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Sensitivity Analysis of a Scalar Mechanical Contact

Problem with Perturbation of the Tresca’s Friction Law

Loic Bourdin! Fabien Caubet! Aymeric Jacob de Cordemoy*
December 14, 2021

Abstract

This paper investigates the sensitivity analysis of a scalar mechanical contact problem
described by a boundary value problem involving the Tresca’s friction law. The sensitivity
analysis is performed with respect to right-hand source and boundary terms perturbations.
In particular the friction threshold involved in the Tresca’s friction law is perturbed, which
constitutes the main novelty of the present work with respect to the existing literature. Hence
we introduce a parameterized Tresca friction problem and its solution is characterized by
using the proximal operator associated with the corresponding perturbed nonsmooth convex
Tresca friction functional. Then, by invoking the extended notion of twice epi-differentiability
depending on a parameter, we prove the differentiability of the solution to the parameterized
Tresca friction problem, characterizing its derivative as the solution to a boundary value
problem involving Signorini unilateral conditions. Finally numerical simulations are provided
in order to illustrate our main result.

Keywords: mechanical contact problems, Tresca’s friction law, Signorini unilateral conditions,
variational inequalities, convex subdifferential, proximal operator, sensitivity analysis, twice epi-
differentiability.

AMS Classification: 49Q12, 46N10, 74M15.

1 Introduction

Mechanical context and motivations. On the one hand, mathematical models for mechanical
contact problems between deformable bodies are investigated in the literature in view of various
engineering applications, such as the analysis of the wheel-ground contact for a vehicle, the study
of the contact of a rocket structure with the atmosphere, etc. Contact mechanics describes the
deformation of solids that touch each other on parts of their boundaries. Mostly, the mechanical
setting consists in a deformable body which is in contact with a rigid foundation without penetrat-
ing it and possibly sliding against it which causes friction. From the mathematical point of view,
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these phenomena translate into different constraints: the non-permeability conditions take the form
of inequalities on the contact surface called Signorini unilateral conditions (see, e.g., [?, ?]); the
friction occurring on the contact surface is typically modeled by the so-called Tresca’s friction law
(see, e.g., [?]) which appears as a boundary condition involving nonsmooth inequalities depending
on a friction threshold. Finally those mechanical contact problems are usually investigated through
the theory of variational inequalities, and Signorini unilateral conditions and the Tresca’s friction
law cause nonlinearities and/or nonsmoothness in the corresponding variational formulations.

On the other hand, shape optimization is the mathematical field aimed at finding the optimal
shape of a given object for a given criterion, that is the shape which minimizes a certain cost
functional while satisfying given constraints. In order to numerically solve a shape optimization
problem, the standard gradient descent method requires to compute the shape gradient of the
cost functional which usually depends on the solution to a partial differential equation with given
boundary conditions. Therefore a first crucial point in numerical shape optimization is to perform
the sensitivity analysis of the boundary value problem with respect to perturbations.

Naturally, mechanical contact problems are ubiquitous in shape optimization and increasingly
popular in industry in order to identify the optimal design of a product, like for instance the
optimal shape of a structure with the maximum stiffness or the minimum weight. The present
work was initially motivated by shape optimization problems involving mechanical contact and
friction phenomena. For this purpose, the objective of the present paper is to investigate the
sensitivity analysis of a boundary value problem involving the Tresca’s friction law with respect to
right-hand source and boundary terms perturbations. Especially, the friction threshold associated
with the Tresca’s friction law is perturbed which is the crucial point and the main novelty of the
present paper with respect to the existing literature. In this work we focus on the scalar version
of the Tresca’s friction law, constituting a first step towards the non-trivial adaptation to the
elasticity case which will be the topic of future investigations.

Objectives and methodology. The sensitivity analysis of some mechanical contact problems
has already been investigated in the literature. For example, the sensitivity analysis of some friction
problems are studied using the notion of conical differentiability in [?], or with a regularization
procedure in [?]. The present paper follows from the previous work [?] in which a novel approach,
based on the notion of twice epi-differentiability introduced by R.T. Rockafellar in 1985 (see [?]),
has been developed. Precisely we focus on the parameterized Tresca friction problem given by

—Aut = ft in Q,
ug = 0 on I'p,

TP

8nut = kt on FN7 ( t)

|Onue] < g¢ and wOnur + gilu] = 0 on ',

for all t > 0, where Q C R? is a nonempty bounded connected open subset of R%, d > 1, with
a Lipschitz continuous boundary I' := 0Q2. We assume that the boundary is decomposed as
follows I' =: I'p U 'y U T'p, where I'p, 'y, 't are three measurable pairwise disjoint subsets of I"
such that I'p and I't have a positive measure and almost every point of 't is an interior point
(see Remark [3.14] for details). Moreover we assume that f, € L%(Q), k; € L?(I'y), and g; € L*(I'r)
with g; > 0 almost everywhere (a.e.) on I'r, for all ¢ > 0. The boundary condition that appears on
't corresponds to the scalar version of the Tresca’s friction law (see, e.g., [?, Section 5 Chapter 2]
or [?, Section 1.3 Chapter 1]). The main difference with the previous paper [?] is that the friction



threshold in the Tresca’s friction law, denoted by ¢;, depends on the parameter t > 0 (while g; = ¢
does not in [?]). Although this change may seem innocent, we emphasize that this work is not a
simple replica of the previous paper [?]. Indeed this novelty implies several non-trivial technical
adjustments. In particular it requires an extended version of the notion of twice epi-differentiability,
as explained below.

The main purpose of this work is to characterize the derivative of the map t € RY +— u; € H(Q)
at t = 0, where

H}(Q) := {¢ € H'(Q), ¢ = 0 almost everywhere on I'p } .

For t > 0 fixed, the main difficulty in the analysis of the parameterized Tresca friction prob-
lem (TP;) comes from the absolute value map |-| on the boundary 't which generates nonsmooth
terms in the corresponding variational formulation, that is to find u; € H(2) such that

/ Vus - V(v —uy) —|—/ gt|v| —/ gelug| > / fi(v —uy) +/ k(v — uy), Vv € Hy(Q).
Q FT FT Q 1—‘N
Defining the parameterized Tresca friction functional by

o: R*xHLQ) — R

(t,w) — D(t,w):= / gi|w|,
I'r
and using the proximal operator (see Definition introduced by J.-J. Moreau in 1965 (see [?]),
the solution to the parameterized Tresca friction problem (TP, is characterized by

up = proxXg .y (F),

where F; € H,(2) is the unique solution to the classical parameterized Dirichlet-Neumann problem
given by

/VFt~V<p=/ft<p+/ ko, Ve € HL (),
Q Q I'n

for all ¢ > 0. For all t > 0, note that ®(¢,-) is a lower semi-continuous convex proper function
on H} () and thus proxXg;,.) is well-defined. Then, taking into account of the above characteri-
zation of u;, the differentiability of the map ¢t € R* — u;, € HL(Q) at t = 0 is strongly related
to the differentiability (in a generalized sense) of the proximal operator Proxg;,.y. In the previous
paper [?], since the friction threshold g; = g is not perturbed, then ®(¢,-) = ® and u; = proxg (Fy),
and thus the standard notion of twice epi-differentiability of ® is used in order to derive the dif-
ferentiability of the map ¢t € R — u;, € HL(Q) at ¢t = 0. In the present work, since the friction
threshold g; is perturbed, and thus u; = proxé(t’i)(Ft), we are driven to use an extended version
of the twice epi-differentiability of ®(¢,-) (depending on a parameter) introduced in the recent
paper [?] (see also Definition [2.9).

Main result. With the previous methodology and under some appropriate assumptions de-
scribed in Theorem we prove that the map t € R* — u, € H{,(Q) is differentiable at t = 0,
and its derivative uf, € HL () is given by

U/O = prOXDg‘I’(Uo\Fo—uo)(Fé)’

where D2® (ug|Fy — ug) stands for the second-order epi-derivative (see Definition [2.9) of the pa-
rameterized Tresca friction functional ® at ug for Fy — ug, and where Fjj € H{,(2) is the derivative



at t = 0 of the map t € RT — F, € HL(Q). Moreover we prove that uf, € H} () exactly
corresponds to the unique weak solution to the Signorini problem

—Auj = f§ in Q,
up =0 on I'p U FZ}‘;’};}O,
Ohuf = ki on I'y,
Onupy = g{)% on 1"%‘;’50, (SPg)
up <0, Opuf < g()% and wuf ( Ohuf — g()% =0 on %,
ug > 0, dyug > gé% and wuj ( Opuf — g{)% =0 on [y

The subdivision I't = 1"%05’5" u 1"1}05’50 U T U % is described in details in Theorem
Here f € L2(Q) (resp. kj € L2(I'y)) is the derivative at ¢ = 0 of the map t € RT — f, € L*(Q)
(resp. t € Rt +— k, € L?(I'x)) and g € L?(I't) is the map defined for almost every s € I't
by gh(s) = lim,_,q 2017900)

We emphasize that Signorini’s unilateral conditions are obtained on the boundaries '3 %
and Faﬁ‘;’f" (see, e.g., [?, Section 1] for a similar scalar version of Signorini’s unilateral conditions),
although the sensitivity analysis focused on the Tresca’s friction law perturbation. Hence, our work
reveals an unexpected link between these two classical boundary conditions in contact mechanics.
Roughly speaking, our main result claims that Signorini’s solution can be considered as first-order
approximation of perturbed Tresca’s solutions. Precisely, for small values of ¢ > 0, the Tresca’s
solution u; can be approximated by g+ tuf, in H-norm. Some numerical simulations are provided
at the end of the paper in order to illustrate this result.

Organization of the paper. The paper is organized as follows. Section [2]is dedicated to some
basic notions from convex analysis and functional analysis used throughout the paper. Section [3]is
the core of the present work. In Section[3.I]we introduce three boundary value problems involved in
the sensitivity analysis of the Tresca friction problem performed in Section [3:2] which is concluded
with our main result (see Theorem . In Section [4f numerical simulations are provided in order
to illustrate our main result. Finally, in Appendix [A] some sufficient conditions that guarantee
the twice epi-differentiability of the parameterized Tresca friction functional, which is a crucial
assumption in our main theorem, are provided.

2 Notions from Convex Analysis and Functional Framework

In this section we start with some notions from convex analysis in Section [2.1] and we conclude
with some basics of functional analysis in Section [2.2

2.1 Notions from Convex Analysis

For notions and results presented in this section, we refer to standard references such as [?, 7, 7]
and [?, Chapter 12|. In what follows (V, (-, -)y/) stands for a general real Hilbert space.

Definition 2.1 (Domain and epigraph). Let ¢ : V — RU{xoo}. The domain and the epigraph
of ¢ are respectively defined by

dom (¢) :={z € V| ¢(z) < 400} and epi(¢):={(z,t) € VXR| ¢(x) <t}.



Recall that ¢ : V — RU{=+o00} is said to be proper if dom(¢) # 0 and ¢(z) > —oco for all x € V.
Moreover, ¢ is a convex (resp. lower semi-continuous) function on V if and only if epi(¢) is a convex
(resp. closed) subset of V x R.

Definition 2.2 (Convex subdifferential operator). Let ¢ : V. — R U {400} be a proper function.
We denote by 0¢ : V=V the convex subdifferential operator of ¢, defined by

9p(x) :={yeVI|VzeV, (y,z —a)y < d(2) - ¢(2)},
forallxz € V.

Definition 2.3 (Proximal operator). Let ¢ : V. — RU {400} be a proper lower semi-continuous
convez function. The proximal operator associated with ¢ is the map prox, : V.— 'V defined by

1
prox,(z) = argmin | ¢(y) + 5 ly — 73| = (1+96) 7 (@),
yeV

for all x € V, where 1 : V — V stands for the identity operator.

The proximal operator have been introduced by J.-J. Moreau in 1965 (see [?]) and can be seen
as a generalization of the classical projection operators onto nonempty closed convex subsets. It
is well-known that, if ¢ : V — R U {400} is a proper lower semi-continuous convex function,
then O¢ is a maximal monotone operator (see, e.g., [?]), and thus the proximal operator prox, is
well-defined and a single-valued map (see, e.g., [?, Chapter II]).

In what follows, some definitions related to the notion of twice epi-differentiability are recalled
(for more details, see [?, Chapter 7, section B p.240] for the finite-dimensional case and [?] for the
infinite-dimensional one). The strong (resp. weak) convergence of a sequence in H will be denoted
by — (resp. —) and note that all limits with respect to ¢ will be considered for ¢ — 0.

Definition 2.4 (Mosco-convergence). The outer, weak-outer, inner and weak-inner limits of a
parameterized family (A¢)iso of subsets of V are respectively defined by

limsup A4; = {m €V | I(tn)nen — 07,3 (Tn)peny ¢, VR €N,z € Atn} ,
wlimsup 4; = {2 €V |I(tn)nen = 07,3 (zn) ey = 2, VR €Nz, € Ay},

liminf 4A; = {x €V |V(tn)neny — 07,3 (Tn)peny = ¢, IN € N,Vn > N,z € Atn} ,
w-liminf A, := {x €V | V(tn)nen — 07,3 () ey — ¢, IN € N,Vn > N, z,, € Atn} .

The family (A¢)iso is said to be Mosco-convergent if w-limsup A; C liminf A;. In that case, all
the previous limits are equal and we write

M-limA; := liminf A; = limsup A; = w-liminf A; = w-lim sup A;.

Definition 2.5 (Mosco epi-convergence). Let (¢¢)i>0 be a parameterized family of functions ¢y :
V = RU{zxoo} for allt > 0. We say that (¢+)¢>0 is Mosco epi-convergent if (epi(¢¢))e>o is Mosco-
convergent in V X R. Then we denote by ME-lim ¢, : V. — RU {do00} the function characterized
by its epigraph epi (ME-lim ¢;) := M-lim epi(¢;) and we say that (¢¢)i>0 Mosco epi-converges
to ME-lim ¢;.

The proof of the next proposition can be found in [?, Proposition 3.19 p.297].



Proposition 2.6 (Characterization of Mosco epi-convergence). Let (¢r)i~o be a parameterized
family of functions ¢y : V — RU {xoo} for allt > 0 and let ¢ : V. — R U {£oo}. Then (¢¢)i>o
Mosco epi-converges to ¢ if and only if, for all x € V, the two conditions

1. there exists (x1)i>0 — x such that limsup ¢y (z;) < ¢(z);
2. for all (x4)¢=0 — =, iminf ¢y (z;) > &(z);
are satisfied.

Now let us recall the notion of twice epi-differentiability introduced by R.T. Rockafellar in 1985
(see [?]) that generalizes the classical notion of second-order derivative to nonsmooth convex func-
tions.

Definition 2.7 (Twice epi-differentiability). A proper lower semi-continuous convex function ¢ :
V — R U {+o0} is said to be twice epi-differentiable at x € dom(¢) for y € 9p(x) if the family of
second-order difference quotient functions (67¢(x|y))i>o0 defined by

2¢(xly): V. — RU{+oo}
N YRS RN

for allt >0, is Mosco epi-convergent. In that case we denote by
d2(zly) == ME-lim &7 ¢(xly),
which is called the second-order epi-derivative of ¢ at x fory.

Example 2.8. The classical absolute value map || : R — R, which is a proper lower semi-
continuous convex function on R, is twice epi-differentiable at any x € R for any y € 9|-|(x), and
its second-order epi-derivative is given by D2|-|(z|y) = Ik, ,, where K, is the nonempty closed
convez subset of R defined by

R if x40,
K. RT ifr=0andy=1,
DY) R ifr=0andy=—1,

{0} ifx=0andy e (-1,1),

and where Ik, , stands for the indicator function of K., defined by Ik, ,(2) := 0 if z € Ky,
and Ik, ,(2) := +o0 otherwise (see [?, Example 2.6. p.7]).

In the above classical definition of twice epi-differentiability, the function ¢ does not depend
on the parameter ¢. However, in this paper, the parameterized Tresca friction functional does (see
Introduction). Therefore, in this paper, we will use an extended version of twice epi-differentiability
which has been recently introduced in [?]. To this aim, when considering a function ® : RT x V —
R U {+o0} such that, for all ¢ > 0, ®(¢,-) is a proper function on V, we will make use of the
two following notations: 9®(0, -)(z) stands for the convex subdifferential operator at x € V of the
map w € V — ®(0,w) € RU{+o00}, and ®~}(-,\R) :={z € V |Vt >0, ®(¢,z) € R}.

Definition 2.9 (Twice epi-differentiability depending on a parameter). Let ® : RT x V. — R U
{+0o0} be a function such that, for all t > 0, ®(t,-) is a proper lower semi-continuous convex



function on V. The function ® is said to be twice epi-differentiable at x € ®~1(-,R) for y €
09(0,-)(z) if the family of second-order difference quotient functions (A2®(z|y))i>o defined by

A2d(zly): V — RU{+o0}
O(t,x+1tz) — (t,x) —t(y, 2)y

z 2 s

for allt > 0, is Mosco epi-convergent. In that case, we denote by
D2®(z|y) := ME-lim A?®(z|y),
which is called the second-order epi-derivative of ® at x for y.

Note that, if the function @ is t-independent in Definition 2.9} then we recover Definition 2.7}
Finally the following theorem is the key point in order to derive our main result in this paper. It
is a particular case of a more general theorem that can be found in [?, Theorem 4.15 p.1714].

Theorem 2.10. Let ® : RT x V — RU {+00} be a function such that, for all t > 0, ®(t,-) is
a proper lower semi-continuous conver function on V. Let F' : RY — V and let u : R™ — V be

defined by
u(t) == proxe ..y (F(1)),
for allt > 0. If the conditions

1. F is differentiable at t = 0;
2. ® is twice epi-differentiable at uw(0) for F(0) —u(0) € 09(0,-)(u(0));
3. D2®(u(0)|F(0) — u(0)) is a proper lower semi-continuous convex function on V;

are satisfied, then u is differentiable at t = 0 with
u'(0) = ProxXp2e(u(0)F(0)—u(0)) (£ (0))-

2.2 Functional Framework

Let d > 1 and Q be a nonempty bounded connected open subset of R? with a Lipschitz
continuous boundary T' := 9Q. We denote by L?*(Q), L2(I'), L}(T"), HY(), HY/2(I"), H~Y/2(T")
the usual Lebesgue and Sobolev spaces endowed with their standard norms. Moreover the no-
tation D(Q2) stands for the set of functions ¢ : @ — R that are infinitely differentiable with
compact support in Q, and D’(Q) for the set of distributions on Q. In what follows we consider
a decomposition I' =: T'; UT's where I'; and I'y are two measurable disjoint subsets of I'. Let us
recall some classical embeddings useful in this paper, that can be found for instance in [?] and [?,
Chapter 7, Section 2 p.395].

Proposition 2.11. The continuous and dense embeddings H*(Q)—H'/?(I"—L3(T")—H~/2(T"),
L(T)LYT), HY(Q)—L2(Q), and Hyl?(T1)—L2(T1)—Hyg/*(T1) are satisfied, where HE)*(T'1)
is the vector subspace of HY/2(T) defined by

H(l)éz(I‘l) ={vel’T)|3weH (Q), w=vonly andw =0 onTs},

and HEOI/Q(IH) stands for its dual space. Furthermore the dense and compact embedding H' (Q) —» L2(T")
holds true.



The next proposition is a particular case of a more general statement that can be found in [?,
Section 2.9 p.56].

Proposition 2.12. Let w € Ho_ol/z(I‘l). If there exists C > 0 such that

<w7v>H501/2(F1)XH3)62(F1) <C HUHLZ(FI) ’

forallv e Héé2(F1), then w can be identified to an element h € L2(T'y) with
<w’v>HJol/2(F1)><H(1x/;2(F1) - <h’U>L2(F1)’
forallv e Hééz(I‘l).
The next proposition, known as Green formula, can be found in [?, Corollary 2.6 p.28§].

Proposition 2.13 (Green formula). Let w € HY(Q). If Aw € L?(Q2), then Vw admits a normal
trace Oyw € H~Y/2(T) such that

/QwAer/QVw-W?: (0w, @) yr—1/2(r)xc/2(r) 5

for all p € HY(Q).

3 Main Result

In this section we establish the main result of the paper (Theorem . To this aim, we
introduce in Section [3.1]three problems with different boundary conditions: Dirichlet and Neumann
conditions (see Problem (DN])), Signorini unilateral conditions (see Problem (SP))) and a condition
with the Tresca’s friction law (see Problem ) For each problem, strong and weak solutions are
defined, then the equivalence between both solutions is investigated and the existence/uniqueness
of the weak solution is proved. All these preliminary results are used in the next Section [3.2 in
order to perform the sensitivity analysis of the Tresca friction problem.

In what follows, let d > 1 and © be a nonempty bounded connected open subset of R? with a
Lipschitz continuous boundary I' := 992. We consider the decomposition

I'=TpuUl'yUTIT,

where I'p, 'y, I't are three measurable pairwise disjoint subsets of I', such that I'p and 't have
a positive measure. Let us denote by Br(s, ) the open ball of T" centered at some s € T with some
radius € > 0, and, for some subset A of I', by intr(A) the interior of A in I'. Moreover, for any
function v € H*(Q) such that Av € L2(f2), we denote by d,v the function in H~'/2(T") given by
the Green Formula (see Proposition .

In this paper we work with the closed vector subspace Hy () of H'(2) defined by

Hp,(Q) := {¢ € H'(Q) | ¢ = 0 almost everywhere on I'p } .

Since I'p has a positive measure and thanks to Poincaré’s inequality, note that (HL (), (-, ~>H]13(Q))
is a real Hilbert space endowed with the scalar product

Cohne s Q) xHL@) — R
(u,v) —> /Vu-Vv.
Q



The corresponding norm, which is equivalent to the norm |||y ) on HE (), will be denoted

by [l o)

3.1 Some Required Boundary Value Problems

For the needs of this preliminary section, let us fix some functions f € L%(Q), k¥ € L*(I'x),
h € L3(I't) and g € L?(I't) such that g > 0 almost everywhere on I'r. Here the proofs are
very close to the ones presented in the recent paper [?], and thus they are left to the reader.
The main differences being the use of the Hilbert space H} () instead of H!(£2), and the vector
subspace H{\*(T'y UT'r) of HY/2(T) instead of H/2(T').

3.1.1 A Problem with Dirichlet-Neumann Conditions

Let us consider the Dirichlet-Neumann problem given by

—AF = f in Q,
F =0 onlp,
OWF =k on Iy,
OwF =h onIrT.

(DN)

Considering two different Neumann conditions in Problem (DN)) may seem artificial to the reader.
Nevertheless this framework naturally appears in our main result (see Problem (SPg)) in Theo-
rem [3.21]). This is the reason why we consider it in this preliminary section.

Definition 3.1 (Strong solution to the Dirichlet-Neumann problem). A strong solution to the
Dirichlet-Neumann problem is a function F € HY(Q) such that —AF = f in D'(Q), F =0
almost everywhere on I'p, O, F € L2(TxyUDT) with 0, F = k almost everywhere on I'x and 0,F = h
almost everywhere on I'.

Definition 3.2 (Weak solution to the Dirichlet-Neumann problem). A weak solution to the
Dirichlet-Neumann problem (DN)) is a function F € HL () such that

/ VF-VU:/ fv+/ kv + hv, Yo € HL (). (3.1)
Q o I'x I'p

Proposition 3.3. A function F € H'(Q) is a strong solution to the Dirichlet-Neumann prob-
lem (DN)) if and only if F' is a weak solution to the Dirichlet-Neumann problem (DNJ).

Using the Riesz representation theorem, we obtain the following existence/uniqueness result.

Proposition 3.4. The Dirichlet-Neumann problem (DN)) admits a unique solution F € HE(Q).
Moreover there exists a constant C' > 0 (depending only on ) such that

1Pl ) < © (Il + 1l + Il ) -

3.1.2 A Signorini Problem

Here we assume that I't can be decomposed as

I'r =: FTSN @] FTSD @] FTS_ U FTs+)



where I'rg , I'rg_, I'rg . and I'rg, are four measurable pairwise disjoint subsets of I', and we

S—
consider the Signorini problem given by

—Au = f inQ,
u =20 onI‘DUFTSD,
Ohu = k on I'y,
Oyu = h on FTst
u<0, Ohu<hand u(Ohu—h) =0 onIp,_,
u >0, 0qu>hand u(Oyu—h) =0 onI'rg, .

Definition 3.5 (Strong solution to the Signorini problem). A strong solution to the Signorini
problem is a function u € HY(Q) such that —Au = f in D'(Q), u =0 on I'p U I, and
also Oyu € L2(Ty U 'r) with Oyu = k almost everywhere on I'n, Oyu = h almost everywhere
on I'rg , u <0, Ohe < h and u(Oyu — h) = 0 almost everywhere on T'ry_, u > 0, Ohu > h
and u(Opu — h) = 0 almost everywhere on I'rg, .

Definition 3.6 (Weak solution to the Signorini problem). A weak solution to the Signorini prob-
lem (SP) is a function u € K'(Q) such that

/QVu-V(v—u)Z/Qf(v—u)—i—/ k(v—u)—i—/FTh(v—u), Yo € K1(Q), (3.2)

I';

where K1(Q) is the nonempty closed convex subset of HL () given by
KYHQ) := {v cHL(Q) |[v<0o0onTp, ,v=0on Ity and v >0 on FT3+}.

One can easily prove that a strong solution is a weak solution but, to the best of our knowledge,
without additional assumptions, one cannot prove the converse. To get the equivalence, we need
to assume, in particular, that the decomposition of I" is consistent in the following sense.

Definition 3.7 (Consistent decomposition). The decomposition T' = I'p U 'y U Ipg, Ul U
I'rs_ U, is said to be consistent if

1. for almost all s € T'rg_ Uy, , s € intp(I'pg_) or s € intp(T'pg, );

2. the set KK'/2(T) given by
IC1/2(F) = {v S Hl/Z(F) |[v<0onTt,_,v=0o0nTp UFTSD and v >0 on FT5+}’

(which is a nonempty closed convex subset of H/? (T)) is dense in the nonempty closed convex
subset KO(T') of L2(T") given by

KO = {UELQ(F) |[v<0onTt,_,v=0 on Ip UTrg and v >0 on FT5+}-

Proposition 3.8. Let u € HY(Q).

1. If u is a strong solution to the Signorini problem (SP|), then w is a weak solution to the
Signorini problem (SP)).

10



2. If u is a weak solution to the Signorini problem (SP) such that d,u € L?(I'x UT'T) and the
decomposition I' = T'p UT'y U FTsN U FTsD UTl'r,_ Ul'rg, is consistent, then u is a strong
solution to the Signorini problem (SP)).

Using the classical characterization of the projection operator, we obtain the following exis-
tence/uniqueness result.

Proposition 3.9. The Signorini problem admits a unique weak solution u € HL () which
is given by

u = Projii(q)(F),
where F' € HL () is the solution to the Dirichlet-Neumann problem , and Projyi gy is the
classical projection operator onto the nonempty closed convex subset K(Q) of Hy (Q) for the scalar
product {-, ->H]13(Q).

3.1.3 A Tresca Friction Problem

Finally let us consider the Tresca friction problem given by

—Au = f in Q,
u=0 onIp

’ TP
Ohu = k on I'y, (TP)
|Onu| < g and uGyu + glu| = 0 on I'r.

We assume that almost every point of I't are in intp(I'r) (see Remark for details). The
difficulty of the above Tresca friction problem lies on the nonsmooth map || on the boundary I'r
which generates nonsmooth terms in the weak formulation below. Therefore, to get the
existence/uniqueness of the weak solution, we are led to use the notion of proximal operator from

convex analysis (see Definition [2.3)).

Definition 3.10 (Strong solution to the Tresca friction problem). A strong solution to the Tresca
friction problem is a function u € HY(Q) such that —Au = f in D'(), u = 0 almost
everywhere on I'p, Oyu € L2(I'y UTr) with Oyu = k almost everywhere on T'x, |Oqu(s)] < g(s)
and u(s)Oyu(s) + g(s)|u(s)| = 0 for almost all s € T't.

Definition 3.11 (Weak solution to the Tresca friction problem). A weak solution to the Tresca
friction problem (TP) is a function u € HY(Q) such that

/QVU-V(v—u)—i-/PTgh)—/FTgu|2/Qf(v—u)+/PNk:(v—u), Vo€ HL(Q).  (3.3)

Proposition 3.12. A function u € HY(Q) is a strong solution to the Tresca friction problem (TP))
if and only if u is a weak solution to the Tresca friction problem (TP).

From definition of the proximal operator (see Definition [2.3), one deduces the following exis-
tence/uniqueness result.

Proposition 3.13. The Tresca friction problem (TP) admits a unique solution u € HL(Q) given

by
u = prox(F),
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where F € HE(Q) is the solution to the Dirichlet-Neumann problem (DN) with h = 0 almost
everywhere on I'r, and where prox, stands for the proximal operator associated with the Tresca
friction functional ¢ defined by

¢: HL(Q) — R (3.4)
v o o) = / glol.

I'r

Remark 3.14. The assumption that almost every point of I'r are in intp(I'r) is only used to prove
that a weak solution to the Tresca friction problem s also a strong solution, more precisely
to get the Tresca’s friction law on T'r. Of course, some sets do not satisfy this assumption (for
instance the well-known Smith—Volterra-Cantor set (see, e.g, [T, Example 6.15 Section 6 Chapter
1])). Nevertheless it is trivially satisfied in most of standard cases found in practice. Furthermore,
if this assumption is not satisfied, one can also prove that the weak solution to the Tresca friction
problem is a strong solution by adding the assumption that g € L>°(T'r), and by using the
isometry between the dual of (L' (Tp), ||-[|(L1(rr)),) and L (Dr) (with its standard norm ||-||pe )
where || - (L1 (v, is the norm defined by

llirgy, © DT — R

The details are left to the reader.

3.2 Sensitivity Analysis of the Tresca Friction Problem

In this section we consider the parameterized Tresca friction problem given by

—Auy = f; in Q,
ug = 0 on I'p,
Ohuy = ky on I'y,
|Onue] < g and uiOnur + gelus] = 0 on I'r,

(TPy)

where f; € L2(Q2), k; € L?(I'y) and g; € L?(I'7), for all t > 0. We assume that, for all ¢t > 0, g; > 0
almost everywhere on I't, and almost every point of I'r belongs to intp(I'r).

Proposition claims that the solution to the Tresca friction problem (TP)) is related to the
solution to the Dirichlet-Neumann problem by the proximal operator. Therefore let us start
with the sensitivity analysis of the Dirichlet-Neumann problem , which will be useful for the
sensitivity analysis of the Tresca friction problem . The following proposition is easily proved
using the linearity of the Dirichlet-Neumann problem and Proposition

Proposition 3.15. Let F; € H} () be the unique solution to the parameterized Dirichlet-Neumann
problem given by
—AF;, = f; inQ,
Fy, =0 onlp,
OnFy = ki onTy,
OnF; =0 onl'r,

(DNy)

for all t > 0. If the two conditions

12



1. the map t € RT — f, € L%(Q) is differentiable at t = 0, with its derivative denoted by f} €
L*(Q);

2. the map t € RT — k, € L*('x) is differentiable at t = 0, with its derivative denoted
by k¢ € L*(I'x);

are satisfied, then the map t € RY w— F, € HY(Q) is differentiable at t = 0, and its derivative,
denoted by F}, € HL (), is the unique solution to the Dirichlet-Neumann problem given by

—AF) = f§ in Q,
F, =0 onTp,
OnF§ =k, onTxy,
WF) =0 onTr.

(DNp)

3.2.1 Parameterized Tresca Friction Functional and Twice Epi-Differentiability

Let us come back to the parameterized Tresca friction problem (TP). The Tresca friction
functional, defined in (3.4), depends now on the parameter ¢ > 0. Precisely we are led to define
the parameterized Tresca friction functional given by

®: Rt xHL(Q) — R (3.5)

(t,w) +— O(t,w):= / gt|w|.
Iy
Note that, for all ¢ > 0, ®(¢,) is a proper lower semi-continuous convex function on H{,(2) and,
from Proposition the unique solution to the parameterized Tresca friction problem is
given by
up = ProXe .y (F1), (3.6)

where F} is the unique solution to the parameterized Dirichlet-Neumann problem .

As we can see in Equality , the proximal operator proxg; .y depends on the parameter ¢ > 0.
This leads us to use Theorem [2.10] (extracted from [?]) which characterizes the derivative of a
map given by a parameterized proximal operator, using the notion of twice epi-differentiability
depending on a parameter (see Deﬁnition. Let us underline that this is an important difference
with the previous paper [?], where the proximal operator was associated to a functional that did
not depend on the parameter ¢ > 0, therefore the classical notion of twice epi-differentiability
introduced by R.T. Rockafellar (see [?]) was sufficient.

Let us prepare the background for the twice epi-differentiability of the parameterized Tresca
friction functional defined in . More specifically let us start with the characterization of the
convex subdifferential of ®(0, -) (see Deﬁnition. To this aim, we introduce an auxiliary problem
defined, for all u € H}(Q), by

—Av =0 in Q,
v=0 on I'p,
Opv =0 onIy, (AP)

Onv(s) € go(s)d|-|(u(s)) on I'r,

where, for almost all s € ', J|-|(u(s)) stands for the convex subdifferential of the classical absolute
value map |-| : R — R at u(s) € R. For a given u € H}(Q), a solution to this problem (AP,
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is a function v € H'(Q2) such that —Av = 0 in D'(Q), v = 0 almost everywhere on I'p, and also
with 9yv € LTy UT'1), Oyv = 0 almost everywhere on 'y, and 9,v(s) € go(s)9||(u(s)) for almost
all s € I'p.

Lemma 3.16. Let u € H,(Q). Then
09(0,-)(u) = the set of solutions to Problem (AP.,).

Proof. Let u € H(Q) and let us prove the two inclusions. Firstly, let v € H!(2) be a solution
to Problem (AP,)). Then v € HL(Q2), dyv € L*(I'x UT'T) and 9,v(s) € go(s)d|-|(u(s)) for almost
all s € I'r. Hence one has

Ohv(s)(o(s) — u(s)) < go(s)(le(s)] — [u(s)]),

for all ¢ € H,(Q) and for almost all s € I'p. It follows that

Onv(p —u) < / go(lel = [ul),

Ir I'r

for all ¢ € HL(Q). Moreover —Av = 0 in D’(Q), thus it holds —Av = 0 in L?(Q2). Hence, from
Green formula (see Proposition [2.13]), one gets
/QVU V(o —u) = (0uv, 9 — W g-1/20)xmr/2(T) -

for all ¢ € HL (). Furthermore, for all ¢ € HL (), ¢ € H)\?(Iy UTr) which is a vector subspace

of H'/2(I"). Therefore one has
<anva ¥ — u>H*1/2(F)><H1/2(1") = <an1), 2 U>H801/2(FNUFT)XHééZ(FNUFT) )

for all ¢ € HééQ(FN UTt). Since d,v € L2(I'y UT'r) and 9,v = 0 almost everywhere on I'y, this
leads to

(000,90 = Uy 172 (1 )y I (P Urr) = /r Oav(p —w),
T

for all p € HL (). Therefore one deduces
[ 7ee-w< [ onllel - o,
Q I

for all p € HL (), that is
<’U, ¥ — U>H11)(Q) < CI)(O’ (,0) - (I)((), u)’

for all ¢ € H5(Q). Thus v € 99(0,-)(u) and the first inclusion is proved. Conversely let v €
09(0,-)(u). One has

/ Vo V(g —u) < / go(leo] — ul), (3.7)
Q I'r

for all p € HL,(2). Considering the function ¢ = u + 1 € HL(Q) with any function ¢ € D(),
one deduces from Inequality (3.7) that —Av = 0 in D'(Q2), thus —Av = 0 in L2(2). Hence, from
Green formula and Inequality (3.7)), it follows that

<8nv, Y- u>H0701/2(FNUFT)XH(IJ(/)Q(FNUFT) < /FT go(\<,0| h ‘UD,
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for all € HL(Q), and thus also for all ¢ € H (I‘N UTr). Now let us consider the func-
tion p=u+w € Hl/Q(I‘N UT'r) for any w € HOO (FN UT'r). One gets

’<6nv, w> ok

1/2

(PnUDT)xHg)

r| < [ g0l0l < 1900z ooy Holhyurn)-

T

From Proposition one deduces that 9,v € L?(I'y UT't) and also that

/ w@nvg/ g0 + w| — Ju]), (3.8)
I'nyUl'r 't

for all w € HI/Q(FN UT'r), and thus by density for all w € L?(I'y UT't). By considering the
function w € L?(I'y UT't) defined by

w e +¢ on Iy,
o 0 onTy,

where 1 is any function in L?(T'y), one gets in Inequality (3.8)) that

PYO,v = 0,
I'n
for all 1 € L?(I'y). Hence 0,v = 0 almost everywhere on I'y, and Inequality (3.8)) becomes
[ te—w= [ el lu. (39)
FT 1_‘T

for all p € L2(I'y UT't). Now let s € I't be a Lebesgue point of d,v € L2(I'y U 1), udyv €
LY(Tx UTT), go € L3(I't) and of golu| € L}(I't), such that s € intr(I'r). Let us consider the
function ¢ € L2(I'y U T't) defined by

x on Br(s,e),
p =
u on 'y UTT\Br(s,e),

with € R and € > 0 such that Br(s,e) C I'r. Then one has from Inequality (3.9)) that

1 1 1
Ohv(z —u) < golz| —

< m T golul,
‘BF( )| Br(s,e) |BF($’€)| Br(s,e) |BF(57€)| Br(s,e)

mpthus d,v(s)(z — u(s)) < go(s)(|z| — |u(s)]) by letting e — 0F. This inequality is true for
any x € R, therefore d,v(s) € go(s)9|-|(u(s)). Moreover, since almost every point of I't are
in intr(I'r) and are Lesbegue points of O,v € L2(Ty UT'7), udyv € LY Ty UT'T), go € L2(I't) and
of go|u| € LY(I'r), one deduces

Inv(s) € go()0]-[(u(s)),

for almost all s € I't, and this proves the second inclusion. O

The twice epi-differentiability is defined using the second-order difference quotient functions.
Therefore let us compute the following second-order difference quotient functions of ® at u € Hi (Q)
for v € 09(0,-)(u) defined by

A2®(ujv): Hp — R
(t,u+ tw) — (¢, u) — t (v, W (q)

w s A20(ufv)(w) = e b

for all ¢ > 0.
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Proposition 3.17. For allt > 0, u € H5(Q) and v € 0®(0,-)(u), it holds that
AfP(ulv)(w) = / AFG(s)(u(s)|0nv(s)) (w(s))ds, (3.10)
I'r
for all w € HL(Q), where, for almost all s € T'r, A2G(s)(u(s)|0nv(s)) stands for the second-order
difference quotient function of G(s) at u(s) € R for dyv(s) € go(s)d|-|(u(s)), with G(s) defined by

G(s): R*xR — R
(t,x) +— G(s)(t,x) = ge(s)|x].
Remark 3.18. Note that, for almost all s € T'v and all t > 0, G(s)(t,-) = g:(s)|| is a proper

lower semi-continuous conver function on R. Moreover, since go > 0 almost everywhere on I, it
follows that

9[G(5)(0,-)] (x) = go(s)0|-(x),
for all x € R and for almost all s € T'y.

Proof of Proposition[3.17 Let t > 0, v € HL(Q) and v € 99(0,-)(u). From Lemma and
Green formula (see Proposition [2.13)), one deduces

(an>H}D(Q) = <3nvaw>H—1/2(r)xH1/2(r) J

for all w € HL (). Moreover, similarly to Lemma one gets

<va>H]13(Q) :/ woyv,

I'r

for all w € HL (). Thus it follows that

Afoulo)u) - [ L)+ 1000~ gt - twe)nt)

5)
I'p t

for all w € HL (). Furthermore, since 9,v(s) € go(s)d|-|(u(s)) for almost all s € I'r, one deduces
that
AF®(ulv)(w) = /F AFG(s)(u(s)|0nv(s)) (w(s))ds,

for all w € H}(2), which concludes the proof. O

From the above proposition we note that the twice epi-differentiability of the parameterized
Tresca friction functional is strongly related to the twice epi-differentiability of the function G(s)
for almost all s € T'r. Therefore the computation of the second-order epi-derivative of G(s) for
almost all s € I'r is the next step.

Proposition 3.19. Assume that, for almost all s € T'v, the map t € RY — g,(s) € RT is
differentiable at t = 0, with its derivative denoted by g{(s). Then, for almost all s € T't, the
map G(s) is twice epi-differentiable at any x € R and for all y € go(s)0||(x) with

D2G(s)(aly)(2) = Tic, _, (=) + gb(s) =2,

forall z € R, wherelg

90 (5) 900

stands for the indicator function of the set K, _v__ (see Ezample .
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Proof. We use the same notations as in Definitions 2.7 and 2.9] Let z € R. Then, for almost
all s € I'p, for all y € go(s)0|-|(x) and all z € R, one has

N2G(s) (aly) () = LEE T2 = s)lzl = tyz

2
N it el ks SN O OV
= gi(s 3 " z,
go(s)
that is (0x(s) ()
A2G(s) (ly) (=) = gu(s)62]- (m v ) 2+ 98 = 90ls)y
with #(S) € 9|-|(z), and where 6t2||(x|g%(s)) is the second-order difference quotient function of ||

at x for #@) (see Definition since |-| is t-independent function). Using the characterization
of Mosco epi-convergence (see Proposition [2.6)) and Example it follows that the map G(s) is
twice epi-differentiable at x for y with

DEG(s)aly)(2) =T,y () +65(5) 55

for all z € R, and the proof is complete. O

Remark 3.20. The perturbation of the friction term g; in the parameterized Tresca friction prob-
lem (TP4) (which is not considered in the previous paper [?]) generates an additional term in the
expression of the second-order epi-derivative of G(s), for almost all s € T'p, at all x € R for

all y € go(s)0]-|(x), given by the function z € R — g{)(s)g%(s)z eR.

3.2.2 The Derivative of the Solution to the Parameterized Tresca Friction Problem

From the previous results and some additional assumptions detailed below, we are now in a
position to state and prove the main result of this paper that characterizes the derivative of the
solution to the parameterized Tresca friction problem (TP.).

Theorem 3.21. Let u; € HL(Q) be the unique solution to the parameterized Tresca friction
problem (TP for allt > 0. Assume that

1. the map t € RY w— f, € L2(Q) is differentiable at t = 0, with its derivative denoted by f} €
L2(Q);

2. the map t € RT — k;, € L?('x) is differentiable at t = 0, with its derivative denoted
by ki € L2(T'n);

3. for almost all s € T't, the map t € R — gy(s) € RT is differentiable at t = 0, with ils
derivative denoted by gf(s), and also g, € L2(T't);

4. the parameterized Tresca friction functional ® defined in (3.5) is twice epi-differentiable (see
Definition [2.9) at ug for Fo —ug € 09(0,-)(uo), with

DZ® (uo| Fo — uo)(w) = / DZG(s)(uo(s)|0n (Fo — uo)(s))(w(s))ds, (3.11)

I'r

for all w € HE(Q), where Fy is the unique solution to the parameterized Dirichlet-Neumann

problem (DNy) for the parameter t = 0.
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Then the map t € RY — u, € HL(Q) is differentiable at t = 0, and its derivative denoted
by ufy € HE(Q) is the unique weak solution to the Signorini problem

—Auj = f in Q,
uy =0 onI'p U F%‘;’g",
Onufy, = ki on I'y,
Ohupy = 6% on I‘%“S’lfo, (SPg)
uf < 0, dnup < g6 % and up (Guuy — gp%2ee ) = 0 on I'p%,
uy >0, Oquf, > g{)% and ugy ( Onuf — g{)% =0 on I'p%,
where I'p = I‘%OS’;’O U I‘%Os’go U Frufos’fo U F%"S’fo with
I‘%"S’I‘\‘I}O i={seTlr|ug(s) #0},
F%‘;’gg ={s e 't |up(s) =0 and Oyuo(s) € (—go(s),90(s))} ,
Ly = {s € Tr | ug(s) = 0 and dyuo(s) = go(s)},
Frufos’fo ={selr|up(s) =0 and dyuo(s) = —go(s)}.

Remark 3.22. From Proposition one can naturally expect that the second-order epi-derivative
of the parameterized Tresca friction functional ® at ug for Fo—ug is given by Equality , which
corresponds to the inversion of symbols ME-lim and fFT in Equality . Nevertheless, to the
best of our knowledge, this inversion is an open question. Therefore we do not know, in general,
if the parameterized Tresca friction functional is indeed twice epi-differentiable at ug for Fy — ug.
Nevertheless, in Appendiz [4], we prove it in several particular cases corresponding to practical
situations.

Remark 3.23. The problem (SPy) in Theorem is a well-posed problem since

Ontin(8)
go(s)

—= )

for almost all s € I't, and hence g(’)% € L2(I'r) since g, € L2(T't).

Remark 3.24. Consider the framework of Theorem . Note that ujy is the unique weak solution
to the Signorini problem , but is not necessarily a strong solution. Nevertheless, in the case
where Oyuy € L2(I'x UT'r) and the decomposition T = T'p Uy U F%Osgo U I‘%Z’Dgo U F%Os’fo U I‘%Os’fo
is consistent (see Definition , then u(, is a strong solution to the Signorini problem .

Proof of Theorem[3.21} From Hypothesis [4 and Proposition it follows that

O (Fo — uo)(s)

00 w(s)ds, (3.12)

D2 (gl Fo — o) (w) = T, oo oo (w) + / ab(s)
o, g I'r

for all w € HE(Q), where /Cuo on(Fa—up) 1S the nonempty closed convex subset of HL (2) defined by

90

uo(s),

K On(Fg—ug) = {’LU S H]B(Q) | w(s) eK

wo on(Fo—ug)(s) for almost all s € FT} .
90

go(s)

Moreover, since 0, Fyp = 0 on I't, one gets
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K F
wo, In ( ;)0 uq)

_ 1 uo,9o 0,90 _ 0,90
= {w €Hp(Q) |w<0ae on '™, w>0ae on I'p)7, w=0ae on FTSD },

where subsets T'p2%, Tip»%, T % and Fff“s’f“ are defined in Theorem One can easily prove,
N D -

using norms equivalence between ||'HH]13(Q) and H'||H1(Q) on H{, (), that D2® (ug|Fo—wuo) is a proper

lower semi-continuous convex function on H{,(£2). Moreover, from Hypotheses [1| and [2| we know
from Proposition that the map ¢ € RT — F, € HL(Q) is differentiable at ¢ = 0, with its
derivative F, € HL (£2) being the unique solution to the Dirichlet-Neumann problem (DNg)). Thus,
using (3.6)) and Theorem the map t € RT — u, € HY(Q) is differentiable at ¢t = 0, and its
derivative uj, € HE () satisfies
u6 = prOXDgé(uo\Fo—uo)(F(;)v

which, from the definition of the proximal operator (see Proposition 7 leads to

F} —up € 0D2®(uo| Fy — uo)(up),
which means that

(Fo — ug, v = ug)yp ) < DE®(uo| Fo — uo)(v) — DI®(uo|Fo — uo)(up),

for all v € H (). Hence we get that
|9 = ) V0 - )
Q

T i () =T i (06 + [ go(s) 220 =00 (3 s,

a0 90 't g0 (S)

for all v € H (). Moreover, since 9,Fy = 0 on I't and F} is the unique solution to the Dirichlet-
Neumann problem (DNgl), it follows that

/ VUO V(v - UO) > Ik o an(Fo uo)( ) I)C w, 20(F0—ug) (”)

o [ - [ g [ b EE0 w(6) = s,

for all v € HE(2). Hence uj € K, o, ZalFouo) and

[y = [ o)+ [ Kot i) + gy () 220) 4 5) — ),
't go(s)

forallve K, Bn(FO ug) - From the weak formulation of the Signorini problem (see Definition [3.6)),

one deduces that uo is the unique weak solution to the Signorini problem (S . The proof is
complete. O

Roughly speaking, Theorem claims that the first-order approximation in H!(Q) of the
solution u; to the parameterized Tresca friction problem is given by ug + tuy, for small values
of t > 0, where uj is the solution to the Signorini problem . In the next section, we illustrate
this comment with some numerical simulations, by comparing u; and ug + tuf, in H'-norm for small
values of ¢t > 0.
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4 Numerical Simulations

In this section we illustrate Theorem [3.21] with some numerical simulations. The same notations
used in the previous section are preserved and, for an explicit two-dimensional example described
in Section we compare in H'-norm the solution wu; to the parameterized Tresca friction prob-
lem with its first-order approximation ug + tuy for small values of ¢ > 0, where w, is the
solution to the Signorini problem (SPY).

Numerical simulations are performed using Freefem-++ software (see [?]) and iterative switching
algorithms (see [?]). The results are presented in Section In a nutshell, let us recall that those
iterative switching algorithms operate by checking at each iteration if the boundary conditions are
satisfied, and if they are not, by imposing them and restarting the computation (see [?, Annexe
C p.25] for detailed explanations on those algorithms). The convergence proof of these algorithms
is not established yet but their performance are experimentally validated. Let us emphasize that
our aim in this section is not to study these algorithms rigorously but only to illustrate the main
result of this paper with a simple and easily implementable method to solve the Signorini problem
and the Tresca friction problem. Let us mention that there exist other algorithms, like for instance
Nitsche methods (see, e.g., [?, ?]), hybrid methods (see, e.g., [?]), mixed methods (see, e.g., [?])
and more, that are not used here, but could be more efficient for future researches.

4.1 Mathematical Framework

In this section we describe the example used for numerical simulations. This example is inspired
from the one introduced in the paper [?]. Let d = 2 and Q be the unit disk of R?, and assume that
the decomposition of the boundary I" = 01 is given by

I =TpUlyUTT,

with
I'p = {(cosf,sinf) e | T <O< I},
I'y = {(cos@,sin@) el <0< ?ﬂf},
Ip:={(cosf,sinf) e | - <H <2},

Let f € L%(Q) be the function defined by

f: Q — R
(0.9) > floy) = ~26() — 20/ (@) = 3 + 37~ DE"(@),

where £ is given by

¢ [-1,1] — R

-1 if —1<z<-1,
z +—> &(z):=1 sin(nz) if —3<z<i,
1 if $<z<l

Let us introduce, for all t > 0, the function f; € L?(Q) defined by

ft : QO — R
(,y) — filz,y) = exp(t)f(2,y),
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the function g, € L?(I'r) defined by

Gt I'r — R
(f,y) — gt(may) = 1+ta

and also the function k; € L?(T'y) defined by

k‘t : I'n. — R
(,y) — Fi(z,y) = L+ 1)E(2).

This choice of functions is justified by the fact that we are able to determinate explicitly the
solution ug to the parameterized Tresca friction problem (TP,) for ¢ = 0, which is given by

uo(ﬂc,y) = (.Z'2 + 92 - 1) 5(*7")7

1
2
for all (z,y) € Q. The knowledge of the solution uy reduces errors due to the approximations

for the numerical computations of uj, and ug + tuy. Indeed, since Oyu = £ and uy = 0 almost
everywhere on I', we can directly express the decomposition

— 140,90 Uo,90 uo0,90 0,90
Pp =D UTE % Ul ® UTE”,

which is given by

L% — {s € T | uols) # 0} = 0,
I‘%Os’g" ={(z,y) el | -3 <z <3}NTr={(cosh,sinf) el | &= < <3},
% ={(z,y) €T [z >3} NTp = {(cosf,sinf) €T | -5 <O < T},

L = {(z,y) €T |z <=3} NDp ={(cosf,sinf) €T | 2 <0 <4},

I'y I'p

0,90 u0,90
Ipg Trg

val/“,v/_

I's
D

Figure 1: Unit disk 2 and its boundary I' = T'p UI'y U, with I'r = F%‘égo UFE}‘;’;’U UF%‘;’?O UFZ}(’S’f”.

Moreover, since f, = f in L2(Q), k{, = ¢ in L?(T'y) and g/, = 1 in L?(T't), we are now in a position to

compute numerically u(, and u;, and then to compare u; with its first-order approximation ug + tuy
in H!-norm for several small values of ¢ > 0.
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log(||ut-u0-tu0'||_{H1})

~10 4

-5.0 -45 -4.0 -35 -3.0 -25 -2.0 -15 -1.0 -05 0.0
log(t)

Figure 2: The representation in logarithmic scale of the map ¢ € R — [lus — ug — tug|lg (o) € RF
(red) and of the map t € R* +— t2 € R (blue).

4.2 Numerical Results

Here we present the numerical results obtained for the two-dimensional example described
in Section Numerical simulations have been made using P2 finite element method and
with a discretization of the boundary of 190 points. We concatenate in Table [I| some values
of [Juy — uo — tugllg(q) for several small values of ¢ > 0. Figure [2| gives the representation in lo-
garithmic scale of the maps t € R* = [lu; — ug — tup|lg1 ) € RY and ¢t € R* = ¢* € RT. Finally,
Figure [3|is the illustration of u; and its first-order approximation ug + tug for ¢ = 0.1.

Roughly speaking, we observe from Figure [2| that

U — Ug ’
— ug
t

=0(),
HL(Q)

where O stands for the standard Bachmann-Landau notation, which is in accordance with our

main result (Theorem [3.21]).

Parameter t 0.60 0.40 0.20 0.1 0.075 0.05 0.025 0.01
||ut—u0—tu6HH1(Q) 0.6267 | 0.2558 | 0.0590 | 0.0145 | 0.0083 | 0.0042 | 0.0021 | 0.0022

Table 1: H'-norm of the difference between u; and its first-order approximation ug +tuj, for several
small values of ¢.

Remark 4.1. Note that the representation of |us — uo — tug || ) with respect tot in logarithmic
scale got a threshold for t ~ 0.03. This is a classical phenomenon due to the numerical approxi-
mations we made and the numerical algorithms we used.
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IsoValue
-0.466402

W0 0264131

W0 272821
W0 322102
WO 371384
W0 420665
W0 469947

IsoValue
- 0.463825

0.0244383

W0 366223
W0 415049
0463876

Figure 3: The first figure is the representation of u; and the second its first-order approxima-
tion ug + tuy for ¢ = 0.1.

5 Conclusions

In this paper we investigated the sensitivity analysis of a scalar mechanical contact problem
involving the Tresca’s friction law. This follows the previous paper |?] where only the right-hand
source term was perturbed. In the present work, the friction term associated to the Tresca’s friction
law was also perturbed which is the main novelty compared to the previous paper. Using tools
from convex analysis we proved that the derivative of a parameterized Tresca friction problem is
the solution to a problem with Signorini unilateral conditions. This work will be used in order to
investigate shape optimization problems involving the Tresca’s friction law in a forthcoming article.
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A Sufficient Conditions for the Twice Epi-Differentiability of
the Parameterized Tresca Friction Functional

In this appendix the notations and assumptions introduced in Section [3] are preserved. This
appendix follows from Remark [3.22] Our aim here is to prove, in some particular cases which
correspond to practical situations, that the parameterized Tresca friction functional ® is twice epi-
differentiable at ug for Fy —ug € 0P(0, -)(up), with its second-order epi-derivative given by .
From the characterization of Mosco epi-convergence (see Proposition , it is sufficient to prove
that, for all w € H,(Q), the two conditions

(i) for all (wg)i~o C HL(Q) such that (w;);>0 — w in H5(Q), then

lim inf AZ® (ug| Fy — ug) (wy) > I’Cu on(Fy—ugy (W) —|—/ QS(S)Mw(S)ds;

90 FT gO (3)

(ii) there exists (wi)i>0 C H(Q) such that (w)i~o — w in HL () and

, O (Fo —
limsup A7 ® (ug|Fo — uo)(we) <Ig o ooy (W) —I—/ g(’)(s)Ww(s)ds;
wg, 2n(Fo=10) I

90

are satisfied.
The condition is always satisfied. Indeed, from Proposition this condition can be

rewritten as

I'r

> /F D2G(s) (1to(5)|0u (Fo — ) (s))(w(s))ds,

which is true thanks to the dense and compact embedding H'(Q) < L2(T'), to the twice epi-
differentiability of the function G(s) for almost all s € T't (see Proposition [3.19) and to the
classical Fatou’s lemma (see, e.g., [?, Lemma 4.1 p.90]).

The condition (ii) is obviously satisfied if w ¢ /Cuo on(Fy—ug) - LThus, one has only to prove the
s
following assertion:

(it') for all w € K oa(ry—ug) , there exists (w;)i~0 C Hp(Q2) such that (w;)i>o — w in HL(2) and

’ 90

lim sup AZ®(ug| Fy — uo) (wy) < / gé(s)Mw(s)ds.

It go(s)

Unfortunately we are not able to prove this assertion in a general setting yet, that is without any
additional assumption on uy and on I'; and in any dimension d > 1. Nevertheless, in this appendix,
we prove this assertion in some particular cases which correspond to practical situations, providing
sufficient conditions. In particular, in the next sections, we consider the additional assumption

(A) the map t € R* + g, € L?(I'7) is differentiable at t = 0.
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A.1 First Example of Sufficient Condition: v = 0 almost everywhere
on I't

In this first example, we assume that ug = 0 almost everywhere on I'r, therefore F"O’qo has a

null measure. Let w € K wp, 20 (Fa=u0) . Then, taking the sequence w; = w for all ¢ > 0, one gets
90

A7 D (ug| Fy — up)(w) =

/ 9¢(8)|uo(s) + tw(s)| — ge(s)|uo(s)| + t0n(Fo — uo)(s)w(s) ,
F“D 90 UF“O 90 t2

Tgy

_ 9¢(8) = 90(8) N4 9¢(8) = 90(8) 34
= [, e as - [ ()d

Ts4 Tg_

't 0 9o(s)

when ¢ — 07 from Assumption Therefore Condition is satisfied.

A.2 Second Example of Sufficient Condition: Truncature

In this second example, we introduce two disjoint subsets of I't given by

I‘Zfosgo ={sel'r|ug(s) >0} and F,“F"slfi ={sely|u(s) <0}.
Hence it follows that Fuo’go =T U I‘%{;’go, Onug = —go almost everywhere on I'1)% and
SN+ N+

'Uf0 90

that dyug = go almost everywhere on I'1?7% . Now let us assume that there exists C' > 0 such

that |ug| > C on T2 U2 % . Let us c0n51der w €K, our—uy and the truncature w; € HE(Q)
SN+ SN— 000

of w defined by

% if w(z) > %
wi(x) = w(f) ?f lw(z)| < %1
7W if w( )S W?

for almost all z € Q and for all ¢ > 0. One deduces from Marcus-Mizel theorem (see [?]) that w; —
w in H(Q) when ¢t — 0F. Moreover, for all t < C?, one gets

A?@(UO|F0 — ’LLO)(U)t) =
/ gt(s) - go(S) U}t(S)dS _ / gt(s) - 90(8) wt(s)ds
[%0:90 UF“O 90 [%0:90 UF;(;%/O

t t

Tgy SN Tg_
SN gé(S)an(FO 7“0)(‘9)

. w(m s

when ¢t — 0 from Assumption therefore Condition is satisfied.

A.3 Third Example of Sufficient Condition: Truncature and Dilatation

In this third example, we take d = 2 and I'y = ), and we assume that ug and 9,ug are continuous
on I', and that T is diffeomorphic to the circle S := {(x,y) ER? | 2% +9? = 1}. From this last
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assumption, for simplicity, we assume in the sequel that I' = S'. In what follows, the next hypothe-
ses are only useful to simplify the computations. Let us assume that I'r = F%‘;‘f" U F%"Si‘; (in this
particular case, the hypothesis on the continuity of dyug is useless, see Remark where F%"Si’r
has already been defined in the previous example, and with the following parameterizations

Flﬁq’i‘) = {(cos,sin0) € T | 0 € |v1, [},

I“%Osfﬂ = {(COSG’Sine) er | RS [§17’Yl] U [72a§2]}7

such that —m < & <1 < 72 < & < 7 (see Figure[4). From the continuity of ug, there exists ¢ > 0

such that ug > ¢ on the set {(cos@,sin@) € T, 0 € [x1,x2]} C I‘%"N’i”, with 1 < x1 < x2 < 72. Let

us consider wy € ]&1,71[, wa € |Y2, &, and also oy, B; defined, for ¢ > 0 such that v/t < ¢, by
Qg 1= inf{a € [v1,x1] | V0 € [, x1], uo(cosf,sinf) > \/1?}7
B = inf{f)’ € [x2,72] | V0 € [x2, B], uo(cos O, sin0) > \/5}.

From the continuity of ug, ones deduces that a; — 1 and 8; — 2 when t — 0T.

uo0,90 /< U090
r 23 T

Tsy  Wwa Sna

13

&1

Figure 4: Illustration of the boundary I"

Let w € ICuO on(Fo—ug) » and let y, € HL () be the truncature of w given by

90

% if w(z) > %,
() =4 ww) i fe@)] < &,
—% if w(z) < —%,

for almost all z €  and for all ¢ > 0. As in the previous section, one gets y; — w in H} (),
and thus y,r — wr in HY2(I') when t — 0F. Let us consider, for ¢ > 0 sufficiently small, the
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dilatation z; := yyr o d; of yyr, with d; given by

dt : r — T
(.’El,.’tg) if ((El,xQ) eI'nUTD,
(21, 22) if (z1,22) € D7\ {(cos0,sin0), 0 € [w,wo]},
d“ret (xy, x9) if 2arctan ( ;57 ) € w1, o,
(z1,22) — d*X1(x1, x9) if 2 arctan zf_’f_l € [y, x1],
(z1,22) if 2arctan ( ;725 ) € [x1, x2],
dX2B (xq, 15) if 2arctan ( 57 ) € [x2, 8],
dPo2 (2, x0) if 2arctan ( ;527 ) € [Bt, wal ,

where

(71 — wi) 2arctan ( 25
d“v (xy,xe) = (cos 0¥ sin V1) | with 640 =

do0X1 (z1,xe) = (cos @¥X1 sin §4X1) | with %X =

(72 — x2) 2arctan

( )
(x1 — m1) 2arctan ( 20 ) (- )
( )

2 (Bt —72)

r+1

dxz:Pe (9617$2) _ (cos 9X27Bt’sin9)(27ﬂt) , with gx2:Pt —

B — ’
wo — 2arctan( ) +w —
dﬁ,,,w:z(xhl?) _ (coseﬁ““’?,sineﬁ““’z), with g%w2 — (w2 —72) T ;1 2 (72 ﬁt)
w2 — Pt

Note that, since —7 < & < w1 < wy < & < 7 (see Remark , then d; is a well-defined bijective
Lipschitz continuous map, and its inverse is also a bijective Lipschitz continuous map. Thus it
follows that z; € HY/?(T) and also z; — wr in H'Y/2(T") when t — 0. Then, for ¢ > 0 sufficiently
small, we denote by w; € H(Q) a lift of z; € HY/?(T'), such that w; — w in H(Q) when t — 0F.
Therefore, by denoting

gi(s)|uo(s) + twi(s)| — gi(s)[uo(s)| — t0n(Fo — uo)(s)wi(s)
2 ’
for t > 0 sufficiently small and for almost all s € I'r, it follows that

me(s) =

A2 (ug| Fy — ug)(wy) = my(s)ds

/{(cose,sin 0), 0€é1,w1]}

+ / my(s)ds + / my(s)ds
{(cos 0,sin 0), O€[w1,a¢]} {(cos 0,sin 0), O€[as,x1]}

+ / my(s)ds + / me(s)ds
{(cos 0,sin 0), 0€[x1,x2]} {(cos 0,sin 0), O€[x2,B:]}

+ / me(s)ds + / my(s)ds.
{(cos 0,sin 0), O€[B¢,wa]} {(cos 0,sin 0), O€[w2,£2]}

Then, from the definition of d; and Assumption |(A)l one deduces that

A2 (ug| Fy — uo) (wy) —> i g;)(s)w

w(s)ds,
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when ¢ — 07, and thus Condition is satisfied.

Remark A.1. In the case where I'r = Flfos’fo U F:faos’go , the hypothesis Oyug continuous on I is
N
useless. Nevertheless, in the general case 't = I’%OS’NQO U I‘%‘;gi’ U I‘%Ds’so U u I‘%f;’fo, the
hypotheses ug and Oyug continuous on I is sufficient to get the twice epi-differentiability of the
parameterized Tresca friction functional: a part of T30 (resp. T30, resp. T129° ) is never side
TS— TS+ TSN_

to side with a part of F%‘Jsji (resp. I’%"Slj’i , resp. T’ %Oslfi ), and thus, using an appropriate dilatation,
one can obtain the same result.

Remark A.2. The hypothesis on the angles
—T <& <wp <7 <y <wy <& <,

avoids the problem of the definition of d; for the point (x1,22) = (—1,0). But, in a more general
case, since I'p has a positive measure, it is always possible to translate the angles in order to
overcome this difficulty and get a well-defined dilatation dy.

Remark A.3. The assumption I'n = () can be replaced by the assumption that T'x is never side to
side with T2 and T2 . Without one of those assumptions, the dilatation may not work.
N+ N—
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