System (2.2)–(2.3) is equipped with the following boundary and initial conditions.

Boundary conditions. We suppose that ∂Q consists of two (d − 1)-dimensional sets Γinj and Γimp with a
Lipschitz boundary such that Γinj ∩ Γimp = ∅ and ∂Q = Γinj ∪ Γimp. The subscripts come from “injection”
and “impervious” parts of the boundary. The boundary conditions are given by:{

pεg(x, t) = pεl (x, t) = 0 on Γinj × (0, T );

~q εl · ~ν = ~q εg · ~ν = 0 on Γimp × (0, T ),
(2.6)
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where the velocities ~q εl , ~q
ε
g are defined in (2.4)–(2.5).

Initial conditions. The initial conditions read:

pεl (x, 0) = p0l (x) and pεg(x, 0) = p0g (x) in Q. (2.7)

Notice that from (2.6) and the fact that Pc(1) = 0, it follows that Sε = 1 on Γinj × (0, T ). The initial
condition for Sε is uniquely defined by the equation

Pc(S
0(x)) = p0g (x)− p0l (x). (2.8)

Then according to (2.3) the initial condition for Θε reads

Θ0 = %g(p
0
g )(1− S0). (2.9)

In the next Section we specify the conditions on the data of system (2.2)–(2.9) which ensure the existence
of a solution to this system. Our goal is to study the asymptotic behavior of this solution as ε → 0, and to
construct the limit problem.

Since the coefficients Φ(·) and K(·) are random fields, the solutions of problem (2.2)-(2.7) are also random
functions that depend on the realization ω ∈ Ω. In the rest of this paper, for the sake of brevity, we follow the
convention commonly uses in the literature on stochastic analysis and do not indicate explicitly the dependence
on ω. In particular we write Φ(x) and K(x) instead of Φ(x, ω) and K(x, ω).

2.2 Main assumptions

Here we provide our assumptions on the data of system (2.2)-(2.9). In order to formulate these assumptions we
need two auxiliary functions. Namely, we denote

α(s) =
λg(s)λw(s)

λ(s)

∣∣P ′c(s)∣∣ . (2.10)

and

β(s) =
s∫
0

α(r) dr, (2.11)

We assume that the following conditions are fulfilled:

(A.1) The random variable Φ belongs to L∞(Ω); moreover, there are constants φ−, φ+ such that 0 < φ− < φ+

and
0 < φ− 6 Φ 6 φ+ < 1 a. s. in Ω. (2.12)

(A.2) The random fieldK belongs to (L∞(Ω))d×d, and there exist constantsK−,K+ such that 0 < K− < K+

and
K−|ξ|2 6 (K(ω)ξ, ξ) 6 K+|ξ|2 for all ξ ∈ Rd, a.s. in Ω. (2.13)

(A.3) The density of the nonwetting phase %g = %g(p) is a continuously differentiable increasing function such
that %g(p) = %min for p 6 pmin; %g(p) = %max for p > pmax; %min < %g(p) < %max for pmin < p <
pmax; with 0 < %min < %max < +∞ and 0 < pmin < pmax < +∞.

(A.4) The capillary pressure Pc(s) is a C1([0, 1];R+) function such that P ′c(s) < 0 in [0, 1] and Pc(1) = 0.

(A.5) The functions λl, λg are continuous on the interval [0, 1] and possess the following properties:

0 6 λl(s), λg(s) 6 1 for all s ∈ [0, 1]; λl(0) = λg(1) = 0; (2.14)

there is a constant L0 > 0 such that

λ(s) = λl(s) + λg(s) > L0 for all s ∈ [0, 1]. (2.15)
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(A.6) The function α defined in (2.10) belongs to C1([0, 1];R+). Moreover, α(s) > 0 for s ∈ (0, 1). Notice
that due to (2.14) we have α(0) = α(1) = 0.

(A.7) The function β−1, inverse of β is Hölder continuous on the interval [0, β(1)] that is there exist constants
θ ∈ (0, 1) and Cβ > 0 such that for all s1, s2 ∈ [0, β(1)] the following inequality holds:∣∣β−1(s1)− β−1(s2)

∣∣ 6 Cβ |s1 − s2|θ.

(A.8) The initial conditions p0g and p0l are L2(Q) functions.

(A.9) The function S0 satisfies the inequality 0 6 S0 6 1 a.e. in Q.

In the existing literature conditions similar to those in (A.1)-(A.9) are commonly used in the theory of
multiphase flow in porous media.

2.3 Example of random media

In this Subsection we provide two examples of random porosity functions and absolute permeability tensors.
The first example is based on the Bernoulli checkerboard structure and the second one on a Poisson point
process.
1. Let ζj , j ∈ Zd, be a family of i.i.d. (independent identically distributed) random variables such that

ζj =

{
κ0 with probability q
κ1 with probability 1− q,

for some κ0, κ1 ∈ R, 0 < κ0 < κ1, and q ∈ (0, 1). We set

Φ̂(x) = ζj , if jk −
1

2
< xk ≤ jk +

1

2
, k = 1, . . . , d.

The law of Φ̂(·) is invariant with respect to any integer shift of its argument. In order to make it statistically
homogeneous in Rd we consider a random variable η which is independent on ζj , j ∈ Zd, and uniformly
distributed on the unite cube [−1

2 ,
1
2 ]d. Letting Φ(x) = Φ̂(x − η) we obtain a statistically homogeneous

porosity function. The ergodicity immediately follows from the fact that Φ(·) has a finite range of dependence.
Similarly, for positive definite symmetric matrices K0 and K1 and for q1 ∈ (0, 1) we consider a family of

i.i.d. random variables Mj , j ∈ Zd, with

Mj =

{
K0 with probability q1

K1 with probability 1− q1,

Then we define
K̂(x) = Mj if jk −

1

2
< xk ≤ jk +

1

2
, k = 1, . . . , d,

and K(x) = K̂(x− η).

2. Let Ξ be a Poisson point process in Rd with intensity one. By definition Ξ is a locally finite random set in
Rd such that

i. For any bounded Borel setQ ⊂ Rd the random variable #(Ξ∩Q) has Poisson distribution with parameter
|Q|:

P
{

#(Ξ ∩Q) = n
}

= e−|Q|
|Q|n

n!
.
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ii. For any disjoint Borel sets Q1, . . . , QN the random variables #(Ξ ∩Q1), . . . ,#(Ξ ∩QN ) are indepen-
dent.

Denote by x1, x2, . . . , the points of this Poisson point process, and by Vj the cells of the corresponding Voronoi
tessellation. We recall that

Vj = {x ∈ Rd : dist(x, xj) ≤ dist(x,Ξ \ {xj})}.

Then we consider i.i.d. random variables ζj , j ∈ Z+, that take on values on the interval [κ0, κ1] with 0 < κ0 <
κ1, and define the porosity, for x ∈ Vj , by Φ(x) = ζj . The absolute permeability tensor K(·) is defined in a
similar way.

The statistical homogeneity of Φ(x) and K(x) follows from the shift invariance of the law of Ξ. The
ergodicity is a straightforward consequence of the properties of a Poisson point process.

2.4 Global pressure and useful relations

In this section, we rearrange the system of equations in (2.2) using the notion of the so called global pressure
[9, 18]. The main idea is to replace the studied two-phase flow with a flow of a fictive fluid for which the Darcy
law holds with a non-degenerate coefficient. This rearrangements helps us to obtain several important a priori
estimates and finally the compactness results.

We are looking for a pressure Pε and the coefficient γ(s) such that γ(s) > 0 holds true for all s ∈ [0, 1],
and

λl(S
ε)∇pεl + λg(S

ε)∇pεg = γ(Sε)∇Pε. (2.16)

Now let us define the desired pressure Pε (the global pressure) and the coefficient γ. The global pressure
Pε is defined by

pεl = Pε + Gl(S
ε) and pεg = Pε + Gg(S

ε) (2.17)

with

Gg(s) = Gg(0) +

s∫
0

λl(r)

λ(r)
P ′c(r) dr, Gl(s) = Gg(s)− Pc(s). (2.18)

Here the function λ is defined in (2.15).
Due to (A.4) the function Pε is well defined. Since

∇Gl(Sε) = −λg(S
ε)

λ(Sε)
P ′c(S

ε)∇Sε, (2.19)

it is straightforward to check that

λg(S
ε)∇Gg(Sε) + λl(S

ε)∇Gl(Sε) = 0 (2.20)

and, hence

λl(S
ε)∇pεl + λg(S

ε)∇pεg = λ(Sε)∇Pε +
{
λg(S

ε)∇Gg(Sε) + λl(S
ε)∇Gl(Sε)

}
= λ(Sε)∇Pε.

It remains to set γ(s) = λ(s), and (2.16) follows.
Notice that from (2.18) we get:

λl(S
ε)∇Gl(Sε) = α(Sε)∇Sε and λg(S

ε)∇Gg(Sε) = −α(Sε)∇Sε, (2.21)

where the function α is given by (2.10).
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It is also convenient to introduce the following quantities:

a(s) =

√
λg(s)λl(s)

λ(s)

∣∣P ′c(s)∣∣ and b(s) =

s∫
0

a(r) dr. (2.22)

After straightforward computations, considering the definition of the global pressure, (2.11) and (2.22), we
obtain

λg(S
ε)|∇pεg|2 + λl(S

ε)|∇pεl |2 = λ(Sε)|∇Pε|2 + |∇b(Sε)|2 (2.23)

and
λl(S

ε)∇pεl = λl(S
ε)∇Pε +∇β(Sε), and λg(S

ε)∇pεg = λg(S
ε)∇Pε −∇β(Sε). (2.24)

Also, since by condition (A.5) the functions λl and λg are bounded, we have

|∇β(Sε)|2 =
λg(S

ε)λl(S
ε)

λ(Sε)
|∇b(Sε)|2 6 C |∇b(Sε)|2 . (2.25)

It remains to determine the initial and boundary conditions for Pε. The initial condition can be easily derived
from (2.7), (2.8) and (2.17). We leave out the details.

Let us calculate the value of the global pressure function P on Γinj. Since by condition (A.4) we have
Pc(1) = 0, then Sε = 1 on Γinj. Therefore, thanks to (2.17), the function Pε is equal to a constant on Γinj. We
denote it by P1.

3 Existence result and estimates of a solution.

The question of the existence of a solution to problem (2.2)–(2.9) has been studied in the previous works [2, 26].
In the same works a number of important a priori estimates have been obtained. For the reader convenience we
formulate here the corresponding existence result and several estimates for the solution.

DenoteH1
Γinj

(Ω) =
{
u ∈ H1(Ω) : u = 0 on Γinj

}
. We equip it with the norm ‖u‖H1

Γinj
(Ω) = ‖∇u‖(L2(Ω))d .

From (2.12) and (2.13) if follows that almost surely

φ− 6 Φε(x) 6 φ+ and K−|ξ|2 6 (Kε(x)ξ, ξ) 6 K+|ξ|2 for all x ∈ Q, ξ ∈ Rd, (3.26)

with Φε(x) = Φ(Tx
ε
ω) and Kε(x) = K(Tx

ε
ω), see (2.1). We call ω ∈ Ω for which (3.26) holds typical. From

now on without mentioning it again we assume that ω is typical.

Definition 3.1. A triple of function pεg = pεg(x, t), pεl = pεl (x, t) and Sε = Sε(x, t) is called a solution of
problem (2.2)-(2.9) if all of the following holds

pεl , p
ε
g ∈ L2(QT ) and

√
λl(Sε)∇pεl ,

√
λg(Sε)∇pεg ∈ L2(QT ); (3.27)

β(Sε) ∈ L2(0, T ;H1(Q)) and Pε − P1 ∈ L2(0, T ;H1
Γinj

(Q)); (3.28)

Φε∂S
ε

∂t
∈ L2(0, T ;H−1(Q)) and Φε∂Θε

∂t
∈ L2(0, T ;H−1(Q)); (3.29)

0 6 Sε 6 1 a.e. in QT , Sε = 1 on Γinj; (3.30)

for any ϕl, ϕg ∈ C1([0, T ];H1(Q)) such that ϕl = ϕg = 0 on Γinj × (0, T ) and ϕl(x, T ) = ϕg(x, T ) = 0, we
have:

−
∫
QT

Φε(x)Sε
∂ϕl
∂t

dxdt−
∫
Q

Φε(x)S0(x)ϕl(x, 0) dx+

∫
QT

Kε(x)λl(S
ε)∇pεl · ∇ϕl dxdt

−
∫
QT

Kε(x)λl(S
ε)~g · ∇ϕl dxdt = 0

(3.31)
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and

−
∫
QT

Φε(x)Θε∂ϕg
∂t

dxdt−
∫
Q

Φε(x)Θ0(x)ϕg(x, 0) dx

+

∫
QT

Kε(x)λg(S
ε)%g(p

ε
g)∇pεg · ∇ϕg dxdt−

∫
QT

Kε(x)λg(S
ε)
[
%g(p

ε
g)
]2
~g · ∇ϕg dxdt = 0

(3.32)

with Θε defined in (2.3); the following relation holds

Pc(S
ε) = pεg − pεl .

The initial conditions are satisfied in the following sense: for any ψ ∈ H1
Γinj

(Q)

lim
t→0

∫
Q

Φε(x)Sε(x, t)ψ(x) dx =

∫
Q

Φε(x)S0(x)ψ(x) dx (3.33)

and
lim
t→0

∫
Q

Φε(x)Θε(x, t)ψ(x) dx =

∫
Q

Φε(x)Θ0(x)ψ(x) dx (3.34)

with S0 and Θ0 defined in (2.8) and (2.9), respectively.

Remark 1. As was shown in [2] for any function ψ ∈ H1
Γinj

(Q) the integrals
∫
Q

Φε(x)Sε(x, t)ψ(x)dx and∫
Q

Φε(x)Θε(x, t)ψ(x)dx are continuous functions of t on [0, T ]. Thus, the limits in (3.33) and (3.34) are well

defined.

The following result has been proved in [2, 26].

Theorem 3.2. Under assumptions (A.1)-(A.9) for any ε > 0 problem (2.2)–(2.9) has a solution pεl = pεl (x, t),
pεg = pεg(x, t) and Sε = Sε(x, t) that satisfies Definition 3.1.

Below we also formulate several estimates for a solution of (2.2)–(2.9) that have been obtained in [2, 8].

Theorem 3.3. Let pεl , p
ε
g, Sε be a solution of problem (2.2), and assume that the global pressure Pε is given by

(2.17). Then ∫
QT

{
λl(S

ε)|∇pεl |2 + λg(S
ε)|∇pεg|2

}
dxdt 6 C, (3.35)

∫
QT

{
|∇Pε|2 + |∇β(Sε)|2 + |∇b(Sε)|2

}
dxdt 6 C, (3.36)

‖∂t(ΦεΘε)‖L2(0,T ;H−1(Q)) + ‖∂t(ΦεSε)‖L2(0,T ;H−1(Q)) 6 C; (3.37)

here the constant C is deterministic and does not depend on ε.

4 Homogenization result

In this section we first remind the notion of stochastic two-scale convergence. We use here the realization-
wise version of this convergence that was introduced in [39]. Then we provide several compactness results
for a solution of problem (2.2)–(2.9). After that we calculate the homogenized coefficients and formulate the
homogenization theorem. The proof of this theorem is given in Section 4.3.
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4.1 Stochastic two-scale convergence. Compactness results.

Changing if necessary the probability space we may assume that Ω is a compact metric space, F its Borel
σ-algebra and the dynamical system Tx is continuous. We give a definition of stochastic two-scale convergence
that is adapted to our framework.

Definition 4.1. We say that a family of L2(QT ) functions uε = uεω̃(x, t) stochastically two-scale converges to
a function u0(x, t, ω) if the following two conditions are fulfilled:

• There exists ε0 > 0 such that
‖uε‖L2(QT ) ≤ Cω̃ for all ε < ε0;

• Almost surely (for almost all ω̃ ∈ Ω) for any ϕ ∈ C∞(QT ) and any ψ ∈ C(Ω) we have∫
QT

uεω̃(x, t)ϕ(x, t)ψ(Tx
ε
ω̃) dxdt −→

∫
QT

u0(x, t, ω)ϕ(x, t)ψ(ω) dxdtdP(ω). (4.38)

As was shown in the proof of Lemma 5.1 in [39] (see the first paragraph on page 41 for the detailed
formulation) for any function ψ ∈ L2(Ω) there is its modification (that is a function that differs from ψ on
the set of zero measure P) such that relation (4.38) holds true. In what follows we consider this particular
modification of functions from L2(Ω).

In order to formulate the main properties of stochastic two-scale convergence we introduce the subspaces
L2

pot(Ω) and L2
sol(Ω) in the standard way, see [31, Chapter x]. Let Ux, x ∈ Rd, be a strongly continuous

group of unitary operators in L2(Ω) defined by Uxf(ω) = f(Txω). The generator of this group along the
jth coordinate direction is denoted by ∂j and its domain by Dj . The set D =

⋂d
j=1Dj is dense in L2(Ω).

Letting ∇ωu(ω) =
(
∂1u(ω), . . . , ∂du(ω)

)
for u ∈ D we denote by L2

pot(Ω) the closure of the set {∇ωu :

u ∈ D} in (L2(Ω))d. The subspace L2
sol(Ω) is defined as the closure in (L2(Ω))d of the set of vector function

(v1(ω), . . . , vd(ω)) such that vj ∈ Dj , j = 1, . . . , d, and
∑d

1 ∂jvj = 0.
The subspaces L2

pot(Ω) and L2
sol(Ω) are orthogonal in (L2(Ω))d, and (L2(Ω))d = L2

pot(Ω)⊕L2
sol(Ω). See,

for instance, [31] for further details.
Some properties of the stochastic two-scale convergence are collected in the following statement.

Theorem 4.2. For any family uε = uεω̃(x, t) such that ‖uε‖L2(QT ) ≤ C(ω̃) there exists a sequence εk → 0 and
a function u0 ∈ L2(QT × Ω) such that uεk stochastically two-scale converges to u0, as k →∞.

If
‖uε‖L2(QT ) + ‖∇xuε‖L2(QT ) ≤ C(ω̃),

then u0 does not depend on ω, u0 ∈ L2(0, T ;H1(Q)), and there exists a function u1 ∈ L2(QT ;L2
pot(Ω)) such

that
∇xuε

s2s−→∇xu0 + u1;

here and later on symbol s2s−→ denotes stochastic two-scale convergence.

If
‖uε‖L2(QT ) + ε‖∇xuε‖L2(QT ) ≤ C(ω̃),

then
ε∇xuε

s2s−→∇ωu0(x, t, ω).
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The proof of these statements can be found in [39].

We turn to the properties of solutions of problem (2.2)–(2.9).

Theorem 4.3. Let Sε, pεl and pεg be a solution of problem (2.2)–(2.9), and assume that conditions (A.1)–(A.9)
are fulfilled. Then there exist a function Ŝ = Ŝ(x, t), 0 6 Ŝ 6 1, a function P̂ ∈ L2(0, T ;H1(Q)) and a
function Θ̂ ∈ L∞(QT ) such that, for a subsequence, as ε→ 0,

Sε(x, t)→ Ŝ(x, t) in Lq(QT ) for all q ∈ [1,+∞); (4.39)

Pε(x, t) ⇀ P̂(x, t) weakly in L2(0, T ;H1(Q)); (4.40)

Θε → Θ̂ in L2(QT ). (4.41)

Moreover, Θ̂ = (1− Ŝ) %g(Pg) with Pg = P̂ +Gg(Ŝ).

Remark 2. The statement of the latter theorem holds for any typical realization ω̃. However, the choice of a
convergent subsequence as well as the limit functions Ŝ, P̂ and Θ̂ might depend on ω̃.

As an immediate consequence of (4.39) we have

β(Sε)→ β(Ŝ) in Lq(ΩT ) for all q ∈ [1,+∞). (4.42)

Proof of Theorem 4.3. By the Birkhoff ergodic theorem almost surely the functions Φε converges weakly in
L2(QT ) to a constant equal to EΦ =

∫
Ω Φ(ω) dP(ω). Then according to Lemma 4.2 and Remark 1 in [2],

Section 4 the families {Sε}ε>0 and {Θε}ε>0 are compact in L2(QT ). This implies the desired convergence in
(4.39) and (4.41). The convergence in (4.40) is an immediate consequence of the estimate (3.36).
The relation Θ̂ = (1− Ŝ) %g(Pg) has been justified in Lemma 4.8 in [2], Section 4.

4.2 Effective system and homogenization theorem

We begin this section by considering an auxiliary problem that reads:
given a vector η ∈ Rd find ξη ∈ L2

pot(Ω) such that

K(ξη + η) ∈ L2
sol(Ω).

This problem has a unique solution, see [31, Chapter 7.2]. If η is equal to the j-th coordinate vector ej in Rd,
we denote the corresponding solution by ξj .

Let ξ = ξ(ω) be a matrix valued function whose j-th column coincides with ξj , j = 1, . . . , d. We define the
effective characteristics

Khom =

∫
Ω
K(ω)

(
ξ(ω) + I

)
dP(ω), Φhom =

∫
Ω

Φ(ω) dP(ω); (4.43)

here the symbol I stands for the unit matrix.
The homogenized system takes the form
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0 6 Ŝ 6 1 in QT ;

Φhom ∂Ŝ

∂t
− divx

{
Khom λl(Ŝ)

[
∇Pl − ~g

]}
= 0 in QT ;

Φhom ∂Θ̂

∂t
− divx

{
Khom %g(Pg)λg(Ŝ)

[
∇Pg − %g(Pg)~g

]}
= 0 in QT ;

Pc(Ŝ) = Pg − Pl in QT ,

Θ̂ = (1− Ŝ) %g(Pg) in QT .

(4.44)

Boundary conditions. {
Pg(x, t) = Pl(x, t) = 0 on Γinj × (0, T ),

~̂ql · ~ν = ~̂qg · ~ν = 0 on Γimp × (0, T );
(4.45)

where the velocities ~̂ql, ~̂qg are defined by

~̂ql = −Khomλl(Ŝ)

(
∇Pl − ~g

)
and ~̂qg = −Khomλg(Ŝ)

(
∇Pg − %g(Pg)~g

)
. (4.46)

Initial conditions. The initial conditions are the same as for the original system in (2.7). Namely,

Pl(x, 0) = p0l (x) and Pg(x, 0) = p0g (x) in Q. (4.47)

Observe that the limit problem is deterministic. The functions Ŝ, Pl and Pg represent the homogenized
wetting phase saturation, the wetting phase pressure and the nonwetting phase pressure, respectively. Con-
cerning the numerical computation of the effective parameters Φhom and Khom, we refer for instance to [11]
where some example computations, for a two-phase flow through a quarter five spot reservoir, comparing the
heterogeneous simulations to the global homogenized one are presented.

Theorem 4.4. Assume that conditions (A.1)-(A.9) hold. Then, almost surely, a solution
(
Sε, pεl , p

ε
g

)
of problem

(2.2)-(2.9) converges for a subsequence, as ε → 0, to a solution
(
Ŝ, Pl, Pg

)
of the homogenized problem in

(4.44)-(4.47) in the following topology:

Sε → Ŝ in Lq(QT ) for any q ∈ [1,+∞);

pεl ⇀ Pl, and pεg ⇀ Pg weakly in L2(QT ).

The proof of this theorem is given in the next section.

4.3 Proof of the homogenization theorem

Proof of Theorem 4.4. The rigorous derivation of the limit problem relies on the above a priori estimates and
compactness results as well as on stochastic two-scale convergence technique developed in [39].

By the estimates in Theorem 3.3 and Theorem 4.2 we obtain that almost surely for a subsequence

λl(S
ε)∇pεl = λl(S

ε)∇Pε +∇β(Sε)
s2s
⇀λl(Ŝ)∇P̂ +∇β(Ŝ) + θl (4.48)

with θl = θl(x, t, ω), θl ∈ L2(QT ;L2
pot(Ω)), and

λg(S
ε)∇pεg = λl(S

ε)∇Pε +∇β(Sε)
s2s
⇀λg(Ŝ)∇P̂ +∇β(Ŝ) + θg (4.49)

with θg = θg(x, t, ω), θg ∈ L2(QT ;L2
pot(Ω)).
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Lemma 4.1. Under our standing assumptions, for a subsequence

Kε
(
λl(S

ε)∇Pε +∇β(Sε)
) s2s
⇀K

(
λl(Ŝ)∇P̂ +∇β(Ŝ) + θl

)
, (4.50)

Kε%g(P
ε + Gg(S

ε))
(
λg(S

ε)∇Pε +∇β(Sε)
) s2s
⇀K%g(P̂ + Gg(Ŝ))

(
λg(Ŝ)∇P̂ +∇β(Ŝ) + θg

)
. (4.51)

Proof. Since the function Kε is statistically homogeneous and bounded, the limit relation in (4.50) follows
from (4.48). Indeed, it is sufficient to choose for any δ > 0 a continuous bounded function Kδ ∈ C(Ω) such
that ‖Kδ −K‖L2(Ω) < δ. Then by the Birkhoff ergodic theorem for almost all ω̃ ∈ Ω and for all sufficiently
small ε > 0 we have ‖Kε

δ − Kε‖L2(QT ) ≤ Cδ. Relation (4.50) holds true if we replace Kε and K with
Kε
δ and Kδ, respectively. The validity of this relation for Kε and K can now be obtained by the standard

approximation arguments.
Justification of the convergence in (4.51) is more tricky. Denote {Ŝ = 1} the set {(x, t) ∈ ΩT : Ŝ(x, t) =

1}, and let 1{Ŝ=1} be the corresponding characteristic function. From (4.41) it is easy to deduce that
(
1 −

1{Ŝ=1}
)
%g(P

ε+Gg(S
ε)) converges to

(
1−1{Ŝ=1}

)
%g(P̂+Gg(Ŝ)) a.e., as ε→ 0. Considering the boundedness

of %g and the properties of Kε we conclude that(
1− 1{Ŝ=1}

)
Kε%g(P

ε+Gg(S
ε))
(
λg(S

ε)∇Pε +∇β(Sε)
) s2s
⇀

s2s
⇀
(
1− 1{Ŝ=1}

)
K%g(P̂ + Gg(Ŝ))

(
λg(Ŝ)∇P̂ +∇β(Ŝ) + θg

)
.

(4.52)

It remains to show that

1{Ŝ=1}K
ε%g(P

ε+Gg(S
ε))
(
λg(S

ε)∇Pε +∇β(Sε)
) s2s
⇀

s2s
⇀ 1{Ŝ=1}K%g(P̂ + Gg(Ŝ))

(
λg(Ŝ)∇P̂ +∇β(Ŝ) + θg

)
.

(4.53)

Since λg(1) = 0 and ∇P̂ε is bounded in L2(QT ),

1{Ŝ=1}λg(S
ε)∇P̂ε −→ 0 = 1{Ŝ=1}λg(Ŝ)∇P̂ strongly in L2(QT ).

By (3.36) and the first relation in (2.25) we obtain

1{Ŝ=1}∇β(Sε) −→ 0 = 1{Ŝ=1}∇β(Ŝ) strongly in L2(QT ).

Therefore, 1{Ŝ=1}θg = 0. Combining the last three relations yields (4.53) and completes the proof of Lemma.

Next we choose in the integral identity (3.32) a test function of the form ϕg(x, t) = εϕ(x, t)ψ(Tx
ε
ω) with

ϕ ∈ C∞(Rd × [0, T ]) that has a compact support in Rd × [0, T ), and ψ ∈ D(Ω). Then the first two integrals
on the left-hand side of (3.32) tend to zero as ε→ 0. Passing to the two-scale limit in the last two integrals and
considering (4.51) we obtain∫

QT

∫
Ω

ϕK(ω)%g(P̂ + Gg(Ŝ))
(
λg(Ŝ)∇P̂ +∇β(Ŝ) + θg

)
· ∇ωψ(ω) dxdtdP(ω)

−
∫
QT

∫
Ω

ϕK(ω)λg(Ŝ)
[
%g(P̂ + Gg(Ŝ))

]2
~g · ∇ωψ(ω) dxdtP(ω) = 0

(4.54)
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Since ϕ is an arbitrary smooth function with a compact support, then for almost all (x, t) ∈ Rd × [0, T ] we
have ∫

Ω

K(ω)
[
λg(Ŝ)∇P̂ +∇β(Ŝ)− λg(Ŝ)%g(P̂ + Gg(Ŝ))~g + θg

]
·Ψ(ω) P(ω) = 0

for each Ψ ∈ L2
pot(Ω). Taking into account the definition of ξ(·) we arrive at the following formula

θg = ξ(ω)
[
λg(Ŝ)∇P̂ +∇β(Ŝ)− λg(Ŝ)%g(P̂ + Gg(Ŝ))

]
. (4.55)

It remains to choose a smooth test function ϕ of the form ϕ = ϕ(x, t) with a compact support in Rd × [0, T ).
Substituting the expression on the right-hand side of (4.55) for θg in (4.51), taking into account the definition
of Khom in (4.43), and recalling the relations between the global pressure and the phase pressures, we pass to
the two-scale limit in (3.32) as ε → 0. This yields the weak formulation of the second equation in (4.44). The
first equation can be derived in a similar way with a number of simplifications. The proof of the fact that the
boundary and the initial conditions in (4.45)–(4.47) are fulfilled is straightforward. This completes the proof of
Theorem 4.4.
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