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Abstract: In this paper, we propose a decentralized agent-based Autonomic Semantic Service 

Adaptation Controller and Reconfiguration (ASSACR) to solve the problem of context-aware 

service selection and deployment for distributed healthcare mobile applications, where functional 

and non-functional users’ needs are expressed using domain-independent ontology. The main 

objective of this approach is to provide optimal personalized services as fast as possible. Indeed, a 

new ontology for semantic description and parallel management of the contextual services is 

presented. At first, a new dominance operator-based constraints violation degree is used to reduce 

the search space. Then, optimal personalized paths that meet user’s needs, preferences and devices' 

availability are discovered and selected in a smaller search space more effectively and efficiently 

using dynamic services selection algorithm, based on new ASSACR multi-agent strategies. To 

validate the performance and efficiency of the proposed approach, we compared the proposed 

approach with existing multi-agent strategies of the diabetic follow-up use cases. Experimental 

results show that the proposed approach effectively addressed both the semantic service 

representation and agent aspects in terms of performance and quality service selection. 

Keywords: IoT, Multi-Agent, Smart Health, QoS, Ontology Model, Mobile Application.  

 

1. Introduction 

The Internet of Things (IoT) has emerged as the dominant computing paradigm that enables 

ubiquitous connectivity between different smart objects [1]. IoT aims to support users anytime, 

anywhere and under any conditions. It leverages heterogeneous smart objects and IoT devices with 

various communication protocols (i.e. ZigBee, 3G, Wi-Fi, etc.) and a variety of context data types (i.e. 

text, audio, image, video, etc.). In addition, different languages express the client’s needs and 

constraints. A large number of activities and situations are increasing in daily life, thus a unified 

semantic model is required to easily identify situations whatever their natures, their expressed 

languages and their context sources. Ontology is a popular formal method for modeling different 

concepts of ubiquitous computing, which represents physical concepts (i.e. smart object, device) and 

abstract concepts (i.e. context, situation, service) and analyzing their behavior regarding system 

performance. Ontologies are simple, non-ambiguous, and efficient [32-33].  

Existing ontological models [4 - 7] offer appropriate capabilities, including the semantic 

description of context and user’s needs. However, the existing ontologies do not deal with various 

situations complexity, nor they do handle multiple devices and smart objects at run-time. In real-life 

at a semantic level, situations have different priorities ordering from low priority, normal priority, 

and high priority where high priority situations are handled before the situations get low priority. 

Nevertheless, the existing ontologies neglect the situation priority concept under several user’s 
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locations (moving across different smart domains) during the run time. This may make reconfiguration 

applications suffer from reacting rapidly to urgent situations. This issue is noticeable when an 

urgent health situation (e.g., heart-attack health situation) needs to be firstly handled during a specific 

deadline which defined by an expert. We must ensure continuous monitoring and quick processing 

time regardless of user location and context changes in order to deal with urgent situations quickly. 

The semantic contextual description of smart services is an important aspect for managing a large 

number of heterogeneous smart objects, managing user-centric situations and offering appropriate 

services according to users’ needs. 

Several approaches and platforms [4-5; 8; 10-20] have been proposed for reconfigurable IoT 

systems in the field of smart health. The three main categories of approaches are semantic-based 

platforms [4-5;8;10-13], rules-based approaches [14], and metaheuristic-based approaches [15-20]. 

For example, Naqvi et al. [4] have proposed a semantic-based context-driven approach with QoC 

(Quality of Context) for mobile Cloud computing. This approach includes rich QoC constraints but 

lacks for efficient and consistent agent services cooperation. Rhayem et al. [14] focus on 

self-reconfiguring by changing the unavailable IoT sensor with another available equivalent, which 

is impractical due to the strong and multiple connections between the heterogeneous physical things 

that complicate the management of the system. Current approaches have poor scalability to identify 

the best service’s candidate in terms of QoS from a large set of services. Moreover, the number of 

heterogeneous services and the QoS of service providers are not static and may change continuously 

over time. This increases the time of matching the semantic properties of different context 

environments. Faced with the evolving needs of users as well as the increase of services offering 

different QoS, the services selection and deployment requires the development of advanced 

decentralized semantic-based approaches related to parallel and/or distributed agents allowing 

more convenience, efficiency, and optimal deployment cost of application. 

To address the above challenges, we extend the previous framework presented in [2;3] with a 

new layer called Agent-based Autonomic Semantic Service Adaptation Controller and 

Reconfiguration (ASSACR). Based on Context-aware Quality Smart Health ONTOlogy 

(CxQSHealthOnto) [3], this work adapts parallel settings of the quality services discovery agents to 

optimize performance in terms of execution time and deployment cost. Our main motivation is to 

propose a modular and hierarchical framework with strong scalability and flexibility. To achieve 

this flexibility, several kinds of agents are engaged in dynamic cooperative strategy to meet the 

patient’s functional and QoS needs. The contributions of this work are as follows:  

 A novel Context-aware Quality Smart Health ONTOlogy levels (CxQSHealthOnto) [3] which is 

defined on high semantic levels to help system developers manage heterogeneous services for 

smart-health domains supported by mobile Cloud at design and runtime. This ontology model 

allows the classification of health services with different QoS, contexts, locations and categories. 

 A dominance relationship with a new constraints’ violation degree to user QoS constraints. It 

allows semantic filtering of the quality of health services. 

 To determine the optimal service, we develop a decentralized model based on ASSACR and 

CxQSHealthOnto ontology. It provides relevant health services according to the user’s needs 

context and QoS preferences using situation reasoning ontology capabilities. Therefore, the 

proposed method uses a parallel discovery of the relevant services of distributed mobile 

devices from those close to the user’s location. So it reduces processing load and network 

communication cost with the best QoS.  

 To validate the efficiency of the proposed semantic-based optimization technique, IoT 

healthcare distributed mobile application is used in the experiment. The experimental results 

show that the proposed approach is superior to the current simulators [9] and provides better 

quality solutions as well as optimizes the service deployment cost in connected mobile devices. 

 

The rest of the paper is organized as follows. Section 2 describes the current related works. 

Section 3 presents the ontology model. The proposed framework is presented in detail in Section 4. 
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Experimental results are given in Section 5. Finally, Section 6 concludes this work with some future 

research directions. 

2. Related Work 

Improving and managing health services selection has gained increasing attention in IoT 

environments and mobile applications. Despite the benefits of these works towards the quality 

services management concerns, there are research works that do not take into account context 

assumptions such as unhandled parallel semantic service discovery and selection from large services 

set as complexity increases with dynamic updates of QoS needs of users. We distinguish two 

approaches: semantic-based context-aware service selection techniques and 

heuristic/metaheuristic-based service selection techniques. Our goal is to overcome the limitations of 

existing recent relevant approaches and come out with a new decentralized system that manages 

reconfigurable mobile applications in optimal delay based on coordination and control of multiple 

agents-based ASSACR.  

2.1 Semantic-Based Context-Aware Service Selection Techniques  

Naqvi et al. [4] proposed a semantic-based context-driven framework in mobile Cloud computing. 

This ontology provides context information management at a semantic level of the shared domain. 

This work provides contextual monitoring on the mobile device to ensure reconfiguration decisions. 

Based on these decisions, this framework achieves service customization according to current user’s 

situations and scheduled activities for deployments strategies. However, this context-driven 

management model lacks a parallel context processing strategy that can split context information 

into parallel sub-contexts (e.g., defining "no one home" as an abstract complex context by aggregating all 

output values from motion sensors deployed in each room). 

To provide such support, Bayer et al. [5] developed an efficient and context-aware deployment 

schema of IoT Cloud environment that was mitigated by the user mobility and workload. This 

approach is provided with reduced application latency but the required maintenance cost is very 

high. In our work, we design and implement a decentralized agent-based autonomic semantic 

context-aware platform to predict smart service breaks (e.g. limited life battery, user’s mobility, 

workload) through equivalent semantic paths and determine the necessary adaptations, so that the 

user has a long-life application. 

Esposito et al. [8] proposed a smart mobile self-configuring and semantic-enabled 

context-aware architecture to rapid prototyping of personal health monitoring. Moreover, this 

approach was provided with health situation reasoning facilities through ontology fuzzy-based 

approach and smart emergency alert system. This approach requires a large time is considered as the 

major drawback of this approach. In addition, this work lacks of optimal services selection from 

large services set.  

To provide durable pervasive healthcare systems with continuous context data monitoring 

and reasoning, Hameur Laine et al. [10] proposed a new hybrid model based on generic 

observer/controller paradigms and ontology/rule-based inference approach. The experimental 

analysis was conducted by evaluating inference rules, adaptation time per service and the results 

revealed that the efficiency of this approach was very high with a very low complexity rate. 

However, this work uses different and heterogeneous entities and completely lacking of any 

semantic techniques for services discovery to meet the application long-life QoS. 

To address this problem, Angsuchotmetee et al. [11] presented Multimedia Semantic Sensor 

Network Ontology (MSSN-Onto), to model and handle complex events in real-time. The approach 

uses a pipeline-based technique to detect complex events by observing and combining multiple 

sensors. It provides distributed logic-based detection and continuous monitoring techniques to 

detect events in multimedia sensor networks. The proposed system can achieve high detection 

accuracy with a short processing time. However, it still has limitations as it does not detect critical 

situations (i.e., heart attacks situations). Therefore, the reconfiguration aspect of distributed 
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applications and semantic service discovery and selection from large services set are missing in this 

work. 

Bhunia et al. [12] implemented a smart health monitoring system for measuring some physical 

properties of the human body including several sensors. This approach employed advanced fuzzy 

context-aware techniques to analyze various symptoms and discovering a specific disease. The 

system activates few sensors whereas sensors capture some basic parameters of a human body. The 

experimental analysis was conducted and the results revealed the context data was highly preserved 

using the proposed approach. The execution time and communication overhead are complex which 

is considered as the main drawback of this approach.  

Christopoulou et al. [28] designed a virtual health Mentor (vhMentor) to automate the 

ubiquitous patient monitoring at run time. The approach is based on patient healthcare information 

ontology supported mobile agents where agents need to provide well-structured patient 

information to each other at run time. Therefore, it provides decision-making and reasoning services 

through autonomous and intelligent agents. The proposed work successes to increase the healthcare 

quality compared to previous rules-based approaches but neglects the context in the monitoring 

process.    

2.2 Heuristic/Metaheuristic-Based Service Selection and Deployment Techniques  

Name et al. [14] have proposed a new hybrid fog and cloud context-aware deployment environment 

to migrate services from fog nodes to Cloud. During the migration process, distributed optimization 

strategies are used to aggregate different context information related to bandwidth, network 

connectivity as well as available storage sizes. This work did not examine in detail their impact on 

QoS degradation and energy consumption. It will be necessary to consider the decentralized 

approaches related to the device-fog-cloud allowing the total (or partial) re-allocation, permanent or 

temporary of some services in order to achieve an optimal durability of applications. 

Most delegate optimization techniques include Genetic Algorithms (GA) [15], Particle Swarm 

Optimization (PSO) [16], Ant Colony Optimization (ACO) [17] and Grey Wolf Optimization (GWO) 

[18]. These optimizers are most widely used for optimizing services qualities in the field of smart 

health. Different GA, PSO, ACO and GWO algorithms have been successfully applied to solve 

different problems in the last years, but PSO, GA, and GWO perform better in a variety of 

applications, including health service design. However, these optimizers still need more 

improvement in terms of computational complexity and solution quality in a wide variety of mobile 

services and handle continuous QoS change.  

Valera et al. [19] proposed DRACeo, a simulator for evaluating and managing any type of 

network and heterogeneous devices to run distributed mobile applications based on services or 

microservices. DRACeo provides reconfiguration facilities (add/remove/update) to enable 

developers understanding the efficiency of deployment techniques. The evaluated variables include 

execution time, amount of energy spent, the current quality of service, and the amount of 

transmitted data. The simulator enables the user to define their own QoS requirements and energy 

consumption for developers to ensure monitoring of these requirements. The proposed simulator 

successes to test various management mechanisms: centralized and non-centralized compared to 

previous optimization approaches but neglects the best distribution behavior in any network of 

heterogeneous devices. However, this work does not provide equivalent configurations with 

different QoS to enhance the effectiveness and reduce deployment cost, where a new dominance 

relationship, which is based on constraint dominance between component-device, is proposed to 

compare configurations QoS values that are expressed as constraint violation degrees.  

Simon et al. [20] presented a mathematical model with Cloud Quantum Computing for 

deploying large-size health applications. The performance measures utilized in this approach were 

computational time, storage overhead and computation overhead. The analysis showed great 

flexibility but the approach failed to consider small-scale quantum is considered as the main 

shortcoming of this approach.  
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2.3 Objectives and Motivations 

We have analyzed and compared existing optimization models and semantic-based systems 

according to four main criteria: (1) resource capacity reasoning, (2) services grouped by location, 

type, and QoS, (3) (4) scalability, and (4) flexibility in order to increase the contribution of this work. 

Resource capacity reasoning refers to evaluate how the system behaves according to the number of 

available computing resources and growing number of events and urgent situations. This analysis 

allows predicting whether the system will satisfy users’ needs efficiently. Services and sensors 

grouped by location, type, and QoS refer to how the model represents different sets of sensors. In 

our work, we analyze the system’s behavior by changing the number of sensors and their 

frequencies. In our model, these locations can be seen as rooms in a hospital. This feature aims to 

make the model more realistic because, depending on the location and type of sensors, the data 

generated can be different. Scalability refers to how the system effectively manages the increasing 

number of sensors, the big volume of context data, continuous sensor events monitoring, and user’s 

mobility. In our work, we analyze the system’s behavior by changing the number of sensors and 

their frequencies. Flexibility refers to how the system represents a different set of sensors, contexts, 

events and situations of multi-smart domains, also that how it can respond continuously to users’ 

needs regardless of context. The limitations and the strength of related works are summarized in 

Table 1. We have identified common limitations, particularly for reacting rapidly to situations under 

several moving locations. Further, to be independent of the different services providers and services 

technologies, we include the selection and deployment process in the service semantic description. A 

semantic model is used to describe services, user’s needs and contexts to facilitate matching between 

them. Besides, the process of multi-objective Cloud service composition is optimized using 

multi-agent aspects to improve the performance in terms of execution time. 

 

Table 1: Related work comparative study  

 

Related Works 
Application 

Context 

 Resource 

Capacity 

Reasoning 

Services 

Grouped 

by location 

Scalability Flexibility 

S
em

an
ti

c-
b

as
ed

 Naqvi et al. [4] Smart Health Partial ✗ Low Low 

Bayer et al. [5]  Smart Domain Partial ✗ Low Medium 

Esposito et al. [8] Smart Health ✗ ✗ Low Medium 

Hameur et al. [10] Smart Health Partial ✗ Low Medium 

 Angsuchotmetee et al. [11] Smart Building Partial ✗ Low Medium 

Bhunia et al. [12] Smart Health ✗ ✗ Low Low 

Rule 
based 

Name et al. [14] Smart Building ✗ Partial Low Low 

M
et

ah
eu

ri
st

ic
 -

b
as

ed
 

 

GA [15] Smart Health Partial ✗ Low Low 

PSO [16] Smart Health Partial ✗ Medium Low 

ACO [17] Smart Health Partial ✗ Medium Low 

GWO [18] Smart Health Partial ✗ Low Low 

Valera et al. [19] Smart Domain Yes Partial Medium Medium 

Simon et al. [20] Smart Health ✗ ✗ Medium Low 

 This Work Smart Health Yes  Yes Yes Yes 

3. CxQSHealthOnto ontology Model 

3.1 Description of CxQSHealthOnto 
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We introduce a novel ontology called CxQSHealthOnto which stands for Context-aware Quality 

Smart Health Service ontology domains supported by mobile Cloud at design and runtime. The 

main purpose of CxQSHealthOnto is to provide support for efficient management of the end-to-end 

mobile distributed application building process as well as Cloud services selection approach 

dedicated to context-aware mobile applications. The novelty of the proposed ontology compared to 

existing ontologies is to implement novel generic semantic role-based smart services in hierarchical 

abstraction levels for better management facilities (context health data management between 

heterogeneous health services, easy selection of new health services based roles regardless of its service provider 

through semantic services information description, a semantic description of health services, and to adapt and 

customize a selection service according to user’s constraints and preferences). Thus, it facilitates the 

semantic interoperability of heterogeneous services provided by different service providers and 

interprets qualities of services. It allows semantic filtering on quality of Cloud services. It enables 

semantic reasoning enriched by SWRL rules and facilitates users' profiles modeling, discovery and 

personalization of health services. The ontology presented in Figure 1 focuses on satisfying the user's 

functional needs and optimizing the deployment process in terms of QoS according to user’s 

constraints and preferences. The ontology is built up of five key concepts: 

 User: has a name, unique location, functional needs, constraints and contextual preferences that 

consist of simple or complex expressions. A user can specify their functional requirements, 

constraints, and preferences through GUI. 

 Functional needs: Each functional need consists of simple or composite logic expressions 

combined by 'AND' operator.  

 Semantic constraints: the user specifies more easily its QoS constraints in a graphical form. 

The constraint can be defined as value for each QoS attribute (e.g. response time: fast, price: 

cheaper, etc.). The system converts constraints expressed with qualitative terms to semantic 

values. Each semantic value corresponds to quantitative intervals. The semantic 

constraints may be classified into three logic values: 

 High: normalized QoS values in      
    

      
    

 . 

 Medium : normalized QoS values in       
            

       . 

 Low: normalized QoS values in       
         

    . 

The ith explicit user constraint of the quality attribute qi (denoted as     ) is converted to 

numerical value as follows: 

 

          
                                                   (1) 

 

 Preferences: The user specifies QoS preferences in an ordered list (from the most 

important-significant preference to the least one). For example, a user-preferred response 

time, price (1- response time, 2-price), while another prefers the opposite (1-price, 2- 

response time). Currently, each quality criterion is valued by a user according to its 

importance. It is an integer number that indicates the importance of QoS constraint (0 for 

none, 1 for low, 2 for medium and 3 for high). 

 Context: the user plays an important role in the selection of quality services. The applications 

within the environment must adapt to the users’ needs, not the other way around. Context is 
any information collected from the environment, service execution and constraints.  

 Environment Context describes contextual information such as available network 

connections (WIFI, GSM, etc.), time, date, and geographic location constraints. Connections 

between mobile devices (PDAs, Smartphones) with limited bandwidth. The location, date 

and time represent a specific geographic location where the service is to be performed 

 Service execution context: CPU speed, battery power, memory size. 

 Constraint allows us to describe a set of constraints using logical expressions. 
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 Service: Ontology provides unified health services such as monitoring, emergency and 

recommendation (diets of a patient, medication, security….etc.). Each service is defined as a set of 

QoS parameters. Services are organized in class hierarchies (service category, service role, input 

/output parameters). Each service depends on the state of the patient, location and time. In this 

work of discovery of quality services, ontology and QoS-based filtering with knowledge graph 

can play a crucial role to implement context-aware services selection that enhances the 

relevancy of recommended services. The smart-health domain ontology covers the domain of 

medical services. It includes many aspects such as patient care, clinical decisions, diagnostics, 

and mobile devices that help patients. In our mission to model the smart-health domain, our 

choice is fixed on certain health services such as (1) – assessment of Anemia, (2) – assessment of 

Seasonal flu, (3) –  assessment of food poisoning, (4) – assessment of hyperglycemia type1 and 

(5) – assessment of hyperthyroidism.  

 Quality of Service (QoS): The quality of any service is defined as a set of QoS and metadata 

parameters. QoS parameters concern not only the services but also the trust level and throughput 

where the execution is taking place. There are two categories in QoS attributes: positive and 

negative [29]. Both categories are configured using the same graphical tool. If a high QoS value is 

desirable then it is called positive attribute, and if a low QoS value is desirable then it is called as 

negative attribute. The classification of QoS attributes is shown in Table 2.  

Table 2: Positive and negative attributes of QoS. 

QoS Attributes Description  

Positive 

Availability 
The qualitative aspect of whether the service is present or ready for 

immediate use. 

Reliability It represents the degree of ability to maintain the service. 

Security 

It represents the security degree of a cloud service. It aims to ensure 

the following objectives: confidentiality, authentication and 

integrity. 

Negative 
Execution Time The time needed to process and complete a service request. 

Price It measures the cost of invoking a service for each request. 

 

The QoS values range widely, we need to normalize all attribute values to fetch them in the same 

range [0, 1]. So that no attribute dominates other attributes. Since, we have two categories of 

attributes that need to be managed them individually while being normalized.  

The QoS of a candidate service    is represented as a vector                                   where 

  represents the number of     attributes required by the user and      represents the value of the 

jth     attribute (           ) of service    .   

The formula for normalization of positive attributes is as follows: 

 

         

         
     

  
      

                      
      

      

                          

                  (2) 

 

The formula for normalization of negative attributes is as follows: 

 

         

  
            

  
      

                      
      

      

                          

                  (3) 

 

where   
    and   

    denote respectively the highest and lowest values of the jth QoS attribute 

for the service. The normalized values will be one if they are the same. 
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 Semantic Service Path: This class is made up of a set of equivalent services (parallel, sequential, 

alternated, loop) providing the same functionalities with different QoS. In a sequential structure, 

all tasks are processed in sequential order. In a parallel structure, all parallel tasks are executed 

to proceed to the subsequent tasks. In a conditional structure, at least one task is executed 

among multiple branches to proceed further. In a loop structure, a task executes multiple times. 

 

Figure 1. CxQSHealthOnto Ontology Model 

3.2 Consistent rules of CxQSHealthOnto 

Verifying the consistency of CxQSHealthOnto instances is an essential part of our validation, 

especially the consistency structure of composite situations and QoS constraints (with various context 

properties) while providing more formal semantics. To deal with it, we use the Description Logic 

(DL) [30] to represent CxQSHealthOnto in a formal and structured way. The CxQSHealthOnto 

expressed in a DL is constituted by two components, traditionally called TBox and ABox [31]. 

— TBox (assertions on concepts): describes terminological information by defining basic or 

derived concepts. Also, it defines how these concepts relate to each other. The TBox is a 

finite set of inclusion assertions of the form:        , where    and    are concepts. 

Note that:       as an abbreviation of       and      .  
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— ABox (assertions on individuals): describes the information that characterizes individuals. 

This information is expressed by specific or local assertions. 

 

The reasoning mechanism is fundamentally based on three parts: 1) – the source of knowledge 

CxQSHealthOnto, 2) – the interaction between the ontology and the system through the SWRL 

query language and 3) – the reasoning engine based on parallel semantic-based composite situation 

identification framework. Table 3 presents DL examples of our ontology. 

Table 3: Example TBox and ABox in our ontology. 

TBox ABox 

        ⊆        

            ⊆         

≥       ⊆         

≥         ⊆         

≥        ⊆      

≥              ⊆         n 

 

           (    _ )  

      (    _ ,  _1)  

       (    _ ,     )  

       (    _ , 25)  

             (    _ ,          _ 1)  

Service ⊆        

≥    QoS   QoS 

Service (       _      _       ) 

   QoS (       _      _       , QoS_1) 

          ⊆        

≥       ⊆         

≥         ⊆        

≥              ⊆            

≥            ⊆ Service 

          (         _ 1)  

      (         _ 1, ID_1)  

        (         _ 1,     _       ) 

            (         _ 1,          _    _       ) 

           (         _ 1,        _      _       ) 

≥ Q S ⊆       

≥    N    ⊆        

≥    Q SN r  l z  V l  ⊆        

QoS (QoS_1)  

HasName (QoS_1,Price) 

HasQoSNormalizedValue (QoS_1, 0.78) 

4. Proposed Platform   

Users (patients, physics, nursing) are expecting optimal personalized solutions to automate their 

health activities. In addition to their functional needs, they explicitly seek to optimize non-functional 

qualities (minimize costs and delays, maximize security, etc.). It is necessary to support flexible 

customization of dynamic context-aware mobile applications to meet the current needs of clients. A 

complete dynamic agent-based semantic selection and deployment of services in the field of smart 

health seems to be an appropriate solution to meet user needs and context evolutions. In this section, 

we propose a new approach that aims to meet user’s functional needs and optimize their constraints 

and evolved preferences. For that purpose, we use a context-aware generic CxQSHealthOnto 

ontology that implements the concept of multi-agent and Context-aWare Autonomic Semantic 

Service Adaptation Controller and Reconfiguration (ASSACR) [3]. We have chosen ASSACR 

approach [3] that has proven its efficiency and effectiveness in the various smart domains (Home, 

City, Health, etc.). We take advantage of multi-agent approach to improve the execution time of the 

selection and deployment process while running cooperative control and/or distributed agents. 

The main goal is to select the optimal personalized service in terms of QoS with lowest 

violation degree of user’s constraint in reduced execution time. Services to be selected from a large 

set of services are stored respectively in service registry. An additional layer of service selection and 

optimization is integrated which provides: (1) a valuable balance between solution quality and good 

performance, scalability and efficiency; and (2) a dominance relationship to reduce the search space 

of context-aware quality service selection by purring the dominated candidate service. A dynamic 
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services selection algorithm based on new ASSACR multi-agent strategies has been performed to 

solve context-aware services selection in a reduced search space more effectively and efficiently.   

4.1. General Architecture  

We propose a new approach that includes a context supervisor agent to observe context changes 

and/or user preferences changes in order to continuously provide suitable service. The presented 

work uses different local controller agents that communicate and coordinate with each other to build 

reconfigurable distributed mobile applications and solve context-aware quality service selection 

optimization problems as shown in Figure 2. The use of the found solutions makes it possible to 

exploit the research experience acquired by the solution-building agents in the future iterations of 

the algorithm. To bring about an enhancement in the service selection process, we develop a 

multi-agent decentralized platform that improves the execution time of the optimization process 

through multi-agent collaborative and coordination strategies and involves the change of user 

constructs about the new environment. The proposed platform manages a large number of 

heterogeneous services described with both contexts QoS and user’s needs to obtain optimal 

personalized service. The architecture of the Agent-based Autonomic Semantic Service Adaptation 

Controller and Reconfiguration (ASSACR) consists of four layers :  
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Figure 2. Multi-Agent-based management framework in Smart Health. 

 User Layer: represents the patient that wants personalized health services. 

 Context-aware Service Management layer: is seven kinds of agents, which communicate and 

collaborate with each other to manage services selection process. Each agent has its specific 

functionalities while accessing ontology knowledge. The description of all agents in our system 

is explained as follows:  

 Autonomic Semantic Service Adaptation Controller and Reconfiguration (ASSACR) 

Agent: allows patients expressing their functional and non-functional needs and to receive 

their expected results. It calls: 

 

(1) – Situation Reasoning Agent to identify automatically the health situations of patient. 

(2) – Diseases Classifying Agent to classify health situations into predefined classes. 

(3) – ASCwA-SACR-3S Agent to find the optimal customized service in terms of QoS. 

(4) – Reconfiguration Generator Agent to generate the reconfiguration file. 

(5) – User Context Supervisor Agent to monitor patient context. 

(6) – Service Context Supervisor Agent to monitor service context. 
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 Situation Reasoning Agent: this agent is a semantic inference engine responsible for 

identifying different health situations of different patients as well as same patient. 

 Diseases Classifying Agent: this agent is a semantic inference engine responsible for 

identifying different health situations of different patients as well as the same patient. 

 ASCwA-SACR-3S Agent: the role of this agent is to find an optimal selection of services 

that can manage effectively all the identified health situations. It takes as input the 

patient’s constraints and preferences described in our ontology and description of 

semantic services, then it produces an optimal service according to the patient’s constraints 

and preferences. 

 User Context Supervisor Agent: this agent allows as much discovering and updating the 

activities related to a patient and his current context on an individual level. For example, 

where are the user (in the car, at work, outside), his mobile equipment and resources (CPU 

speed, battery level, type of network), and all current medical information (his symptoms, his 

signs vitals, and his treatment). 

 Service Context Supervisor Agent: it permits to manage the list of available services, the 

capabilities of the mobile device to deploy and run the required service. Each service is 

enriched by a set of contextual parameters (availability, location and execution time, 

hardware and software requirements, service execution preferences) and QoS parameters. 

 Reconfiguration Generator Agent: it scans the smart environment with the help of the 

Kali-Smart middleware [2] in order to know the available devices and orchestrate the best 

way to deploy the services. It receives the orchestrated actions provided by the Actions 

Orchestrator agent and generates the output reconfiguration file. 

 Knowledge management layer: contains a single Knowledge-based agent. This agent 

performs ontology semantic management of Cloud services and customer profiles. It stores the 

description of services of all service providers. It also responds to requests sent by the Service 

Context Supervisor Agent and can update the ontology when it is required. It includes the 

following registries and files : 

 The Services Profiles registry: contains the semantic description of services for all services 

providers within our ontology. 

 The Users Profiles registry contains the various semantic description of users' profiles 

within our ontology. 

 The Reconfiguration files : contains all generated reconfiguration files. 

 Kali-Smart middleware layer is a services-based context-aware platform [2] that ensures the 

execution of services on the devices and/or their redeployment in the Cloud from the generated 

reconfiguration file. It adapts mobile applications on different mobile devices, desktops, and 

laptops. The Reconfiguration Generator Agent uses the Kali-Smart in case of low device 

resources situations in order to ensure service continuity. Kali-Smart platform retrieves 

commands related to the services that must be adapted and their hosts. Then Kali-Smart 

platform reconfigures or redeploys these services. 

The ASSACR agent manages distributed health mobile applications which run on different 

operating systems, either in mobile devices or from the Cloud. It consists of different health services 

that are used to manage and identify the different situations of patients. The ASSACR agent 

provides optimal personalized services in optimal delay and ensures dynamic reconfiguration of 

managed services and their health sensitive data in the mobile cloud. The sequence diagram of agent 

interaction is described in Figure 3 and detailed as follows:  

— When a patient configures its session, he sends his profile and QoS needs. The current profile is 

stored in the ontology model using the Knowledge agent. This profile is sent once (or updated 

when needed) when asking for a new situation identification. 

— Since the ASSACR agent receives the profile, it calls the User Context Supervisor Agent to monitor 

patient health data and capture new incoming events from deployed sensors. If any context 
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changes, the ASSACR agent calls the Situation Reasoning Agent to identify possible situations 

from the incoming events and contextual information. 

— If some situations (such as heart situations) exist, The ASSACR agent calls ASCwA-SACR-3S agent 

in order to find the optimal services to manage these situations. It launches in parallel several 

Services Discovery Agents to retrieve suitable services from a large number of available Cloud 

services. We assume that each agent has a registry of all health services classified in our 

ontology. Each agent retrieves the best local services and sends it to the ASCwA-SACR-3S agent. 

The ASCwA-SACR-3S agent in turn determines the global optimal service that merges and sorts 

all best local services. 

— The ASSACR agent calls the Reconfiguration Generator Agent in order to trigger appropriate 

action services to the user. When the Kali-Smart middleware [2] is active, it sends the 

description of all the available devices to the Reconfiguration Generator Agent. Therefore, the 

Reconfiguration Generator Agent has the descriptions of all available devices around the user, and 

the simple algorithm is executed to generate the actions reconfiguration file.  

— The Reconfiguration Generator reads the actions reconfiguration file and executes available 

services.  

 

 

Figure 3. Sequence diagram of our platform. 

4.2 Functional description of the proposed approach  

The proposed approach aims to quickly provide an optimal personalized health services according 

to the patient’s needs (see Figure 4). First, the patient specifies his functional and QoS needs. The 

QoS needs are expressed as constraints and preferences that can be static or dynamic. The current 

patient profile is stored in the ontology model and it is sent once (or updated when needed) when 

querying for optimal health service. Since the ASSACR Agent receives the patient profile and their 

needs, it calls the User Context Supervisor Agent  to monitor the patient's health data. Then, the 

ASSACR Agent calls the Situation Reasoning Agent to identify situations based on the patient's health 



14 of 29 

 

context data through ontology inference rules. When a situation is identified, the ASSACR Agent 

calls the ASCwA-SACR-3S agent to select, optimize and deploy the best service in terms of QoS that 

should respect all the patient constraints. This process is a three-stage algorithm for optimal health 

services selection based on multi-agent approach and the dominance operator. The first stage 

consists of parallel discovering and selecting a set of optimal services respecting patient’s 

constraints. This stage uses the dominance operator within multi-agent approach to reduce the 

global execution time of the system. To improve the performance service selection and optimization, 

the approach uses cooperative multi-agent that is launched simultaneously for reducing global 

execution time of the system. Several intelligent agents attempt to cooperate dynamically in parallel 

for the discovery and selection of optimal health services from a large number of candidates. Each 

agent provides local solutions as a set of optimal health services and communicates those solutions 

to other agents. The global solution is the set of optimal health services selected among all the best 

local solutions. In the second stage, the Reconfiguration Generator Agent finds the available devices, 

orchestrates the best way to deploy them and generates the output reconfiguration file. In the third 

stage, the Reconfiguration Generator Agent executes the available services. 

 

Figure 4. Proposed situation reasoning and parallel service selection and deployment process. 

4.3 Problem Statement and Proposed Algorithm  

In this section, a Semantic Context-aware Decentralized Quality Service Selection with 3 Stages 

(SCwD-QSS-3S) algorithm for dynamic services selection and deployment is detailed. We deal with 

the services selection problem with multi-objectives functions of QoS model and we search the 

optimal customized solutions considering the functional and non-functional needs of a user. 

Different collaborative strategies (e.g. centralized and decentralized) are proposed to find optimal 

service based on dynamic semantic-based multi-agent selection and deployment process. The 
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different kinds of agents that collaborate and cooperate together will enable better exploitation of 

research experiences acquired in building more accurate and quality solutions in future iterations of 

the algorithm.  

4.3.1 The Semantic Context-aWare Quality Service Selection Problem (SCw-QSS) 

The problem statement takes into account the following notations description: 

—                    , indicates   service providers of a mobile cloud system. Each service 

provider     can be categorized into two types: mobile or Cloud, and contains a set hardware 

resources                 . 

—                     with                are the semantic services that comprise it and its size is 

  tasks. For each semantic service        a service class    =    
    

     
   of   concrete 

services having the same functionalities with different     where   
 
 represent the jth concrete 

service in the service class   . 

— The set                    of   parameters for each   can be classified into positive and 

negative QoS parameters denoted as     ,     . Where for each negative QoS, lower values 

indicate better services. However, for each positive QoS, larger values indicate better services. 

— Each user can define his own global     constraints                            and his 

own global     preferences                               .  

— The service     is defined by     attributes different                            where      

represents the value of the         attribute         of service   . A violation degree is 

assigned for each     attribute to penalize services that don’t respect the user constraints. This 

degree is calculated as follows: 

 

                                      
 
   

 
                               (4) 

where 

    is the number of discovered services.  

    is the number of QoS attributes.  

     is the weight of     QoS attribute;  

      is the value of the     QoS attribute of service   ;  

 Ci: is the user’s constraint of the     QoS attribute. 

— The distance of next device from the user’s location: Devices with the shortest distance closer 

to user’s current device tend to be selected as the best devices by minimizing   . Accordingly,   

 

         
 
                                        (5) 

 

Where     is the normalized Euclidean distance between the device    and the current user’s 

location;   represents the number of nearest devices from the user’s location. This parameter covers 

optimal device selection as it takes less energy consumption to transmit data towards the user’s 

device due to the short distance. The best devices have the smallest distance and vice versa. The 

normalized Euclidean distance    of the device    with the current user’s location is: 

                 
       

  
 
       

  
 

    
      

  
 
    

      
  
 
                             (6) 

where 

   ,  : current location coordinates of user u, 

   
 ,  

 : position center coordinates of device d, 

   
   ,  

    maximum coordinates coverage of device d. 
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— The distance intra-devices: The minimum distance between the devices and the selected 

nearest devices from a user is established. Devices with lower intra-communication costs tend 

to be chosen as rely by minimizing   . Accordingly,   

                   
  
   

  
                                        (7) 

 

— The CPU load: The CPU load of the devices is specified to perform sensing, computation, and 

communication operations. By reducing   , lower CPU load devices tend to be chosen as the 

best devices. Accordingly, 

   
 

               
 
   

                                     (8) 

 

We aim to select the appropriate service   
 
  to construct the best path services that trigger the 

corresponding set of actions for the identified situation and fulfill the global patient's QoS 

constraints and preferences. This selection is based on semantic agent-Based decentralized service 

adapter and controller and dominance relationship selection and deployment process such as (1) the 

total CPU load is minimized, (2) the global preferences of the patient are satisfied in the minimum 

time (minimum number of iterations) and (3) the distance of next device from the user’s location and 

the total distance intra-devices is minimized. From such a perspective, the optimal path services    

among all the possible ones which respect to the fitness function and time consumed: 

 

                                                                         (9) 

 

Subject to   patient's global constraints : 

 

         
    

                                   

    
≥                              

                                      (10) 

4.3.2 Detailed algorithm   

The main steps of the proposed algorithm are: 

Step 1 – Automatic Identification of Patient’s Health Situation. First, the Situation Reasoning Agent 

is able to identify automatically the patient’s situation according to the health context data. It is 

based on SWRL (Semantic Web Rule Language) inference rules for each health context data sensed in 

real-time (every 20 milliseconds) using the User Context Supervisor Agent. The health context data 

consists of different vital signs and symptoms. It is also converted into a triple pattern in OWL (Web 

Ontology Language) format and inserted in CxQSHealthOnto ontology using a Knowledge Agent. The 

patient's health situations are dynamic and subject to change of context. Therefore, the platform 

must be enough adaptive to accept any updated context at any given time.  

Step 2.1 – Parallel SCwD-QSS-3S optimization at the level of each agent. In this step, several 

agents aim to satisfy patient constraints by selecting the best services path for generating optimal 

service deployment. The optimization is done by adopting a penalty function-driven and 

multi-agent collaborative strategies to rapidly select the best service in terms of QoS while respecting 

the patient’s constraints.  

— Solutions coding: Each path service (solution) is represented by an array of n services. 

— Search space reduction: The dominance operator is used to reduce the search space of 

SCw-QSS by penalizing the candidate services that violate patient’s constraints.  

— Parallel services discovery: Using the cooperative and collaborative services discovery 

strategy, local agents are evolved in parallel to find a set of optimal solutions. Each agent finds 

its best local solutions and sends it to the ASCwA-SACR-3S agent in each iteration for further 

improvement. 
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— Evaluation: This step aims to support personalized dynamic selection services with 

heterogeneous services providers. The QoS of path services      is calculated for each patient 

using the normalized QoS values of health services according to Table 4. The values of QoS 

attributes are normalized by the following formulas: 

 

 Normalization of aggregate positive attributes (i.e.,            

  
       

                
    

      
           

    
                       

           
     

                                 

                      (11)     

 Normalization of aggregate negative attributes (i.e.,            

  
       

      
            

      
           

    
                       

           
     

                                 

                    (12) 

 

where       
     is the maximum aggregate values and       

     is the minimum 

aggregate values of the jth  QoS criterion for the path services   . The         presents the 

aggregated value of the jth QoS criterion of   .  

Table 4: QoS Aggregation functions. 

 

QoS Attributes Sequential Parallel Conditional Loop 

Execution time       
 

   
       

             
               

Availability     

 

   

     

 

   

       
          

 
 

Reliability     

 

   

     

 

   

       
          

 
 

Security       
            

            
           

Price       

 

   

       

 

   

       
       

        

 

— Selection: In this step, a list of semantically equivalent services (location, time, and category) with 

different QoS are evaluated and ranked by QoS constraints violation degree. Path services with 

the lowest constraints violation are assigned with a high priority value (Eq.9).  

— Merge and (re-)selections of local SCwD-QSS-3S optimal. At the end of all iterations, the 

obtained ordered results at the level of discovery agents are merged. Then, the best path is 

selected. In this step, a parallel discovery and selection strategy is proposed and evaluated to 

reduce the execution time of the optimization task. 

— If the stopping criterion is not reached return to Step.4 with       ; otherwise: end. 

 

Step 2.2 – Generation of (re-)deployment files. This step identifies the available devices and 

orchestrates the nearest available devices to deploy services selected previously. It takes into account 

the list of identified situation and the user’s domain to ensure the multimodality interactions and 

find the appropriate device. Only mobile devices installing SNMP (Simple Network Management 



18 of 29 

 

Protocol)1 with Kali-Smart platform [2] can detect automatically the list of available devices around 

the user and their capabilities. The retrieved devices and paths around the user are stored in the 

ontology model. When the patient’s interaction facility is reached then the application generates a 

new re-deployment script to those devices that also received the interaction facility as well as the 

activation of redundancy of health service routing paths. The re-deployment script will be placed in 

a Kalimucho Cloud server.  

Step 2.3 – Copy configuration files and services execution. The generated configuration files in the 

previous phase will be copied to the level of the routers concerned by the redundant route. It follows 

an optimal (re-)deployment strategy in regards to the capabilities of the available devices. 

Algorithm 1: Semantic Parallel discovery strategy for dynamic service selection and deployment 

Inputs: health context data, max_itr, local_registry_services 

Outputs: POPTIMAL: Path Optimal Services, CFILE: Configuration files  

Begin 

1  : Collect health context data 

2  : Identify patient’s health situations using SWRL rules   

3  : POPTIMAL ←∅ 

4  : Iteration ←0 

5  : While (Iteration ≤ max_itr ) do 

6  :      reduce search space using dominance-based constraints violation degree  

7  :      Fork (service discovery agent using            in local_registry_services) 

8  :            Evaluate the objective function for each site               

9  :            Local POPTIMAL ← Select non dominate solution from current           ; 

10  :           POPTIMAL ← POPTIMAL   Local POPTIMAL 

11  :      End Fork  

12  :      POPTIMAL ← Select optimal services from all agent-based site-optimal solutions 

13  :      Notify all discovery agents with new global services optimal solutions ; 

14  :      Iteration ++; 

15  : End   

16  : CFILE ← Generate (re-)deployment files 

17  : Copy CFILE and deploy services  

End 

5. Possible scenarios and Validation 

5.1. Prototype Implementation  

To validate the proposed approach, we have implemented a prototype based on multi-agent 

platform Jade for cooperative services selection. Jade is widely used in applications involving 

artificial intelligence (AI) techniques and intelligent managing of health processes [21]. The 

CxQSHealthOnto ontology is implemented using Protégé tool [22] to semantically describe the 

different concepts of smart health and match functional user needs to situations using inference 

rules.  

                                                 
1
Simple Network Management Protocol (SNMP) is an Internet Standard protocol for collecting and organizing information 

about managed devices on IP networks 

https://en.wikipedia.org/wiki/Internet_Standard
https://en.wikipedia.org/wiki/Internet_Protocol
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We use Apache Jena [22] to interpret an OWL file expressing CxQSHealthOnto ontology and 

transform each OWL class into a corresponding java class including inheritance, data properties and 

object properties of that class formalized as JADE predicates. Figure 5 presents snapshot of the 

interactions between agents of the proposed work. 

 

 
 

Figure 5. Snapshot of the interactions between agents. 

 

The prototype has been developed in collaboration with physicians and programmer 

students. The physician specifies conditions in case of health situations while the programmer 

specifies conditions in case of services management. The prototype can able to manage and identify 

situations under different user context changes. The context changes are frequently captured and 

sensed (every 20 milliseconds) by different sensors. . It allows as much capturing of incoming events as 

possible in a parallel way in order to process them in a parallel way, which improves the 

performance system and reduces the response time. Also, it can frequently identify user situations 

(using SWRL rules) according to two parameters (current user’s location and time) trying to submit only 

pertinent users’ situations that are executed at a given location and/or time and thus enhancing the 

situation identification process.  

The prototype is smart enough to identify any urgent situations and trigger appropriate 

action services to the user. In case of urgent situations like health-heart-situations, the expert (i.e. 

physicians in the case of smart health domain) sets situations priorities based on the user’s context 

condition (i.e. patient’s health and disease’s type). The main objective of our Java-based prototype is to 

automatically manage the health situations in different smart environments (smart-home, 

smart-office, smart-hospital, etc.) in an efficient way using a parallel paradigm in order to perform 

the service delivery process. 

5.2. Use case scenarios and validation   

To evaluate the proposed approach in rich situations, we condense into investigating a case study in 

the healthcare field involving a diabetes follow-up management for orderly patients. We intend to 

(add/remove/migrate services) basing on the patient’s health information using the reconfiguration 

generator agent. First of all, we assume that the patient has a registry of all his situation rules classified 

as urgent/daily-life in our CxQSHealthOnto ontology. We used our platform to deal with several 

situations in four smart domains (smart health, smart home, and smart hospital). The application's 
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purpose is to manage all the context data of the health domain and daily activities in an efficient way 

by enhancing the monitoring and reporting of critical health conditions.  

Now, let us suggest this scenario:  

We are interested in the daily life of a user (Mr. Adam). He lives in a smart home. He has 

specific needs according to his current context, profile, and preferences (preferred language, media 

preferences, transport preferences, text size, etc.). He is a diabetic, so the system must continuously 

monitor his health status to identify any health situations (e.g., high-level glucose or low-level glucose). 

He is equipped with wearable smart objects and mobile devices (glucose sensor and smartwatch) that 

are responsible for monitoring raw sensor data (e.g., the value 1.75 as raw data acquired from the glucose 

sensor). The collected data were stored in a MySQL database. The User Context Supervisor Agent 

processes and represents the acquired raw sensor data into context information where metadata is 

added (e.g., Mr. Adam glucose level value is 1.75, its unit is g/l, and measured at 07:00:00 AM). The 

Situation Reasoning Agent uses this context information in order to infer user’s situations (e.g., Mr. 

Adam has high glucose situation). The application ensures the deployment of appropriate services 

regarding inferred situations (e.g., injecting insulin). For instance, we cover different types of 

diseases and allows a physics and a nurse in other sites (i.e. hospital or clinic) to manage 

automatically the updates of a patient and advise quality services with the help of the proposed 

approach. When it is time for Mr. Adam to go to a hospital, the system migrates the appropriate 

health services to the physician tablet to ensure the continuity of service. The battery level is low; the 

only solution is to migrate the service in the Cloud. The system deploys the Google map and selects 

the fastest route to the hospital. The intelligent agent-based traffic control system can be deployed to 

avoid crowded streets, and offer a test road on the map, regardless of the potential traffic congestion. 
Figure 6 depicts the elements that constitute the infrastructure of Diabetes follow-up system, 

 

 
 

Figure 6. The infrastructure of the diabetes follow-up system 

5.3. Modeling Diabetes follow-up with CxQSHealthOnto 

Based on CxQSHealthOnto ontology model described in Section 3, several required subclasses have 

been identified for the realization of a Diabetes follow-up. Some individuals of the instantiation model 

for the case study are shown in Table 5. The subclasses involved are User, Device, Location, Service, 

Symptoms, and Situation.  

Table 5. Modeling the Diabetes follow-up. 
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Main Class  Subclasses  

User  Patient, Physician, Nurse.   

Device  Sensor, Actuator.  

Sensor Glucose sensor, GPS sensor, IP camera, weight sensor. 

Actuator Inject Insulin, motion sensor, Smartphone, Tablet, SmartWatch. 

Location Home, Hospital. 

Time  Before dinner period. 

Symptoms Glucose is 'High', Glucose is 'Low', Walk is 'less' 

Situation Diabetic, Risk of death 

Service New sensed data, assess patients conditions, inject insulin and emergency actions 

 

Figure 7 depicts some examples with objects of the main classes that comprise part of the 

CxQSHealthOnto instantiation model used in our case study. Particularly, the smart home acts as 

IoT environment that is composed of many sensors. Mr. Adam is located in his smart home, the 

system checks high glucose level situation. GPS sensor is used to monitor the user’s locations and other 

sensors (e.g. glucose sensor and time sensor) are used to measure other contextual information (e.g. 

glucose level and current time). The high glucose situation receives glucose event, location event and 

time event and triggers the inject insulin action. 

  

 
Figure 7. Examples of class objects using CxQSHealthOnto.  

 

The implemented subclasses and produced contextual information model all health situations 

that are used to trigger appropriate actions depending on the user’s environment, preferences and 

devices capabilities. Examples of such contextual information are shown in Table 6, which shows 

two health situations: high glucose situation, risk of death situation. The first situation represents the 

measurement of high glucose level that triggers the inject insulin action. The second situation 

represents the risk of death situation combines high glucose, high heart beating and trigger inject 

insulin and call for emergency actions. 

Table 6. Examples of contextual information 

ID  Health Activity Smart Object  Context Situations  

0139  Glucose event  Glucose sensor Time    : 7:00:00 Situation: HG 
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Location : Home 

Value    : 1.75 g/l 

Rule : SS_0  

0140 Heart beating event  Heart beat sensor 

Time    : 7:00:20 

Location: Home 

Value: 75 Bpm Situation: RD 

Rule : CS_1  

0141 User's state Camera  

Time    : 7:00:55 

Location: Home 

Value: Lay down 

0142 Inject Insulin  SmartWatch Exact timestamp Rule : SS_0 

0143 Send Report  Physician Tablet: 01 Every 10 seconds  - 

0144 Call 911   Friend Device: 02 Exact timestamp Rule : CS_1 

5.4. SWRL Inferences and Interrogations Rules for CxQSHealthOnto 

SWRL (Semantic Web Rule Language) [24;34] with Java Expert System Shell (Jess) [25] engine is 

used to express queries across diverse data sources that can be used for semantic data extraction and 

situation detection. We utilize SWRL queries to extract semantic data from our CxQSHealthOnto 

ontology. Thus, we develop many inference SWRL rules based on CxQSHealthOnto. The main goal 

of these rules is identifying the health situations related to monitored patient context. We define a 

customized Java Class called SemanticDataSetSWRL based on OWL API [26] that creates, 

manipulates, and serializes CxQSHealthOnto ontology model. We utilize SWRL API [27] and Jess 

engine [25] to execute OWL-based SWRL rules at run-time. Table 7 shows some inferences and 

interrogations rules. 

Table 7. SWRL inference and interrogation rules. 

Rule 1 allows migrating services to the Cloud 

Profil(?p) ∧ Device(?d) ∧ BatteryLevel(?d, ?level) ∧ swrlb:equal(?level, "Low") ∧ Health_Service(?s) ∧ DeployedOn(?s, ?host) ∧  

DefinedAs(?d, ?host) ∧ Cloud(?cloud) → Migrate ( ?s, ?cloud) 

Rule 2 allows identifying the diseases seasonal allergies based on vital signs, patient’s body 

parameters and symptoms 

Profil(?p) ∧ DependOn(?p, ?d) ∧ Device(?d) ∧ DefinedAs(?d, ?host) ∧ Health_Service(?s) ∧ DeployedOn(?s, ? host) ∧ Category(?s, ?category) ∧ 

swrlb:equal(?category, "Infected") ∧ Inputs(?s, ?i1) ∧ Seasonal (?i1) ∧ ExistenceValue (?i1, ?value1) ∧ swrlb:equal(?value1, "Yes") ∧ 

Inputs(?s, ?i2) ∧ feebleness(?i2) ∧  ExistenceValue (?i2, ?value2) ∧ swrlb:equal(?value2, "Yes") ∧ Inputs(?s, ?i3) ∧ Articular_Pain(?i3) ∧ 

ExistenceValue (?i3, ? value3) ∧ swrlb:equal(?value3, "Yes") ∧ Inputs(?s, ?i4) ∧ Headache(?i4) ∧ ExistenceValue(?i4, ?value4) ∧ 

swrlb:equal(?value4, "Yes") ∧ Inputs(?s, ?i5) ∧ Body_temperature_sensor(?i5) ∧ QualitativeValue(?i5, ? ?value5) ∧ swrlb:equal(?value5, 

"High") ∧ Outputs(?s, ?m) → sqwrl:select(?m) 

 

Rule 3 allows displaying treatment for hyperglycemia type 1, Seasonal influenza, anemia” 

Hyperglycemia_1(?g)∧ ManagedBy(?g, ?t) → sqwrl:select(?t)  

Seasonal (?g)∧ ManagedBy(?g, ?t) → sqwrl:select(?t)  

Anemia(?g)∧ ManagedBy(?g, ?t) → sqwrl:select(?t) 

 

https://www.mdpi.com/1424-8220/18/10/3481/htm#B69-sensors-18-03481
http://www.w3.org/Submission/SWRL/
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Rule 4 returns list all services with their corresponding QoS. 

Service(?s) ∧ Has_QoS(?s, ?qos) ∧ Has_ServiceID (?s, ?id) ∧ Has_QoS(?qos, ?qos_value) → sqwrl:select(?s, ?qos, ?qos_value) 

 

Rule 5 returns all the available devices around the user’s location. 

User(?u) ∧ IsLocatedAt(?u, ?location) ∧ IsNear(?location, ?d) ∧ Availability(?d, "Yes") → sqwrl:select(?d) 

5.5. Service Quality Selection and Deployment in a Smart Healthcare Diseases Diagnosis 

An example is given below is intended to show the applicability of SCwD-QS-3S both for evaluation 

and selection of the best path services from some alternatives. The medication delivery is realized 

using four relevant paths (see Figure 8). In this experimentation, the user specifies his constraints in 

terms of price and response time as follows: the medication should be delivered with a cheaper price 

in faster execution time from their request. The ASCwA-SACR-3S Agent must respect quality user’s 

preferences and selects the optimal path having the best score (Eq. 4) according to Adam’s 

preferences. All QoS attributes of services with « high » values correspond to interval ] 0.7, 1].  

 

 
Figure 8. Possible semantic medication paths. 

 

To do this, we sort the search results by score after the evaluation of path distance and quality 

of service (Table 8). Path #3 turns out to be the best. Differences can be seen in the high benefit and 

minimum cost of this path and other paths, which is due to the low processing load compared to 

other paths (e.g. low violation constraints compared to other paths).  

 

 

 

Table 8. Discovered semantic paths for the diabetic scenario. 

 

User Health Situation Path Score 

Adam High-level glucose 

{Adam’s location, IsNearTo , Pharmacy ;  

Pharmacy, HasSmartCamera , SmartCamera; 

SmartCamera, HasVideoOuput , Insulin} 

Medium 
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{Adam’s location, HasFriends , Amine ;  

Amine, HasSmartphone , Smartphone;  

Smartphone, Contains , Medication’s location; 

Medication’s, HasImageOutput , Insulin} 

Medium 

{Adam’s location, HasFriends, Amine ;  

Amine, HasSmartphone, Smartphone;  

Smartphone, Shows, Ambulance;  

SmartCamera, HasAudioutput, Insulin} 

High 

{Adam’s location, HasFriends, Amine ;  

Amine, HasSmartphone , Smartphone;  

Smartphone, Contains , SmartCamera;  

SmartCamera, HasVideoOuput , Insulin} 

Medium 

5.6 Experiments and Results  

In this section, the performance of ASCwA-SACR-3S is validated through several experiments, 

which are carried out on real data dataset. These experiments were performed on a PC with an Intel 

i7, 3 GHz processor, 12GB of RAM, Windows 10 (64 bits) operating system, NetBeans and Jade.  

5.6.1 Experimental dataset   

The experiments are carried out on a real dataset collected by Zheng et al. [23] containing 25 tasks 

annotated by CxQSHealthOnto and classified on six main diseases (anemia, seasonal flu, food poisoning, 

hyperglycemia type1, and hyperthyroidism), service provider and QoS. Each service is linked to a set of 

100 health services (the size of search space is 25100). Each service considers five QoS (availability, 

reliability, response time, price and security) attributes whose values are normalized. For simplicity, 

each service considers two QoS attributes: the response time and the throughput as the QoS criteria.  

The comparison between the different strategies (centralized and decentralized) depends on 

the score calculated using Eq. 12 of each solution. The performed experiments vary the values of 

some parameters to evaluates different strategies in terms of accuracy and computational time. The 

used parameters are situations rules-number and agents-number. The compared values are 

calculated by the average of ten fitness results for each execution to minimize the probabilistic 

mistake. 

5.6.2 Evaluation metrics  

We used four performance metrics: execution time, optimality, application’s lifetime and number of 

discovery m-health services. The computation time metric indicates the required time to detect 

potential health diseases and find out the near-optimal solutions of the SCwD-QSS problem. The 

optimality metric indicates the quality of the obtained final path services solutions by the compared 

algorithms in terms of their utility value as defined by the aforesaid optimality equation : 

 

                                                              
                                (13) 

 

This function adopts the Simple Additive Weighting (SAW) method by normalizing the value 

of violation degrees                         between the of the tth QoS attribute and the tth global constraint. 

These violation degrees are aggregated using the weights     with            and     
 
      

which represent the importance and importance of each    by the user.  

5.6.3 Results and Discussion 

The result obtained from the proposed method for the identification of health situation and quality 

services selection will be discussed in this section 

5.6.3.1 Execution time comparison 
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In this section, we compare the performance of different strategies in terms of execution time. The 

execution time is the average response time needed to accomplish the detection of potential health 

diseases and triggering appropriate services. The services dataset is fixed to 100 and the number of 

iterations to 100 divided over the number of agents. Figure 9 shows that the best execution time is 

obtained when the number of agents is five. This is due to the increase in the number of 

communications between agents. When the number of agents exceeds four, the number of messages 

exchanged between agents increases, so it slows down the optimization process and increases the 

overall execution time. 

 
Figure 9. Execution time under various numbers of diseases’ verification in the proposed approach. 

5.6.3.2 Optimality comparison   

We have compared the optimality of the results obtained from the Kali-Smart using different 

strategies (centralized and decentralized). The results are evaluated using Eq.13 which calculates the 

score of each solution (optimal services set). Figure 10 shows the different score values of different 

agent strategies by fixing the number of agents to 4 and the number of services between 50 and 1000 

such that the services dataset is fixed to 100. Varying the size of services set, the decentralized 

strategy is more accurate in all cases compared to centralized strategy. This can be explained by the 

fact that the decentralized strategy benefits from the complete and exploring of search space.  

 

 
Figure 10. Optimality comparison of different strategies agents (centralized and decentralized).  

5.6.3.3 Discovery health services comparison 

Total discovered services is the summation of all the individual discovered services. Figure 11 

represents the cumulative services number of both platforms and it may be observed that the 

proposed platform outperforms Kali-smart platform [2] in terms of number of the discovered 
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services. The total discovered services of Kali-smart platform [2] is 31 services while proposed 

extension was able to achieve 42 services. The proposed scheme was able to achieve discovery 

number greater than that of the Kali-smart platform [2]. As observed from the experiments above, 

the multi-agent-based Kali-Smart is better than the original Kali-Smart for managing and identifying 

potential health diseases. The multi-agent-based Kali-Smart is more efficient and decreases 

considerably the execution time, but also makes it practicable in spite of using near-real-time smart 

health applications. However, the execution time must be improved in future works with large-size 

health applications on a high-performance machine. 

 

Figure 11. Discovery mhealth services comparison 

5.6.3.4  Application’s lifetime comparison   

To evaluate the proposed approach, we performed many experiments on small and large 

configurations. We use five configurations: the first configuration consists of 200 sensors with a fixed 

frequency of 500ms and 400 events. The second configuration consists of 400 sensors with a fixed 

frequency of 500ms and 800 events. The third configuration consists of 600 sensors with a fixed 

frequency of 500ms and 12000 events.  The fourth configuration consists of 800 sensors with a fixed 

frequency of 500ms and 16000 events. The last configuration comprises a large scale of 20000 events, 

10000 sensors with a fixed frequency of 500ms. Experiments are performed using two types of 

sensors: scalar (temperature sensor) and multimedia (camera sensor) with a fixed sensor frequency 

of 500ms to collect context data. Therefore, we have developed a simulator that generates random 

values of temperature based on standard deviation with configurable sampling frequency. In 

addition, it produces a random image frame that represents an image of an office with no one inside, 

or with at least people inside. Temperature and camera events are considered as simple events. An 

atomic condition high_temp is associated with the temperature sensor to detect if the sensed 

temperature is higher than 22 °C. An atomic condition face_detected is associated with the camera 

sensor to detect if the image frame contains at least one person. All these events are reported and 

processed by a server PC running Windows 10 (64 bits) on an Intel processor core i7 3 GHz, and 8 GB 

RAM. We evaluated and compared the impact of sensor availability on application’s lifetime of the 

proposed work with other related tools such Kali-Smart [2] and MSSN-Onto [11] in five 

configurations as detailed in Table 9. The goal is to maximize the application’s lifetime. Figure 12  

shows the lifetime comparison for three tools. The proposed platform performs on service 

migrating/updating algorithm while application running under moving scenarios. Kali-Smart with 

multi-agent approach yields better service continuity until all devices become unavailable on all 

application configurations involved in the simulation. The durability of the application is caused by 

dynamic reconfiguration with a low deployment cost and short-distance interaction leads to a 

reduction in energy consumption performance of extended Kali-Smart as compared to other tools. 
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Table 9. Experimental configurations 

Configurations Sensors Events Frequency (ms) Events Size (Kbytes) 

Configuration 1 200 400 500  512  

Configuration 2 400 800 500  512 

Configuration 3 600 12000 500  512 

Configuration 4 800 16000 500  512 

Configuration 5 1000 20000 500  512 

 

Figure 12. Application’s lifetime comparison between the proposed work and other tools.  

5.7 Comparative Analysis  

The experiments on the proposed decentralized approach using real dataset attain promising results 

compared to the centralized approach in terms of accuracy and execution time. As a result, the 

proposed decentralized approach is much better than the centralized approach in managing and 

identifying health situations. The proposed decentralized approach achieves near-real-time optimal 

and more precise solutions for context-aware health applications.  The proposed approach also 

gave improved accuracy results when compared with different strategies used on multi-agent as 

shown in Figure 10. It can be observed in Figure 10, that our proposed method shows better results 

of optimality than another multi-agent technique due to the good melanoma region localization. 

Further, we have achieved satisfying scalability in terms of services management and agents 

execution on an Intel processor core i7-2430 3 GHz in which the system can manage 10 agents easily. 

Bad configuration of agents will increase the execution time and create a huge transfer of data 

through the network. In future works, we intend to experiment proposed approach using real-world 

connected objects. Therefore, we plan to go into a real IoT infrastructure to perform large-size 

distributed applications and improve the execution time using a hybrid strategy. 

6. Conclusion  

We have proposed a novel approach based on a decentralized agents-based Autonomic Semantic 

Service Adaptation Controller and Reconfiguration (ASACR) for accurate and automatic 

identification of health situations. Our approach consists of three steps: patient context monitoring, 

health situation identification and quality service selection and deployment. In comparison to 

previous state-of-the-art approaches, the presented work shows a very good representation of the 

patient's health context, an accurate situation detection rate and better system performance by 

selecting appropriate health services. The proposed approach can detect a variety of diseases of 

different patients as well as the same patient. Experiments were carried out on real-dataset using 
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different agents strategies (centralized and decentralized) for situation identification and service 

selection. Performance analysis has shown that the approach is more efficient than existing 

approaches in terms of respecting customer’s constraints and preferences as well as the multi-agent 

factor that improves the computational time of the system comparing to the origin Kali-Smart 

platform. In addition, results confirm that the proposed approach achieved high optimality and low 

computational time, ranging from 0.977 to 720ms respectively. In future work, we will investigate 

other diseases by using this ontology model and extend this work by elaborating more semantic data 

for better management of location-aware situations. 

Data Availability  

The data that support the findings of this study are available from the corresponding author, upon reasonable 

request. 
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