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In this paper we consider a one-dimensional model of ferromagnetic rings taking into account curvature and
anisotropy effects. We describe relevant stationary configurations of the magnetization and we investigate their
stability in the Liapunov sense.

I. INTRODUCTION

Ferromagnetic nanowires give promising solutions to de-
sign low-power-consuming devices ensuring non-volatile
storage with fast access to the information (see [20]). In such
devices, one observes the formation of domains in which the
magnetization is almost constant and tangent to the wire di-
rection. These domains are separated by domain walls (DWs),
thin zones in which the magnetization switches abruptly. This
property plays an important role in numerical data storage
since the information is encoded by the localization of DWs
(see [2, 15, 20]). Because of these potential applications, DW
dynamics in ferromagnetic wires is intensively investigated as
well in Physics (see [16, 19, 23–27]) as in Mathematics (see
[3, 8, 10, 17, 22]). In [12, 14, 18], DW dynamics and magne-
tization reversal in ferromagnetic rings are investigated. In the
present paper, we consider a one-dimensional model of ferro-
magnetic ring justified by asymptotic methods in [4]. We aim
to exhibit all the in-plane stationary solutions and to investi-
gate their stability. In [17], S. Labbé, Y. Privat, and E. Trélat
address a similar issue: existence and stability of L-periodic
steady states for an infinite straight nanowire. They compute
all these configurations and prove their instability, excepted
for uniform configurations in which the magnetic moment is
oriented in the direction of the wire. Here, we enrich the
model by taking into account curvature and anisotropy effects
due to the geometry of the considered rings. The consequence
is that we exhibit more stable configurations, which reflects
the complex landscape observed in experiments.

A. Model for ferromagnetic rings

We recall the usual 3-dimensional dynamical model of fer-
romagnetism.

We denote by (e1,e2,e3) the canonical basis of R3, by ·
(resp. |.|) the euclidean scalar product (resp. the euclidean
norm) in R3, and by × the cross product. We consider the
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ring Ωη obtained by rotation around the z-axis of the ellipse

contained in the plane x = 0 of equation (y−R)2

a2 + z2

b2 < η2,
where a > b and η is a small dimensionless parameter.

Ferromagnetic materials are characterised by a spontaneous
magnetization described by a vector field called magnetic mo-
ment. We consider a ferromagnetic device occupying the ring
Ωη . We denote by M(t,X) the distribution of the magnetiza-
tion at time t and at point X = (x,y,z) ∈Ωη . We suppose that
the material is saturated, i.e. the norm of M is a constant equal
to Ms (expressed in A.m−1):

|M(t,X)|= Ms a.e. (1)

The magnetic induction B and the magnetic field H are linked
by the constitutive relation

B = µ0(H+M),

where M is the extension of M by zero outside Ωη , and where
µ0 = 4π.10−7 kg.m.s−2.A−2 is the vacuum permeability.

The variations of M satisfy the following Landau-Lifschitz
equation (see [1, 6, 13]):

∂M
∂ t

=−γM×Heff(M)− αγ

Ms
M× (M×Heff(M)), (2)

where:

• γ (expressed in A.s.kg−1) is the gyromagnetic ratio,

• the dimensionless term α is the damping coefficient,

• Heff is the effective field (expressed in T = kg.s−2.A−1)
given by:

Heff(M) =
A

M2
s

∆M+µ0Hd(M),

where we denote by A the exchange constant (expressed
in J.m−1) and by Hd(M) the demagnetising field ob-
tained from M by solving the Maxwell-Faraday equa-
tion:

curl Hd(M) = 0 and div(Hd(M)+M) = 0 in R3. (3)
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The effective field Heff(M) is related to the micromagnetism
energy Em(M) by the relation Heff =−∂MEm, with

Em(M) =
1
2

A
M2

s

∫
Ωη

|∇XM|2dX+
1
2

µ0

∫
R3
|Hd(M)|2dX.

(4)
In order to obtain a dimensionless model, we write

M(t,X) = Msm( t
τ
, X

R ), where the characteristic time τ is
given by

τ =
R2Ms

γA

(we recall that R is the radius of the ring). We denote by
t = t

τ
the dimensionless time and by X = (x,y,z) = X

R ∈ R3

the dimensionless position. Then, m(t,X) is defined for t ∈
R+ and X ∈ Oη , where Oη is the ring obtained by rotation
around the z-axis of the ellipse contained in the plane x = 0 of
equation R2(y−1)2

a2 + R2z2

b2 ≤ η2. It satisfies:



m : R+×Oη −→ S2, where S2 is the unit sphere of R3,

∂m
∂ t

=−m×H(m)−αm× (m×H(m)),

H(m) = ∆m+Hd(m).
(5)

Using [4] and [21], we take the limit of the 3d-model (5)
when η tends to zero. The limit domain is the unit circle con-
tained in the plane z = 0 (of equations x2 + y2 = 1 and z = 0).
The limit m of the 3d-magnetic moment m only depends on
time t and on the position on the circle parametrised by arc-

length by θ 7→

cosθ

sinθ

0

. It satisfies:



m : R+
t ×Rθ −→ S2,2π-periodic in the variable θ ,

∂m
∂ t

=−m×Heff(m)−αm× (m×Heff(m)),

Heff(m) =
∂ 2m
∂θ 2 +

1
λ

Hd(m),

with Hd(m) =− b
a+b

(m ·er)er−
a

a+b
m3e3,

(6)

where we denote:

er =

cosθ

sinθ

0

 , eθ =

−sinθ

cosθ

0

 , e3 =

0
0
1

 ,

and where the dimensionless parameter λ is given by:

λ =
A

µ0M2
s R2 .

The dimensionless energy related to the limit model is given
by :

E (m) =
1
2

∫ 2π

0
|∂m
∂θ
|2dθ

+
1

2λ

∫ 2π

0

(
b

a+b
(m ·er)

2 +
a

a+b
|m3|2

)
dθ .

(7)
As already observed in [4, 10, 21], we remark that the limit

demagnetising operator Hd is local in the one-dimensional
model and is analogous to an anisotropic term. We remark
also that (6) is invariant by rotation-translation, i.e. if m sat-
isfies (6), then for all ϕ ∈ R, (t,θ) 7→ Rϕ m(t,θ −ϕ) is also
solution for (6), with

Rϕ =

cosϕ −sinϕ 0
sinϕ cosϕ 0

0 0 1

 . (8)

In what follows we define the spaces:

L2
p = { f ∈ L2

loc(R,RN), such that for a.e. x, f (x+2π) = f (x)},

Hk
p = {w ∈ Hk

loc(R,R
N), such that for all x, w(x+2π) = w(x)}.

We denote by < | > the scalar product in L2
p and by ‖ . ‖L2

p

the associated norm:

< u |v >=
∫ 2π

0
u(θ)v(θ)dθ , ‖u‖L2

p
=

(∫ 2π

0
|u(θ)|2dθ

) 1
2

.

We also denote by ‖ . ‖Hk
p

the norm in Hk
p:

‖u‖Hk
p
=

(
k

∑
j=0

∥∥∥∥ d ju
dθ j

∥∥∥∥2

L2
p

) 1
2

.

B. Statement of the main results

Our goal is to describe all the in-plane steady states of (6)
and to discuss their stability. The in-plane solutions are of
particular interest in applications. Indeed, in experimental de-
vices, the considered rings are thin in the z-direction, so that
a > b in our model. Since the demagnetising field behaves
like an anisotropic term where the z-axis is a bad axis of mag-
netization, the observed configurations in the experiments are
in-plane.

We write the in-plane steady states M0 for (6) on the form:

M0(θ) = (cosu(θ))er(θ)+(sinu(θ))eθ (θ), (9)

where u ∈ H1
loc(R;R) satisfies:

∃k ∈ Z,∀θ ∈ R,u(θ +2π) = u(θ)+2kπ. (10)

The latest condition in necessary to ensure that M0 is 2π-
periodic. We remark that k + 1 is the topological degree of
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M0 as a function from the unit circle S1 into itself. In Section
II, we calculate all these static solutions. A simple calculation
gives that M0 satisfies (6) if and only if u satisfies the pendu-
lum equation:

u′′+
b

λ (a+b)
cosusinu = 0, (11)

and we use a shooting method to construct solutions for the
pendulum equation satisfying (10). In the case k = 0, we es-
tablish the following theorem:

Theorem 1. Let λ > 0, a > 0 and b > 0. Let l ∈ N such
that l <

√
b

λ (a+b) ≤ l + 1. There exists l distinct 2π-periodic

solutions M 0
j for (6), which topological degree equals one,

and such that all degree-one steady state M0 is equal to either
±eθ , ±er or ±R(ϕ)M 0

j (θ −ϕ), where ϕ ∈ R.

FIG. 1. Solution eθ . FIG. 2. Solution er

FIG. 3. Solution M 0
1 FIG. 4. Solution M 0

2 .

For k 6= 0, the landscape is simpler, since we prove exis-
tence and uniqueness up to translation-rotation of the solu-
tions:

Theorem 2. Let λ > 0, let k ∈ Z, k 6= 0. There exists a sta-
tionary solution for (6) denoted M0

k,λ , of degree k + 1, such
that all steady state M0 of degree k+1 satisfies:

∃ϕ ∈ R, ∀θ ∈ R, M0(θ) = R(ϕ)M0
k,λ (θ −ϕ).

We investigate also the stability of the solutions described
in the previous Theorems. We recall that a steady-state so-
lution M0 ∈ H1

p is said to be stable for (6) if for all ε > 0,
there exists η0 > 0 such that all solution m of (6) such that
‖m(0, ·)−M0( ·)‖H1

p
≤ η0 satisfies:

∀ t > 0, ‖m(t, ·)−M0( ·)‖H1
p
≤ ε.

FIG. 5. Solution M0
1,λ . FIG. 6. Solution M0

2,λ .

FIG. 7. Solution M0
−1,λ . FIG. 8. Solution M0

−2,λ .

In addition, we say that M0 ∈ H1
p is asymptotically stable if it

is stable and if there exists η1 > 0 such that all solution m for
(6) such that ‖m(0, ·)−M0( ·)‖H1

p
≤ η1 satisfies:

‖m(t, ·)−M0( ·)‖H1
p
→ 0 when t→+∞.

Concerning the solutions in the case k = 0, we first obtain
the instability of ±er:

Theorem 3. Let a > 0 and b > 0 such that a > b. For all
λ > 0, ±er is unstable.

Concerning ±eθ , we establish the following result:

Theorem 4. Let a > 0 and b > 0 such that a > b. If λ > a
a+b ,

then ±eθ is unstable and if λ < a
a+b , then ±eθ is asymptoti-

cally stable.

In the critical case λ = a
a+b , we remark that there exists a

one-parameter family of steady states given by:

Mϕ : θ 7→ cosϕeθ (θ)+ sinϕe3.

We obtain the following stability theorem for eθ :

Theorem 5. Let a > 0 and b > 0 such that a > b. We assume
that λ = a

a+b . Then eθ is stable. In addition, there exists η1 >

0 such that all solution m for (6) such that ‖m(0, ·)−eθ‖H1
p
≤

η1 satisfies that there exists ϕ ∈ R such that m(t, ·) tends to
Mϕ in H1

p when t tends to +∞.

We conclude the case of the steady-state solutions of degree
one by the following result:
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Theorem 6. Let a > 0 and b > 0 such that a > b. For all λ >
0, the solutions M 0

j given by Theorem 1 are linearly unstable.

In the case k 6= 0, we must take into account the invariance
of (6) by rotation-translation. We give the following defini-
tion:

Definition 1. We say that M0 ∈ H1
p is asymptotically stable

modulo rotation-translation if it is stable and if there exists
η1 > 0 such that all solution m for (6) such that ‖m(0, ·)−
M0( ·)‖H1

p
≤ η1 satisfies:

∃ϕ∞ ∈R, ‖m(t, ·)−R(ϕ∞)M0( · −ϕ∞)‖H1
p
→ 0 when t→+∞.

We establish the following theorem, in which for a fixed
k 6= 0, we discuss the stability of M0

k,λ depending on the values
of λ :

Theorem 7. Let a > 0 and b > 0 such that a > b. For all
k ∈ Z∗, for λ > 0 small enough, M0

k,λ is asymptotically stable
modulo rotation-translation.

For all k in Z\{0,−1}. Then, for λ > 0 large enough, M0
k,λ

is linearly unstable.

We also prove the following result, in which for a fixed λ ,
we discuss the stability of M0

k,λ depending on k:

Theorem 8. Let a > 0 and b > 0 such that a > b. Let λ > 0.
Then for |k| large enough, M0

k,λ is linearly unstable.

The paper is organised as follows: Theorems 1 and 2 are
proved in Section II. As already said, we use a shooting
method to construct solutions of the pendulum equation (11)
satisfying the degree condition (10).

The rest of the paper is devoted to the study of the stability
for the solutions described in Theorems 1 and 2.

The first difficulty to be tackled when proving stability or
instability results is due to the saturation constraint |m| = 1.
In order to deal with perturbations satisfying this constraint,
as in [7, 10, 11], we express the perturbations m of M0 in the
mobile frame (M0,M1,M2) writing:

m(t,θ) = r1(t,θ)M1(θ)+ r2(t,θ)M2

+
√

1− (r1(t,θ))2− (r2(t,θ))2 M0(θ),

where:

M1(θ) =−(sinu(θ))er(θ)+(cosu(θ))eθ (θ) and M2 = e3.

In Section III, we rewrite Equation (6) in the mobile frame.
We obtain an equivalent equation in the new unknown r =
(r1,r2) of the form:

∂tr =
(
−α −1
1 −α

)
L r+F(θ ,r,∂θ r,∂θθ r), (12)

where L =

(
−∂θθ r1 + f1r1
−∂θθ r2 + f2r2

)
(the functions f1 and f2 depend

on the considered solution M0), and where F is a non linear

term, also depending on M0. The stability of M0 for (6) is
equivalent to the stability of the null solution for (12). It is
strongly related to the sign of the eigenvalues of L .

In Section IV, we establish the instability of er. In this case,
the coefficients of (12) do not depend on θ , so by considering
a constant-in-θ perturbation of 0, we are back to the o.d.e.
case, and we conclude by proving that the linearization for the
o.d.e admits an eigenvalue which real part has the bad sign.

Theorems 4 and 5 are proved in Section V. The instability
for large λ is established as in Section IV. For λ < a

a+b , L is
positive definite and we establish the asymptotic stability by
variational estimates.

In the critical case λ = a
a+b , L is positive, but 0 is in its

spectrum. This is due to the fact that there is a one-parameter
family ϕ 7→ M(ϕ) of steady states such that eθ = M(0). By
projection on the mobile frame, 0 belongs also to a one-
parameter family ϕ 7→ V(ϕ) of solutions for (12). The per-
turbations r of zero are then described as

r(t, ·) = V(ϕ(t))+w(t, ·), where w(t, ·) ∈ (KerL )⊥.

Since L is positive definite on (Ker L )⊥, variational esti-
mates yield that w(t, ·) tends exponentially to 0, which im-
plies that ϕ(t) tends to a finite limit ϕ∞, so that r tends to
V(ϕ∞).

Section VI is devoted to the proof of the linear instability
for the steady states M 0

j . We prove first that L admits a non-
positive eigenvalue, and we establish that this implies that the
null solution is unstable for the linearization of (12).

In the last section, we tackle the case of the solutions M0
k,λ

given by Theorem 2. Because of the invariance by rotation-
translation of Equation (6), 0 is the spectrum of L and we
conclude with the method used for eθ in the critical case.
When L admits non-positive eigenvalues, we establish lin-
ear instability with the same arguments as in Section VI.

II. EXISTENCE OF STEADY-STATES SOLUTIONS

We look for in-plane steady-state solutions for (6), writing
it on the form:

M0(θ) = (cosu(θ))er(θ)+(sinu(θ))eθ (θ). (13)

These solutions satisfy:

M0×Heff(M
0) = 0, (14)

and plugging (13) into (14), we obtain that M0 satisfies (14) if
and only if u satisfies:

u′′+
b

λ (a+b)
cosusinu = 0,

∃k ∈ Z,∀θ ∈ R,u(θ +2π) = u(θ)+2kπ.

(15)

As already said, the latest condition ensures that M0 is 2π-
periodic. By multiplying (15) by u′ and by integration we
obtain that there exists a constant ρ such that for all θ ,

(u′)2 +
b

λ (a+b)
sin2 u = ρ

2. (16)
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A. Proof of Theorem 1: case k = 0

We look for 2π-periodic solutions u of (15). We remark first
that the constant functions θ 7→ k π

2 , k ∈ Z, are solutions. The
corresponding solutions for (6) are on the form : θ 7→ ±er for
k even and θ 7→ ±eθ for k odd. If λ is small enough, there are
also non constant solutions. The 2π-periodic solution for (15)
are either on the separatrix, i.e. the lines p =± b

λ (a+b) cosu in
the phase portrait, or inside one cell Cm between the separa-
trix, where:

Cm =
{
(u, p) ∈ R2, |u−mπ|< π

2
,

|p|2 < b
λ (a+b)

|cosu|2
}
,

(from classical argument, a trajectory cannot cross the separa-
trix so it cannot get out of a cell).

In the first case, we have ρ2 = b
λ (a+b) , and the only 2π-

periodic solutions on the separatrix are the constant maps θ 7→
u(θ) = π

2 mod (π). Hence, the corresponding solutions for
(6) are M0 =±eθ .

For solutions inside the separatrix, we investigate first the
solutions contained in the cell C0.

By translation in the variable θ , we can assume that u(0) ∈
[0, π

2 [ and u′(0) = 0. If u(0) = 0, we recover the constant
solution u≡ 0 corresponding to M0 = er.

In order to investigate the non constant 2π-periodic solution
for (15) which trajectories are contained in C0, for γ ∈]0, π

2 [,
we denote by uγ the solution of:

u′′γ +
b

λ (a+b)
cosuγ sinuγ = 0,

uγ(0) = γ and u′γ(0) = 0.

(17)

By classical calculation, the period L(γ) of this solution is
given by:

L(γ) = 4

√
λ (a+b)

b

∫
γ

0

du√
sin2

γ− sin2 u
. (18)

If uγ is L(γ)-periodic , then nL(γ) (n ∈N∗) is also a period for
uγ . So it comes that the function uγ satisfies uγ(0) = uγ(2π)
if and only if there exists n ∈ N∗ such that nL(γ) = 2π .
The function L is continuous and non decreasing (see [11]).
In addition, we have lim

γ→ π
2

L(γ) = +∞, and lim
γ→0

L(γ) =

2π

√
λ (a+b)

b
.

Therefore, if
b

λ (a+b)
≤ 1, for all γ ∈]0, π

2 [, L(γ)> 2π , so

there is no 2π-periodic solution of this type.

If
b

λ (a+b)
> 1, then there exists l ∈ N∗ such that l + 1 ≥√

b
λ (a+b) > l and we have:

2π

l +1
≤ lim

γ→0
L(γ)<

2π

l
.

So, by monotonicity arguments, for all n ∈ {1, . . . , l}, there
exists only one γn ∈]0, π

2 [ such that nL(γn) = 2π . Therefore,
there are exactly l 2π-periodic solutions (modulo translation
in θ ) in the cell C0.

By classical argument, the solutions v contained in the cell
C1 are on the form θ 7→ π−u(θ), where u is a solution in the
cell C0. In addition, the solutions w in the cell Cm are on the
form w(θ) = u(θ)+mπ if m is even and w(θ) = mπ− u(θ)
if m is odd.

B. Proof of Theorem 2: case k 6= 0

Now we look for planar static solutions of (6) of degree k+
1, k 6= 0, i.e. we look for solutions u for (15) such that u(θ +
2π) = u(θ)+2kπ , with k 6= 0. These solutions are outside the
separatrix, since the solutions inside the separatrix take theirs
values in intervals which sizes is less than π . These solutions
satisfy (16) with |ρ|2 > b

λ (a+b)
.

For k ≥ 1, we consider, for ρ >
√

b
λ (a+b) , the solution vρ

of (15) such that vρ(0) = 0 and v′ρ(0) = ρ . Writing (16), we
obtain that vρ reaches the value 2kπ at the point ρ such that:

θk(ρ) :=
∫ 2kπ

0

dv√
ρ2− b

λ (a+b)
sin2 v

= 2π.

We have: θk(ρ) = 4k
∫ π

2

0

dv√
ρ2− b

λ (a+b)
sin2 v

. We re-

mark that the function θk is continuous and non increasing. In
addition, we have:

lim
ρ→

√
b

λ (a+b)

θk(ρ) = +∞ and lim
ρ→+∞

θk(ρ) = 0.

Then we deduce that for all fixed k ≥ 1, there exist a unique
ρ ∈]

√
b

λ (a+b) ,+∞[ such that θk(ρ) = 2π .
By the same way we prove the same result for k ≤ −1 with

ρ <−
√

b
λ (a+b)

.

III. EQUATIONS IN THE MOBILE FRAME

We investigate the stability in the Liapunov sense of the
static solutions we calculated in the previous section. Since
we must only consider perturbations satisfying the saturation
constraint |M| = 1, we use the mobile frame technique intro-
duced in [10]. Let M0 be a static solution for Equation (6),
obtained either in Theorem 1 or in Theorem 2:

M0(θ) = cosu(θ)er(θ)+ sinu(θ)eθ (θ).

We denote by ρ2 the conserved quantity:

ρ
2 = (u′)2 +

b
λ (a+b)

sin2 u.
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We introduce the mobile frame (M0(θ),M1(θ),M2), where

M1(θ)=−(sinu(θ))er(θ)+(cosu(θ))eθ (θ) and M2 = e3.

We consider perturbations of M0 as follows:

m(t,θ)= r1(t,θ)M1(θ)+r2(t,θ)M2+(1+ν(r(t,θ)))M0(θ),
(19)

with ν(r) =
√

1− r2
1− r2

2 − 1, so that we consider only
perturbations satisfying the saturation constraint |m|= 1.

We write the Landau-Lifschitz equation with this new un-
known and by projection on M1 and M2 we obtain that if M
satisfies (6), then r satisfies the following quasilinear equa-
tion:

∂tr = Λr+F(θ ,r,∂θ r,∂θθ r). (20)

The linear part of this equation writes Λr = JL r, where

J =

(
−α −1
1 −α

)
and L r =

(
L1r1
L2r2

)
, (21)

with

L1 =−∂θθ + s0 and L2 = L1 +P, (22)

where

s0 =
b

λ (a+b)
(sin2 u− cos2 u)

P =
a

λ (a+b)
− (ρ2 +2u′+1).

(23)

The nonlinear part F(θ ,r,∂θ r,∂θθ r) is given by:

F(θ ,r,∂θ r,∂θθ r) = F1(r)∂θθ r+F2(r)(∂θ r,∂θ r)+

+F3(θ ,r)∂θ r+F4(θ ,r),
(24)

with

• F1 ∈ C ∞
(
B(0, 1

2 );L (R2;R2)
)
:

F1(r) = ν(r)

αν(r)+2α 1

−1 αν(r)+2α



+α

 r2
2 −r1r2

−r1r2 r2
1



+

−r2−αr1−αr1ν(r)

r1−αr2−αr2ν(r)

dν(r),

(25)

• F2 ∈ C ∞
(
B(0, 1

2 );L2(R2×R2;R2)
)
:

F2(r)(∂θ r,∂θ r) =

−r2−αr1−αr1ν(r)

r1−αr2−αr2ν(r)

d2
ν(r)(∂θ r,∂θ r),

(26)

• F3 ∈ C ∞
(
R×B(0, 1

2 );L (R2;R2)
)
:

F3(θ ,r)∂θ r = 2(u′+1)

 r2 +αr1 +αr1ν(r)

−r1 +αr2 +αr2ν(r)

∂θ r1

+2(u′+1)

 α(1− (r1)
2)

−1−ν(r)−αr1r2

dν(r)(∂θ r),

(27)

• F4 ∈ C ∞
(
R×B(0, 1

2 );R
2
)
:

F4(θ ,r) = 2u′′(θ)

 r1r2 +αr2
1 +αν(r)r2

1

−r2
1 +αr1r2 +αν(r)r1r2



+αP(θ)

 r1r2
2

−r2
1r2



−α

(
ν

2(r)+ 2ν(r)
) s0(θ)r1

(P(θ)+ s0(θ))r2



+ν(r)

−(P(θ)+ s0(θ))r2

s0(θ)r1

 .

(28)

As it is proved in [10], using the saturation constraint |m|=
1 automatically satisfied from (19), we have that m satisfies
(6) if and only if r = (r1,r2) satisfies (20). In addition, M0 is
a stable solution for (6) if and only if zero is a stable solution
for (20).

We remark that since ν is smooth on the open ball B(0,1),
Equation (20) is valid for |r|< 1. The nonlinear terms can be
estimated as follows:

Proposition 1. There exists K such that for all r ∈ B(0, 1
2 ), for

all θ ∈ R,

|F1(r)| ≤ K|r|2, |F2(r)| ≤ K|r|, |F3(θ ,r)| ≤ K|r|
and |F4(θ ,r)| ≤ K|r|2,

and

|dF1(r)| ≤ K|r|, |dF2(r)| ≤ K, |dF3(θ ,r)| ≤ K
and |dF4(θ ,r)| ≤ K|r|.

(we denote by dFj the derivative of Fj with respect to r).

IV. PROOF OF THEOREM 3

The solution er corresponds to u = 0, so Equation (20)
writes
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∂tr =
(
−α −1
1 −α

)
L r+G(r,∂θ r,∂θθ r), (29)

where

L =

(
−∂θθ − b

λ (a+b) 0
0 −∂θθ +

a−b
λ (a+b) −1

)
,

and

G(r,∂θ r,∂θθ r) = F1(r)∂θθ r+F2(r)(∂θ r,∂θ r)

+G3(r)∂θ r+G4(r),

with F1 and F2 are given respectively by (25) and (26), and
where G3 and G4 are given respectively by (27) and (28) re-
placing u by 0.

Since the coefficients of Equation (29) does not depend on
θ , if we consider an initial data r0 constant in θ , then the
solution remains constant in the variable θ and satisfies the
ordinary differential equation:

dr
dt

= Ar+G4(r), (30)

where A is the matrix:

A =

(
−α −1
1 −α

)(− b
λ (a+b) 0

0 a−b
λ (a+b) −1

)
,

and where G4 : B(0, 1
2 ) −→ R2 satisfies G4(r) = O(|r|2) in a

neighbourhood of zero. In order to prove that 0 is unstable
for (29), it suffices to prove that zero is unstable for the o.d.e.

(30). Writing A =
b

λ (a+b)
B, where

B =

(
α −δ

−1 −αδ

)
, with δ =

a
b
−1− λ (a+b)

b
,

we have to prove that for all α > 0 and all δ ∈ R, B admits
at least one eigenvalue with strictly positive real part. We de-
note by ∆ = α2(1−δ )2 +4(1+α2)δ the discriminant of the
characteristic polynomial X2−α(1−δ )X− (1+α2)δ .

If ∆ ≤ 0, then δ < 0 and the real part of the eigenvalues
equals α(1−δ ), which is positive.

If ∆ > 0, the eigenvalues are real. If δ > 0, there product is
negative, so that one of them is in R+∗. If δ = 0, then α > 0
is an eigenvalue of B. If δ < 0, the eigenvalues have the same
sign, and their sum equals α(1−δ )> 0, so they are positive.

Therefore, for all δ ∈R, for all α > 0, B admits at least one
eigenvalue with strictly positive real part. So, the same result
occurs for A, and the null solution is unstable for (30). This
concludes the proof of Theorem 3.

V. STABILITY RESULTS FOR eθ

The solution eθ corresponds to u ≡ π

2 , so Equation (6)
writes

∂tr =
(
−α −1
1 −α

)
L r+G(r,∂θ r,∂θθ r), (31)

where

L =

(
−∂θθ +

b
λ (a+b) 0

0 −∂θθ +
a

λ (a+b) −1

)
,

and

G(r,∂θ r,∂θθ r) = F1(r)∂θθ r+F2(r)(∂θ r,∂θ r)

+G3(r)∂θ r+G4(r),

with F1 and F2 are given respectively by (25) and (26), and
where G3 and G4 are given respectively by (27) and (28) re-
placing u by π

2 .

A. Instability for λ > a
a+b

As in the previous section, since the coefficients of (31) do
not depend of θ , we focus on constant-in-θ perturbations of
0, and we are led to study the instability of zero for the o.d.e:

dr
dt

= Ar+G4(r), (32)

where A is the matrix:

A =

(
−α −1
1 −α

)( b
λ (a+b) 0

0 a
λ (a+b) −1

)
,

We define µ ∈ R∗+ by µ = − a−λ (a+b)
b , so that A = b

λ (a+b)B,

with B =

(
−α µ

1 αµ

)
. The characteristic polynomial of B

has a strictly positive discriminant, so that the eigenvalues are
real. In addition, their product equals −(1+α2)µ < 0, thus
one eigenvalue of B is strictly positive. So A admit a strictly
positive eigenvalue, therefore 0 is unstable for (32), which im-
plies that eθ is unstable for (6).

B. Asymptotic stability for λ < a
a+b

We consider now the case λ < a
a+b . In this case, both L1 =

−∂θθ + b
λ (a+b) and L2 = −∂θθ + a

λ (a+b) − 1 are self-adjoint
coercive operators, so there exists c1 > 0 and c2 > 0 such that
for all r ∈ H2

p we have:

c1‖r‖2
H1

p
≤< L r |r >≤ c2‖r‖2

H1
p
, (33)

and

c1‖r‖2
H2

p
≤ ‖L r‖2

L2
p
≤ c2‖r‖2

H2
p
. (34)

We have the following estimate concerning the nonlinear
part of (20):
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Lemma 1. There exists a constant c such that for all r ∈ H2
p

with ‖r‖L∞ ≤ 1
2 , we have:

‖F(θ ,r,∂θ r,∂θθ r)‖L2
p
≤ c < L r |r >

1
2 ‖L r‖L2

p
.

Proof. Using Proposition 1, assuming that ‖r‖L∞ ≤ 1
2 , we

have:

‖F1(r)‖L2
p
≤ ‖F1(r)‖L∞‖∂θθ r‖L2

p
,

≤ K‖r‖L∞‖r‖H2
p
,

≤ K′‖r‖H1
p
‖r‖H2

p

by Soboblev embeddings,

‖F2(r)(∂θ r,∂θ r)‖L2
p
≤ ‖F2(r)‖L∞‖∂θ r‖2

L4 ,

≤ K‖r‖L∞‖∂θθ r‖L2
p

by Gagliardo Nirenberg inequality,
≤ K′‖r‖H1

p
‖r‖H2

p

by Soboblev embeddings,

‖F3( · ,r)∂θ r‖L2 ≤ ‖F3( · ,r)‖L∞‖∂θ r‖L2 ,
≤ K‖r‖L∞‖∂θ r‖L2 ,
≤ K′‖r‖H1

p
‖r‖H2

p
,

‖F4(r)‖L2 ≤ K‖r‖2
L4 ,

≤ K′‖r‖2
H1

p

by Soboblev embeddings,
≤ K′‖r‖H1

p
‖r‖H2

p
.

Adding up these estimates, using (33) and (34), we conclude
the proof of Lemma 1.

Let us prove that If λ < a
a+b , eθ is asymptotically stable.

Proof. Taking the scalar product in L2
p of the equation (20)

with L r, we obtain:

1
2

d
dt

< L r |r >= −α‖L r‖2
L2

p
+< F |L r >,

≤ −α‖L r‖2
L2

p
+‖F‖L2

p
‖L r‖L2

p
.

So, by Proposition 1, as long as ‖r‖L∞ ≤ 1
2 , we have:

1
2

d
dt

< L r |r >≤−α‖L r‖2
L2

p
+ c < L r |r >

1
2 ‖Lr‖2

L2
p
,

that is:

1
2

d
dt

< L r |r >+
(

α− c < L r |r >
1
2

)
‖Lr‖2

L2
p
≤ 0.

Using the Sobolev embedding H1 ⊂ L∞ in 1d and Estimate
(33), we fix η > 0 such that η ≤ α

2c and such that

< L r |r >
1
2≤ η =⇒‖r‖L∞ ≤ 1

2
.

As long as < Lr,r >
1
2≤ η , we obtain α − c < Lr,r >

1
2≥ α

2
and we have

d
dt

< L r |r >+α‖Lr‖2
L2

p
≤ 0.

From Estimates (33) and (34), we have ‖L r‖2
L2

p
≥ c1

c2
<

L r |r >, therefore, as long as < L r |r > 1
2≤ η , we have:

d
dt

< L r |r >+α
c1

c2
< L r |r >≤ 0.

Using a comparison lemma, we deduce that as long as <

L r |r > 1
2≤ η :

< L r(t) |r(t)> ≤ < L r(0) |r(0)> e−α
c1
c2

t
. (35)

We fix η0 =
η

2 . Suppose that:

< L r(0) |r(0)>
1
2≤ η0. (36)

So, we have:

∀t ≥ 0, < L r(t) |r(t)>
1
2 < η . (37)

If it is not the case, there exists t ′ > 0 such that:

< L r(t ′) |r(t ′)>
1
2≥ η .

Let t1 be the smallest time in which (37) is not satisfied. Then
at time t1, we have:

< L r(t1) |r(t1)>
1
2 = η . (38)

For all t ∈ [0, t1[, we have

< L r(t) |r(t)> ≤ < L r(0) |r(0)> e−α
c1
c2

t ≤ η
2
0 =

1
4

η
2.

By continuity, we have <L r(t1) |r(t1)>≤ 1
4 η2 and this is in

contradiction with (38).
Finally, under the assumption < L r(0) |r(0) > 1

2≤ η0, for
all positive time, Estimate (35) is valid, so that ‖r‖H1 is small
for all t and ‖r‖H1

p
tends to zero as t goes to infinity.

C. Critical case λ = a
a+b

In this case, the effective field writes:

Heff(m) =
∂ 2m
∂θ 2 −

b
a
(m ·er)er−m3e3.

We remark that there exists a one-parameter family of steady-
state solutions for Eq. (6) given by:

mϕ(θ) = cosϕeθ (θ)+ sinϕe3.

By projection on the mobile frame (M1,M2), we obtain that
(20) admits a one-parameter family of steady-state solutions
given by:

V(ϕ)(θ) =

(
mϕ(θ) ·er(θ)

mϕ(θ) ·e3

)
=

(
0

sinϕ

)
. (39)
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The existence of this one-parameter family induces that 0 is
in the spectrum of the linearization L , as it can be seen from
the fact that:

L =

(
−∂θθ +

b
a

−∂θθ

)
,

We claim the following Proposition:

Proposition 2. We assume that there exists a function V of
class C 1, defined on ]− τ0,τ0[ (τ0 > 0), with values in C ∞

p ,
such that:

• ∀ϕ ∈]− τ0,τ0[, V(ϕ) is a steady state for (20),

• V(0) = (0,0), V′(0) 6= 0,

• KerL = Vect V′(0),

We assume in addition that:

∃c > 0,∀v ∈ ( KerL )⊥∩H2
p , < L v |v >≥ c‖v‖2

L2
p
. (40)

Then 0 is stable for (20).
In addition, there exists η0 > 0 such that for all solution

r of (20) such that ‖r(0, ·)‖H1
p
≤ η0, then there exists ϕ∞ ∈

]−τ0,τ0[ such that ‖r(t, ·)−V(ϕ∞)( ·)‖H1
p

tends to zero when
t tends to +∞.

Proposition 2 will be established in subsection E. We prove
in subsection D. that eθ in the critical case falls under this
proposition.

D. Application of Proposition 2 in the critical case

Let us check that the assumptions of Proposition 2 are sat-
isfied in the case λ = a

a+b for the steady state eθ , with V given
by (39). Indeed, on the one hand,

∀θ , V′(0)(θ) =
(

0
1

)
,

so that Ker L = RV′(0), and on the other hand, for all v =

(v1,v2) ∈ ( KerL )⊥∩H2
p ,

< L v |v >=
∫ 2π

0

(
|∂xv1|2 +

b
a
|v1|2

)
+
∫ 2π

0
|∂xv2|2

≥ b
a
‖v1‖2

L2
p
+‖v2‖2

L2
p

by Poincaré-Wirtinger inequality which can be applied to v2,

since v ∈ (Ker L )⊥ implies that
∫ 2π

0
v2 = 0.

Therefore, by Proposition 2, 0 is stable for (20), and starting
from an initial datum close to 0, a solution r for (20) satisfies
that there exists ϕ∞ such that r(t, ·) tends to V(ϕ∞) in H1

p
when t tends to +∞. This implies that eθ is stable for (6) and
that if m is a solution for (6), if m(0, ·)− eθ is sufficiently
small in H1

p , then there exists ϕ∞ such that m(t, ·) tends to
mϕ∞

when t tends to +∞.

E. Proof of Proposition 2

We remark that L is a positive self-adjoint operator with
compact resolvent and admits 0 as a simple eigenvalue. We
define L2,⊥

p and Hk,⊥
p by

L2,⊥
p =

{
v ∈ (L2

p)
2,< v |V′(0)>= 0

}
Hk,⊥

p = (Hk
p)

2∩L2,⊥
p .

From (40), we have the following estimates:

Proposition 3. There exists c1 > 0 and c2 > 0 such that for
all w ∈ H2,⊥

p we have:

c1‖w‖2
H1

p
≤ < L w |w > ≤ c2‖w‖2

H1
p
,

c1‖w‖2
H2

p
≤ ‖L w‖2

L2
p
≤ c2‖w‖2

H2
p
.

1. New unknown

In order to deal with the null eigenvalue, we rewrite the
unknown r in the following system of coordinates:

r(t,θ) = V(ϕ(t))(θ)+w(t,θ), (41)

where ϕ ∈ C 1(R+;R) and w ∈ C 1(R+;H2
p) such that w satis-

fies the orthogonality condition:

∀t > 0, < w |V′(0)>= 0.

The decomposition (41) exists while r remains in a neighbour-
hood of zero as it is established in the following proposition:

Proposition 4. There exists η0 > 0 such that for all r ∈ (L2
p)

2

with ‖r‖L∞ ≤ η0, there exists a unique pair (ϕ,w) ∈ R×L2,⊥
p

such that

r = V(ϕ)+w. (42)

In addition, if r ∈ Hk
p then w ∈ Hk,⊥

p .

Proof. Suppose that r admits a decomposition as (42). Tak-
ing the L2

p-inner product of r with V′(0), we obtain that

< r |V′(0)>=< V(ϕ) |V′(0)> .

We define the function ψ by:

ψ : R −→ R
s 7−→ < V(s) |V′(0)>

since ψ(0) = 0 and ψ ′(0) = ‖V′(0)‖2
L2

p
> 0 then ψ is a C 1-

diffeomorphism in a neighborhood of zero, so ϕ is character-
ized by:

ϕ = ψ
−1 (< r |V′(0)>

)
.
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By subtraction we obtain that w is characterized by w = r−
V(ϕ) which is in L2,⊥

p .
Plugging (41) in (20), we find the following equation equiv-

alent to (20):

dϕ

dt
V′(ϕ)+∂tw = Λw+G(θ ,ϕ,w,∂θ w,∂θθ w), (43)

where

G = G1 +G2 +G3 +G4,

with

G1 = F1(r)(∂θθ w)+ F̃1(r)(w)(∂θθ V(ϕ)),

G2 = 2F2(r)(∂θ w,∂θ V(ϕ))+F2(r)(∂θ w,∂θ w)

+F̃2(r)(w)(∂θ V(ϕ),∂θ V(ϕ)),

G3 = F3(θ ,r)(∂θ w)+ F̃3(θ ,r)(w)(∂θ V(ϕ)),

G4 = F̃4(r)(w).

(44)

In (44), we denote r = V(ϕ)+w, and the terms F̃i(r) are ob-
tained by writing the Taylor expansion of Fi at the point V(ϕ):

F̃i(r) = Fi(r)−Fi(V(ϕ)) =
∫ 1

0
dFi(V(ϕ)+ sw)ds.

We remark that F̃1(r) and F̃3(r) are in L (R2;L (R2;R2)),
F̃2(r) ∈L (R2;L2(R2×R2;R2)), and F̃4(r) ∈L (R2;R2).

Taking the L2
p-inner product of (43) with V′(0), we obtain:

dϕ

dt
g(ϕ) =< Λw |V′(0)>+< G |V′(0)>, (45)

where

g(ϕ) =< V′(ϕ) |V′(0)> .

Since g(0) = ‖V′(0)‖2
L2

p
6= 0, there exists η1 > 0 such that if

|ϕ| ≤ η1, then |g(ϕ)| ≥ 1
2 |g(0)|. So we can divide Eq. (45) by

g(ϕ) and we obtain the following equation, valid for |ϕ| ≤ η1
and for w such that ‖V(ϕ)+w‖L∞

p < 1:

dϕ

dt
= H (ϕ,w) =:

1
g(ϕ)

(
< Λw |V′(0)>+< G |V′(0)>

)
.

(46)

Replacing
dϕ

dt
in equation (43) by the expression given in

(46) we find:

∂tw = Λw+F (θ ,ϕ,w,∂θ w,∂θθ w), (47)

where F = G−H (ϕ,w)∂sV(ϕ).

2. Estimate of the nonlinear part

Using Sobolev embedding of H1 into L∞, using Proposition
3, we introduce η2, 0 < η2 ≤ η1 such that if |ϕ| ≤ η2 and
< Lw |w >

1
2≤ η2, then ‖V(ϕ)+w‖L∞

p ≤
1
2 .

Proposition 5. There exists a constant C > 0 such that as long
as < L w |w >

1
2≤ η2 and |ϕ| ≤ η2, then

|H (ϕ,w)| ≤C < L w |w >
1
2 ,

and

‖F (θ ,ϕ,w,∂θ w,∂θθ w)‖L2
p
≤C

(
|ϕ|+< L w |w >

1
2

)
‖L w‖L2

p

Proof. Using V is in C 1(]− τ0,τ0[;C ∞
p ) with V(0) = 0,

there exists a constant K such that for s in a neighbourhood of
0 and for all θ ∈ R, we have:

|V(s)(θ)| ≤ K|s|, |∂θ V(s)(θ)| ≤ K, |∂θθ V(s)(θ)| ≤ K.

Using Proposition 1, we estimate each term of G on the
following way: starting by G1, we have:

|G1| = |F1(r)(∂θθ w)+ F̃1(r)(w)(∂θθ V(ϕ))|
≤C (|r||∂θθ w|+ |r||w|) ,

then

‖G1‖L2
p
≤C‖V(ϕ)+w‖L∞

p

(
‖∂θθ w‖L2

p
+‖w‖L2

p

)
≤C

(
|ϕ|+‖w‖L∞

p

)
‖w‖H2

p
.

It comes that

‖G1‖L2
p
≤C

(
|ϕ|+‖w‖H1

p

)
‖w‖H2

p
.

In addition, on the one hand we have:

< F1(r)(∂θθ w) |V′(0)>= < ∂θθ w |(F1(r))∗(V′(0))>

= −< ∂θ w |∂θ ((F1(r))∗(V′(0)))>

so∣∣< F1(r)(∂θθ w) |V′(0)>
∣∣≤C‖w‖H1

p
≤C < L w |w >

1
2 .

On the other hand,

|< F̃1(r)(w)(∂θθ V(ϕ)) |V′(0)> | ≤

‖F̃1(r)‖L∞
p ‖w‖L∞

p ‖V(ϕ)‖H2
p
‖V′(0)‖L1

p

≤C‖w‖H1
p
≤C < L w |w >

1
2 .

Therefore, there exists a constant C such that

|< G1 |V′(0)>≤C < L w |w >
1
2 .

Concerning G2, we have:

|G2| ≤ |2F2(r)(∂θ w,∂θ V(ϕ))+F2(r)(∂θ w,∂θ w)|
+|F̃2(r)(w)(∂θ V(ϕ),∂θ V(ϕ))|,

≤ C|r||∂θ w||∂θ V(ϕ)|+C|r||∂θ w|2 +C|w||∂θ V|2,

≤ C (|ϕ|+ |w|)
(
|∂θ w|+ |∂θ w|2

)
+C|w||∂θ V|2.
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Then

‖G2‖L2
p
≤ C

(
|ϕ|+‖w‖L∞

p

)(
‖∂θ w‖L2

p
+‖∂θ w‖L4

p

)
+C‖w‖L2

p
‖∂θ V‖L4

p
.

Using that ‖∂θ v‖L4
p
≤ ‖v‖L∞

p ‖∂θθ v‖L2
p
, we obtain:

‖G2‖L2
p
≤ C

((
|ϕ|+‖w‖L∞

p

)
‖w‖H2

p
+‖w‖H2

p
|ϕ|
)

≤ C
(
|ϕ|+‖w‖H1

p

)
‖w‖H2

p
.

We have also that:

|< G2 |V′(0)> | ≤ ‖G2‖L1
p
‖V′(0)‖L∞

p ,

and since

‖G2‖L1
p
≤C(|ϕ|+‖w‖L∞

p )(‖∂θ‖L1
p
+‖∂θ‖2

L2)+C‖w‖L2
p
‖∂θ V‖2

L4
p
,

we obtain that

|< G2 |V′(0)> | ≤C‖w‖H1
p
.

Concerning G3, we have:

|G3|= |F3(θ ,r)(∂θ w)+ F̃3(θ ,r)(w)(∂θ V(ϕ))|

≤ C|r||∂θ w|+K|w||∂θ Vϕ |.

Thus

‖G3‖L2
p
≤C

(
|ϕ|+‖w‖L∞

p

)
‖∂θ w‖L2

p
+K‖w‖L2

p
|ϕ|.

So,

|< G3 |V′(0)> | ≤C‖w‖H1
p
≤C < L w |w >

1
2 ,

and

‖G3‖L2
p
≤C

(
|ϕ|+‖w‖H1

p

)
‖w‖H2

p
.

We finally estimate G4:

‖G4‖L2
p
= ‖F̃4(r)(w)‖L2

p
≤C

(
|ϕ|+‖w‖L∞

p

)
‖w‖L2

p
.

So, we obtain both that:

‖G4‖L2
p
≤C

(
|ϕ|+‖w‖H1

p

)
‖w‖H2

p
,

and that:

|< G4 |V′(0)> | ≤C < L w |w >
1
2 .

Adding up all the previous estimates, we obtain first that:

‖G‖L2
p
≤C

(
|ϕ|+‖w‖H1

p

)
‖w‖H2

p
.

Using Proposition 3 we get

‖G‖L2
p
≤C

(
|ϕ|+< L w |w >

1
2

)
‖L w‖L2

p
. (48)

In addition, we remark that:

< Λw |V′(0)>= < L w |
(
−α 1
−1 −α

)
V′(0)>

= < w |L
(
−α 1
−1 −α

)
V′(0)>

= < w |L
(

0 1
−1 0

)
V′(0)> .

since L is self-adjoint and since L V′(0) = 0. Therefore,

|< Λw |V′(0)> | ≤ K‖w‖L2
p
.

Using the previous estimates, we obtain that:∣∣< Λw |V′(0)>+< G |V′(0)>
∣∣≤C < L w |w >

1
2 . (49)

Next, we recall that since |ϕ| ≤ η1, |g(ϕ)| is bounded by
below by 1

2 g(0)|. So we obtain that:

| 1
g(ϕ)

| ≤ 2
g(0)

. (50)

Coupling (49) and (50), we obtain that there exists C such
that

|H (ϕ,w)| ≤C < L w |w >
1
2 , (51)

and coupling (48) and (51), we conclude the proof of Propo-
sition 5.

3. Proof of the stability

Taking the scalar product in L2
p of (47) with Lw we find:

1
2

d
dt

< L w |w >+α‖Lw‖2
L2

p
=< F |w > . (52)

Using Proposition 5, as long as < Lw |w >
1
2≤ η0 and |ϕ| ≤

η0, we have:

1
2

d
dt

<L w |w>+
(

α−C
(
|ϕ|+< L w |w >

1
2

))
‖Lw‖2

L2
p
≤ 0.

As long as < L w |w >
1
2≤ η1 and |ϕ| ≤ min{η0,

α

2C} we
find

1
2

d
dt

< L w |w >+
(

α

2
−C < L w |w >

1
2

)
‖L w‖2

L2
p
≤ 0.

Let η2 = min{η1,
α

4C}. As long as < L w |w >
1
2≤ η2, we

have:

d
dt

< L w |w >+
α

2
‖L w‖2

L2,⊥
p
≤ 0.
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Using comparison lemma, we deduce that as long as
< L w |w >

1
2≤ η2, we have:

< L w(t) |w(t)> ≤ < L w(0) |w(0)> e
−αk

2 t . (53)

As in the proof of the stability of eθ in Section V B, we can
prove that if <L w(0) |w(0)> 1

2≤ η2
2 then ‖w‖H1 is small for

all time t and it tends to zero as t goes to infinity.
In addition, using Estimate (53) together with Equation (46)

and the estimate on H in Proposition 5, we obtain that:

∀ t ≥ 0,
∣∣∣∣dϕ

dt

∣∣∣∣≤C < L w(0) |w(0)> e
−αk

2 t ,

and by integration, we obtain that if ϕ(0) and <
L w(0) |w(0)> are small enough, then for all t, ϕ(t) remains
small and tends to a finite limit when t tends to +∞.

This concludes the proof of Proposition 2.

VI. LINEAR INSTABILITY RESULTS

A. Linear instability criterion

Proposition 6. Let M0 = (cosu)er + (sinu)eθ be a steady
state for Equation (6). We assume that L given by (21)-(22)-
(23) admits a negative eigenvalue µ associated to the eigen-
vector ξ . Then the linearised system ∂tv = JL v admits solu-
tions v ∈ C 0(R+;H2

p) which are unbounded in L∞(R+;H1
p).

Proof. The operator L is self-adjoint with compact resolvent,
so that we can split L2

p as:

L2
p = E−⊕⊥ E0⊕⊥ E+, (54)

where E− =
⊕

λ∈sp(L )∩R∗−
ker(L −λ Id), E0 = kerL , and E+

is the closure of
⊕

λ∈sp(L )∩R∗+
ker(L −λ Id) in L2

p. We remark

that both E− and E0 are finite-dimensional. In addition, L is
coercive on E+, thus there exist c1 > 0 and c2 > 0 such that:

∀w ∈ E+, c1‖w‖2
H1

p
≤< L w |w >≤ c2‖w‖2

H1
p
.

We assume that L admits a strictly negative eigenvalue λ

associated to the eigenvector ξ ∈ H2
p .

We consider the solution v ∈ C 0(R+;H2
p) of the Cauchy

problem:  ∂tv = JL v,

v(t = 0, ·) = ξ ( ·),
(55)

Let us assume that v is bounded in L∞(R+;H1
p), i.e.

∃C, ∀t ≥ 0, ‖v(t)‖H1
p
≤C. (56)

By taking the L2
p-inner product of (55) with L v, we obtain

that:

1
2

d
dt

< L v |v >+α‖L v‖2
L2

p
= 0, (57)

so that t 7→< L v(t) |v(t) > is non increasing. In particu-
lar, since < L v(0) |v(0)>=< L ξ |ξ >= λ‖ξ‖2

L2 p < 0, and
since <L v(t) |v(t)> is bounded by below by (56), we obtain
that:

lim
t→+∞

< L v(t) |v(t)>∈ R∗−. (58)

In addition, integrating (57) between 0 and t and using (56),
we obtain that for all t ≥ 0,∫ t

0
‖L v‖2

L2
p
dt ≤ 2C,

so

L v ∈ L2(R+;L2
p), (59)

and by (55),

∂v
∂ t
∈ L2(R+;L2

p). (60)

Using (56), we consider a sequence of times tn tending to
+∞ such that vn := v(tn, ·) converges to v weakly in H1

p and
strongly in L2

p. Using (54), we split vn as vn = v−n + v0
n + v+n ,

and we have:

< L vn |vn >=< L v−n |v−n >+< L v+n |v+n > .

By projection into each subspace, (v+n ) tends to v+ weakly in
H1

p and (v−n ) tends weakly to v− in H1
p .

Since E− is finite dimensional, (v−n ) tends to v− strongly
for all norms. In particular, < L v−n |v−n > tends to <
L v− |v− >.

By convexity of w 7→< L w |w > in H1
p ∩E+, we obtain

that < L v+ |v+ >≤ lim < L v+n |v+n >.
Therefore, by summing a limit plus a limit inf, we obtain

that:

< L v |v >≤ lim < L vn |vn > . (61)

We define wn by wn( ·) =
∫ 1

0
v(tn + s, ·)ds. We have:

‖wn− vn‖2
L2

p
=
∫ 2π

x=0

∣∣∣∣∫ 1

s=0
(v(tn + s,x)− v(tn,x))ds

∣∣∣∣2 dx,

≤
∫ 2π

x=0

∫ 1

s=0
|v(tn + s,x)− v(tn,x)|2dsdx,

≤
∫ 2π

x=0

∫ 1

s=0

∣∣∣∣∫ s

0

∂v
∂ t

(tn + τ,x)dτ

∣∣∣∣2 dsdx,

≤
∫ 2π

x=0

∫ 1

τ=0

∣∣∣∣∂v
∂ t

(tn + τ,x)
∣∣∣∣2 dτdx.

So,

‖wn− vn‖2
L2

p
≤
∫ +∞

tn
‖∂v

∂ t
(s, ·)‖2

L2
p
.
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Since ∂v
∂ t ∈ L2(R+;L2

p), we obtain that ‖wn− vn‖L2
p

tends to

zero so that wn tends to v strongly in L2
p.

Now, we remark that

‖L wn‖2
L2

p
=
∫ 2π

x=0
|
∫ 1

s=0
L v(tn + s)ds|2dx,

≤
∫ 2π

x=0

∫ 1

s=0
|L v(tn + s)|2dsdx

≤
∫ +∞

tn
‖L v(s)‖2

L2
p
ds.

Using (59), we obtain that L wn tends to zero strongly in L2
p.

Since L wn tends to L v in the distributions, we obtain that
L v = 0. In particular, we have: < L v |v >= 0, which con-
tradicts (58) and (61).

Remark 1. Using spectral theory arguments, it is possible to
prove directly that if L admits a negative eigenvalue, then Λ

admits a positive eigenvalue, so that 0 is unstable for (55).
The main arguments of this proof, due to J. F. Bony and V.
Bruneau, from IMB, UMR CNRS 5251, Université de Bor-
deaux ([5]) are that for large α , Λ is a small perturbation of
−αL , so it admits a positive eigenvalue, and that the imagi-
nary axe is an impassable barrier for α > 0.

B. Proof of Theorem 6

Let a > 0, b > 0, and λ > 0 such that b
λ (a+b) > 1. We con-

sider a steady-state solution M 0
j for Equation (6), obtained in

Theorem 1. We recall that in this case, u is a solution of the
pendulum equation inside the separatrix, so that ρ2 < b

λ (a+b) .

We remark that L1 cosu = (ρ2 − b
λ (a+b) )cosu. So ρ2 −

b
λ (a+b) is a negative eigenvalue corresponding to the eigen-
vector cosu. Therefore, using Proposition 6, we obtain that
zero is linearly unstable for Equation (20), so that the solu-
tions M 0

j exhibited in Theorem 1 are linearly unstable for (6).

VII. STABILITY RESULTS FOR k 6= 0

We fix a and b such that a > b > 0. For λ > 0 and k ∈ Z∗,
we consider the solution M0

k,λ obtained in Theorem 2 on the
form:

M0
k,λ =

(
cosuk,λ (θ)

)
er(θ)+

(
sinuk,λ (θ)

)
eθ (θ),

where uk,λ satisfies:
d2uk,λ

dθ 2 +
b

λ (a+b)
sinuk,λ cosuk,λ = 0,

uk,λ (0) = 0, uk,λ (2π) = 2kπ, k 6= 0.

We denote ρk,λ = duk,λ

dθ
(0) and we recall that all θ ∈ R,

(ρk,λ )2 =

(
duk,λ

dθ
(θ)

)2

+
b

λ (a+b)
(sinuk,λ (θ))2. (62)

We define the self-adjoint operators L k,λ
1 and L k,λ

2 by:

L k,λ
1 =−∂θθ +

b
λ (a+b) (sin2 uk,λ − cos2 uk,λ ),

L k,λ
2 = L k,λ

1 +Pk,λ ,

where Pk,λ (θ) =
a

λ (a+b)
−

(
(ρk,λ )2 +2

duk,λ

dθ
(θ)+1

)
.

By invariance of Equation (6) by rotation-translation, since
uk,λ is not constant, there exists a one-parameter family Mϕ

of static solutions for (6) given by:

Mϕ(θ) = R(ϕ)M0
k,λ (θ −ϕ),

where R(ϕ) is defined by (8). By projection of the mobile
frame (M1

k,λ (θ),M
2), we construct a one-parameter family

V(ϕ) of static solutions for (20) given by:

V(ϕ)(θ) =

(
ρk,λ (ϕ)(θ)

0

)
, (63)

where

ρk,λ (ϕ)(θ) = Mϕ(θ) ·M1
k,λ (θ),

= −sinuk,λ (θ)cosuk,λ (θ −ϕ)

+cosuk,λ (θ)sinuk,λ (θ −ϕ).

The existence of this one-parameter family induces that
0 is in the spectrum of L k,λ , associated to the eigenvector

∂ϕ V(0) =
(

duk,λ

dθ

0

)
. Indeed, we have the following proposi-

tion:

Proposition 7. The operator L k,λ
1 is self-adjoint and posi-

tive. In addition ker L k,λ
1 = R duk,λ

dθ
.

Proof. We first remark that in the considered case, duk,λ

dθ
never

vanishes. We set

`= ∂θ +
b

λ (a+b)
sinuk,λ cosuk,λ

duk,λ

dθ

.

Then we have `∗ ◦ `= L k,λ
1 . So L k,λ

1 is a positive operator.
We have also

L k,λ
1

duk,λ

dθ
=

(
d2uk,λ

dθ 2 +
b

λ (a+b)
cosuk,λ sinuk,λ

)′
= 0,

then duk,λ

dθ
∈ kerL k,λ

1 .
In addition, since < L k,λ

1 w |w >= ‖`w‖2, if L k,λ
1 w = 0,

then `w = 0, so w ∈ ker` which is of dimensional at most one
since the operator ` is of order one.

In order to establish the stability of M0
k,λ , the crucial point

is the positivity of L k,λ
2 . On the one hand, using Proposition

6, we have the following instability results:
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Proposition 8. If L k,λ
2 admits negative eigenvalues, then 0 is

linearly unstable for (20).

Corollary 1. We assume that for all θ ∈R, Pk,λ (θ)< 0. Then
0 is linearly unstable for (20).

Proof. We have

< L k,λ
2

duk,λ

dθ
| duk,λ

dθ
>=

∫ 2π

0
Pk,λ

∣∣∣∣∣duk,λ

dθ

∣∣∣∣∣
2

dθ < 0,

so by min max argument, since L k,λ
2 is self-adjoint, it ad-

mits negative eigenvalues. Therefore, by Proposition 8, 0 is
linearly unstable for (20).

On the other hand, using Proposition 2, we obtain the fol-
lowing results of asymptotic stability modulo translation un-
der positivity assumption for L k,λ

2 :

Proposition 9. We assume that L k,λ
2 is positive definite. Then

M0
k,λ is asymptotically stable modulo rotation-translation for

Equation (6).

Proof. We use Proposition 2 with ϕ 7→ V(ϕ) given by (63)
Then,

∂ϕ V(0)(θ) =
(

duk,λ

dθ
(θ)

0

)
6= 0.

In addition, if L (v1,v2) = 0, then L kλ
1 v1 = L k,λ

2 v2 = 0.
Since L k,λ

2 is definite positive, then v2 = 0, and since

kerL k,λ
1 = R duk,λ

dθ
, then:

kerL = R∂ϕ V(0).

So the assumptions of Proposition 2 are satisfied, thus we con-
clude first that 0 is stable for (20), so Mk,λ

0 is stable for (6).
In addition, as it is stated in Proposition 2, for initial data

close to zero, r(t) tends to V(ϕ∞), which implies that the cor-
responding flow for (6) M(t) tends to M(ϕ∞) when t tends to
+∞.

Corollary 2. We assume that for all θ ∈R, Pk,λ (θ)> 0. Then
M0

k,λ is asymptotically stable modulo rotation-translation for
Equation (6).

Proof. Since L k,λ
2 = L k,λ

1 +Pk,λ , since L k,λ
1 is positive by

Proposition 7, the assumption of Corollary 2 implies that
L k,λ

2 is definite positive, and using Proposition 9, we con-
clude the proof of the corollary.

A. Estimates on Pk,λ

Case k≥ 1. In this case, ρk,λ >
√

b
λ (a+b) and duk,λ

dθ
remains

positive so that, using (62), we have:

duk,λ

dθ
=

√
(ρk,λ )2− b

λ (a+b)
sin2 uk,λ .

So, for all θ ∈ R,√
(ρk,λ )2− b

λ (a+b)
≤ duk,λ

dθ
(θ)≤ ρ

k,λ , (64)

and by integrating for θ ∈ [0,2π], since uk,λ (2π) = uk,λ (0)+
2kπ , we obtain:√

(ρk,λ )2− b
λ (a+b)

≤ k ≤ ρ
k,λ . (65)

With this estimate, we obtain also that:

k ≤ ρ
k,λ ≤

√
k2 +

b
λ (a+b)

. (66)

Using (64) and (66), on the one hand, we obtain that

(ρk,λ )2 +2
duk,λ

dθ
(θ)+1≤ (ρk,λ +1)2,

≤

(
1+

√
k2 +

b
λ (a+b)

)2

,

so that, for all θ ,

Pk,λ (θ)≥ a
λ (a+b)

−

(
1+

√
k2 +

b
λ (a+b)

)2

. (67)

On the other hand, using (64), we have:

(ρk,λ )2 +2
duk,λ

dθ
(θ)+1≥

(
1+

√
(ρk,λ )2− b

λ (a+b)

)2

+
b

λ (a+b)
,

so that

Pk,λ (θ)≤ a−b
λ (a+b)

−

(
1+

√
(ρk,λ )2− b

λ (a+b)

)2

. (68)

Case k ≤ −1. We assume now that k ≤ −1. In this case,
ρk,λ < −

√
b

λ (a+b) and duk,λ

dθ
remains negative so that, using

(62), we have:

duk,λ

dθ
=−

√
(ρk,λ )2− b

λ (a+b)
sin2 uk,λ .

So, for all θ ∈ R,

ρ
k,λ ≤ duk,λ

dθ
(θ)≤−

√
(ρk,λ )2− b

λ (a+b)
(69)

and by integrating for θ ∈ [0,2π], we obtain:

ρ
k,λ ≤ k ≤−

√
(ρk,λ )2− b

λ (a+b)
, (70)
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so that

k2 ≤ (ρk,λ )2 ≤ k2 +
b

λ (a+b)
. (71)

On the one hand, using (71) and that u′ is negative,

(ρk,λ )2 +2
duk,λ

dθ
(θ)+1≤ k2 +

b
λ (a+b)

+1,

so:

Pk,λ ≥ a−b
λ (a+b)

− (k2 +1). (72)

On the other hand, using (69), we obtain that:

(ρk,λ )2 +2
duk,λ

dθ
(θ)+1≥ (1+ρ

k,λ )2.

Now, from (70),

ρ
k,λ +1≤ k+1≤ 0,

so

(ρk,λ +1)2 ≥ (k+1)2.

Thus:

(ρk,λ )2 +2
duk,λ

dθ
(θ)+1≥ (k+1)2.

Therefore, for all θ ,

Pk,λ (θ)≤ a
λ (a+b)

− (k+1)2. (73)

B. Proof of Theorem 7

We fix k ≥ 1. We remark that
a

λ (a+b)
−(

1+

√
k2 +

b
λ (a+b)

)2

is equivalent to
a−b

λ (a+b)
> 0

when λ −→ 0. So, using (67), for λ > 0 small enough, Pk,λ

is positive, thus, by Corollary 1, M0
k,λ is asymptotically stable

modulo rotation-translation for (6).
When λ tends to +∞, by (66), ρk,λ tends to k, so

a−b
λ (a+b)

−

(
1+

√
(ρk,λ )2− b

λ (a+b)

)2

−→−(1+k)2 < 0.

Therefore, using (68), for λ large enough, Pk,λ is bounded by
a negative constant, so by Corollary 2, Mk,λ is linearly unsta-
ble.(20).

Now we fix k ≤−1. Since a > b, when λ tends to zero,

a−b
λ (a+b)

− (k+1)2 −→+∞,

so, by Estimate 72, for λ small enough, we have:

∀θ ∈ R, Pk,λ (θ)> 0,

and using Corollary 1, we obtain that for λ > 0 small enough,
M0

k,λ is asymptotically stable modulo rotation-translation.
When λ tends to +∞,

a
λ (a+b)

− (k+1)2 tends to − (k+1)2.

Therefore, if k ≤ −2, for λ large enough, using (73), Pk,λ is
negative, thus Mk,λ

0 is linearly unstable by Corollary 1.
This concludes the proof of Theorem 7.

C. Proof of Theorem 8

We fix λ > 0. From (65), when k tends to +∞, ρk,λ tends
to +∞. Therefore, with Estimate (68), for k large enough, for
all θ , Pk,λ (θ) is negative, which implies that Mk,λ is linearly
unstable.

Using (73),for k in a neighbourhood of −∞, for all θ ,
Pk,λ (θ) is negative, which implies that Mk,λ is linearly un-
stable.

This concludes the proof of Theorem 8.

VIII. CONCLUSION

We described all the in-plane static configurations for the
one-dimensional model of ferromagnetic ring (6), and we
gave criteria to determine de stability of these solutions.

It could be interesting to describe the non-planar solutions.
Some of them are evident: the magnetization constant equal to
e3 for example. A precise description of all these non-planar
solutions could help us to prove that the solutions M l

0 and
Mk,λ

0 are isolated. This could be of great help in demonstrat-
ing true instability results instead of linear instability theorems
(see Theorems 6, 7, and 8).

Concerning the solutions Mk,λ
0 , as it can be observed in nu-

merical simulations, we conjecture that for all λ > 0, M−1,λ
0

is asymptotically stable modulo rotation-translation.
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