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Abstract

This paper investigates the sensitivity analysis of a scalar mechanical contact problem
described by a boundary value problem involving the Tresca’s friction law. The sensitivity
analysis is performed with respect to right-hand source and boundary terms perturbations.
In particular the friction threshold involved in the Tresca’s friction law is perturbed, which
constitutes the main novelty of the present work with respect to the existing literature. Hence
we introduce a parameterized Tresca friction problem and its solution is characterized by
using the proximal operator associated with the corresponding perturbed nonsmooth convex
Tresca friction functional. Then, by invoking the extended notion of twice epi-differentiability
depending on a parameter, we prove the differentiability of the solution to the parameterized
Tresca friction problem, characterizing its derivative as the solution to a boundary value
problem involving Signorini unilateral conditions. Finally numerical simulations are provided
in order to illustrate our main result.

Keywords: mechanical contact problems, Tresca’s friction law, Signorini unilateral conditions,
variational inequalities, convex subdifferential, proximal operator, sensitivity analysis, twice epi-
differentiability.

AMS Classification: 49Q12, 46N10, 74M15.

1 Introduction

Mechanical context and motivations. On the one hand, mathematical models for mechanical
contact problems between deformable bodies are investigated in the literature in view of various
engineering applications, such as the analysis of the wheel-ground contact for a vehicle, the study of
the contact of a rocket structure with the atmosphere, etc. Contact mechanics describes the defor-
mation of solids that touch each other on parts of their boundaries. Mostly, the mechanical setting
consists in a deformable body which is in contact with a rigid foundation without penetrating it
and possibly sliding against it which causes friction. From the mathematical point of view, these
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phenomena translate into different constraints: the non-permeability conditions take the form of
inequalities on the contact surface called Signorini unilateral conditions (see, e.g., [27, 28]); the
friction occurring on the contact surface is typically modeled by the so-called Tresca’s friction law
(see, e.g., [19]) which appears as a boundary condition involving nonsmooth inequalities depending
on a friction threshold. Finally those mechanical contact problems are usually investigated through
the theory of variational inequalities, and Signorini unilateral conditions and the Tresca’s friction
law cause nonlinearities and/or nonsmoothness in the corresponding variational formulations.

On the other hand, shape optimization is the mathematical field aimed at finding the optimal
shape of a given object for a given criterion, that is the shape which minimizes a certain cost
functional while satisfying given constraints. In order to numerically solve a shape optimization
problem, the standard gradient descent method requires to compute the shape gradient of the
cost functional which usually depends on the solution to a partial differential equation with given
boundary conditions. Therefore a first crucial point in numerical shape optimization is to perform
the sensitivity analysis of the boundary value problem with respect to perturbations.

Naturally, mechanical contact problems are ubiquitous in shape optimization and increasingly
popular in industry in order to identify the optimal design of a product, like for instance the
optimal shape of a structure with the maximum stiffness or the minimum weight. The present
work was initially motivated by shape optimization problems involving mechanical contact and
friction phenomena. For this purpose, the objective of the present paper is to investigate the
sensitivity analysis of a boundary value problem involving the Tresca’s friction law with respect to
right-hand source and boundary terms perturbations. Especially, the friction threshold associated
with the Tresca’s friction law is perturbed which is the crucial point and the main novelty of the
present paper with respect to the existing literature. In this work we focus on the scalar version
of the Tresca’s friction law, constituting a first step towards the non-trivial adaptation to the
elasticity case which will be the topic of future investigations.

Objectives and methodology. The sensitivity analysis of some mechanical contact problems
has already been investigated in the literature. For example, the sensitivity analysis of some friction
problems are studied using the notion of conical differentiability in [29], or with a regularization
procedure in [16]. The present paper follows from the previous work [2] in which a novel approach,
based on the notion of twice epi-differentiability introduced by R.T. Rockafellar in 1985 (see [25]),
has been developed. Precisely we focus on the parameterized Tresca friction problem given by

−∆ut = ft in Ω,

ut = 0 on ΓD,

∂nut = kt on ΓN,

|∂nut| ≤ gt and ut∂nut + gt|ut| = 0 on ΓT,

(TPt)

for all t ≥ 0, where Ω ⊂ Rd is a nonempty bounded connected open subset of Rd, d ≥ 1, with
a Lipschitz continuous boundary Γ := ∂Ω. We assume that the boundary is decomposed as
follows Γ =: ΓD ∪ ΓN ∪ ΓT, where ΓD, ΓN, ΓT are three measurable pairwise disjoint subsets of Γ

such that ΓD and ΓT have a positive measure and almost every point of ΓT is an interior point
(see Remark 3.14 for details). Moreover we assume that ft ∈ L2(Ω), kt ∈ L2(ΓN), and gt ∈ L2(ΓT)

with gt > 0 almost everywhere (a.e.) on ΓT, for all t ≥ 0. The boundary condition that appears on
ΓT corresponds to the scalar version of the Tresca’s friction law (see, e.g., [14, Section 5 Chapter 2]
or [15, Section 1.3 Chapter 1]). The main difference with the previous paper [2] is that the friction
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threshold in the Tresca’s friction law, denoted by gt, depends on the parameter t ≥ 0 (while gt = g

does not in [2]). Although this change may seem innocent, we emphasize that this work is not a
simple replica of the previous paper [2]. Indeed this novelty implies several non-trivial technical
adjustments. In particular it requires an extended version of the notion of twice epi-differentiability,
as explained below.

The main purpose of this work is to characterize the derivative of the map t ∈ R+ 7→ ut ∈ H1
D(Ω)

at t = 0, where
H1

D(Ω) :=
{
ϕ ∈ H1(Ω), ϕ = 0 almost everywhere on ΓD

}
.

For t ≥ 0 fixed, the main difficulty in the analysis of the parameterized Tresca friction prob-
lem (TPt) comes from the absolute value map |·| on the boundary ΓT which generates nonsmooth
terms in the corresponding variational formulation, that is to find ut ∈ H1

D(Ω) such that∫
Ω

∇ut · ∇(v − ut) +

∫
ΓT

gt|v| −
∫

ΓT

gt|ut| ≥
∫

Ω

ft(v − ut) +

∫
ΓN

kt(v − ut), ∀v ∈ H1
D(Ω).

Defining the parameterized Tresca friction functional by

Φ : R+ ×H1
D(Ω) −→ R

(t, w) 7−→ Φ(t, w) :=

∫
ΓT

gt|w|,

and using the proximal operator (see Definition 2.3) introduced by J.-J. Moreau in 1965 (see [23]),
the solution to the parameterized Tresca friction problem (TPt) is characterized by

ut = proxΦ(t,·)(Ft),

where Ft ∈ H1
D(Ω) is the unique solution to the classical parameterized Dirichlet-Neumann problem

given by ∫
Ω

∇Ft · ∇ϕ =

∫
Ω

ftϕ+

∫
ΓN

ktϕ, ∀ϕ ∈ H1
D(Ω),

for all t ≥ 0. For all t ≥ 0, note that Φ(t, ·) is a lower semi-continuous convex proper function
on H1

D(Ω) and thus proxΦ(t,·) is well-defined. Then, taking into account of the above characteri-
zation of ut, the differentiability of the map t ∈ R+ 7→ ut ∈ H1

D(Ω) at t = 0 is strongly related
to the differentiability (in a generalized sense) of the proximal operator proxΦ(t,·). In the previous
paper [2], since the friction threshold gt = g is not perturbed, then Φ(t, ·) = Φ and ut = proxΦ(Ft),
and thus the standard notion of twice epi-differentiability of Φ is used in order to derive the dif-
ferentiability of the map t ∈ R+ 7→ ut ∈ H1

D(Ω) at t = 0. In the present work, since the friction
threshold gt is perturbed, and thus ut = proxΦ(t,·)(Ft), we are driven to use an extended version
of the twice epi-differentiability of Φ(t, ·) (depending on a parameter) introduced in the recent
paper [1] (see also Definition 2.9).

Main result. With the previous methodology and under some appropriate assumptions de-
scribed in Theorem 3.21, we prove that the map t ∈ R+ 7→ ut ∈ H1

D(Ω) is differentiable at t = 0,
and its derivative u′0 ∈ H1

D(Ω) is given by

u′0 = proxD2
eΦ(u0|F0−u0)(F

′
0),

where D2
eΦ(u0|F0 − u0) stands for the second-order epi-derivative (see Definition 2.9) of the pa-

rameterized Tresca friction functional Φ at u0 for F0−u0, and where F ′0 ∈ H1
D(Ω) is the derivative
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at t = 0 of the map t ∈ R+ 7→ Ft ∈ H1
D(Ω). Moreover we prove that u′0 ∈ H1

D(Ω) exactly
corresponds to the unique weak solution to the Signorini problem

−∆u′0 = f ′0 in Ω,

u′0 = 0 on ΓD ∪ Γu0,g0

TSD
,

∂nu
′
0 = k′0 on ΓN,

∂nu
′
0 = g′0

∂nu0

g0
on Γu0,g0

TSN
,

u′0 ≤ 0, ∂nu
′
0 ≤ g′0 ∂nu0

g0
and u′0

(
∂nu

′
0 − g′0 ∂nu0

g0

)
= 0 on Γu0,g0

TS−
,

u′0 ≥ 0, ∂nu
′
0 ≥ g′0 ∂nu0

g0
and u′0

(
∂nu

′
0 − g′0 ∂nu0

g0

)
= 0 on Γu0,g0

TS+
.

(SP′0)

The subdivision ΓT = Γu0,g0

TSN
∪ Γu0,g0

TSD
∪ Γu0,g0

TS−
∪ Γu0,g0

TS+
is described in details in Theorem 3.21.

Here f ′0 ∈ L2(Ω) (resp. k′0 ∈ L2(ΓN)) is the derivative at t = 0 of the map t ∈ R+ 7→ ft ∈ L2(Ω)

(resp. t ∈ R+ 7→ kt ∈ L2(ΓN)) and g′0 ∈ L2(ΓT) is the map defined for almost every s ∈ ΓT

by g′0(s) := limt→0+
gt(s)−g0(s)

t .
We emphasize that Signorini’s unilateral conditions are obtained on the boundaries Γu0,g0

TS−

and Γu0,g0

TS+
(see, e.g., [20, Section 1] for a similar scalar version of Signorini’s unilateral conditions),

although the sensitivity analysis focused on the Tresca’s friction law perturbation. Hence, our work
reveals an unexpected link between these two classical boundary conditions in contact mechanics.
Roughly speaking, our main result claims that Signorini’s solution can be considered as first-order
approximation of perturbed Tresca’s solutions. Precisely, for small values of t > 0, the Tresca’s
solution ut can be approximated by u0 + tu′0 in H1-norm. Some numerical simulations are provided
at the end of the paper in order to illustrate this result.

Organization of the paper. The paper is organized as follows. Section 2 is dedicated to some
basic notions from convex analysis and functional analysis used throughout the paper. Section 3 is
the core of the present work. In Section 3.1 we introduce three boundary value problems involved in
the sensitivity analysis of the Tresca friction problem performed in Section 3.2 which is concluded
with our main result (see Theorem 3.21). In Section 4, numerical simulations are provided in order
to illustrate our main result. Finally, in Appendix A, some sufficient conditions that guarantee
the twice epi-differentiability of the parameterized Tresca friction functional, which is a crucial
assumption in our main theorem, are provided.

2 Notions from Convex Analysis and Functional Framework

In this section we start with some notions from convex analysis in Section 2.1 and we conclude
with some basics of functional analysis in Section 2.2.

2.1 Notions from Convex Analysis

For notions and results presented in this section, we refer to standard references such as [7, 22,
24] and [26, Chapter 12]. In what follows (V, 〈·, ·〉V) stands for a general real Hilbert space.

Definition 2.1 (Domain and epigraph). Let φ : V→ R ∪ {±∞}. The domain and the epigraph
of φ are respectively defined by

dom (φ) := {x ∈ V | φ(x) < +∞} and epi (φ) := {(x, t) ∈ V × R | φ(x) ≤ t} .
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Recall that φ : V→ R∪{±∞} is said to be proper if dom(φ) 6= ∅ and φ(x) > −∞ for all x ∈ V.
Moreover, φ is a convex (resp. lower semi-continuous) function on V if and only if epi(φ) is a convex
(resp. closed) subset of V × R.

Definition 2.2 (Convex subdifferential operator). Let φ : V → R ∪ {+∞} be a proper function.
We denote by ∂φ : V ⇒ V the convex subdifferential operator of φ, defined by

∂φ(x) := {y ∈ V | ∀z ∈ V, 〈y, z − x〉V ≤ φ(z)− φ(x)} ,

for all x ∈ V.

Definition 2.3 (Proximal operator). Let φ : V → R ∪ {+∞} be a proper lower semi-continuous
convex function. The proximal operator associated with φ is the map proxφ : V→ V defined by

proxφ(x) := argmin
y∈V

[
φ(y) +

1

2
‖y − x‖2V

]
= (I + ∂φ)−1(x),

for all x ∈ V, where I : V→ V stands for the identity operator.

The proximal operator have been introduced by J.-J. Moreau in 1965 (see [23]) and can be
seen as a generalization of the classical projection operators onto nonempty closed convex subsets.
It is well-known that, if φ : V → R ∪ {+∞} is a proper lower semi-continuous convex function,
then ∂φ is a maximal monotone operator (see, e.g., [24]), and thus the proximal operator proxφ is
well-defined and a single-valued map (see, e.g., [7, Chapter II]).

In what follows, some definitions related to the notion of twice epi-differentiability are recalled
(for more details, see [26, Chapter 7, section B p.240] for the finite-dimensional case and [12] for the
infinite-dimensional one). The strong (resp. weak) convergence of a sequence in H will be denoted
by → (resp. ⇀) and note that all limits with respect to t will be considered for t→ 0+.

Definition 2.4 (Mosco-convergence). The outer, weak-outer, inner and weak-inner limits of a
parameterized family (At)t>0 of subsets of V are respectively defined by

lim supAt :=
{
x ∈ V | ∃(tn)n∈N → 0+,∃ (xn)n∈N → x, ∀n ∈ N, xn ∈ Atn

}
,

w-lim supAt :=
{
x ∈ V | ∃(tn)n∈N → 0+,∃ (xn)n∈N ⇀ x,∀n ∈ N, xn ∈ Atn

}
,

lim inf At :=
{
x ∈ V | ∀(tn)n∈N → 0+,∃ (xn)n∈N → x, ∃N ∈ N,∀n ≥ N, xn ∈ Atn

}
,

w-lim inf At :=
{
x ∈ V | ∀(tn)n∈N → 0+,∃ (xn)n∈N ⇀ x,∃N ∈ N,∀n ≥ N, xn ∈ Atn

}
.

The family (At)t>0 is said to be Mosco-convergent if w-lim supAt ⊂ lim inf At. In that case, all
the previous limits are equal and we write

M-limAt := lim inf At = lim supAt = w-lim inf At = w-lim supAt.

Definition 2.5 (Mosco epi-convergence). Let (φt)t>0 be a parameterized family of functions φt :

V→ R∪{±∞} for all t > 0. We say that (φt)t>0 is Mosco epi-convergent if (epi(φt))t>0 is Mosco-
convergent in V × R. Then we denote by ME-lim φt : V → R ∪ {±∞} the function characterized
by its epigraph epi (ME-lim φt) := M-lim epi (φt) and we say that (φt)t>0 Mosco epi-converges
to ME-lim φt.

The proof of the next proposition can be found in [5, Proposition 3.19 p.297].
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Proposition 2.6 (Characterization of Mosco epi-convergence). Let (φt)t>0 be a parameterized
family of functions φt : V → R ∪ {±∞} for all t > 0 and let φ : V → R ∪ {±∞}. Then (φt)t>0

Mosco epi-converges to φ if and only if, for all x ∈ V, the two conditions

1. there exists (xt)t>0 → x such that lim supφt(xt) ≤ φ(x);

2. for all (xt)t>0 ⇀ x, lim inf φt(xt) ≥ φ(x);

are satisfied.

Now let us recall the notion of twice epi-differentiability introduced by R.T. Rockafellar in 1985
(see [25]) that generalizes the classical notion of second-order derivative to nonsmooth convex
functions.

Definition 2.7 (Twice epi-differentiability). A proper lower semi-continuous convex function φ :

V → R ∪ {+∞} is said to be twice epi-differentiable at x ∈ dom(φ) for y ∈ ∂φ(x) if the family of
second-order difference quotient functions (δ2

t φ(x|y))t>0 defined by

δ2
t φ(x|y) : V −→ R ∪ {+∞}

z 7−→
φ(x+ tz)− φ(x)− t 〈y, z〉V

t2
,

for all t > 0, is Mosco epi-convergent. In that case we denote by

d2
eφ(x|y) := ME-lim δ2

t φ(x|y),

which is called the second-order epi-derivative of φ at x for y.

Example 2.8. The classical absolute value map |·| : R → R, which is a proper lower semi-
continuous convex function on R, is twice epi-differentiable at any x ∈ R for any y ∈ ∂|·|(x), and
its second-order epi-derivative is given by D2

e|·|(x|y) = IKx,y , where Kx,y is the nonempty closed
convex subset of R defined by

Kx,y :=


R if x 6= 0,

R+ if x = 0 and y = 1,

R− if x = 0 and y = −1,

{0} if x = 0 and y ∈ (−1, 1),

and where IKx,y stands for the indicator function of Kx,y, defined by IKx,y (z) := 0 if z ∈ Kx,y,
and IKx,y (z) := +∞ otherwise (see [2, Example 2.6. p.7]).

In the above classical definition of twice epi-differentiability, the function φ does not depend
on the parameter t. However, in this paper, the parameterized Tresca friction functional does (see
Introduction). Therefore, in this paper, we will use an extended version of twice epi-differentiability
which has been recently introduced in [1]. To this aim, when considering a function Φ : R+×V→
R ∪ {+∞} such that, for all t ≥ 0, Φ(t, ·) is a proper function on V, we will make use of the
two following notations: ∂Φ(0, ·)(x) stands for the convex subdifferential operator at x ∈ V of the
map w ∈ V 7→ Φ(0, w) ∈ R ∪ {+∞}, and Φ−1(·,R) := {x ∈ V | ∀t ≥ 0, Φ(t, x) ∈ R}.

Definition 2.9 (Twice epi-differentiability depending on a parameter). Let Φ : R+ × V → R ∪
{+∞} be a function such that, for all t ≥ 0, Φ(t, ·) is a proper lower semi-continuous convex
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function on V. The function Φ is said to be twice epi-differentiable at x ∈ Φ−1(·,R) for y ∈
∂Φ(0, ·)(x) if the family of second-order difference quotient functions (∆2

tΦ(x|y))t>0 defined by

∆2
tΦ(x|y) : V −→ R ∪ {+∞}

z 7−→
Φ(t, x+ tz)− Φ(t, x)− t 〈y, z〉V

t2
,

for all t > 0, is Mosco epi-convergent. In that case, we denote by

D2
eΦ(x|y) := ME-lim ∆2

tΦ(x|y),

which is called the second-order epi-derivative of Φ at x for y.

Note that, if the function Φ is t-independent in Definition 2.9, then we recover Definition 2.7.
Finally the following theorem is the key point in order to derive our main result in this paper. It
is a particular case of a more general theorem that can be found in [1, Theorem 4.15 p.1714].

Theorem 2.10. Let Φ : R+ × V → R ∪ {+∞} be a function such that, for all t ≥ 0, Φ(t, ·) is
a proper lower semi-continuous convex function on V. Let F : R+ → V and let u : R+ → V be
defined by

u(t) := proxΦ(t,·)(F (t)),

for all t ≥ 0. If the conditions

1. F is differentiable at t = 0;

2. Φ is twice epi-differentiable at u(0) for F (0)− u(0) ∈ ∂Φ(0, ·)(u(0));

3. D2
eΦ(u(0)|F (0)− u(0)) is a proper lower semi-continuous convex function on V;

are satisfied, then u is differentiable at t = 0 with

u′(0) = proxD2
eΦ(u(0)|F (0)−u(0))(F

′(0)).

2.2 Functional Framework

Let d ≥ 1 and Ω be a nonempty bounded connected open subset of Rd with a Lipschitz
continuous boundary Γ := ∂Ω. We denote by L2(Ω), L2(Γ), L1(Γ), H1(Ω), H1/2(Γ), H−1/2(Γ)

the usual Lebesgue and Sobolev spaces endowed with their standard norms. Moreover the no-
tation D(Ω) stands for the set of functions ϕ : Ω → R that are infinitely differentiable with
compact support in Ω, and D′(Ω) for the set of distributions on Ω. In what follows we consider
a decomposition Γ =: Γ1 ∪ Γ2 where Γ1 and Γ2 are two measurable disjoint subsets of Γ. Let us
recall some classical embeddings useful in this paper, that can be found for instance in [8] and [11,
Chapter 7, Section 2 p.395].

Proposition 2.11. The continuous and dense embeddings H1(Ω)↪→H1/2(Γ)↪→L2(Γ)↪→H−1/2(Γ),
L2(Γ)↪→L1(Γ), H1(Ω)↪→L2(Ω), and H

1/2
00 (Γ1)↪→L2(Γ1)↪→H

−1/2
00 (Γ1) are satisfied, where H

1/2
00 (Γ1)

is the vector subspace of H1/2(Γ) defined by

H
1/2
00 (Γ1) :=

{
v ∈ L2(Γ1) | ∃w ∈ H1(Ω), w = v on Γ1 and w = 0 on Γ2

}
,

and H
−1/2
00 (Γ1) stands for its dual space. Furthermore the dense and compact embedding H1(Ω) ↪→→ L2(Γ)

holds true.
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The next proposition is a particular case of a more general statement that can be found in [30,
Section 2.9 p.56].

Proposition 2.12. Let w ∈ H
−1/2
00 (Γ1). If there exists C ≥ 0 such that

〈w, v〉
H
−1/2
00 (Γ1)×H

1/2
00 (Γ1)

≤ C ‖v‖L2(Γ1) ,

for all v ∈ H
1/2
00 (Γ1), then w can be identified to an element h ∈ L2(Γ1) with

〈w, v〉
H
−1/2
00 (Γ1)×H

1/2
00 (Γ1)

= 〈h, v〉L2(Γ1) ,

for all v ∈ H
1/2
00 (Γ1).

The next proposition, known as Green formula, can be found in [13, Corollary 2.6 p.28].

Proposition 2.13 (Green formula). Let w ∈ H1(Ω). If ∆w ∈ L2(Ω), then ∇w admits a normal
trace ∂nw ∈ H−1/2(Γ) such that∫

Ω

ϕ∆w +

∫
Ω

∇w · ∇ϕ = 〈∂nw,ϕ〉H−1/2(Γ)×H1/2(Γ) ,

for all ϕ ∈ H1(Ω).

3 Main Result

In this section we establish the main result of the paper (Theorem 3.21). To this aim, we
introduce in Section 3.1 three problems with different boundary conditions: Dirichlet and Neumann
conditions (see Problem (DN)), Signorini unilateral conditions (see Problem (SP)) and a condition
with the Tresca’s friction law (see Problem (TP)). For each problem, strong and weak solutions are
defined, then the equivalence between both solutions is investigated and the existence/uniqueness
of the weak solution is proved. All these preliminary results are used in the next Section 3.2 in
order to perform the sensitivity analysis of the Tresca friction problem.

In what follows, let d ≥ 1 and Ω be a nonempty bounded connected open subset of Rd with a
Lipschitz continuous boundary Γ := ∂Ω. We consider the decomposition

Γ =: ΓD ∪ ΓN ∪ ΓT,

where ΓD, ΓN, ΓT are three measurable pairwise disjoint subsets of Γ, such that ΓD and ΓT have
a positive measure. Let us denote by BΓ(s, ε) the open ball of Γ centered at some s ∈ Γ with some
radius ε > 0, and, for some subset A of Γ, by intΓ(A) the interior of A in Γ. Moreover, for any
function v ∈ H1(Ω) such that ∆v ∈ L2(Ω), we denote by ∂nv the function in H−1/2(Γ) given by
the Green Formula (see Proposition 2.13).

In this paper we work with the closed vector subspace H1
D(Ω) of H1(Ω) defined by

H1
D(Ω) :=

{
ϕ ∈ H1(Ω) | ϕ = 0 almost everywhere on ΓD

}
.

Since ΓD has a positive measure and thanks to Poincaré’s inequality, note that (H1
D(Ω), 〈·, ·〉H1

D(Ω))

is a real Hilbert space endowed with the scalar product

〈·, ·〉H1
D(Ω) : H1

D(Ω)×H1
D(Ω) −→ R

(u, v) 7−→
∫

Ω

∇u · ∇v.
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The corresponding norm, which is equivalent to the norm ‖·‖H1(Ω) on H1
D(Ω), will be denoted

by ‖·‖H1
D(Ω).

3.1 Some Required Boundary Value Problems

For the needs of this preliminary section, let us fix some functions f ∈ L2(Ω), k ∈ L2(ΓN),
h ∈ L2(ΓT) and g ∈ L2(ΓT) such that g > 0 almost everywhere on ΓT. Here the proofs are
very close to the ones presented in the recent paper [2], and thus they are left to the reader.
The main differences being the use of the Hilbert space H1

D(Ω) instead of H1(Ω), and the vector
subspace H

1/2
00 (ΓN ∪ ΓT) of H1/2(Γ) instead of H1/2(Γ).

3.1.1 A Problem with Dirichlet-Neumann Conditions

Let us consider the Dirichlet-Neumann problem given by
−∆F = f in Ω,

F = 0 on ΓD,

∂nF = k on ΓN,

∂nF = h on ΓT.

(DN)

Considering two different Neumann conditions in Problem (DN) may seem artificial to the reader.
Nevertheless this framework naturally appears in our main result (see Problem (SP′0) in Theo-
rem 3.21). This is the reason why we consider it in this preliminary section.

Definition 3.1 (Strong solution to the Dirichlet-Neumann problem). A strong solution to the
Dirichlet-Neumann problem (DN) is a function F ∈ H1(Ω) such that −∆F = f in D′(Ω), F = 0

almost everywhere on ΓD, ∂nF ∈ L2(ΓN∪ΓT) with ∂nF = k almost everywhere on ΓN and ∂nF = h

almost everywhere on ΓT.

Definition 3.2 (Weak solution to the Dirichlet-Neumann problem). A weak solution to the
Dirichlet-Neumann problem (DN) is a function F ∈ H1

D(Ω) such that∫
Ω

∇F · ∇v =

∫
Ω

fv +

∫
ΓN

kv +

∫
ΓT

hv, ∀v ∈ H1
D(Ω). (3.1)

Proposition 3.3. A function F ∈ H1(Ω) is a strong solution to the Dirichlet-Neumann prob-
lem (DN) if and only if F is a weak solution to the Dirichlet-Neumann problem (DN).

Using the Riesz representation theorem, we obtain the following existence/uniqueness result.

Proposition 3.4. The Dirichlet-Neumann problem (DN) admits a unique solution F ∈ H1
D(Ω).

Moreover there exists a constant C ≥ 0 (depending only on Ω) such that

‖F‖H1
D(Ω) ≤ C

(
‖f‖L2(Ω) + ‖k‖L2(ΓN) + ‖h‖L2(ΓT)

)
.

3.1.2 A Signorini Problem

Here we assume that ΓT can be decomposed as

ΓT =: ΓTSN
∪ ΓTSD

∪ ΓTS− ∪ ΓTS+
,
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where ΓTSN
, ΓTSD

, ΓTS− and ΓTS+
are four measurable pairwise disjoint subsets of Γ, and we

consider the Signorini problem given by

−∆u = f in Ω,

u = 0 on ΓD ∪ ΓTSD
,

∂nu = k on ΓN,

∂nu = h on ΓTSN
,

u ≤ 0, ∂nu ≤ h and u (∂nu− h) = 0 on ΓTS− ,

u ≥ 0, ∂nu ≥ h and u (∂nu− h) = 0 on ΓTS+
.

(SP)

Definition 3.5 (Strong solution to the Signorini problem). A strong solution to the Signorini
problem (SP) is a function u ∈ H1(Ω) such that −∆u = f in D′(Ω), u = 0 on ΓD ∪ ΓTSD

, and
also ∂nu ∈ L2(ΓN ∪ ΓT) with ∂nu = k almost everywhere on ΓN, ∂nu = h almost everywhere
on ΓTSN

, u ≤ 0, ∂nu ≤ h and u(∂nu − h) = 0 almost everywhere on ΓTS− , u ≥ 0, ∂nu ≥ h

and u(∂nu− h) = 0 almost everywhere on ΓTS+
.

Definition 3.6 (Weak solution to the Signorini problem). A weak solution to the Signorini prob-
lem (SP) is a function u ∈ K1(Ω) such that∫

Ω

∇u · ∇(v − u) ≥
∫

Ω

f(v − u) +

∫
ΓN

k(v − u) +

∫
ΓT

h(v − u), ∀v ∈ K1(Ω), (3.2)

where K1(Ω) is the nonempty closed convex subset of H1
D(Ω) given by

K1(Ω) :=
{
v ∈ H1

D(Ω) | v ≤ 0 on ΓTS− , v = 0 on ΓTSD
and v ≥ 0 on ΓTS+

}
.

One can easily prove that a strong solution is a weak solution but, to the best of our knowledge,
without additional assumptions, one cannot prove the converse. To get the equivalence, we need
to assume, in particular, that the decomposition of Γ is consistent in the following sense.

Definition 3.7 (Consistent decomposition). The decomposition Γ = ΓD ∪ ΓN ∪ ΓTSN
∪ ΓTSD

∪
ΓTS− ∪ ΓTS+

is said to be consistent if

1. for almost all s ∈ ΓTS− ∪ ΓTS+
, s ∈ intΓ(ΓTS−) or s ∈ intΓ(ΓTS+

);

2. the set K1/2(Γ) given by

K1/2(Γ) :=
{
v ∈ H1/2(Γ) | v ≤ 0 on ΓTS− , v = 0 on ΓD ∪ ΓTSD

and v ≥ 0 on ΓTS+

}
,

(which is a nonempty closed convex subset of H1/2(Γ)) is dense in the nonempty closed convex
subset K0(Γ) of L2(Γ) given by

K0(Γ) :=
{
v ∈ L2(Γ) | v ≤ 0 on ΓTS− , v = 0 on ΓD ∪ ΓTSD

and v ≥ 0 on ΓTS+

}
.

Proposition 3.8. Let u ∈ H1(Ω).

1. If u is a strong solution to the Signorini problem (SP), then u is a weak solution to the
Signorini problem (SP).
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2. If u is a weak solution to the Signorini problem (SP) such that ∂nu ∈ L2(ΓN ∪ ΓT) and the
decomposition Γ = ΓD ∪ ΓN ∪ ΓTSN

∪ ΓTSD
∪ ΓTS− ∪ ΓTS+ is consistent, then u is a strong

solution to the Signorini problem (SP).

Using the classical characterization of the projection operator, we obtain the following exis-
tence/uniqueness result.

Proposition 3.9. The Signorini problem (SP) admits a unique weak solution u ∈ H1
D(Ω) which

is given by
u = projK1(Ω)(F ),

where F ∈ H1
D(Ω) is the solution to the Dirichlet-Neumann problem (DN), and projK1(Ω) is the

classical projection operator onto the nonempty closed convex subset K1(Ω) of H1
D(Ω) for the scalar

product 〈·, ·〉H1
D(Ω).

3.1.3 A Tresca Friction Problem

Finally let us consider the Tresca friction problem given by
−∆u = f in Ω,

u = 0 on ΓD,

∂nu = k on ΓN,

|∂nu| ≤ g and u∂nu+ g|u| = 0 on ΓT.

(TP)

We assume that almost every point of ΓT are in intΓ(ΓT) (see Remark 3.14 for details). The
difficulty of the above Tresca friction problem lies on the nonsmooth map |·| on the boundary ΓT

which generates nonsmooth terms in the weak formulation (3.3) below. Therefore, to get the
existence/uniqueness of the weak solution, we are led to use the notion of proximal operator from
convex analysis (see Definition 2.3).

Definition 3.10 (Strong solution to the Tresca friction problem). A strong solution to the Tresca
friction problem (TP) is a function u ∈ H1(Ω) such that −∆u = f in D′(Ω), u = 0 almost
everywhere on ΓD, ∂nu ∈ L2(ΓN ∪ ΓT) with ∂nu = k almost everywhere on ΓN, |∂nu(s)| ≤ g(s)

and u(s)∂nu(s) + g(s)|u(s)| = 0 for almost all s ∈ ΓT.

Definition 3.11 (Weak solution to the Tresca friction problem). A weak solution to the Tresca
friction problem (TP) is a function u ∈ H1

D(Ω) such that∫
Ω

∇u · ∇(v − u) +

∫
ΓT

g|v| −
∫

ΓT

g|u| ≥
∫

Ω

f(v − u) +

∫
ΓN

k(v − u), ∀v ∈ H1
D(Ω). (3.3)

Proposition 3.12. A function u ∈ H1(Ω) is a strong solution to the Tresca friction problem (TP)
if and only if u is a weak solution to the Tresca friction problem (TP).

From definition of the proximal operator (see Definition 2.3), one deduces the following exis-
tence/uniqueness result.

Proposition 3.13. The Tresca friction problem (TP) admits a unique solution u ∈ H1
D(Ω) given

by
u = proxφ(F ),
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where F ∈ H1
D(Ω) is the solution to the Dirichlet-Neumann problem (DN) with h = 0 almost

everywhere on ΓT, and where proxφ stands for the proximal operator associated with the Tresca
friction functional φ defined by

φ : H1
D(Ω) −→ R

v 7−→ φ(v) :=

∫
ΓT

g|v|.

(3.4)

Remark 3.14. The assumption that almost every point of ΓT are in intΓ(ΓT) is only used to prove
that a weak solution to the Tresca friction problem (TP) is also a strong solution, more precisely
to get the Tresca’s friction law on ΓT. Of course, some sets do not satisfy this assumption (for
instance the well-known Smith–Volterra–Cantor set (see, e.g, [4, Example 6.15 Section 6 Chapter
1])). Nevertheless it is trivially satisfied in most of standard cases found in practice. Furthermore,
if this assumption is not satisfied, one can also prove that the weak solution to the Tresca friction
problem (TP) is a strong solution by adding the assumption that g ∈ L∞(ΓT), and by using the
isometry between the dual of (L1(ΓT), ‖·‖(L1(ΓT))g ) and L∞(ΓT) (with its standard norm ‖·‖L∞(ΓT))
where ‖ · ‖L1(ΓT)g is the norm defined by

‖·‖L1(ΓT)g
: L1(ΓT) −→ R

v 7−→
∫

ΓT

g |v| .

The details are left to the reader.

3.2 Sensitivity Analysis of the Tresca Friction Problem

In this section we consider the parameterized Tresca friction problem given by
−∆ut = ft in Ω,

ut = 0 on ΓD,

∂nut = kt on ΓN,

|∂nut| ≤ gt and ut∂nut + gt|ut| = 0 on ΓT,

(TPt)

where ft ∈ L2(Ω), kt ∈ L2(ΓN) and gt ∈ L2(ΓT), for all t ≥ 0. We assume that, for all t ≥ 0, gt > 0

almost everywhere on ΓT, and almost every point of ΓT belongs to intΓ(ΓT).
Proposition 3.13 claims that the solution to the Tresca friction problem (TP) is related to the

solution to the Dirichlet-Neumann problem (DN) by the proximal operator. Therefore let us start
with the sensitivity analysis of the Dirichlet-Neumann problem (DN), which will be useful for the
sensitivity analysis of the Tresca friction problem (TP). The following proposition is easily proved
using the linearity of the Dirichlet-Neumann problem (DN) and Proposition 3.4.

Proposition 3.15. Let Ft ∈ H1
D(Ω) be the unique solution to the parameterized Dirichlet-Neumann

problem given by 
−∆Ft = ft in Ω,

Ft = 0 on ΓD,

∂nFt = kt on ΓN,

∂nFt = 0 on ΓT,

(DNt)

for all t ≥ 0. If the two conditions
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1. the map t ∈ R+ 7→ ft ∈ L2(Ω) is differentiable at t = 0, with its derivative denoted by f ′0 ∈
L2(Ω);

2. the map t ∈ R+ 7→ kt ∈ L2(ΓN) is differentiable at t = 0, with its derivative denoted
by k′0 ∈ L2(ΓN);

are satisfied, then the map t ∈ R+ 7→ Ft ∈ H1
D(Ω) is differentiable at t = 0, and its derivative,

denoted by F ′0 ∈ H1
D(Ω), is the unique solution to the Dirichlet-Neumann problem given by

−∆F ′0 = f ′0 in Ω,

F ′0 = 0 on ΓD,

∂nF
′
0 = k′0 on ΓN,

∂nF
′
0 = 0 on ΓT.

(DN′0)

3.2.1 Parameterized Tresca Friction Functional and Twice Epi-Differentiability

Let us come back to the parameterized Tresca friction problem (TPt). The Tresca friction
functional, defined in (3.4), depends now on the parameter t ≥ 0. Precisely we are led to define
the parameterized Tresca friction functional given by

Φ : R+ ×H1
D(Ω) −→ R

(t, w) 7−→ Φ(t, w) :=

∫
ΓT

gt|w|.

(3.5)

Note that, for all t ≥ 0, Φ(t, ·) is a proper lower semi-continuous convex function on H1
D(Ω) and,

from Proposition 3.13, the unique solution to the parameterized Tresca friction problem (TPt) is
given by

ut = proxΦ(t,·)(Ft), (3.6)

where Ft is the unique solution to the parameterized Dirichlet-Neumann problem (DNt).
As we can see in Equality (3.6), the proximal operator proxΦ(t,·) depends on the parameter t ≥ 0.

This leads us to use Theorem 2.10 (extracted from [1]) which characterizes the derivative of a
map given by a parameterized proximal operator, using the notion of twice epi-differentiability
depending on a parameter (see Definition 2.9). Let us underline that this is an important difference
with the previous paper [2], where the proximal operator was associated to a functional that did
not depend on the parameter t ≥ 0, therefore the classical notion of twice epi-differentiability
introduced by R.T. Rockafellar (see [25]) was sufficient.

Let us prepare the background for the twice epi-differentiability of the parameterized Tresca
friction functional defined in (3.5). More specifically let us start with the characterization of the
convex subdifferential of Φ(0, ·) (see Definition 2.2). To this aim, we introduce an auxiliary problem
defined, for all u ∈ H1

D(Ω), by 
−∆v = 0 in Ω,

v = 0 on ΓD,

∂nv = 0 on ΓN,

∂nv(s) ∈ g0(s)∂|·|(u(s)) on ΓT,

(APu)

where, for almost all s ∈ ΓT, ∂|·|(u(s)) stands for the convex subdifferential of the classical absolute
value map |·| : R → R at u(s) ∈ R. For a given u ∈ H1

D(Ω), a solution to this problem (APu)
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is a function v ∈ H1(Ω) such that −∆v = 0 in D′(Ω), v = 0 almost everywhere on ΓD, and also
with ∂nv ∈ L2(ΓN∪ΓT), ∂nv = 0 almost everywhere on ΓN, and ∂nv(s) ∈ g0(s)∂|·|(u(s)) for almost
all s ∈ ΓT.

Lemma 3.16. Let u ∈ H1
D(Ω). Then

∂Φ(0, ·)(u) = the set of solutions to Problem (APu).

Proof. Let u ∈ H1
D(Ω) and let us prove the two inclusions. Firstly, let v ∈ H1(Ω) be a solution

to Problem (APu). Then v ∈ H1
D(Ω), ∂nv ∈ L2(ΓN ∪ ΓT) and ∂nv(s) ∈ g0(s)∂|·|(u(s)) for almost

all s ∈ ΓT. Hence one has

∂nv(s)(ϕ(s)− u(s)) ≤ g0(s)(|ϕ(s)| − |u(s)|),

for all ϕ ∈ H1
D(Ω) and for almost all s ∈ ΓT. It follows that∫

ΓT

∂nv(ϕ− u) ≤
∫

ΓT

g0(|ϕ| − |u|),

for all ϕ ∈ H1
D(Ω). Moreover −∆v = 0 in D′(Ω), thus it holds −∆v = 0 in L2(Ω). Hence, from

Green formula (see Proposition 2.13), one gets∫
Ω

∇v · ∇(ϕ− u) = 〈∂nv, ϕ− u〉H−1/2(Γ)×H1/2(Γ) ,

for all ϕ ∈ H1
D(Ω). Furthermore, for all ϕ ∈ H1

D(Ω), ϕ ∈ H
1/2
00 (ΓN ∪ΓT) which is a vector subspace

of H1/2(Γ). Therefore one has

〈∂nv, ϕ− u〉H−1/2(Γ)×H1/2(Γ) = 〈∂nv, ϕ− u〉H−1/2
00 (ΓN∪ΓT)×H

1/2
00 (ΓN∪ΓT)

,

for all ϕ ∈ H
1/2
00 (ΓN ∪ ΓT). Since ∂nv ∈ L2(ΓN ∪ ΓT) and ∂nv = 0 almost everywhere on ΓN, this

leads to
〈∂nv, ϕ− u〉H−1/2

00 (ΓN∪ΓT)×H
1/2
00 (ΓN∪ΓT)

=

∫
ΓT

∂nv(ϕ− u),

for all ϕ ∈ H1
D(Ω). Therefore one deduces∫

Ω

∇v · ∇(ϕ− u) ≤
∫

ΓT

g0(|ϕ| − |u|),

for all ϕ ∈ H1
D(Ω), that is

〈v, ϕ− u〉H1
D(Ω) ≤ Φ(0, ϕ)− Φ(0, u),

for all ϕ ∈ H1
D(Ω). Thus v ∈ ∂Φ(0, ·)(u) and the first inclusion is proved. Conversely let v ∈

∂Φ(0, ·)(u). One has ∫
Ω

∇v · ∇(ϕ− u) ≤
∫

ΓT

g0(|ϕ| − |u|), (3.7)

for all ϕ ∈ H1
D(Ω). Considering the function ϕ = u ± ψ ∈ H1

D(Ω) with any function ψ ∈ D(Ω),
one deduces from Inequality (3.7) that −∆v = 0 in D′(Ω), thus −∆v = 0 in L2(Ω). Hence, from
Green formula and Inequality (3.7), it follows that

〈∂nv, ϕ− u〉H−1/2
00 (ΓN∪ΓT)×H

1/2
00 (ΓN∪ΓT)

≤
∫

ΓT

g0(|ϕ| − |u|),
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for all ϕ ∈ H1
D(Ω), and thus also for all ϕ ∈ H

1/2
00 (ΓN ∪ ΓT). Now let us consider the func-

tion ϕ = u+ w ∈ H
1/2
00 (ΓN ∪ ΓT) for any w ∈ H

1/2
00 (ΓN ∪ ΓT). One gets∣∣∣〈∂nv, w〉H−1/2

00 (ΓN∪ΓT)×H
1/2
00 (ΓN∪ΓT)

∣∣∣ ≤ ∫
ΓT

g0|w| ≤ ‖g0‖L2(ΓT) ‖w‖L2(ΓN∪ΓT) .

From Proposition 2.12, one deduces that ∂nv ∈ L2(ΓN ∪ ΓT) and also that∫
ΓN∪ΓT

w∂nv ≤
∫

ΓT

g0(|u+ w| − |u|), (3.8)

for all w ∈ H
1/2
00 (ΓN ∪ ΓT), and thus by density for all w ∈ L2(ΓN ∪ ΓT). By considering the

function w ∈ L2(ΓN ∪ ΓT) defined by

w :=

{
±ψ on ΓN,

0 on ΓT,

where ψ is any function in L2(ΓN), one gets in Inequality (3.8) that∫
ΓN

ψ∂nv = 0,

for all ψ ∈ L2(ΓN). Hence ∂nv = 0 almost everywhere on ΓN, and Inequality (3.8) becomes∫
ΓT

∂nv(ϕ− u) ≤
∫

ΓT

g0(|ϕ| − |u|), (3.9)

for all ϕ ∈ L2(ΓN ∪ ΓT). Now let s ∈ ΓT be a Lebesgue point of ∂nv ∈ L2(ΓN ∪ ΓT), u∂nv ∈
L1(ΓN ∪ ΓT), g0 ∈ L2(ΓT) and of g0|u| ∈ L1(ΓT), such that s ∈ intΓ(ΓT). Let us consider the
function ϕ ∈ L2(ΓN ∪ ΓT) defined by

ϕ :=

{
x on BΓ(s, ε),

u on ΓN ∪ ΓT\BΓ(s, ε),

with x ∈ R and ε > 0 such that BΓ(s, ε) ⊂ ΓT. Then one has from Inequality (3.9) that

1

|BΓ(s, ε)|

∫
BΓ(s,ε)

∂nv(x− u) ≤ 1

|BΓ(s, ε)|

∫
BΓ(s,ε)

g0|x| −
1

|BΓ(s, ε)|

∫
BΓ(s,ε)

g0|u|,

mpthus ∂nv(s)(x − u(s)) ≤ g0(s)(|x| − |u(s)|) by letting ε → 0+. This inequality is true for
any x ∈ R, therefore ∂nv(s) ∈ g0(s)∂|·|(u(s)). Moreover, since almost every point of ΓT are
in intΓ(ΓT) and are Lesbegue points of ∂nv ∈ L2(ΓN ∪ ΓT), u∂nv ∈ L1(ΓN ∪ ΓT), g0 ∈ L2(ΓT) and
of g0|u| ∈ L1(ΓT), one deduces

∂nv(s) ∈ g0(s)∂|·|(u(s)),

for almost all s ∈ ΓT, and this proves the second inclusion.

The twice epi-differentiability is defined using the second-order difference quotient functions.
Therefore let us compute the following second-order difference quotient functions of Φ at u ∈ H1

D(Ω)

for v ∈ ∂Φ(0, ·)(u) defined by

∆2
tΦ(u|v) : HD −→ R

w 7−→ ∆2
tΦ(u|v)(w) :=

Φ(t, u+ tw)− Φ(t, u)− t 〈v, w〉H1
D(Ω)

t2
,

for all t > 0.
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Proposition 3.17. For all t > 0, u ∈ H1
D(Ω) and v ∈ ∂Φ(0, ·)(u), it holds that

∆2
tΦ(u|v)(w) =

∫
ΓT

∆2
tG(s)(u(s)|∂nv(s))(w(s))ds, (3.10)

for all w ∈ H1
D(Ω), where, for almost all s ∈ ΓT, ∆2

tG(s)(u(s)|∂nv(s)) stands for the second-order
difference quotient function of G(s) at u(s) ∈ R for ∂nv(s) ∈ g0(s)∂|·|(u(s)), with G(s) defined by

G(s) : R+ × R −→ R
(t, x) 7−→ G(s)(t, x) := gt(s)|x|.

Remark 3.18. Note that, for almost all s ∈ ΓT and all t ≥ 0, G(s)(t, ·) := gt(s)|·| is a proper
lower semi-continuous convex function on R. Moreover, since g0 > 0 almost everywhere on ΓT, it
follows that

∂ [G(s)(0, ·)] (x) = g0(s)∂|·|(x),

for all x ∈ R and for almost all s ∈ ΓT.

Proof of Proposition 3.17. Let t > 0, u ∈ H1
D(Ω) and v ∈ ∂Φ(0, ·)(u). From Lemma 3.16 and

Green formula (see Proposition 2.13), one deduces

〈v, w〉H1
D(Ω) = 〈∂nv, w〉H−1/2(Γ)×H1/2(Γ) ,

for all w ∈ H1
D(Ω). Moreover, similarly to Lemma 3.16, one gets

〈v, w〉H1
D(Ω) =

∫
ΓT

w∂nv,

for all w ∈ H1
D(Ω). Thus it follows that

∆2
tΦ(u|v)(w) =

∫
ΓT

gt(s)|u(s) + tw(s)| − gt(s)|u(s)| − tw(s)∂nv(s)

t2
ds,

for all w ∈ H1
D(Ω). Furthermore, since ∂nv(s) ∈ g0(s)∂|·|(u(s)) for almost all s ∈ ΓT, one deduces

that
∆2
tΦ(u|v)(w) =

∫
ΓT

∆2
tG(s)(u(s)|∂nv(s))(w(s))ds,

for all w ∈ H1
D(Ω), which concludes the proof.

From the above proposition we note that the twice epi-differentiability of the parameterized
Tresca friction functional is strongly related to the twice epi-differentiability of the function G(s)

for almost all s ∈ ΓT. Therefore the computation of the second-order epi-derivative of G(s) for
almost all s ∈ ΓT is the next step.

Proposition 3.19. Assume that, for almost all s ∈ ΓT, the map t ∈ R+ 7→ gt(s) ∈ R+ is
differentiable at t = 0, with its derivative denoted by g′0(s). Then, for almost all s ∈ ΓT, the
map G(s) is twice epi-differentiable at any x ∈ R and for all y ∈ g0(s)∂|·|(x) with

D2
eG(s)(x|y)(z) = IKx,

y
g0(s)

(z) + g′0(s)
y

g0(s)
z,

for all z ∈ R, where IKx,
y

g0(s)

stands for the indicator function of the set Kx, y
g0(s)

(see Example 2.8).
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Proof. We use the same notations as in Definitions 2.7 and 2.9. Let x ∈ R. Then, for almost
all s ∈ ΓT, for all y ∈ g0(s)∂|·|(x) and all z ∈ R, one has

∆2
tG(s)(x|y)(z) =

gt(s)|x+ tz| − gt(s)|x| − tyz
t2

= gt(s)
|x+ tz| − |x| − t y

g0(s)z

t2
+

(gt(s)− g0(s)) y

tg0(s)
z,

that is
∆2
tG(s)(x|y)(z) = gt(s)δ

2
t |·|
(
x| y

g0(s)

)
(z) +

(gt(s)− g0(s)) y

tg0(s)
z,

with y
g0(s) ∈ ∂|·|(x), and where δ2

t |·|(x|
y

g0(s) ) is the second-order difference quotient function of |·|
at x for y

g0(s) (see Definition 2.7 since |·| is t-independent function). Using the characterization
of Mosco epi-convergence (see Proposition 2.6) and Example 2.8, it follows that the map G(s) is
twice epi-differentiable at x for y with

D2
eG(s)(x|y)(z) = IKx,

y
g0(s)

(z) + g′0(s)
y

g0(s)
z,

for all z ∈ R, and the proof is complete.

Remark 3.20. The perturbation of the friction term gt in the parameterized Tresca friction prob-
lem (TPt) (which is not considered in the previous paper [2]) generates an additional term in the
expression of the second-order epi-derivative of G(s), for almost all s ∈ ΓT, at all x ∈ R for
all y ∈ g0(s)∂|·|(x), given by the function z ∈ R 7→ g′0(s) y

g0(s)z ∈ R.

3.2.2 The Derivative of the Solution to the Parameterized Tresca Friction Problem

From the previous results and some additional assumptions detailed below, we are now in a
position to state and prove the main result of this paper that characterizes the derivative of the
solution to the parameterized Tresca friction problem (TPt).

Theorem 3.21. Let ut ∈ H1
D(Ω) be the unique solution to the parameterized Tresca friction

problem (TPt) for all t ≥ 0. Assume that

1. the map t ∈ R+ 7→ ft ∈ L2(Ω) is differentiable at t = 0, with its derivative denoted by f ′0 ∈
L2(Ω);

2. the map t ∈ R+ 7→ kt ∈ L2(ΓN) is differentiable at t = 0, with its derivative denoted
by k′0 ∈ L2(ΓN);

3. for almost all s ∈ ΓT, the map t ∈ R+ 7→ gt(s) ∈ R+ is differentiable at t = 0, with its
derivative denoted by g′0(s), and also g′0 ∈ L2(ΓT);

4. the parameterized Tresca friction functional Φ defined in (3.5) is twice epi-differentiable (see
Definition 2.9) at u0 for F0 − u0 ∈ ∂Φ(0, ·)(u0), with

D2
eΦ(u0|F0 − u0)(w) =

∫
ΓT

D2
eG(s)(u0(s)|∂n(F0 − u0)(s))(w(s))ds, (3.11)

for all w ∈ H1
D(Ω), where F0 is the unique solution to the parameterized Dirichlet-Neumann

problem (DNt) for the parameter t = 0.
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Then the map t ∈ R+ 7→ ut ∈ H1
D(Ω) is differentiable at t = 0, and its derivative denoted

by u′0 ∈ H1
D(Ω) is the unique weak solution to the Signorini problem

−∆u′0 = f ′0 in Ω,

u′0 = 0 on ΓD ∪ Γu0,g0

TSD
,

∂nu
′
0 = k′0 on ΓN,

∂nu
′
0 = g′0

∂nu0

g0
on Γu0,g0

TSN
,

u′0 ≤ 0, ∂nu
′
0 ≤ g′0 ∂nu0

g0
and u′0

(
∂nu

′
0 − g′0 ∂nu0

g0

)
= 0 on Γu0,g0

TS−
,

u′0 ≥ 0, ∂nu
′
0 ≥ g′0 ∂nu0

g0
and u′0

(
∂nu

′
0 − g′0 ∂nu0

g0

)
= 0 on Γu0,g0

TS+
,

(SP′0)

where ΓT = Γu0,g0

TSN
∪ Γu0,g0

TSD
∪ Γu0,g0

TS−
∪ Γu0,g0

TS+
with

Γu0,g0

TSN
:= {s ∈ ΓT | u0(s) 6= 0} ,

Γu0,g0

TSD
:= {s ∈ ΓT | u0(s) = 0 and ∂nu0(s) ∈ (−g0(s), g0(s))} ,

Γu0,g0

TS−
:= {s ∈ ΓT | u0(s) = 0 and ∂nu0(s) = g0(s)} ,

Γu0,g0

TS+
:= {s ∈ ΓT | u0(s) = 0 and ∂nu0(s) = −g0(s)} .

Remark 3.22. From Proposition 3.17, one can naturally expect that the second-order epi-derivative
of the parameterized Tresca friction functional Φ at u0 for F0−u0 is given by Equality (3.11), which
corresponds to the inversion of symbols ME-lim and

∫
ΓT

in Equality (3.10). Nevertheless, to the
best of our knowledge, this inversion is an open question. Therefore we do not know, in general,
if the parameterized Tresca friction functional is indeed twice epi-differentiable at u0 for F0 − u0.
Nevertheless, in Appendix A, we prove it in several particular cases corresponding to practical
situations.

Remark 3.23. The problem (SP′0) in Theorem 3.21 is a well-posed problem since∣∣∣∣∂nu0(s)

g0(s)

∣∣∣∣ ≤ 1,

for almost all s ∈ ΓT, and hence g′0
∂nu0

g0
∈ L2(ΓT) since g′0 ∈ L2(ΓT).

Remark 3.24. Consider the framework of Theorem 3.21. Note that u′0 is the unique weak solution
to the Signorini problem (SP′0), but is not necessarily a strong solution. Nevertheless, in the case
where ∂nu

′
0 ∈ L2(ΓN ∪ ΓT) and the decomposition Γ = ΓD ∪ ΓN ∪ Γu0,g0

TSN
∪ Γu0,g0

TSD
∪ Γu0,g0

TS−
∪ Γu0,g0

TS+

is consistent (see Definition 3.7), then u′0 is a strong solution to the Signorini problem (SP′0).

Proof of Theorem 3.21. From Hypothesis 4 and Proposition 3.19, it follows that

D2
eΦ(u0|F0 − u0)(w) = IK

u0,
∂n(F0−u0)

g0

(w) +

∫
ΓT

g′0(s)
∂n(F0 − u0)(s)

g0(s)
w(s)ds, (3.12)

for all w ∈ H1
D(Ω), where K

u0,
∂n(F0−u0)

g0

is the nonempty closed convex subset of H1
D(Ω) defined by

K
u0,

∂n(F0−u0)
g0

:=

{
w ∈ H1

D(Ω) | w(s) ∈ K
u0(s),

∂n(F0−u0)(s)

g0(s)
for almost all s ∈ ΓT

}
.

Moreover, since ∂nF0 = 0 on ΓT, one gets
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K
u0,

∂n(F0−u0)
g0

=
{
w ∈ H1

D(Ω) | w ≤ 0 a.e. on Γu0,g0

TS−
, w ≥ 0 a.e. on Γu0,g0

TS+
, w = 0 a.e. on Γu0,g0

TSD

}
,

where subsets Γu0,g0

TSN
, Γu0,g0

TSD
, Γu0,g0

TS−
and Γu0,g0

TS+
are defined in Theorem 3.21. One can easily prove,

using norms equivalence between ‖·‖H1
D(Ω) and ‖·‖H1(Ω) on H1

D(Ω), that D2
eΦ(u0|F0−u0) is a proper

lower semi-continuous convex function on H1
D(Ω). Moreover, from Hypotheses 1 and 2, we know

from Proposition 3.15 that the map t ∈ R+ 7→ Ft ∈ H1
D(Ω) is differentiable at t = 0, with its

derivative F ′0 ∈ H1
D(Ω) being the unique solution to the Dirichlet-Neumann problem (DN′0). Thus,

using (3.6) and Theorem 2.10, the map t ∈ R+ 7→ ut ∈ H1
D(Ω) is differentiable at t = 0, and its

derivative u′0 ∈ H1
D(Ω) satisfies

u′0 = proxD2
eΦ(u0|F0−u0)(F

′
0),

which, from the definition of the proximal operator (see Proposition 2.3), leads to

F ′0 − u′0 ∈ ∂D2
eΦ(u0|F0 − u0)(u′0),

which means that

〈F ′0 − u′0, v − u′0〉H1
D(Ω) ≤ D2

eΦ(u0|F0 − u0)(v)−D2
eΦ(u0|F0 − u0)(u′0),

for all v ∈ H1
D(Ω). Hence we get that∫

Ω

∇ (F ′0 − u′0) · ∇(v − u′0)

≤ IK
u0,

∂n(F0−u0)
g0

(v)− IK
u0,

∂n(F0−u0)
g0

(u′0) +

∫
ΓT

g′0(s)
∂n(F0 − u0)(s)

g0(s)
(v(s)− u′0(s))ds,

for all v ∈ H1
D(Ω). Moreover, since ∂nF0 = 0 on ΓT and F ′0 is the unique solution to the Dirichlet-

Neumann problem (DN′0), it follows that∫
Ω

∇u′0 · ∇(v − u′0) ≥ IK
u0,

∂n(F0−u0)
g0

(u′0)− IK
u0,

∂n(F0−u0)
g0

(v)

+

∫
Ω

f ′0(v − u′0) +

∫
ΓN

k′0(v − u′0) +

∫
ΓT

g′0(s)
∂nu0(s)

g0(s)
(v(s)− u′0(s))ds,

for all v ∈ H1
D(Ω). Hence u′0 ∈ Ku0,

∂n(F0−u0)
g0

and∫
Ω

∇u′0 · ∇(v − u′0) ≥
∫

Ω

f ′0(v − u′0) +

∫
ΓN

k′0(v − u′0) +

∫
ΓT

g′0(s)
∂nu0(s)

g0(s)
(v(s)− u′0(s))ds,

for all v ∈ K
u0,

∂n(F0−u0)
g0

. From the weak formulation of the Signorini problem (see Definition 3.6),

one deduces that u′0 is the unique weak solution to the Signorini problem (SP′0). The proof is
complete.

Roughly speaking, Theorem 3.21 claims that the first-order approximation in H1(Ω) of the
solution ut to the parameterized Tresca friction problem (TPt) is given by u0 + tu′0 for small values
of t ≥ 0, where u′0 is the solution to the Signorini problem (SP′0). In the next section, we illustrate
this comment with some numerical simulations, by comparing ut and u0 +tu′0 in H1-norm for small
values of t ≥ 0.
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4 Numerical Simulations

In this section we illustrate Theorem 3.21 with some numerical simulations. The same notations
used in the previous section are preserved and, for an explicit two-dimensional example described
in Section 4.1, we compare in H1-norm the solution ut to the parameterized Tresca friction prob-
lem (TPt) with its first-order approximation u0 + tu′0 for small values of t ≥ 0, where u′0 is the
solution to the Signorini problem (SP′0).

Numerical simulations are performed using Freefem++ software (see [18]) and iterative switch-
ing algorithms (see [3]). The results are presented in Section 4.2. In a nutshell, let us recall that
those iterative switching algorithms operate by checking at each iteration if the boundary condi-
tions are satisfied, and if they are not, by imposing them and restarting the computation (see [2,
Annexe C p.25] for detailed explanations on those algorithms). The convergence proof of these
algorithms is not established yet but their performance are experimentally validated. Let us em-
phasize that our aim in this section is not to study these algorithms rigorously but only to illustrate
the main result of this paper with a simple and easily implementable method to solve the Signorini
problem and the Tresca friction problem. Let us mention that there exist other algorithms, like for
instance Nitsche methods (see, e.g., [10, 9]), hybrid methods (see, e.g., [6]), mixed methods (see,
e.g., [17]) and more, that are not used here, but could be more efficient for future researches.

4.1 Mathematical Framework

In this section we describe the example used for numerical simulations. This example is inspired
from the one introduced in the paper [2]. Let d = 2 and Ω be the unit disk of R2, and assume that
the decomposition of the boundary Γ = ∂Ω is given by

Γ = ΓD ∪ ΓN ∪ ΓT,

with
ΓD :=

{
(cos θ, sin θ) ∈ Γ | π4 < θ ≤ π

2

}
,

ΓN :=
{

(cos θ, sin θ) ∈ Γ | π2 < θ < 3π
4

}
,

ΓT :=
{

(cos θ, sin θ) ∈ Γ | − 5π
4 ≤ θ ≤

π
4

}
.

Let f ∈ L2(Ω) be the function defined by

f : Ω −→ R

(x, y) 7−→ f(x, y) := −2ξ(x)− 2xξ′(x)− 1

2
(x2 + y2 − 1)ξ′′(x),

where ξ is given by

ξ : [−1, 1] −→ R

x 7−→ ξ(x) :=


−1 if −1 ≤ x ≤ − 1

2 ,

sin(πx) if − 1
2 ≤ x ≤

1
2 ,

1 if 1
2 ≤ x ≤ 1.

Let us introduce, for all t ≥ 0, the function ft ∈ L2(Ω) defined by

ft : Ω −→ R
(x, y) 7−→ ft(x, y) := exp(t)f(x, y),
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the function gt ∈ L2(ΓT) defined by

gt : ΓT −→ R
(x, y) 7−→ gt(x, y) := 1 + t,

and also the function kt ∈ L2(ΓN) defined by

kt : ΓN −→ R
(x, y) 7−→ kt(x, y) := (1 + t)ξ(x).

This choice of functions is justified by the fact that we are able to determinate explicitly the
solution u0 to the parameterized Tresca friction problem (TPt) for t = 0, which is given by

u0(x, y) =
1

2

(
x2 + y2 − 1

)
ξ(x),

for all (x, y) ∈ Ω. The knowledge of the solution u0 reduces errors due to the approximations
for the numerical computations of u′0 and u0 + tu′0. Indeed, since ∂nu = ξ and u0 = 0 almost
everywhere on Γ, we can directly express the decomposition

ΓT = Γu0,g0

TSN
∪ Γu0,g0

TSD
∪ Γu0,g0

TS−
∪ Γu0,g0

TS+
,

which is given by

Γu0,g0

TSN
= {s ∈ ΓT | u0(s) 6= 0} = ∅,

Γu0,g0

TSD
=
{

(x, y) ∈ Γ | − 1
2 < x < 1

2

}
∩ ΓT =

{
(cos θ, sin θ) ∈ Γ | 4π

3 < θ ≤ 5π
3

}
,

Γu0,g0

TS−
=
{

(x, y) ∈ Γ | x ≥ 1
2

}
∩ ΓT =

{
(cos θ, sin θ) ∈ Γ | −π3 < θ ≤ π

4

}
,

Γu0,g0

TS+
=
{

(x, y) ∈ Γ | x ≤ − 1
2

}
∩ ΓT =

{
(cos θ, sin θ) ∈ Γ | 3π

4 < θ ≤ 4π
3

}
.

Ω

ΓDΓN

Γu0,g0

TSD

Γu0,g0

TS−
Γu0,g0

TS+

Figure 1: Unit disk Ω and its boundary Γ = ΓD∪ΓN∪ΓT, with ΓT = Γu0,g0

TSN
∪Γu0,g0

TSD
∪Γu0,g0

TS−
∪Γu0,g0

TS+
.

Moreover, since f ′0 = f in L2(Ω), k′0 = ξ in L2(ΓN) and g′0 = 1 in L2(ΓT), we are now in a position to
compute numerically u′0 and ut, and then to compare ut with its first-order approximation u0 + tu′0
in H1-norm for several small values of t ≥ 0.
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Figure 2: The representation in logarithmic scale of the map t ∈ R+ 7→ ‖ut − u0 − tu′0‖H1(Ω) ∈ R+

(red) and of the map t ∈ R+ 7→ t2 ∈ R+ (blue).

4.2 Numerical Results

Here we present the numerical results obtained for the two-dimensional example described
in Section 4.1. Numerical simulations have been made using P2 finite element method and
with a discretization of the boundary of 190 points. We concatenate in Table 1 some values
of ‖ut − u0 − tu′0‖H1(Ω) for several small values of t ≥ 0. Figure 2 gives the representation in lo-
garithmic scale of the maps t ∈ R+ 7→ ‖ut − u0 − tu′0‖H1(Ω) ∈ R+ and t ∈ R+ 7→ t2 ∈ R+. Finally,
Figure 3 is the illustration of ut and its first-order approximation u0 + tu′0 for t = 0.1.

Roughly speaking, we observe from Figure 2 that∥∥∥∥ut − u0

t
− u′0

∥∥∥∥
H1(Ω)

= O(t),

where O stands for the standard Bachmann–Landau notation, which is in accordance with our
main result (Theorem 3.21).

Parameter t 0.60 0.40 0.20 0.1 0.075 0.05 0.025 0.01
‖ut − u0 − tu′0‖H1(Ω) 0.6267 0.2558 0.0590 0.0145 0.0083 0.0042 0.0021 0.0022

Table 1: H1-norm of the difference between ut and its first-order approximation u0 +tu′0 for several
small values of t.

Remark 4.1. Note that the representation of ‖ut − u0 − tu′0‖H1(Ω) with respect to t in logarithmic
scale got a threshold for t ≈ 0.03. This is a classical phenomenon due to the numerical approxi-
mations we made and the numerical algorithms we used.
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Figure 3: The first figure is the representation of ut and the second its first-order approxima-
tion u0 + tu′0 for t = 0.1.

5 Conclusions

In this paper we investigated the sensitivity analysis of a scalar mechanical contact problem
involving the Tresca’s friction law. This follows the previous paper [2] where only the right-hand
source term was perturbed. In the present work, the friction term associated to the Tresca’s friction
law was also perturbed which is the main novelty compared to the previous paper. Using tools
from convex analysis we proved that the derivative of a parameterized Tresca friction problem is
the solution to a problem with Signorini unilateral conditions. This work will be used in order to
investigate shape optimization problems involving the Tresca’s friction law in a forthcoming article.
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A Sufficient Conditions for the Twice Epi-Differentiability of
the Parameterized Tresca Friction Functional

In this appendix the notations and assumptions introduced in Section 3 are preserved. This
appendix follows from Remark 3.22. Our aim here is to prove, in some particular cases which
correspond to practical situations, that the parameterized Tresca friction functional Φ is twice epi-
differentiable at u0 for F0 − u0 ∈ ∂Φ(0, ·)(u0), with its second-order epi-derivative given by (3.11).
From the characterization of Mosco epi-convergence (see Proposition 2.6), it is sufficient to prove
that, for all w ∈ H1

D(Ω), the two conditions

(i) for all (wt)t>0 ⊂ H1
D(Ω) such that (wt)t>0 ⇀ w in H1

D(Ω), then

lim inf ∆2
tΦ(u0|F0 − u0)(wt) ≥ IK

u0,
∂n(F0−u0)

g0

(w) +

∫
ΓT

g′0(s)
∂n(F0 − u0)(s)

g0(s)
w(s)ds;

(ii) there exists (wt)t>0 ⊂ H1
D(Ω) such that (wt)t>0 → w in H1

D(Ω) and

lim sup ∆2
tΦ(u0|F0 − u0)(wt) ≤ IK

u0,
∂n(F0−u0)

g0

(w) +

∫
ΓT

g′0(s)
∂n(F0 − u0)(s)

g0(s)
w(s)ds;

are satisfied.
The condition (i) is always satisfied. Indeed, from Proposition 3.17, this condition can be

rewritten as

lim inf

∫
ΓT

∆2
tG(s)(u(s)|∂n(F0 − u0)(s))(wt(s))ds

≥
∫

ΓT

D2
eG(s)(u0(s)|∂n(F0 − u0)(s))(w(s))ds,

which is true thanks to the dense and compact embedding H1(Ω) ↪→→ L2(Γ), to the twice epi-
differentiability of the function G(s) for almost all s ∈ ΓT (see Proposition 3.19) and to the
classical Fatou’s lemma (see, e.g., [8, Lemma 4.1 p.90]).

The condition (ii) is obviously satisfied if w /∈ K
u0,

∂n(F0−u0)
g0

. Thus, one has only to prove the

following assertion:

(ii′) for all w ∈ K
u0,

∂n(F0−u0)
g0

, there exists (wt)t>0 ⊂ H1
D(Ω) such that (wt)t>0 → w in H1

D(Ω) and

lim sup ∆2
tΦ(u0|F0 − u0)(wt) ≤

∫
ΓT

g′0(s)
∂n(F0 − u0)(s)

g0(s)
w(s)ds.

Unfortunately we are not able to prove this assertion in a general setting yet, that is without any
additional assumption on u0 and on Γ, and in any dimension d ≥ 1. Nevertheless, in this appendix,
we prove this assertion in some particular cases which correspond to practical situations, providing
sufficient conditions. In particular, in the next sections, we consider the additional assumption

(A) the map t ∈ R+ 7→ gt ∈ L2(ΓT) is differentiable at t = 0.
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A.1 First Example of Sufficient Condition: u = 0 almost everywhere
on ΓT

In this first example, we assume that u0 = 0 almost everywhere on ΓT, therefore Γu0,g0

TSN
has a

null measure. Let w ∈ K
u0,

∂n(F0−u0)
g0

. Then, taking the sequence wt = w for all t > 0, one gets

∆2
tΦ(u0|F0 − u0)(w) =∫

Γ
u0,g0
TS+

∪Γ
u0,g0
TS−

gt(s)|u0(s) + tw(s)| − gt(s)|u0(s)|+ t∂n(F0 − u0)(s)w(s)

t2
ds

=

∫
Γ
u0,g0
TS+

gt(s)− g0(s)

t
w(s)ds−

∫
Γ
u0,g0
TS−

gt(s)− g0(s)

t
w(s)ds

−→
∫

ΓT

g′0(s)
∂n(F0 − u0)(s)

g0(s)
w(s)ds,

when t→ 0+ from Assumption (A). Therefore Condition (ii′) is satisfied.

A.2 Second Example of Sufficient Condition: Truncature

In this second example, we introduce two disjoint subsets of ΓT given by

Γu0,g0

TSN+
:= {s ∈ ΓT | u0(s) > 0} and Γu0,g0

TSN−
:= {s ∈ ΓT | u0(s) < 0} .

Hence it follows that Γu0,g0

TSN
= Γu0,g0

TSN+
∪ Γu0,g0

TSN−
, ∂nu0 = −g0 almost everywhere on Γu0,g0

TSN+
and

that ∂nu0 = g0 almost everywhere on Γu0,g0

TSN−
. Now let us assume that there exists C > 0 such

that |u0| ≥ C on Γu0,g0

TSN+
∪Γu0,g0

TSN−
. Let us consider w ∈ K

u0,
∂n(F0−u0)

g0

and the truncature wt ∈ H1
D(Ω)

of w defined by

wt(x) :=


1√
t

if w(x) ≥ 1√
t
,

w(x) if |w(x)| ≤ 1√
t
,

− 1√
t

if w(x) ≤ − 1√
t
,

for almost all x ∈ Ω and for all t > 0. One deduces from Marcus-Mizel theorem (see [21])
that wt → w in H1

D(Ω) when t→ 0+. Moreover, for all t ≤ C2, one gets

∆2
tΦ(u0|F0 − u0)(wt) =∫

Γ
u0,g0
TS+

∪Γ
u0,g0
TSN+

gt(s)− g0(s)

t
wt(s)ds−

∫
Γ
u0,g0
TS−

∪Γ
u0,g0
TSN−

gt(s)− g0(s)

t
wt(s)ds

−→
∫

ΓT

g′0(s)
∂n(F0 − u0)(s)

g0(s)
w(s)ds,

when t→ 0+ from Assumption (A), therefore Condition (ii′) is satisfied.

A.3 Third Example of Sufficient Condition: Truncature and Dilatation

In this third example, we take d = 2 and ΓN = ∅, and we assume that u0 and ∂nu0 are continuous
on Γ, and that Γ is diffeomorphic to the circle S1 :=

{
(x, y) ∈ R2 | x2 + y2 = 1

}
. From this last
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assumption, for simplicity, we assume in the sequel that Γ = S1. In what follows, the next hypothe-
ses are only useful to simplify the computations. Let us assume that ΓT = Γu0,g0

TS+
∪ Γu0,g0

TSN+
(in this

particular case, the hypothesis on the continuity of ∂nu0 is useless, see Remark A.1) where Γu0,g0

TSN+

has already been defined in the previous example, and with the following parameterizations

Γu0,g0

TN+
= {(cos θ, sin θ) ∈ Γ | θ ∈ ]γ1, γ2[} ,

Γu0,g0

TS+
= {(cos θ, sin θ) ∈ Γ | θ ∈ [ξ1, γ1] ∪ [γ2, ξ2]} ,

such that −π ≤ ξ1 < γ1 < γ2 < ξ2 ≤ π (see Figure 4). From the continuity of u0, there exists c > 0

such that u0 ≥ c on the set {(cos θ, sin θ) ∈ Γ, θ ∈ [χ1, χ2]} ⊂ Γu0,g0

TN+
, with γ1 < χ1 < χ2 < γ2. Let

us consider ω1 ∈ ]ξ1, γ1[, ω2 ∈ ]γ2, ξ2[, and also αt, βt defined, for t > 0 such that
√
t ≤ c, by

αt := inf
{
α ∈ [γ1, χ1] | ∀θ ∈ [α, χ1] , u0(cos θ, sin θ) ≥

√
t
}
,

βt := inf
{
β ∈ [χ2, γ2] | ∀θ ∈ [χ2, β] , u0(cos θ, sin θ) ≥

√
t
}
.

From the continuity of u0, ones deduces that αt → γ1 and βt → γ2 when t→ 0+.

Ω

Γu0,g0

TSN+

×ατ

×
βτ

×χ2

×χ1

×
γ2Γu0,g0

TS+

× γ1

×
ξ1

×ξ2
×
ω2

×
ω1

ΓN ∪ ΓD

Figure 4: Illustration of the boundary Γ

Let w ∈ K
u0,

∂n(F0−u0)
g0

, and let yt ∈ H1
D(Ω) be the truncature of w given by

yt(x) :=


1√
t

if w(x) ≥ 1√
t
,

w(x) if |w(x)| ≤ 1√
t
,

− 1√
t

if w(x) ≤ − 1√
t
,

for almost all x ∈ Ω and for all t > 0. As in the previous section, one gets yt → w in H1
D(Ω),

and thus yt|Γ → w|Γ in H1/2(Γ) when t → 0+. Let us consider, for t > 0 sufficiently small, the
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dilatation zt := yt|Γ ◦ dt of yt|Γ, with dt given by

dt : Γ −→ Γ

(x1, x2) 7−→



(x1, x2) if (x1, x2) ∈ ΓN ∪ ΓD,

(x1, x2) if (x1, x2) ∈ Γu0,g0

TS+
\ {(cos θ, sin θ) , θ ∈ [ω1, ω2]} ,

dω1,αt(x1, x2) if 2 arctan
(

x2

x1+1

)
∈ [ω1, αt] ,

dαt,χ1(x1, x2) if 2 arctan
(

x2

x1+1

)
∈ [αt, χ1] ,

(x1, x2) if 2 arctan
(

x2

x1+1

)
∈ [χ1, χ2] ,

dχ2,βt(x1, x2) if 2 arctan
(

x2

x1+1

)
∈ [χ2, βt] ,

dβt,ω2(x1, x2) if 2 arctan
(

x2

x1+1

)
∈ [βt, ω2] ,

where

dω1,αt(x1, x2) = (cos θω1,αt , sin θω1,αt) , with θω1,αt =
(γ1 − ω1) 2 arctan

(
x2

x1+1

)
+ w1 (αt − γ1)

αt − ω1
,

dαt,χ1(x1, x2) = (cos θαt,χ1 , sin θαt,χ1) , with θαt,χ1 =
(χ1 − γ1) 2 arctan

(
x2

x1+1

)
+ χ1 (γ1 − αt)

χ1 − αt
,

dχ2,βt(x1, x2) =
(
cos θχ2,βt , sin θχ2,βt

)
, with θχ2,βt =

(γ2 − χ2) 2 arctan
(

x2

x1+1

)
+ χ2 (βt − γ2)

βt − χ2
,

dβt,ω2(x1, x2) =
(
cos θβt,ω2 , sin θβt,ω2

)
, with θβt,ω2 =

(ω2 − γ2) 2 arctan
(

x2

x1+1

)
+ ω2 (γ2 − βt)

ω2 − βt
.

Note that, since −π ≤ ξ1 < ω1 < ω2 < ξ2 ≤ π (see Remark A.2), then dt is a well-defined bijective
Lipschitz continuous map, and its inverse is also a bijective Lipschitz continuous map. Thus it
follows that zt ∈ H1/2(Γ) and also zt → w|Γ in H1/2(Γ) when t→ 0+. Then, for t > 0 sufficiently
small, we denote by wt ∈ H1

D(Ω) a lift of zt ∈ H1/2(Γ), such that wt → w in H1
D(Ω) when t→ 0+.

Therefore, by denoting

mt(s) =
gt(s)|u0(s) + twt(s)| − gt(s)|u0(s)| − t∂n(F0 − u0)(s)wt(s)

t2
,

for t > 0 sufficiently small and for almost all s ∈ ΓT, it follows that

∆2
tΦ(u0|F0 − u0)(wt) =

∫
{(cos θ,sin θ), θ∈[ξ1,ω1]}

mt(s)ds

+

∫
{(cos θ,sin θ), θ∈[ω1,αt]}

mt(s)ds+

∫
{(cos θ,sin θ), θ∈[αt,χ1]}

mt(s)ds

+

∫
{(cos θ,sin θ), θ∈[χ1,χ2]}

mt(s)ds+

∫
{(cos θ,sin θ), θ∈[χ2,βt]}

mt(s)ds

+

∫
{(cos θ,sin θ), θ∈[βt,ω2]}

mt(s)ds+

∫
{(cos θ,sin θ), θ∈[ω2,ξ2]}

mt(s)ds.

Then, from the definition of dt and Assumption (A), one deduces that

∆2
tΦ(u0|F0 − u0)(wt) −→

∫
ΓT

g′0(s)
∂n(F0 − u0)(s)

g0(s)
w(s)ds,
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when t→ 0+, and thus Condition (ii′) is satisfied.

Remark A.1. In the case where ΓT = Γu0,g0

TS+
∪ Γu0,g0

TSN+
, the hypothesis ∂nu0 continuous on Γ is

useless. Nevertheless, in the general case ΓT = Γu0,g0

TSN+
∪ Γu0,g0

TSN−
∪ Γu0,g0

TSD
∪ Γu0,g0

TS−
∪ Γu0,g0

TS+
, the

hypotheses u0 and ∂nu0 continuous on Γ is sufficient to get the twice epi-differentiability of the
parameterized Tresca friction functional: a part of Γu0,g0

TS−
(resp. Γu0,g0

TS+
, resp. Γu0,g0

TSN−
) is never side

to side with a part of Γu0,g0

TSN+
(resp. Γu0,g0

TSN−
, resp. Γu0,g0

TSN+
), and thus, using an appropriate dilatation,

one can obtain the same result.

Remark A.2. The hypothesis on the angles

−π ≤ ξ1 < ω1 < γ1 < γ2 < ω2 < ξ2 ≤ π,

avoids the problem of the definition of dt for the point (x1, x2) = (−1, 0). But, in a more general
case, since ΓD has a positive measure, it is always possible to translate the angles in order to
overcome this difficulty and get a well-defined dilatation dt.

Remark A.3. The assumption ΓN = ∅ can be replaced by the assumption that ΓN is never side to
side with Γu0,g0

TSN+
and Γu0,g0

TSN−
. Without one of those assumptions, the dilatation may not work.
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