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ABSTRACT. Ag, As, Cu, Pb and Zn were found to be the principal metallic contaminants of a 14 

post-mining area of Peru (Hualgayoc, Cajamarca). Study of metal distribution amongst roots, 15 

stems, and leaves of four indigenous hypertolerant plant species, Arenaria digyna, Puya sp, 16 

Hypericum laricifolium, Nicotiana thyrsiflora indicated significant translocation of Zn 17 

(0.6<TF≤10.0) and Cu (0.4<TF≤6.5) into aerial plant organs and substantial water-extractable 18 

fraction (20-60 %) of these metals, except for A. digyna (root and stems). A study of the metal 19 

speciation by ultrahigh-performance size-exclusion (fast-SEC) and hydrophilic ion interaction 20 

(HILIC) liquid chromatography with dual ICP (inductively coupled plasma) and electrospray 21 

(ESI) Orbitrap MS detection revealed the presence of nicotianamine and deoxymugineic acid 22 

copper and zinc complexes in roots, stem and leaves of N. thyrsiflora and Puya sp., and 23 

nicotianamine alone in A. digyna. A previously unreported compound, dihydroxy-nicotianamine 24 

was identified as the most abundant Cu and Zn ligand in H. laricifolium. The presence of 25 

arsenobetaine and an arsenosugar was confirmed by ESI MS. Ag and Pb were hardly 26 

translocated to leaves and were found as high molecular species; one of the Pb-containing 27 

species co-eluted in fast-SEC- ICP MS with rhamnogalacturonan-II-Pb complex commonly 28 

found in in the walls of plants. 29 

KEYWORDS: post-mining areas, Andean flora, hyphenated techniques, metal speciation, low 30 

molecular complexes, dihydroxynicotianamine.  31 
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 33 

INTRODUCTION 34 

Peru is the second largest producer of copper (Cu), silver (Ag), and zinc (Zn) worldwide (1). 35 

The contamination by mining environmental liabilities - including mine adits, prospecting pits, 36 

waste dumps, shafts, open pits, trenches, old mine camps, old drill pads and non-mineralized pre-37 

strip material (2) - raises interest in native plants able to grow in such harsh conditions, with the 38 

aim to use them for soil recultivation and phytoremediation. The molecular understanding of the 39 

mechanisms allowing plants to adapt and grow in heavily contaminated post-mining areas is 40 

critically dependent on the knowledge of the chemical species (metal-complexes) involved in the 41 

uptake and transport of metals to the above-ground organs (stems and leaves) (3-5). 42 
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While there have been numerous studies of metal speciation in model plants grown in 43 

hydroponics (6-13), studies of plants sampled in post-mining areas have been mostly limited to 44 

the demonstration of the high total concentrations of accumulated metals. Information on metal 45 

speciation has been scarce. These speciation studies have been carried out by synchrotron X-ray 46 

absorption spectroscopy (XAS) and are thus restricted to the information about the coordination 47 

environments of metal ions without revealing the molecular structure of the metal complexes 48 

(14-18). In addition, these techniques are based on the comparison of the obtained spectra with 49 

standards, and thus are incapable of untargeted (exploratory) analysis.  50 

Molecular information on the metal species identity can be obtained by the combination of 51 

their chromatographic fractionation with on-line mass spectrometric detection using: i) elemental 52 

techniques (Inductively Coupled Plasma Mass Spectrometry, ICP-MS) in order to detect and 53 

quantify metals, and ii) molecular techniques (Electrospray Ionization Mass Spectrometry, ESI-54 

MS), in order to identify the species (19). After a careful optimization, the approach was 55 

demonstrated to be suitable to plant fluids (phloem (6) and xylem (19)) and water-soluble species 56 

involved in transport and translocation. Although the majority of studies used hydroponically 57 

grown plants, some studies led to a successful identification and quantification of metal-58 

speciation in wild-type plants. For example, a number of species of Ni (in hyperaccumulating 59 

plants Sebertia acuminata (20) and Thlaspi caerulescens (21)), Al (22), and Fe (23) have been 60 

reported. In comparison with XAS, hyphenated techniques require extraction and thus are 61 

potentially vulnerable to species exchange between cells of different types and species-62 

transformations. However, for the few studies having used both approaches, data obtained from 63 

XAS and hyphenated techniques were found in good agreement, which suggests that these 64 

concerns may be exaggerated (24, 25). Indeed, the presence of As-S bond detected by EXAFS in 65 
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plant tissues was confirmed by the LC-ES-MS/ICP-MS identification of As–phytochelatin 66 

complexes extracted from the fresh plant material without degradation or formation of artefacts 67 

during the sample preparation step (24); a similar comparison was presented for selenium species 68 

in yeast (25). While simple identification of metal species in wild-type plants has already been 69 

challenging, data on the quantitative distribution of the metals amongst the identified complexes 70 

have been even scarcer. The difficulties of quantification result from (i) the difference in the 71 

behavior of the synthetic standards and species naturally present in the sample, and (ii) the risk 72 

of modification of the equilibrium in the case an amount of standard is added to the sample. 73 

Indeed, the stability and stoichiometry of metal complexes are dependent on the chemical 74 

environment and are difficult to control, especially when using natural samples (26). 75 

The goal of this study was to investigate, by means of the state-of-the-art hyphenated 76 

techniques, the metal speciation in four native Andean plants growing in a post-mining metal 77 

contaminated area, in order to identify the ligands responsible for the uptake and metal transport 78 

to the aboveground organs.  79 

EXPERIMENTAL 80 

Samples. Four native plants growing in a post-mining metal contaminated area in the Andes 81 

of northern Peru were studied. They included: Arenaria digyna, Puya sp., Hypericum 82 

laricifolium and Nicotiana thyrsiflora. The taxonomic identification was carried out by Dr. M. 83 

Timaná (Pontificia Universidad Católica del Perú, Lima, Peru) and M.Sc. P. Gonzales Arce 84 

(Laboratory of Floristics of the Herbarium of the Natural History Museum of the Universidad 85 

Nacional Mayor de San Marcos, Peru). The plants were sampled in the Hualgayoc mining 86 

district, that since Spanish colonial times has been known for Ag-rich polymetallic 87 
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mineralization, along with Zn, Pb, and Cu. Due to the long history of mining and, until recently, 88 

the lack of appropriate legal regulations regarding mine closure, has nearly 1,000 catalogued 89 

MEL sites. The sampling area is in the west of the province of Hualgayoc, department of 90 

Cajamarca in the vicinity of a leach pad (a latitude 6°44’49” S, longitude 78°35’36” W and 91 

altitude of 3412 m above sea level) is situated on top of a mine waste deposit which has no 92 

drainage. The soil parameters are given in Table SI-1 (27). 93 

Reagents. The reagents used for digestions, dilutions, and the preparation of HPLC mobile 94 

phases were obtained from Sigma-Aldrich (www.sigmaaldrich.com) unless specified otherwise. 95 

The following were used: ammonium acetate (≥98% for molecular biology), nitric acid (70%, 96 

www.fishersci.com), acetonitrile (≥99.9%) and hydrogen peroxide (30%). Standard solutions 97 

(1000 ppm, www.scpscience.com) of Pb, Ag, Cu, Zn, As, were used for the preparation of 98 

calibration curves and Sc and Rh as internal standards. Deionized water (18.2 MΩ.cm) obtained 99 

from a Milli-Q® Type 1 Ultrapure Water Systems (www.merckmillipore.com) was used 100 

throughout unless stated otherwise. 101 

Instrumentation. The ICP MS spectrometers were ICP-MS 7500 (www.agilent.com) 102 

equipped with an integrated autosampler (I-AS) used for the total analysis and Agilent 7700x 103 

(www.agilent.com) used for the coupling with HPLC. The electrospray ionization mass 104 

spectrometer was Orbitrap Fusion™ Lumos™ (www.thermofisher.com). The chromatographic 105 

systems used for the separation of the analytes were: Agilent 1200 Series (www.agilent.com) and 106 

Dionex Ultimate 3000 RS (www.thermofisher.com). Samples were centrifuged using a MiniSpin 107 

and 5415 R centrifuges (www.eppendorf.com).  108 
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Sample preparation. Initial sample preparation. The plants were washed with tap water (for 109 

removing soil remains) and then with distilled water. Then, plants were separated into leaves, 110 

stems, and roots, and dried at 30-40 °C before grinding to obtain a fine powder.  111 

Total analysis. The samples were digested in DigiPrep heated-block digester 112 

(www.scpscience.com) using the following two-step program: (1) 1 ml of 70 % nitric acid at 85 113 

°C for 4 h 30 min, after leaving the sample with acid overnight, (2) 0.5 ml of 30 % hydrogen 114 

peroxide at 85°C for 4.5 h. The digest was diluted to 5 ml with water prior to analysis by ICP-115 

MS.  116 

Extraction and mass balance. 0.05 g of dried leaf, stem or root sample was shaken on a 117 

horizontal shaker with 2.5 mL of 25 mM ammonium acetate pH 7 for 1 h at 400 rpm and 118 

centrifuged for 5 min at 13 200 rpm. The supernatant was recovered and analyzed by HPLC. The 119 

supernatants (250 µL) and the corresponding residues (after having been dried) were digested as 120 

described above prior to the analysis by ICP-MS. 121 

Determination of the Total Metal Content. Samples were analyzed by ICP mass 122 

spectrometry (ICP-MS) using a reaction cell pressurized with He and H2 gas. The isotopes 123 

monitored were 107Ag, 109Ag; 75As, 63Cu, 65Cu; 206Pb, 207Pb, 208Pb; 64Zn, 66Zn and 68Zn. 124 

Analytical blanks were analyzed in parallel. The Standard Reference Material 1573a Tomato 125 

Leaves (NIST, Gaithersburg, MD 20899, USA) was used for quality control. 126 

Quantification was performed in the calibration range of 0.2-100 ppb for Zn and 0.1-20 ppb for 127 

the other elements; an 8-point calibration curve was used. Measurements were carried out in 128 

triplicate; the results with relative standard deviation higher than 10% were discarded and the 129 

measurements repeated. Values are reported as mean ± standard deviation (SD) of three 130 

analytical replicates. 131 
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Speciation of Metal Complexes. Chromatography. The chromatographic conditions used 132 

are detailed in Table 1. For fast SEC separations, prior to injection, the supernatant from the 133 

extraction was mixed (1:1)  with the eluent or ACN and centrifuged. Effluents from 134 

chromatographic column were analyzed directly or after post-column ACN addition (0.3 135 

mL/min); ACN was delivered with an Agilent 1200 Series system. For HILIC separations, the 136 

supernatant was mixed, prior to injection, with ACN (1:4). As the addition of ACN may create a 137 

small amount of precipitate, the sample was centrifuged for 5 min at 13 200 rpm.  138 

Table 1. Chromatographic conditions used.  139 

separation mechanism 
fast size–exclusion chromatography 

(fast-SEC) 

hydrophilic interactions liquid chromatography 

(HILIC) 

column ACQUITY UPLC BEH 125 SEC 

(1.7 µm 4.6 x 150 mm); 1–80 kDa 

TSKgel Amide-80 

(2.0 μm, 2.0 x 150 mm) 

mobile phase ammonium acetate 25 mM, pH=7 
A: ammonium acetate 10 mM pH=7;  

B: ACN 

injection volume, µL 5 10 

flow rate, mL/min 0.3 0.1 0.2 

elution isocratic 0 min –80 % B 

2.5 min - 80 % B 

22.5 min -50 % B 

25 min –50 % B 

26 min –80 % B 

35 min –80 % B 

0 min –80 % B 

2.0 min - 80 % B 

3.0 min – 65% B 

4.5 min – 65% B 

9.0 min – 60% B 

12 min – 60% B 

13.8 min -50 % B 

16.8 min –50 % B 

17.8 min –80 % B 

25 min –80 % B 

ICP MS detection. The exit of the column was directly connected to an ICP mass spectrometer 140 

equipped with a collision cell. O2 was used as an optional gas (5%). Platinum cones were used.  141 

Electrospray MS. The analyses were performed in positive ionization mode with ion source 142 

conditions set as default, according to the current LC flow – 0.3 mL/min and 0.1-0.2 mL/min for 143 

Fast-SEC and HILIC, respectively, with post-column ACN addition at a flow rate of 0.3 mL/min 144 
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to enhance ionization for Fast-SEC. Data were acquired at resolution 240 000 in a scan range of 145 

150-1000 m/z with a maximum injection time of 502 ms, 5e5 AGC target and 30% RF lens. 146 

MS/MS was performed in a targeted analysis mode, based on the results from the FullScan mode 147 

(Full MS/dd-MS2). The inclusion mass list was prepared on the basis of the already known 148 

metal-containing compounds as well as compounds with metal characteristic isotopic patterns. 149 

To confirm the presence those compounds, Thermo Scientific™ Compound Discoverer™ with 150 

Pattern Scoring Node were used. Full MS/dd-MS2 was performed as follows: 1) FullScan MS: 151 

orbitrap resolution 240 K; scan range m/z 150-1000; maximum injection time 300 ms; AGC 152 

target 80000; RF lens 30%; 2) MS2 of targeted ions was performed in the HCD cell with a 153 

collision energy of 30%; orbitrap resolution 60 K; maximum injection time 118ms; AGC target 154 

75000 with the first mass of 100 m/z. 155 

RESULTS AND DISCUSSION  156 

Choice of Elements of Interest. Target elements were chosen on the basis of the soil 157 

contamination assessed by using the Index of Geoaccumulation (Igeo) (28). The concentrations of 158 

14 elements found in the soil where the plants were collected (Table SI-2) (27) were compared 159 

with their abundances in the Earth’s crust (29) and with the geochemical baseline values near the 160 

sampling sites (Table SI-3) (30). The degree of contamination (31) depended on the element 161 

(Figure 1). The soils were found to be extremely contaminated with Ag and Pb (Igeo ≥ 4), 162 

strongly contaminated with As, Cu, Zn (2 ≤ Igeo < 4), moderately contaminated with Cr, Mo, Tl 163 

(1 ≤ Igeo < 2) and uncontaminated with other elements (Cd, Co, Mn, Ni, V, W, Igeo < 1). The five 164 

elements for which the contamination was the highest, (Ag, As, Cu, Pb and Zn), were selected 165 

for the study of their uptake and translocation in plants. As demonstrated in the previous study 166 
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concerning this area, these elements were mainly present in soil fractions with limited metal 167 

mobility (mineral or bound to hydrated iron and manganese oxides) (32). 168 

 169 

Figure 1. Index of Geoaccumulation (Igeo) for selected elements present in the soil in the 170 

contaminated post-mining site. 171 

Choice of the Studied Plants. All the plants growing in post-mining environmental 172 

liabilities areas are indigenous to the Andes. Nicotiana thyrsiflora belongs to Nicotiana genus 173 

which is important in traditional medicine in South America as a source of alkaloid nornicotine 174 

(33). It is one of the most comprehensively studied flowering plant genus (34),(35) and raises 175 

interest for environmental restoration activities (36).  176 

Hypericum laricifolium (Hypericaceae) is distributed from western Venezuela along the 177 

cordilleras of Colombia and Ecuador to central Peru (37). Its aerial parts are rich in phenolic 178 

acids, flavonoids, triterpenoids (38), xanthones (39), and dimeric acylphloroglucinol derivatives 179 

(40) and their infusion is used in traditional medicine (41). It is a source of essential oils 180 

(acylphloroglucinol derivatives) (42) (43).  181 
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Puya sp. forms clumps of small 8-10 inch wide rosettes of very narrow powdery blue-gray 182 

leaves and has no stem. The heart of the inflorescence of Puya sp., known as "aguarongo", is 183 

cooked and eaten in Ecuador (44) and is an important nutritious resource for hummingbirds, (45) 184 

(46). Puya sp. tea infusions are known for antioxidant and aldose reductase inhibitory activity 185 

(47).  186 

Arenaria digyna belongs to family of Caryophyllaceae and is one of indicator species for high 187 

altitude bofedales – type of wetlands found in Peruvian and Chilean Andes (48). Several species 188 

of this family are used as traditional medicine (49).  189 

Bioaccumulation and Translocation Factors. The total concentration of Ag, As, Cu, Pb 190 

and Zn in individual plant organs are given in Table 2. 191 

For As, Pb and Zn, the leaves of all the studied plants showed metal concentrations higher than 192 

the maximum reference values generalized for mature leaf tissues from various plant species 193 

(50). Moreover, Zn concentrations in leaves of N. thyrsiflora significantly exceeds the level of 194 

excessive/toxic concentration (100-400 ppm). In the case of copper and silver, these values (50) 195 

were exceeded in N. thyrsiflora and A. digyna. 196 

The data on the total element concentration in plant organs allowed for the calculation of the 197 

bioaccumulation (BCF) and translocation factors (TF) in order to assess the ability of plants to 198 

mobilize elements from the soil (BCF) and translocate (TF) them from roots to aerial parts (51). 199 

The bioaccumulation factors were lower than 1. The translocation factors were exceptionally 200 

high for Zn (N. thyrsiflora, H. laricifolium, and Puya sp.) and Cu (N. thyrsiflora). 201 

 202 
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Table 2. Total metal concentrations (mg kg-1) (mean ± SD) of As, As, Cu, Pb and Zn in different organs of the native plants the 203 

Hualgayoc district, Cajamarca region, Peru. 204 

Native species Organs Ag As Cu Pb Zn 

Puya sp 
L 0.52 ± 0.01 8.33 ± 0.14 13.3 ± 0.82 28.5 ± 5.31 145 ± 2.57 
R 2.20 ± 0.01 45.3 ± 0.93 22.6 ± 0.41 105 ± 11.8 23.4 ± 2.06 

Bioaccumulation factor 0.04 0.03 0.05 0.02 0.50 
Translocation factor 0.23 0.18 0.59 0.27 6.20 

Arenaria digyna 

L 3.24 ± 0.13 8.29 ± 0.14 77.6 ± 0.55 286 ± 46.0 390 ± 8.6 
S 10.49 ± 0.10 110.3 ± 1.3 123 ± 1.18 2114 ± 46.5 447 ± 8.8 
R 15.55 ± 3.90 140.6 ± 48.4 132 ± 12.4 2205 ± 103 590 ± 12.4 

Bioaccumulation factor 0.14 0.02 0.15 0.10 1.97 
Translocation factor 0.20 0.06 0.59 0.13 0.66 

Hypericum laricifolium 

L 1.30 ± 0.10 3.77 ± 0.10 9.71 ± 0.74 126 ± 3.06 305 ± 4.73 
S 0.81 ± 0.02 1.07 ± 0.05 9.12 ± 0.95 147 ± 5.39 164 ± 3.46 
R 7.30 ± 0.80 7.66 ± 0.45 21.53 ± 3.37 434 ± 54.9 153 ± 14.6 

Bioaccumulation factor 0.06 0.01 0.03 0.04 0.57 
Translocation factor 0.18 0.49 0.45 0.29 1.99 

Nicotiana thyrsiflora 

L 2.97 ± 0.22 2.41 ± 0.07 48.5 ± 0.57 41.8 ± 2.05 1051 ± 20.6 
S 0.51 ± 0.03 0.50 ± 0.01 6.30 ± 0.34 45.0 ± 5.29 546 ± 30.2 
R 3.46 ± 0.15 3.37 ± 0.16 7.47 ± 0.09 66.1 ± 9.11 105 ± 3.78 

Bioaccumulation factor 0.16 0.01 0.24 0.02 0.73 
Translocation factor 0.86 0.71 6.49 0.63 10.0 

leaf tissue generalized for various species*  0.5 1-1.7 5-30 5-10 27-150 

L: leaf, S: stem, R: root 205 

Bioaccumulation factor BF= Cp/Cso (where Cp is the metal concentration in the plant leaves and Cso - in the soil) 206 

Translocation factor TF = Cs/Cr (where Cs is the metal concentration the leaves and Cr - in roots) 207 

*according to: Kabata-Pendias, A., 2011. Trace Elements in Soils and Plants, 4th Ed. ed. CRC Press Taylor & Francis Group, Boca 208 

Raton London New York. 209 

 210 
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Metal Water Soluble Fraction. In order to get an insight into the ligands involved in metal 211 

translocation, the fraction of metals soluble in water was assessed. The data allowing for a 212 

comparison between the soluble and insoluble fraction are shown in Figure 2. These water-213 

soluble fractions were highest for Cu and Zn, virtually regardless of the plant and similar for all 214 

the organs (root, stem and leaves) indicating the presence of a mobile pool of metal in the plant. 215 

For the other elements and plants, the mobile metal fraction was by far lower, and rarely 216 

exceeded 5%. In general, the water-soluble fraction percentage was negligible for Ag and Pb 217 

even if the total metal contents were relatively high. 218 

 219 

Figure 2. Ag, As, Cu, Pb and Zn fractionation into water soluble and insoluble fractions, in 220 

individual organs of the studied plants. 221 
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Metal Speciation: the Approach. Metal speciation was investigated coupling HILIC with 222 

a parallel (not simultaneous) detection by ICP-MS and electrospray Orbitrap MS as described 223 

elsewhere (19). In order to provide an independent set of chromatographic data, size-exclusion 224 

chromatography was revisited. In particular, the regular size (10 x 300 mm, 13 μm) column used 225 

so far (19, 21, 52) was replaced by a ultrahigh performance (4.6 x 150 mm, 1.7μm ) column. 226 

This reduced considerably the analysis time (from 60 to 15 min), facilitated the online addition 227 

of acetonitrile required to improve the species ionization, and increased sensitivity, as the peaks 228 

were narrower than when using in the regular size SEC column.  229 

Fast-SEC was inferior in terms of resolution to HILIC, but gave an estimation of the molecular 230 

size distribution, including the high-molecular species which were precipitated (and thus could 231 

not be analyzed) in the HILIC conditions. The metal recoveries were generally higher than 80%, 232 

which is a satisfactory proof of good control of possible on-column dissociation effects and 233 

carry-over. The results were considered as meaningful if similar data were obtained with both 234 

fast-SEC and HILIC. Note that HILIC elutions are usually carried out with gradients, which 235 

results in changing ionization conditions in ICP-MS and ESI-MS, and may affect the datasets 236 

obtained (species more or less readily ionized). 237 

In terms of MS, both targeted and exploratory approaches (based on the characteristic metal 238 

isotopic patterns) were used for the search of metal species in the high-resolution high-accuracy 239 

mass spectra of plant extracts. Elucidation of the structure of particular complexes was 240 

completed by fragmentation studies of the complex (and free ligand, if present) using MSn.  241 

In terms of quantification, our strategy was based on the optimization of the HPLC conditions 242 

to allow for individual metal species separation, good (close to quantitative) metal recovery, and 243 

correction of the effect of the change in the mobile phase composition on the sensitivity. Indeed, 244 
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the intensity of signals obtained for Zn and Cu was the highest at ACN content of 80% and was 245 

decreasing with the gradient changing to lower ACN percentage. Finally, to avoid this problem, 246 

the FastSEC was applied to quantification, as the ACN concentration is constant throughout the 247 

chromatographic run. The method employed here was based on the estimation of the ratio 248 

between the signal intensity obtained for a specific compound (exact m/z) in different samples 249 

based on LC ESI-MS results, and therefore can be considered as a semi-quantitative.  250 

Speciation of Zinc. Figure 3 shows a set of HILIC – ICP MS/ESI MS chromatograms for 251 

the speciation of Zn. The corresponding set of fast-SEC chromatograms is shown in Figure SI-1. 252 

The compound with m/z 366.06 present in Arenaria digyna, Nicotiana thyrsiflora, and Puya sp, 253 

and being only a trace in Hypericum laricifolium, corresponds to the Zn complex with 254 

nicotianamine as demonstrated by MS/MS data (Figure SI-2a). Note that nicotianamine (NA) is 255 

the most often reported LMW ligand complexing zinc in plants. Its stability constant (logK) is 256 

between 14.7 (53) and 15.4 (54). Zn-NA complex identification has been carried out both in 257 

plant fluids (6),(19),(55),(52) and in extracts obtained upon plant tissue homogenization 258 

(56),(13) (57). The Zn-NA complex was identified (as the only Zn species) in the phloem sap of 259 

rice (6) and castor bean plants (Ricinus communis) (7), in the xylem of Arabidopsis thaliana 260 

(55), in the xylem and embryo sac liquid of Pisum sativum (19), in coconut water (52), and in 261 

hydroponically cultured lettuce leaves (13). Nicotianamine, glutathione and desGluPC2 ligands 262 

were identified in the Zn-containing SEC fractions of Tris-NaCl extracts of root and shoot tissues 263 

of laboratory grown wild type Arabidopsis halleri, but no data for intact complexes were shown 264 

in that study (56).  265 

EXAFS spectra for Thlaspi caerulescens (Zn hyperaccumulator) indicate that nicotianamine 266 

may be involved in Zn transport to aerial plant organs, but it is not a principal storage ligand 267 
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(58). In turn, XANES analysis of apple leaves exposed to Zn deficiency revealed the presence of 268 

4 types of components: Zn-citrate, Zn-cell wall, Zn2+ and Zn-nicotianamine, wherein the largest 269 

amount was associated with the cell wall (59). While studying Zn speciation in edible plants 270 

grown in smelter contaminated soils by Zn K-edge XANES, the results were based on the use of 271 

only three Zn complexes with histidine, malate, and cysteine so the results cannot be considered 272 

as conclusive (60). In an XAS study of sweetcorn and maize, it was predicted that the large part 273 

of Zn in the embryos was present as Zn-phytate, while in the endosperm the Zn was primarily 274 

complexed with an N-containing ligand such as histidine and to a lesser extent with phytate (61). 275 
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276 

277 

Figure 3. HILIC – ICP/ESI-MS chromatograms of water-soluble zinc and copper species in a) 278 

Nicotiana thyrsiflora, b) Puya sp., c) Arenaria dygina and d) Hypericum laricifolium. 279 
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In N. thyrsiflora and Puya sp., Zn-nicotianamine was accompanied by the Zn-DMA complex 280 

(m/z 367.05, confirmed by MS/MS data, Figure SI-2a). The contributions of Zn-DMA, which 281 

has a lower complex formation constant (12.7) (62) than Zn-NA (ca. 15 (53, 54)), were much 282 

lower, although free DMA was observed in the samples. The presence of DMA in N. thyrsiflora 283 

is interesting because for a long time it has been thought that only graminaceous plants 284 

biosynthesize MAs. However, at least two recent LC-TOF-MS studies reported the presence of 285 

DMA in non-graminaceous plant species such as peanut (Arachis hypogaea L.) (63) and olive 286 

trees (Olea europaea L.) (57). In the first one, the authors concluded that peanut's roots absorbed 287 

Fe-DMA complex generated by DMA secreted from neighboring maize plants (63). Similarly, 288 

the detected presence of Zn-DMA in lettuce was considered to be a contamination (13). 289 

However, in the olive tree study of Suzuki et al., possibility of intercropping was excluded and 290 

DMA complexes were detected in both the xylem sap and leaves (57). The analysis of these two 291 

samples - one analyzed directly (xylem sap) and the other one which required tissue 292 

homogenization and extraction (leaves) - provided a mutual validation of these two approaches 293 

(57). Marastoni et al. pointed out that more and more studies indicate difficulty in assigning only 294 

one type of Fe acquisition strategy by different plant species. In their work, they showed that two 295 

studied grapevine rootstock varieties exhibit different Fe acquisition strategies. Although they do 296 

not belong to the graminaceous species, in their root's exudates they found mugineic acid 297 

derivatives (64). Similar findings have been shown by Astolfi et al. (65). Their studies on tomato 298 

plants support the hypothesis of double strategy of Fe acquisition by plants, previously discussed 299 

for rice. In summary, more and more results indicate that clear distinction between Strategy I and 300 

Strategy II plants (as graminaceous only), used so far, cannot be recognized as final, as the 301 

overall picture is not so explicit. 302 
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In our case, although in field sampling intercropping could not be excluded, the presence of 303 

free (apo) DMA in N. thyrsiflora organs supports the detection of Zn-DMA (and also Cu-DMA) 304 

complexes. The possibility of contamination during the analytical procedure (and, in particular, 305 

chromatographic carryover) was carefully examined and discarded. The genes for DMA 306 

biosynthesis were detected by transcriptome analysis of Olea europaea L. and it has been 307 

suggested that NAAT and DMAS might have evolutionally loose substrate specificities in olive 308 

plants in comparison with those in graminaceous plants (57). Indeed, recent studies stressed the 309 

existence of several shared components of the metal complexing strategies among plants, 310 

questioning the validity of the earlier concept of their mutual exclusivity (66). 311 

Although nicotianamine and deoxymugineic acid are usually discussed in relation with metal 312 

deficiency (67), studies have shown that NA may play a role in the rice tolerance to the Zn 313 

excess (68). Indeed, in the case of the Zn excess, endogenous NA secretion in roots increased, 314 

suggesting that NA is responsible for Zn tolerance, in addition to being the precursor of the 315 

synthesis of DMA. Although the function of DMA in conditions of Zn excess is not known, the 316 

synthesis of DMA in roots in such circumstances may also be involved in maintaining Zn 317 

availability in rice plants (68).  318 

Hypericum laricifolium presented a distinctively different Zn speciation than the other three 319 

plants studied. It showed the presence of two species of which the molecular mass suggested that 320 

they were hydroxyl (mono- and di-) derivatives of nicotianamine. The hypothesis of 321 

hydroxylation is corroborated by an observation that the introduction of hydroxyl groups into a 322 

phytosiderophore skeleton increased metal-chelate stability in acid environments (48). An 323 

indication of the hydroxylation positions may come from the observation that enzymes were 324 
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found to hydroxylate the C-2’ positions of DMA and epiHDMA and the C-3 positions of MA 325 

and DMA (69). 326 

Monohydroxy-nicotianamine complexes of Cu and Zn were putatively identified in grassland 327 

soil on the basis of their empirical formulas, the MS/MS fragmentation spectra, and the similarity 328 

of metal binding to nicotianamine (70). However, the position of the hydroxyl group in the 329 

molecule structure was not given (70). Free (apo) monohydroxy-nicotianamine was also isolated 330 

from buckwheat powder, and shown to exist in some polygonaceous plants (71). A study of its 331 

distribution within buckwheat plants revealed that it was predominantly localized in seeds (72). 332 

Further studies have shown that the hydroxyl group is in the C-2" position (73). The same 333 

compound was later identified and quantified in Asparagus officinalis, demonstrated for the first 334 

time in non-polygonaceous plants (74). However, no information about possible metal 335 

complexes was provided (71, 72). 336 

The majority of Zn in H. laricifolium was present in the form of an unknown species with m/z 337 

397.046361, which corresponds to the formula C12H19N3O8Zn. The structure of this species, 338 

presenting a characteristic Zn isotopic pattern, was investigated by ESI-MSn. The hypothesis of 339 

the structure of a double hydroxylated nicotianamine derivative was confirmed by the 340 

comparison with in silico fragmentation of three possible isomers: 2’,2’’-dihydroxy-341 

nicotianamine, 3-epi-2’-dihydroxy-nicotianamine and 3-epi-2’’-dihydroxy-nicotianamine (Table 342 

SI-4). However, the fragmentation of siderophores is characterized by multiple unspecific losses 343 

of small fragments (hydroxyl, carboxyl, or amino groups) making the analysis of the 344 

fragmentation spectra and the unambiguous confirmation of the species structures difficult. For 345 

the detected Zn species, very similar coverages were obtained when comparing the experimental 346 

data with three putative isomers of the dihydroxy-nicotianamine complex. The most probable 347 
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structure seems to be 3-epi-OH-2''-OH-NA having the hydroxyl groups in positions observed for 348 

other siderophores (69) and the highest agreement with the in silico fragmentation. In addition to 349 

the complex, in Hypericum laricifolium and Nicotiana thyrsiflora free (non-complexed) 350 

dihydroxy-nicotianamine was detected. The set of the MSn data supporting the proposed 351 

structures is shown in Figure 4.  352 

 353 

Figure 4. Fragmentation pathways of Zn-complex with di-hydroxy nicotianamine candidate 354 

species. 355 

Fig. 5 summarizes the estimated distribution of the species found in the different plant organs 356 

and accounts for the free ligands involved in the complexation of Zn and Cu, based on SEC-MS 357 

results (XIC signal intensity). It shows that in A. digyna, N. thyrsiflora and Puya sp., Zn-358 

nicotianamine is the most abundant Zn species (and in A. digyna the only one).  Also, 359 
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uncomplexed (free) NA was observed in these three plants. The contributions of Zn-DMA, 360 

which has a lower complex formation (12.7 for Zn(II)-DMA) (62) constants than Zn-NA (ca. 15 361 

(53, 54)) were much lower, although free DMA was also present in the samples.  362 

 363 

Figure 5. Distribution of free and complexed siderophore species in organs of the studied plants, 364 

based on XIC signals intensities recorded after separation on fast-SEC. 365 

In Puya sp., signals of Zn-DMA in roots were around twice lower than in leaves,  while Zn-366 

NA was present only in leaves (with signal intensity around twice higher than for the DMA 367 

complex). In N. thyrsiflora, the signals intensity for Zn-NA complex doubled when passing from 368 

roots to stems and then from stems to leaves. Relatively high signals for DMA-Zn were observed 369 

in all plant organs. In A. digyna, similar Zn-NA signals were present in roots and stems and 370 
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significantly higher (ca. 5 times) in leaves. No Zn-DMA complex could be detected. As it was 371 

previously stated, the main compound in H. laricifolium was dihydroxy-nicotianamine-Zn, 372 

which accumulated mainly in leaves (around 2.5x and 4x higher signals than in stems and roots 373 

respectively). Moreover, a small part of Zn was associated with NA and monohydroxy-NA, and 374 

localized mostly in leaves. 375 

Speciation of copper. Figure 3 (bottom part) shows a set of HILIC – ICP MS/ESI MS 376 

chromatograms for the speciation of Cu. The corresponding set of fast-SEC chromatograms is 377 

shown in Figure SI-3. The overall speciation pattern is very similar to that of Zn.  378 

The presence of NA and DMA as the major ligands in Puya sp., and N. thyrsiflora was 379 

observed. Note that, in contrast to Zn, the binding constants (logK) of the Cu(II)-NA and Cu(II)-380 

DMA complexes are similar: 18.6 for Cu(II)‐NA (53) 18.7 for Cu(II)- DMA (62). Indeed, NA 381 

and DMA were reported in xylem and phloem of rice (Oryza sativa) (75) and castor bean plants 382 

(Ricinus communis) (7). However, several other ligands such as histidine (18), proline (50), 383 

citrate (76) and glutathione (17) were reported in the literature. Although our untargeted search 384 

did not indicate any of such complexes, a targeted search for these complexes and free ligands 385 

was attempted. No complex with Cu was detected with either of these ligands, despite the 386 

presence of the free ligands, in particular histidine. XAS data obtained in a model hydroponic 387 

experiment showed that the majority of Cu in the roots and leaves of tomato (Solanum 388 

lycopersicum) and oat (Avena sativa) existed as sulfur-coordinated Cu(I) species resembling 389 

glutathione/cysteine-rich proteins (77). Elemental distribution and chemical speciation of copper 390 

in three metallophytes from the copper–cobalt belt in Northern Zambia was studied revealing a 391 

complex picture of Cu handling across the studied plants; it was further complicated by the fact 392 

that several of the XANES fits were poor, with significant fit residuals noted (78). The proposed 393 
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species included Cu(I) bound by S donor atom ligands (modelled as glutathione or cysteine) and 394 

oxygen bound forms of Cu(I) and Cu(II); a significant contribution of Cu(II)–acetate complex 395 

(78). Cu-N and Cu-O bonds were detected in wheat and tomato root apoplasts. Nitrogen/oxygen 396 

ligands were identified in slightly higher proportions (40-70%) than single oxygen ligands. The 397 

high-affinity N functional groups embedded in root apoplasts participated in copper binding in 398 

the same magnitude than the low-affinity carboxylic groups (79). No siderophore metal 399 

complexes have been included so far in the XAS standardization. 400 

In leaves of Puya sp., the intensity of the XIC signal corresponding to Cu-NA was almost 401 

twice higher than the one corresponding to Cu-DMA , whereas in roots Cu-DMA dominated 402 

(Figure 5). In N. thyrsiflora: Cu-NA was the main species in all the organs and was 403 

accompanied by much smaller signals  of Cu-DMA. The signals intensity of Cu-NA was the 404 

highest in leaves and the lowest in stems. In A. digyna the intensity of the signals of Cu-NA was 405 

similar in stems and roots and twice higher in leaves. As in the case of Zn, the speciation of Cu 406 

in H. laricifolium was different from that in other plants. The only detected species was the Cu-407 

dihydroxy-NA complex which, was twice higher in leaves than in other parts. 408 

The minor Cu species detected at m/z 335.0341 in all the plants except H. laricifolium, could 409 

be attributed the empiric formula C11H16N2O6Cu. It corresponds to the ligand C11H18N2O6 410 

previously reported (but not identified) in xylem sap of Solanum habrochaites, a native Andean 411 

wild tomato (80). The abundance of this species was too low to provide meaningful 412 

fragmentation data. 413 

Relatively high signals corresponding to the free ligands NA and DMA were found in N. 414 

thyrsiflora, A. digyna and Puya organs (only DMA in roots of Puya). Small signals of 415 

hydroxylated nicotianamine forms were also observed in several organs of all plants, excluding 416 
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Puya. In addition to the already discussed phytosiderophores, ligands such as aminoadipic acid, 417 

phenylalanine, tyrosine, and tryptophan, which could potentially bind metals, were observed. 418 

However, no metal complexes with those ligands were detected. 419 

Speciation of arsenic. Speciation of As in plants has been mainly studied in the context of 420 

food safety, with the majority of works focused on rice (81-83). Indeed, rice is often harvested in 421 

areas with high soil As content and the possible presence of toxic inorganic As(III) is of concern 422 

in view of its popularity as staple food in many regions. The works on As speciation in plants 423 

growing in post-mining sites have been scarce (84-88). All the studies were based on retention 424 

time matching with standards in HPLC-ICP-MS. Our goal was to expand this approach to search 425 

for As species by targeted and exploratory ESI-MSn. For all the studied plants, the FastSEC 426 

fractionation of As in water extracts of organs revealed the same profile consisting of just one 427 

peak, eluting in the low (below 1 kDa) molecular weight range (Figure 6a). In contrast to the 428 

metals discussed above, As forms covalent organic compounds, which allows using harsher 429 

extraction conditions than those used for coordination metal complexes. In consequence, it was 430 

attempted to increase the extraction recovery of As species in comparison with those obtained for 431 

water extraction (Figure SI-4). However, the addition of methanol (or ethanol) (85-88) did not 432 

significantly improve the extraction yield. A ten-fold pre-concentration by evaporation was used 433 

to improve signal intensities in LC-MS/MS analysis.  434 

A targeted analysis based on a Top3 MS2 acquisition in positive mode permitted to confirm the 435 

detection of two arsenocompounds on the basis of their fragmentation. Different fragmentation 436 

collision energies and fragmentation modes - collision-induced dissociation (CID) and higher-437 

energy C-trap dissociation (HCD) - were applied to find the best conditions to fragment As 438 

species and thus confirm their identification. The targeted fragmentation of arsenobetaine (m/z 439 
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179.0048) and arsenosugar (m/z 329.0573) previously detected in a full MS scan permitted the 440 

determination of five characteristic fragments of arsenobetaine and three fragments of 441 

arsenosugar-glycerol (89). Both compounds were found in all organs of A. dygina. Furthermore, 442 

arsenobetaine itself was found in leaves/roots of Puya and roots of N. thyrsiflora, for which the 443 

signal intensities from LC ICP-MS were the highest (Figure 6a). The fragmentation data 444 

obtained at HCD50 were compared with and matched those found elsewhere for algal extracts 445 

(90) (89). The extracted ion chromatograms and the summary of the MS2 fragments are 446 

summarized in Figure 6b. Since As is known to occur in covalent complexes with glutathione 447 

and phytochelatins (24), the presence of these putative species (Table SI-5) was screened for in 448 

the target mode but without a positive result.  449 

Speciation of silver and lead. SEC-ICP MS fractionation of (a) Ag and (b) Pb in individual 450 

organs of the studied plants indicates the presence of compounds in the high-molecular weight 451 

range (Figure SI-5). Neither Ag nor Pb species could be successfully separated on  the HILIC 452 

column which is suitable for the analysis of LMW species only. As it has been written earlier, 453 

after diluting samples with HILIC mobile phase, containing a high percentage of acetonitrile, 454 

precipitation of HMW complexes takes place. Hence, in the case of these two elements, the study 455 

could only be based on the data obtained after the SEC separation. A SEC signal of Ag was very 456 

weak and no hypothesis about its identity could be put forward. Regarding lead, two intense 457 

peaks were usually present, one of the Pb-containing species co-eluting in fast-SEC-ICP-MS 458 

(Figure SI-6) with the rhamnogalacturonan-II-Pb complex (MW of ca. 10 kDa) commonly 459 

found in in the walls of plants (91).  460 

Unlike Zn or Cu, lead and silver are not the nutrient elements, and their bioavailability for 461 

plants is reduced. Silver ions are preferentially bound by thiol groups and natural organic matter, 462 
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humic and fulvic acids play a significant role here. Consequently, the availability of Ag is 463 

estimated at less than 5%, as it is strongly retained by the soil components (92). Whereas Pb 464 

tends to form insoluble compounds, like sulfates and phosphates. Most of Pb is limited by the 465 

roots, which usually accumulate the highest metal contents (93). The results of the study of lead 466 

tolerance mechanisms of the plant species Biscutella auriculata L. from a mining area indicated 467 

its high capacity to tolerate Pb and due mainly due to a very efficient mechanism to sequester the 468 

metal in roots (94). Similar conclusions were drawn for the Salix integra, used for the 469 

phytostabilization of Pb-Zn mine tailings. It was shown that the Pb taken up by the plant is 470 

localized mainly in the cell walls, linked to the -OH or pectin groups. Furthermore, the 471 

detoxification in the root cells may be related to metal precipitation in the phosphate or oxalate 472 

forms (95).  473 
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a)  474 

b)  475 

Figure 6. Speciation of arsenic soluble species in organs of the studied plants; (a) SEC-ICP MS 476 

fractionation, (b) XIC HILIC - ESI MS chromatograms (upper panels) and fragmentation spectra 477 

(bottom panels) of water-soluble arsenic species found in organs of the studied plants. 478 
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CONCLUSIONS 479 

The speciation of Cu and Zn in plants growing in post-mining areas in the Peruvian Andes 480 

corroborate the hypothesis that, in contrast to hyperaccumulators which transport the metals 481 

using weakly binding ligands, strong ligands such as NA and DMA are chosen in non-482 

accumulator plants (15, 96). The speciation does not differ much from that found in other plant 483 

species reported in the literature, except for H. laricifolium. This species contained mono- and 484 

dihydroxy-nicotianamine as the only water-soluble species complexing Zn and Cu, and the latter 485 

is reported here for the first time. The observation of hydroxylation and double hydroxylation is 486 

unique and interesting, since the process is likely to be genetically encoded and mediated 487 

enzymatically (97). The study also showed the synthesis of organoarsenic compounds in 488 

terrestrial plants. Ag and Pb are not transported to the aerial parts, except for Pb in A. digyna, 489 

where the species involved in translocation is likely to be a complex with diRG -II. 490 
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