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Abstract 12 

COnsensus DEgenerate Hybrid Oligonucleotide Primers (CODEHOP) were developed for the 13 

detection of the dszB desulfinase gene (2'-hydroxybiphenyl-2-sulfinate desulfinase; EC 14 

3.13.1.3) by polymerase chain reaction (PCR), which allow to reveal larger diversity than 15 

traditional primers. The new developed primers were used as molecular monitoring tool to 16 

drive a procedure for the isolation of desulfurizing microorganisms. The primers revealed a 17 

large dszB gene diversity in environmental samples, particularly in diesel-contaminated soil 18 

that served as inoculum for enrichment cultures. The isolation procedure using the 19 

dibenzothiophene sulfone (DBTO2) as sole sulfur source reduced drastically the dszB gene 20 

diversity. A dszB gene closely related to that carried by Gordonia species was selected. The 21 

desulfurization activity was confirmed by the production of desulfurized 2-hydroxybiphenyl 22 

(2-HBP). Metagenomic 16S rRNA gene sequencing showed that the Gordonia genus was 23 

represented at low abundance in the initial bacterial community. Such observation highlighted 24 

that the culture medium and conditions represent the bottleneck for isolating novel 25 

desulfurizing microorganisms. The new developed primers constitute useful tool for the 26 

development of appropriate cultural-dependent procedures, including medium and culture 27 

conditions, to access novel desulfurizing microorganisms useful for the petroleum industry.  28 

 29 

 30 

Keywords: desulfurization, dibenzothiophene sulfone, 16S rRNA gene, dszB desulfinase 31 

gene, Gordonia 32 
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1. Introduction 34 

 Sulfur is essential for living organisms since it is involved in enzyme catalytic sites, 35 

protein structure, and respiratory chain. In the environment sulfur is found under various 36 

forms, sulfate being the most readily available source of sulfur [1]. Organic compounds 37 

containing sulfur atom constitute also potential sulfur sources such as sulfonate in which 38 

sulfur is covalently bond to one carbon [2], and as sulfide in dibenzothiophene (DBT) where 39 

the sulfur atom is bond to two carbons trapped in a heterocycle and surrounded by two 40 

benzene cycles [3]. In these conformations the sulfur is difficult to access [4]. 41 

Microorganisms have developed several strategies to break C-S bond, depending on the 42 

substrate, in order to access and assimilate the sulfur atom [5–9]. For DBT, three microbial 43 

pathways that release the sulfur atom have been reported. In the Kodama pathway, the 44 

benzene rings cleaved by oxygenases are then completely mineralized in carbon dioxide 45 

(CO2) releasing sulfate that serves as easily assimilable sulfur source [10,11]. In the Van 46 

Afferden pathway, after an oxidative attack on the sulfur heteroatom, the DBT is completely 47 

mineralized [12]. In the “4S” desulfurizing pathway, the sulfur atom is specifically extracted, 48 

producing desulfurized 2-hydroxybiphenyl (2-HBP) and sulfur as sulfite, readily oxidized in 49 

sulfate and consumed [13]. 50 

 For the last three decades, DBT desulfurizing microorganisms have attracted the 51 

scientific community because they present a potential for the development of petroleum 52 

desulfurization processes [14–16]. Because of the relative low sulfur content in biomass, in 53 

comparison to carbon and nitrogen, isolation of desulfurizing microorganism is challenging 54 

[17,18]. The main difficulty for isolating desulfurizing microorganisms is that they are in 55 

competition, for thiophenic compounds consumption, with hydrocarbon-degrading 56 

microorganisms implementing the Kodama pathway [19]. It has been demonstrated that a 57 

carbon to nitrogen ratio below five favours the Kodama pathway over the "4S" pathway [19]. 58 
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Additionally, the sulfate released by the "4S" pathway is assimilated by non-desulfurizing 59 

microorganisms [13,18]. Thus, the desulfurizing microorganisms are found in low abundance 60 

(10 to 1000-fold less abundant than non-desulfurizing microorganisms) in microbial 61 

communities even when DBT is the sole sulfur source [18,20]. 62 

 The Rhodococcus erythropolis IGTS8 is considered as model microorganism for the 63 

study of the “4S” desulfurizing pathway [21]. The “4S” desulfurizing pathway involves the 64 

enzymes DszA, B, C, and D coded by the dsz operon [22]. The DszB, the desulfinase (2'-65 

hydroxybiphenyl-2-sulfinate desulfinase; EC 3.13.1.3) breaks the last C-S bond as final step 66 

[18,23,24]. Because DszB has the narrowest substrate spectrum [25] it is a limited enzyme for 67 

industrial application of the biodesulfurization process. However, DszB homologs have been 68 

reported to desulfurize alkylated DBTs, BTs or to perform desulfurization in thermophilic 69 

conditions [26–30], enlarging the substrate spectrum, which increases the potential for 70 

biodesulfurization process. It is thus of paramount importance to develop innovative 71 

approaches in order to discover novel DszB enzymes. The information on dszB diversity is 72 

limited because most studies were based on the dszB gene sequence from R. erythropolis 73 

IGTS8 [20,31]. Recent advances in molecular biology revealed novel dszB gene homologs 74 

exhibiting 66 – 84% similarity to that of R. erythropolis IGTS8 [27,30,32], expanding 75 

knowledge on dszB gene diversity. Such information is useful for the development of new 76 

primers targeting a wide range of dszB genes, marker of desulfurizing potential, and for 77 

constituting tools to monitor the presence of desulfurizing microorganisms in environmental 78 

samples and enrichment cultures. The use of COnsensus DEgenerate Hybrid Oligonucleotide 79 

Primers (CODEHOP) approach presents the advantage to reveal larger diversity of the target 80 

genes [33]. The CODEHOP approach has been successfully used for revealing large diversity 81 

of ring hydroxylating dioxygenase gene [34], but yet not employed for dsz genes. 82 
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 This study aimed at developing molecular tools for monitoring the enrichment 83 

procedure, at both taxonomic and functional levels, for the selection of bacteria containing 84 

dszB genes. For this purpose enrichment cultures with DBT-sulfone (DBTO2, the second 85 

metabolite of “4S” desulfurizing pathway, avoiding the first step from DBT to DBTO2, which 86 

kinetic is limiting and energy consuming), as a sole sulfur source were performed with 87 

samples from various environments. The taxonomic diversity shift in the prokaryotic 88 

communities was followed through 16S rRNA gene sequencing. Polymerase Chain Reaction 89 

(PCR), the novel CODEHOP based approach targeting dszB genes allowed the detection of 90 

rare homologs in soil sample, compared to traditional primers. The enrichment cultures were 91 

driven by detecting the presence of dszB gene with the newly developed PCR method 92 

combined with the detection of DBTO2 metabolite production, until bacterial isolates able to 93 

desulfurize DBTO2 were obtained. The present study will provide tools for accessing novel 94 

desulfurizing microorganisms able to remove organosulfur from oil fractions without 95 

degrading the carbon skeleton, requested as eco-technology for the petroleum industry. 96 

 97 

 98 

2. Material and Methods 99 

2.1.Source of microorganism and samples collection 100 

 The strain Rhodococcus erythropolis IGTS8 was obtained from American Type 101 

Culture Collection and used as positive control for metabolic activity and gene detection. 102 

Various soils and sediments (30 ml) in contaminated areas were sampled in France, using 103 

sampling sterile cores. Samples were maintained at 4°C before culture set up, and at -20°C for 104 

molecular analysis. 105 

 106 
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2.2.DNA extraction, PCR amplification, cloning and sequencing 107 

 The DNA was extracted from environmental sample (250 mg) by using the DNeasy 108 

PowerSoil kit following instructions of the provider (QIAGEN, Germany).  109 

 The V4-V5 region of 16S rRNA gene was amplified using 515F [35] and 928R [36] 110 

primers (Table 1). The PCR mixture consisted on: 1 µl of extracted DNA, 9.5 µl of DEPC-111 

treated water, 1 µl of each primer at 20 µM, 12.5 µl AmpliTaq Gold 360 Master Mix 2X 112 

(Thermo Fisher Scientific, USA). The 16S rRNA gene fragment amplification was performed 113 

through 35 cycles of 94°C (45 s), 60°C (1 min) and 72 °C (1.5 min), with a hot start (94°C, 3 114 

min) and a final extension step (72°C, 10 min). The 16S rRNA gene amplicon sequences were 115 

performed by using the llumina sequencing Genotoul platform (Toulouse, France). 116 

 Functional diversity was assessed by targeting dszB homologs using two sets of 117 

primers: (i) the traditional primers, modified Sul2F [37] and BR [38], based on the R. 118 

erythropolis IGTS8 sequence; and (ii) a new set of primers designed following the 119 

CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) procedure [33] (Table 120 

1). The steps for CODEHOP primers design are described in details in the Results and 121 

Discussion section (Fig. 1). Briefly, primer design was based on conserved blocks of amino 122 

acids (aa) within 352 aligned DszB amino acid sequences retrieved from the GenBank and 123 

aligned with ClustalW (MEGA version 7.0). The j-CODEHOP design software, an integrated 124 

tool into Base-by-Base [39], was used to design the primers. The length of the nondegenerate 125 

5′ clamp region was set to 15 to 18 base pairs (bp). The length of degenerated 3′ region was 126 

set to 2 to 3 amino acids. The specificity of CODEHOP primers was confirmed by in silico 127 

analysis. 128 

 The reaction mixture contained 10.5 µl of DEPC-treated water, 0.5 µl of each primer 129 

at 20 µM, 12.5 µl of AmpliTaq Gold 360 Master Mix 2X (Thermo Fisher Scientific, USA) 130 
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and 1 µl of extracted DNA template. Amplification conditions with CODEHOP were as 131 

follows: 35 cycles of 94°C (45 s), 58°C (45 s) and 72°C (1 min). A hot start (10 min at 94°C) 132 

was applied to avoid mispriming. A final extension step was run for 10 min at 72°C and the 133 

PCR tubes were stored at 4°C. PCR were performed in triplicate and products were pooled 134 

before applications. The dszB amplicons obtained with both traditional primers or CODEHOP 135 

were purified with the GFX PCR DNA and Gel Band Purification kit (GE Healthcare, USA) 136 

and inserted into plasmid vector and cloned in E. coli using the PCR-TOPO Cloning kit 137 

(Thermo Fisher Scientific, USA) following the instructions of the manufacturer. The size of 138 

cloned amplicons was examined by migration on electrophoresis gel (1% agarose, 7.7 V.cm-1, 139 

25 min). Amplicons with expected size were Sanger sequenced at the Eurofins GATC Biotech 140 

platform (Konstanz, Germany).  141 

 142 

2.3.Sequence and diversity analysis 143 

 Illumina sequencing generated 32,990 reads, partitioned in two datasets corresponding 144 

to the soil sample and the last enrichment culture DNAs. 16S rRNA gene sequence analyses 145 

were performed using QIIME2 software (Quantitative Insights Into Microbial Ecology, [39]). 146 

The datasets were demultiplexed and denoised, using dada2 package and truncating reverse 147 

sequence to 237 bp. These cleaned sequences were then clustered in representative sequences, 148 

in such a way to get 197 Amplicon Sequence Variants (ASVs). ASVs were classified 149 

according to their taxonomical assignation at the sequence similarity threshold of 97% using 150 

SILVA database (v132). Singletons, chloroplasts, mitochondria and unassigned at the domain 151 

level were removed from datasets, resulting in 190 ASVs. 152 

 Regarding dszB amplified fragments, sequences were aligned with reference dszB 153 

genes found in the NCBI database (accession numbers: AB033997, JQ657805, CP003347, 154 
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AB076745, KP202690, JF740062, AB070603, KT630580, EF026089, AY960127, 155 

AY714057, AY278323, DQ444325, L37363, DQ062161, AY789136, AY714059, KJ021035, 156 

AY678116, KC693733, EU364831, AY396519, AJ973325, CP035924) using the BioEdit 157 

software (v7.5.2.0). Low quality reads were discarded (<300-bp length), then vector and 158 

primers sequences were removed. The remaining reads were compared to the NCBI non-159 

redundant database using BLAST to ensure the top hit (sequence similarity) was a homolog 160 

dszB gene. These reads were then sorted in cluster at 97% nucleotide sequence similarity, as 161 

suggested by[40]. Diversity indexes were calculated using vegan and diversity packages on R. 162 

 163 

2.4.Enrichment and Isolation procedure 164 

 Sulfur free medium (SFM) for enrichment cultures contained (l-1 deionized water): 165 

KH2PO4 2.44 g, Na2HPO4 5.44 g, NH4Cl 1.22 g, MgCl2·6H2O 0.2 g, CaCl2·2H2O 0.001 g. 166 

FeCl3·6H2O 0.001 g; 12.6 g/l of glucose were used as carbon source as used for growing 167 

desulfurizing bacteria [41] and SFM was supplemented with 0.1% sulfur free trace element 168 

solution SL-10 [42]. DBTO2 dissolved in dimethylformamide at 0.1 M was added as sulfur 169 

source at a final concentration of 300 µM. Enrichment procedure was performed through 6 170 

successive transfers of 5-days cultures to 10 ml of fresh SFM medium, at 30°C at 150 rpm 171 

[43]. 172 

 After 6 sub-cultivations, the cultures were diluted with saline solution (0.9 %) from 173 

10-7 to 10-3 factor, then spread onto SFM agar plate and incubated at 30°C. Separated colonies 174 

were peaked and streaked onto LB agar medium plate to ensure their purity. 175 

 176 

2.5.Analytical methods 177 
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 Hydrophobic compounds were extracted by mixing culture with ethyl acetate (1:1 v/v) 178 

containing pyrene as internal standard (1 mM) after shaking for 30 min. DBTO2 metabolites 179 

were detected in extracts by gas chromatography equipped with Flame Ionization Detector 180 

(GC-FID, GC 6850 Agilent Technologies), HP-1 capillarity column (30 m*0.25 mm*0.25 181 

µm). Helium (1 ml/min) was used as carrier gas and 1 µl of extract was injected with a split 182 

ratio of 1/50. Column temperature varied from 200 to 240 °C, increasing by 5°C/min and 183 

maintaining 240°C for 1 min. Flame Ionization Detector was settled at 290°C. 184 

 185 

2.6.Sequence data 186 

 The sequence data generated in this study have been deposited in the EMBL sequence 187 

database under the accession numbers MT900068-MT900251 for dszB gene sequences. The 188 

complete dataset for 16S rRNA gene sequences was deposited in the NCBI Sequence Read 189 

Archive (SRA) database (SUB7938384). It is available under the Bioproject ID 190 

PRJNA658137. 191 

 192 

3. Results and Discussion 193 

3.1.Consensus-degenerate hybrid oligonucleotide primers (CODEHOP) design targeting 194 

desulfurizing microorganisms 195 

 In order to detect a large diversity of dszB genes, a new primer set was designed 196 

following CODEHOP procedure [33]. An alignment of DszB homolog protein sequences was 197 

performed. Interestingly, although the ten known amino acid residues involved in the DszB 198 

enzymatic activity were found to be conserved among the aligned sequences, two sequences 199 

exhibited amino acid replacements. In the DszB sequence of Gordonia sp. RIPI (AJ973326), 200 
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the Arg70 was replaced by Cys, while in Paenibacillus sp. A11-2 (AB033997) the Gly183 201 

was replaced by Trp. These amino acid residue replacements are not conservative and 202 

therefore might affect the protein properties, conformation and activity as previously 203 

demonstrated by site-directed mutagenesis of amino acid residues at position 63 and 65 for 204 

the DszB of R. erythropolis KA2-5-1 [44]. The alignment identified 11 blocks of conserved 205 

amino acids (Fig. 1). Looking for degenerated primers with a hybridization temperature 206 

around 62°C, 3 blocks coded by 3 nucleotide sequences were obtained (Fig. 1). The block 207 

LGSWEAR contains 2 residues, Leu152 and Trp155, which were found to be involved in 208 

hydrophobic interaction with the substrate in R. erythropolis IGTS8 through hydrophobic 209 

interaction with benzene cycles [45]. The corresponding consensus nucleotide sequence was 210 

defined as forward primer (codF). The other two blocks, TQQFLLDHQL and QQFLLDHQLL 211 

(Fig. 1), located near the carboxylic extremity of DszB homologs showing large overlap, 212 

served to design the reverse primers. The corresponding consensus nucleotide sequences were 213 

named respectively codR1 and codR2. The efficiency of the new designed primers to amplify 214 

dszB fragments was verified using DNA template from R. erythropolis IGTS8, and a fuel 215 

contaminated soil sample (RITA3). The dszB codF/R1 primer lead to a single amplification of 216 

expected size (576 bp) using DNA from pure strain and soil samples, whereas codF/R2 217 

primer lead to amplification of a fragment (579 bp) only from pure strain DNA. Cloning and 218 

sequencing of PCR products obtained with codF/R1 primer from soil DNA showed 68 to 85% 219 

of nucleotide identity with dszB gene of Rhodococcus erythropolis strain IGTS8, resulting in 220 

the amplification of new dszB homologs. The in silico analysis confirmed the CODEHOP 221 

primers specificity for dszB genes. Thus, this primers pair, allowing amplification from both 222 

model strain and significantly different dszB homolog, was selected for further experiments.  223 

 In order to further validate the CODEHOP primers, the dszB gene diversity within the 224 

microbial communities from a soil sample (RITA3) assessed by the CODEHOP (codF/R1) 225 
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primers was compared with that obtained by traditional (Sul2F/BR) primers. After cloning 226 

and sequencing 189 sequences were obtained, among them 95 with traditional primers and 94 227 

with the CODEHOP primers. 186 sequences were related to dszB homologs. The 3 remaining 228 

sequences did not exhibit any similarity with known dszB homolog or sulfinase gene, at both 229 

nucleotide and amino acid levels, indicating that they result from unspecific amplification. 230 

The CODEHOP approach showed similar rate of specific amplification (98.5 %) to that of 231 

traditional primer. However, the CODEHOP primers revealed greater diversity than the 232 

traditional primers (Table 2). The 371 dszB sequences were dispatched in 11 variants (Fig. 2), 233 

the three most dominant variants being affiliated to Gordonia (variant 02, 40%, and variant 234 

07, 24%) and to Rhodococcus (variant 03, 20%). With the traditional primers, the dominant 235 

variants were variant 07 (78%) and variant 03 (13%). Noteworthy, variant 03 and variant 07 236 

were detected with both primers. Such result was in agreement with previous studies reporting 237 

that CODEHOP approach revealed large diversity for various functional genes [34,46]. This 238 

was as expected since CODEHOP primers were generated from conserved amino acid blocks 239 

among known dszB homologs, while traditional primers were only based on the Rhodococcus 240 

erythropolis IGTS8 dszB gene.  241 

 The DszB functional diversity was further examined by performing a phylogenetic 242 

analysis. The phylogenetic analysis showed three major clusters (Fig. 3). Two clusters were 243 

characterized by DszB sequences obtained with both sets of primers, and closely related to 244 

sequences belonging to Gordonia and Rhodococcus species (Fig. 3, clusters 2 and 3). The 245 

third cluster contained DszB sequences, obtained only with CODEHOP primers, closely 246 

related to a DszB homolog called “ADRO2” (Fig. 3, cluster1). This homolog was identified 247 

by metagenomics analysis from crude oil [37]. In silico analysis showed the absence of a 248 

hybridization site on ADRO2 sequence corresponding to the forward traditional primer, 249 

assuming amplification of this homolog would not, theoretically, be possible with traditional 250 
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primers. Moreover, the traditional forward primer hybridizes on the end of dszA, located 251 

upstream dszB in currently known dsz operons. An operon organized differently will not yield 252 

any PCR product with traditional primers. Hence this enhances the interest of using primers 253 

designed from conserved amino acid blocks of DszB to detect and investigate dszB diversity 254 

in environmental samples. 255 

 256 

3.2. Screening of biodesulfurization capacities in environmental samples and 257 

enrichment cultures  258 

 CODEHOP based screening was performed on different environmental samples 259 

(Table 3) and dszB gene was detected in RITA3, GRAL and NOGR samples. These samples 260 

were characterized by oil contamination, mainly diesel, due to anthropogenic activities, and 261 

without cleaning actions since decades. It can be assumed that in these sites, readily 262 

assimilable sulfur sources were consumed, and heteroaromatic sulfur compounds remained as 263 

sole sulfur source, shaping local microbial communities at the benefice of specialized 264 

microorganisms as desulfurizing bacteria in such particular ecotopes [20]. The dszB genes 265 

were not detected in three environmental samples (PORT, MAHARIN and BERRE) with the 266 

CODEHOP approach (Table 3), nor with the traditional (Sul2F/BR) primers. PORT and 267 

MAHARIN samples were collected from a harbour sediment periodically dredged and a 268 

creek-estuary mouth sediment, respectively. In these dynamic environments we hypothesise 269 

that desulfurizing microorganisms are not abundant since pollutants such as marine fuel, 270 

should have been removed or not-accumulated, along with heteroaromatic sulfur sources. 271 

BERRE sediments, chronically contaminated by petrochemical wastes, are characterized by 272 

hydrocarbon-degrading sulfate-reducing bacteria [47], creating unfavourable conditions for 273 

the growth of aerobic desulfurizing microorganisms. Considering desulfurizing metabolism 274 

requires easy access of sulfur sources [22,37,48,49] these three environments would not be 275 



13 
 

advantageous for aerobic microorganisms specialized in heteroaromatic compounds 276 

desulfurization bearing any dszB gene homolog. Moreover, for many strains, dsz genes are 277 

carried by plasmid [28,50], that can be lost in absence of adequate environmental selective 278 

pressure. 279 

 In order to select active desulfurizing microorganisms, enrichment procedure was 280 

performed using the environmental samples as inoculum. The enrichment was conducted in 281 

presence of dibenzothiophene-sulfone (DBTO2) as sole sulfur source. The desulfurization 282 

potential of enrichment cultures was characterized by molecular and chemical approaches. 283 

The detection of dszB genes by CODEHOP approach showed the same pattern observed in 284 

environmental samples (Table 3). The dszB genes were detected in RITA3, GRAL and 285 

NOGR enrichment cultures, showing that the initial presence of dszB gene in environmental 286 

samples was maintained through enrichment procedure. In these dszB-positive enrichment 287 

cultures the production of 2-hydroxybiphenyl (2-HBP) was detected (Table 3), assuming that 288 

biodesulfurization activity occurred as previously described [41]. DBTO2 was removed to a 289 

higher extent compared to 2-HBP production, showing no-equimolar conversion as expected 290 

through 4S pathway [51,52]. This could be explained by hydrocarbon degradation through 291 

Kodama pathway [11,19]. Consistently, the genes involved in naphthalene degradation nidA 292 

and nahA [53,54] were detected in the soil sample RITA3 and its corresponding enrichment 293 

cultures (data not shown). Enrichment cultures from BERRE sample showed DBTO2 removal 294 

despite that we were unable to detect the presence of dszB gene, nor the production of 2-HBP 295 

(Table 3). Such result supports the hypothesis that hydrocarbon-degrading microorganisms 296 

were selected, instead of desulfurizing microorganisms. In this case biodegradation of DBTO2 297 

is performed via the Kodama pathway [19,20]. As shown in Table 3, DBTO2 consumption 298 

and 2-HBP production were not detected in enrichment cultures from PORT and MAHARIN 299 

samples, which was in agreement with the fact that dszB genes were not detected.  300 
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 301 

3.3.Reduction of functional and taxonomic diversity during enrichment culture 302 

 The dszB diversity of RITA3 enrichment culture was characterized. This enrichment 303 

culture was described by its desulfurization capacity (Table 3). Comparing the diversity 304 

between the enrichment culture and the original soil, the enrichment culture selected the 305 

variant 02 among the eleven variants identified in RITA3 soil sample (Fig. 2). Such result 306 

indicated that the culture media and/or the culture condition were stringent, contributing to the 307 

disappearance through enrichment of most DszB variants not yet described. Additionally, the 308 

loss of these variants may be also explained by the inability of corresponding DszB enzymes 309 

to metabolize DBTO2 since the substrate specificity depends on amino acid composition as 310 

demonstrated by site-directed mutagenesis [29,44,45]. Moreover, it has been shown that 311 

desulfurizing activity is not just based on Dsz allozymes but also on cellular and extracellular 312 

parameters [55–58], which might explain that dsz genes were mainly found in 313 

Mycobacterium, Rhodococcus and Gordonia genera (Fig. 3). These genera are known to be 314 

able to desulfurize DBTO2 [38,59,60]. It is likely that these genera bring cellular and genetic 315 

properties well adapted to desulfurization, including the ability to replicate and conserve dsz-316 

carrying plasmid as previously described [61]. Our enrichment conditions selected 317 

microorganisms able to use DBTO2 as sole sulfur source, carrying the dszB homolog 318 

belonging to variant 02 (Fig. 2), associated with Gordonia species. 319 

 In order to further characterise the reduction of diversity during the enrichment 320 

procedure, high throughput sequencing of 16S rRNA gene was performed to assess the 321 

taxonomic diversity. After trimming and rarefaction, 14,677 sequences per sample were 322 

obtained and clustered in Amplicon Sequence Variants (ASVs). As expected, the diversity 323 
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was higher in the initial soil community than in the enrichment culture (Table 2), confirming 324 

that a stringent selection pressure was applied as observed for dszB diversity.  325 

 Soil bacterial community was mainly dominated by three genera (Fig. 4) including 326 

sequences affiliated to two aerobic taxa Pseudoxanthomonas and Chryseobacter (36 and 13% 327 

relative abundance, respectively) and strictly anaerobic Paludibacter (7%), which known 328 

representatives were isolated from swamp [62–64]. The enrichment culture was dominated by 329 

Klebsiella (49%) and strictly aerobic Achromobacter (8%) and Xanthomonas (4%), which are 330 

usually found in environmental samples [65–67]. The abundance of the Gordonia genus, 331 

which was associated to dszB variant 02 selected during the enrichment procedure, increased 332 

slightly during the enrichment culture reaching 3% while it represented less than 1% in the 333 

initial soil. The selected genera through enrichment revealed the presence of microorganisms 334 

with the ability to degrade xenobiotic and aromatic compounds [65,67,68]. Among them, 335 

Achromobacter sp., Klebsiella sp. and several Gordonia species were reported for their 336 

capacity to perform biodesulfurization on heteroaromatic compounds such as DBTO2 [68–70]. 337 

It is likely that the enrichment procedure with DBTO2 was adapted for their selection. The 338 

presence in high abundance of ASVs related to the Enterobacteriaceae family that have never 339 

been reported exhibiting desulfurization capacities, suggested a co-selection, probably 340 

behaving as cheaters by using sulfur produced by desulfurizing-microorganisms. Such 341 

behaviour has been reported for Enterobacter cloacae, which was co-cultivated with R. 342 

erythropolis IGTS8 in presence of DBTO2 as sole sulfur source [18]. It has been 343 

demonstrated that biodesulfurization performing microorganisms are able to export sulfide 344 

out of the cell, making the sulfur available for non-specialists microorganisms that are 10 to 345 

1,000 times more abundant than the desulfurizing microorganisms [13,20]. 346 

 347 
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3.4.Isolation of desulfurizing strains  348 

 After the enrichment procedure, desulfurizing strains were isolated on SFM agar 349 

plates. After 24h of incubation, large white colonies were observed. After 72h, little orange 350 

colonies were observed in plates coming from 2-HBP producer cultures (Table 3). 351 

Microscopic observations revealed that white colonies were yeasts while the orange colonies 352 

were rod-shaped bacteria. Almost every orange colony owned dszB gene. Among the 210 353 

isolates owning dszB gene, 45 were randomly tested for the biodesulfurization capacity, after 354 

cultivation on SFM with DBTO2 as sole sulfur source. The 11 isolates from RITA3 were able 355 

to convert DBTO2 into 2-HBP (Table 3). The sequence of the dszB genes from these isolates 356 

shared 99 – 100% nucleotide sequence similarity with the dszB variant 02 (Fig. 2), affiliated 357 

to Gordonia belonging strains, further confirmed by 16S rRNA gene analysis. Such 358 

homogeneity in dszB gene sequences obtained from different samples confirmed the 359 

stringency of the enrichment procedure, highlighting the “cultural bias” [71,72]. Since our 360 

enrichment procedure showed large dszB gene diversity than that represented by the obtained 361 

isolates, there is still the possibility to develop other culture media, such as changing carbon 362 

sources and providing various sulfur sources, in order to isolate bacterial strains carrying 363 

different dszB gene.  364 

 365 

4. Conclusion 366 

 The enrichment procedure combined with molecular monitoring tools allowed the 367 

selection of active microorganisms able to produce 2-HBP from DBTO2 as sole sulfur source 368 

in mineral medium. The enrichment culture selected bacterial genera usually found in 369 

polycyclic aromatic hydrocarbons contaminated environment or able to degrade thiophenic 370 

compounds through Kodama or 4S pathways. The CODEHOP primers developed in this 371 
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study, used as molecular tools to monitor the enrichment procedure, revealed a large dszB 372 

gene diversity in the initial soils that was reduced during the enrichment procedure. However, 373 

the final isolation step selected only one dszB gene variant affiliated to Gordonia highlighting 374 

the necessity to develop culture media for the selection of other or even novel dszB genes. For 375 

this purpose the CODEHOP primers represent innovative molecular tool to drive the 376 

development of specific culture media. They provide the possibility to detect a wide range of 377 

dszB genes in environmental samples and identify strains exhibiting dszB gene significantly 378 

different from the model strain Rhodococcus erythropolis IGTS8. The capacity to access 379 

novel desulfurizing microorganisms may allow the optimisation of biotechnology process for 380 

the petroleum industry such as crude biodesulfurization. 381 
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Figure captions 638 

Fig. 1 Sequence alignment of DszB homologs (352 amino acids) from desulfurizing bacterial 639 

strains of Gordonia (AY678116, AY396519, KC693733, AJ973326, EU364831, EF026089), 640 

Agrobacterium (AY960127), Rhodococcus (L37363, AY789136, AY278323), 641 

Mycobacterium (AB070603), Bacillus (AB076745) and Paenibacillus (AB033997) species. 642 

Shaded columns are identity nucleotides conserved in all sequences (blocks 1 to 11). In red, 643 

consensus nucleotide sequence identified by CODEHOP procedure, and used to design 644 

forward (codF) and reverse (codR) primers  645 

 646 

Fig. 2 Diversity of dszB gene in an environmental sample (RITA3 soil) assessed by 647 

traditional and CODEHOP primers 648 

 649 

Fig. 3 Phylogenetic tree showing the affiliation of DszB deduced amino acid sequences (519 650 

aa) from PCR amplified dszB genes fragments and known DszB homologs. Phylogenetic tree 651 

was constructed with the neighbour-joining method. Bootstrap values (> 50%) for 1000 652 

replicates are shown at the branch points. Colours indicate different clusters of DszB 653 

homologs based on at least 97% nucleotide identity of coding sequence [36]. Square indicate 654 

translated fragments amplified with traditional primers, and circle indicate fragments 655 

amplified with CODEHOP primers. Sequence accession numbers are given in parentheses 656 

 657 

Fig. 4 Relative abundance of the dominant bacteria from the environmental sample (initial 658 

soil community from RITA3 soil sample) and in the enrichment culture, at the genus level. 659 

The number of ASVs per genus is indicated in parenthesis. Non-affiliated genera in 660 

enrichment culture (representing 34% of relative abundance) belong to Enterobacteriaceae 661 

family  662 
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 663 

Table 1: Primers used in this study 664 

Targeted 

gene 
Primers Sequence 5’→ 3’ Reference 

16S 515F GTGTYCAGCMGCCGCGGTA [35] 

 928R CCGYCAATTYMTTTRAGT [36] 

dszB Sul2F GCAACTGCACATGTTCGCCG [37] 

 BR CTATCGGTGGCGATTGAGGC [38] 

 codF CCTGGGCACCTGGGARGYNMG This study 

 codR1 GGTTGTGGTCGAGCAGGAAYTGYTGNGT  

 codR2 GCAGGTTGTGGTCGAGCARRAAYTGYTG  

nidA PAH-RHDα GP F CGGCGCCGACAAYTTYGTNGG [53] 

 PAH-RHDα GP R GGGGAACACGGTGCCRTGDATRAA  

nahA PAH-RHDα GN F GAGATGCATACCACGTKGGTTGGA  

 PAH-RHDα GN R AGCTGTTGTTCGGGAAGAYWGTGCMGTT  

Degenerated bases (IUPAC): Y = C or T, M = A or C, R = A or G, D = A, G or T, K = G or T, W = A or T, N = A, T, C or G 665 

  666 
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Table 2: Alpha diversity indices of bacterial communities in the environmental sample 667 

(initial soil community from RITA3 soil sample) and in the enrichment culture  668 

  Environmental sample   Enrichment culture 

Diversity index 16S rRNA dszB gene   16S rRNA CODEHOP 
 

  
Traditional 

primers 
CODEHOP     

Shannon  1.286 0.804 1.516   0.255 0 

Richness 181 7 8   9 1 

Pielou 0.619 0.287 0.505   0.368 - 

 669 

  670 
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Table 3: Genetic potential and desulfurization activity during the enrichment and 671 

isolation steps 672 

Environmental 

sample 

Enrichment 

culture 
Colonies 

Isolated strain 

(n° positive/n° tested) * 

 dszB** dszB** 
DBTO2

***  
removal 

2-HBP***  
production 

dszB** 
DBTO2

***
 

 removal 
2-HBP*** 

production 

RITA3 + + + + 66/96 11/11 11/11 

BERRE - - + - NT$ 6/6 0/3 

PORT - - - - NT$ 2/23 0/23 

MAHARIN - - - - NT$ 2/23 0/23 

GRAL1 + + + + 31/37 NT$ 1/1 

GRAL2 + + + + 22/24 NT$ 1/1 

GRAL3 + + + + 34/48 NT$ 1/1 

NOGR1 + + + + 26/30 NT$ 1/1 

NOGR2 + + + + 10/21 NT$ 1/1 

NOGR3 + + + + 21/31 NT$ NT$ 
*Number of strains showing positive DBTO2 removal or 2-HBP production per number of strains tested. **dszB genes 673 

detected by PCR. ***DBTO2 transformation and 2-HBP production determined by GC-FID. $NT: not tested 674 

 675 

 676 



AY678116: MAGRLSPGNPGSELDTGILDTLTYSNCPIPNALLTAWESGFLDAAGIELDILSGKQGTVHFTYDQPAYTRYGGEIPPLLSEGLRAPGRTRLLGITPILGRQGFFVGDRSPITVAADLAGR 120
AY396519: MAGRLSPGNPGSELDTGILDTLTYSNCPIPNALLTAWESGFLDAAGIELDILSGKQGTVHFTYDQPAYTRYGGEIPPLLSEGLRAPGRTRLLGITPILGRQGFFVGDRSPITVAADLAGR 120
KC693733: MAGRLSPGNPGSELDTGILDTLTYSNCPIPNALLTAWESGFLDAAGIELDILSGKQGTVHFTYDQPAYTRYGGEIPPLLSEGLRAPGRTRLLGITPILGRQGFFVGDRSPITVAADLAGR 120
AJ973326: MAGRLSPGNPGSELDTGILDTLTYSNCPIPNALLTAWESGFLDAAGIELDILSGKQGTVHFTYDQPAYTCYGGEIPPLLSEGLRAPGRTRLLGITPILGRQGFFVGDRSPITVAADLAGR 120
EU364831: MAGRLSPGNPGSELDTGILDTLTYSNCPIPNALLTAWESGFLDAAGIELDILSGKQGTVHFTYDQPAYTRYGGEIPPLLSEGLRAPGRTRLLGITPILGRQGFFVGDRSPITVAADLAGR 120
AY960127: MTSRVDPANPGSELDSAIRDTLTYSNCPVPNALLTASESGFLDAAGIELDVLSGQQGTVHFTYDQPAYTRFGGEIPPLLSEGLRAPGRTRLLGITPLLGRQGFFVRDDSPITAAADLAGR 120
AY714057: MTSRVDPANPGSELDSAIRDTLTYSNCPVPNALLTASESGFLDAAGIELDVLSGQQGTVHFTYDQPAYTRFGGEIPPLLSEGLRAPGRTRLLGSTPLLGRQGFFVRDDSPITAAADLAGR 120
L37363  : MTSRVDPANPGSELDSAIRDTLTYSNCPVPNALLTASESGFLDAAGIELDVLSGQQGTVHFTYDQPAYTRFGGEIPPLLSEGLRAPGRTRLLGITPLLGRQGFFVRDDSPITAAADLAGR 120
AY789136: MTSRVDPANPGSELDSAIRDTLTYSNCPVPNALLTASESVFLDAAGIELDVLSGQQGTVHFTYDQPAYTRFGGEIPPLLSEGLRAPGRTRLLGITPLLGRQGFFVRDDSPVTAAADLAGR 120
AY278323: MTSRVDPANPGSELDSAIRDTLTYSNCPVPNALLTASESGFLDAAGIELDVLSGQQGTVHFTYDQPAYTRFGGEIPPLLSEGLRAPGRTRLLGITPLLGRQGFFVRDDSPITAAADLAGR 120
EF026089: MTGRVDTDTANSRLDGGHRDTLTFSNCPVPNALITASESGCLDAAGIELDVLSGKQGTVHFTYDHPAYTRFGGGIPPLLSEGLRAPGRTRLLGITPVLGRQGYFVRNDSPITSAADLAGR 120
AB070603: MT--------TTGID---RDILAYSNCPVPNALLTALESNLLAGNGISLNVLSGAQAGLHFTYDHPAYTRFGGEIPPLISEGLRAPGRTRLLGITPLAGRQGIYVRADSPVTSPEQLRGR 120
AB076745: MT--------TTDVD---HDVLAYSNCPVPNALLTALESNLLAGNGISLNVLSGAQAGLHFTYDHPAYTRFGGEIPPLISEGLRAPGRTRLLGITPLAGRQGIYVRVDSPVTSPEQLRGR 120
AB033997: ----------MSTLSAIGPTRVAYSNCPVANALLVASRTGKLERQGVLLSQIAFAQGATHFAYDHAAYTRFGGEIPPLVSEGLRAPGRTRLLGITVLKPRQGFYVHSAGKIASPSDLRGR 120

AY678116: RIGVSASAIRILRGELG-DYLQLDPWRQTLVALGSWEARALLHTLEHGELDVDDVELVPINSPGVDVPAEQLEDAATLKGADLFPDVAAGQAAVLDRGEVDALFSWLPWAAELEG-TGAR 240
AY396519: RIGVSASAIRILRGELG-DYLQLDPWRQTLVALGSWEARALLHTLEHGELDVDDVELVPINSPGVDVPAEQLEDAATLKGADLFPDVAAGQAAVLDRGEVDALFSWLPWAAELEG-TGAR 240
KC693733: RIGVSASAIRILRGELG-DYLQLDPWRQTLVALGSWEARALLHTLEHGELDVDDVELVPINSPGVDVPAEQLEDAATLKGADLFPDVAAGQAAVLDRGEVDALFSWLPWAAELEG-TGAR 240
AJ973326: RIGVSVSAIRILRGELG-DYLQLDPWRQTLVALGSWEARALLHTLEHGELDVDDVELVPINSPGVDVPAEQLEDAATLKGADLFPDVAAGQAAVLDRGEVDALFSWLPWAAELEG-TGAR 240
EU364831: RIGVSASAIRILRGELG-DYLQLDPWRQTLVALGSWEARALLHTLEHGELDVDDVELVPINSPGVDVPAEQLEDAATLKGADLFPDVAAGQAAVLDRGEVDALFSWLPWAAELEG-TGAR 240
AY960127: RIGVSASAIRILRGQLG-DYLELDPWRQTLVALGSWEARALLHTLEHGELGVDDVELVPISSPGVDVPAEQLEESATVKGADLFPDVARGQAAVLASGDVDALYSWLPWAGELQA-TGAR 240
AY714057: RIGVSASAIRILRGQLG-DYLELDPWRQTLVALGSWEARALLHTLEHGELGVDDVELVPISSPGVDVPAEQLEESATVKGADLFPDVARGQAAVLASGDVDALYSWLPWAGELQA-TGAR 240
L37363  : RIGVSASAIRILRGQLG-DYLELDPWRQTLVALGSWEARALLHTLEHGELGVDDVELVPISSPGVDVPAEQLEESATVKGADLFPDVARGQAAVLASGDVDALYSWLPWAGELQA-TGAR 240
AY789136: RIGVSASAIRILRGQLG-DYLELDPWRQTLVALGSWEARALLHTLEHGELGVDDVELVPISSPGVDVPAEQLEESATVKGADLFPDVARGQAAVLASGDVDALYSWLPWAGELQA-TGAR 240
AY278323: RIGVSASAIRILRGQLG-DYLELDPWRQTLVALGSWEARALLHTLEHGELGVDDVELVPISSPGVDVPAEQLEESATVKGADLFPDVARGQAAVLASGDVDALYSWLPWAGELQA-TGAR 240
EF026089: RIGVSASAIRILRGELG-DYLELDPWRQTLVALGSWEARALLHTLEHGSLDVDDVELDPINSPGVDVPAEQLEESATVKGADLFPDVAQGQAAVLANAGIDALYSWLPWAAELQA-TGAR 240
AB070603: RVGVSGAAIRILTGELG-DYRQLDPWRQTLIALGTWEARGLLQTLHIGGIGISDVELVRIESPGVDVPEERLEAAASVKGADLFPDVAAHQSDILSSGNVDALFTWLPWAAELEDLSGAR 240
AB076745: RVGVSGAAIRILTGELG-DYRHLDPWRQTLIALGTWEARGLLQTLHIGGIGVDDVELVRIESPGVDVPEERLEAAASVKGADLFPDVAGHQRDILDSGNVDALFTWLPWAAELEDLSGAR 240
AB033997: RIGLSRAAQRILFGHLGEEYRNLGPWEQTLVALGSWEVRALKHTLAAGGLRLNDVIVEDVENPWVDVPRPKLDDSRDFSSRELFATAVEWQSQQLKSGQVDALFSWLPYAAELELQGVAK 240

AY678116: PVVDLGLDERNAYASVWTVSSELVVDRPDLVQRLVDAVVDAGLWARDHGDAVTRLHAANLGVSPDAVGHGFGADFQQRLVPRLDPDAVALLDRTQQFLLSNQLLQEPVALDQ 352
AY396519: PVVDLGLDERNAYASVWTVSSELVVDRPDLVQRLVDAVVDAGLWARDHGDAVTRLHAANLGVSPDAVGHGFGADFQQRLVPRLDPDAVALLDRTQQFLLSNQLLQEPVALDQ 352
KC693733: PVVDLGLDERNAYASVWTVSSELVVDRPDLVQRLVDAVVDAGLWARDHGDAVTRLHAANLGVSPDAVGHGFGADFQQRLVPRLDPDAVALLDRTQQFLLSNQLLQEPVALDQ 352
AJ973326: PVVDLGLDERNAYASVWTVSSELVVDRPDLVQRLVDAVVDAGLWARDHGDAVTRLHAANLGVSPDAVGHGFGADFQQRLVPRLDPDAVALLDRTQQFLLSNQLLQEPVALDQ 352
EU364831: PVVDLGLDERNAYASVWTVSSELVVDRPDLVQRLVDAVVDAGLWARDHGDAVTRLHAANLGVSPDAVGHGFGADFQQRLVPRLDPDAVALLDRTQQFLLSNQLLQEPVALDQ 352
AY960127: PVVDLGLDERNAYASVWTVSSGLVRQRPGLVQRLVDAAVDAGLWARDHSDAVTGLHAANLGVSTGAVGQGFGADFQQRLVPRLDHDALALLERTQQFLLTNNLLQEPVALDQ 352
AY714057: PVVDLGLDERNAYASVWTVSSGLVRQRPGLVQRLVDAAVDAGLWARDHSDAVTSLHAANLGVSTGAVGQGFGADFQQRLVPRLDHDALALLERTQQFLLTNNLLQEPVALDQ 352
L37363  : PVVDLGLDERNAYASVWTVSSGLVRQRPGLVQRLVDAAVDAGLWARDHSDAVTSLHAANLGVSTGAVGQGFGADFQQRLVPRLDHDALALLERTQQFLLTNNLLQEPVALDQ 352
AY789136: PVVDLGLDERNAYASVWTVSSGLVRQRPGLVQRLVDAAVDAGLWARDHSDAVTSLHAANLGVSTGAVGQGFGADFQQRLAPRLDHDALALLERTQQFLLTNNLLQEPVALDQ 352
AY278323: PVVDLGLDERNAYASVWTVSSGLVRQRPGLVQRLVDAAVDAGLWARDHSDAVTSLHAANLGVSTGAVGQGFGADFQQRLVPRLDHDALALLERTQQFLLTNNLLQEPVALDQ 352
EF026089: PVVDLGLDERNAYGSVWTVSSGLVDERPDLVQRLVDAAVDAGLWARDHADAVTRLHAANLGVSTEAVGHGFGLDFQHRLVPRLDRDALALLDRTQQFLLSNDLLHEPVALDQ 352
AB070603: VLADLGDDKRNRYASVWTVSAQLVDERPDQVQRLVDAAVQAGRWAQAHPEDTVGIHAANLGVAPSAIGRGFGADFAQHLIPTLDDSALAVVDQTQQFLIDHNLLDRPVDLTQ 352
AB076745: VLADLGDDQRSRYASVWTVSAQLVDERPDLVQRLVDAAVQASRWAQAHPEETVGIHAANLGVAPSAIGRGFGADFAQHLIPRLDDSALAVVDQTQQFLLDHNLLDHPVDLTQ 352
AB033997: PVFALTGEE-NAWASVWTVSAALVERRPEIVQRLVDSVVEAASWATDHAKETIEIHALNLGVSVKAVETGFGEGFHRDLRPRLDQAALRILEQTQQFLFDHGLIDRLVDIER 352
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