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Abstract: Due to their remarkable electronic features, recent years have witnessed the emergence of
carbones L2C, which consist in two donating L ligands coordinating a central carbon atom bearing
two lone pairs. In this context, the phosphine/sulfoxide-supported carbone 4 exhibits a strong
nucleophilic character, and here, we describe its ability to coordinate dichlorogermylene. Two
original stable coordination complexes were obtained and fully characterized in solution and in
the solid state by NMR spectroscopy and X-ray diffraction analysis, respectively. At 60 ◦C, in the
presence of 4, the Ge(II)-complex 5 undergoes a slow isomerization that transforms the bis-ylide
ligand into an yldiide.

Keywords: carbone; ligand; germylene; coordination; ylide

1. Introduction

The rapid development of homogeneous catalysis in the last decades is highly related
to the intensive research that was accomplished toward ligand design. Due to their lone
pair(s) and their related nucleophilic character, oxygen-, nitrogen-, sulfur- and phosphorus-
containing ligands have been dominating in the field for several decades [1]. In the
late 1980s, the discovery of the first stable carbenes represented the milestone leading to
the emergence of carbon-based ligands (I, Figure 1) [2,3]. Indeed, the development of
these molecules, containing a divalent C(II) atom bearing a vacant orbital and a lone pair,
exhibiting a high σ-donation and a strong binding ability toward transition metals, render
them essential tools for catalysis. The corresponding organometallic complexes have been
proven to be particularly robust and efficient and offering in numerous catalytic processes
a larger scope of reaction [4–7]. The related carbon(0) species (II), also named carbones,
bearing two lone pairs on the central carbon atom are a new emerging class of η1-carbon
ligands. Even though carbodiphosphoranes (II, L, L′ = PPh3) were discovered in the 1960s
by Ramirez [8], these species were at first regarded as two cumulated phosphorus ylide
functions on a central carbon atom. It was only in 2006, after the theoretical investigations
by Frenking et al. [9–12], that these molecules were considered as a carbon atom in the zero-
oxidation state stabilized by two L-phosphine ligands, in agreement with the description
initially used by Kaska in 1973 [13]. Since then, this family of ligands has considerably
grown, leading to a large structural diversity of carbones II and a better understanding of
their behavior [14–23]. Naturally, owing to the existence of two lone pairs, they are strong
σ- and π-donors (two- or four-electron donating ability); they have been used as original
ligands for the preparation of organometallic complexes with interesting applications in
catalysis [24–29].
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Figure 1. NHC (I), carbones (II), dihydrido borenium (III) and germyliumylidene (IV) stabilized by carbodiphosphoranes
and phosphine/sulfoxide-supported carbone 4 (for a better readability, formal charges in (III,IV) and 4 were omitted).

The strong donor ability of carbones II also enables the synthesis and isolation of
novel reactive species. For example, Alcarazo et al. took advantage of the two avail-
able lone pairs of carbodiphosphoranes to stabilize reactive molecules such as dihydrido
borenium cation III [30]. In the same vein, several groups have used carbones or strong
σ-donating ligands to prepare dichlorogermylene adducts giving access to germyliumyli-
denes (IV) or germylones [31–38]. In this context, we report here the coordination ability
of a phosphine/sulfoxide-supported carbone 4 [39] towards dichlorogermylene.

2. Results and Discussion
2.1. Synthesis

For the preparation of the phosphine/sulfoxide-supported carbone 4, we followed the
previously described synthesis [39] but several practical aspects were improved. Indeed,
after the complete oxidation of methyldiphenylsulfonium, acidification and filtration of
the precipitates (carboxylic acids), the expected methyldiphenylsulfoxonium salt 1 was
extracted from the aqueous solution by liquid/liquid extraction using dichloromethane
as a solvent (Scheme 1). This extraction avoids the possible thermal degradation of the
sulfoxonium salt during the evaporation of water under reduced pressure (if prolonged
heating above 50 ◦C is performed). The yield of this step was improved to 53%, after
two successive recrystallizations. The coupling reaction between sulfoxonium salt 1 and
chlorophosphonium 2 in the presence of two equivalents of lithium diisopropylamide
(LDA) was also improved in terms of reaction time (Scheme 1). It was found that heating
the reaction mixture up to 60 ◦C considerably sped up the reaction since a full conversion
was reached in 24 h instead of 96 h at room temperature. Protonated precursor 3 was
obtained as a white powder upon concentration (70% yield). The final deprotonation was
performed in THF solution at RT with potassium hydride (KH) leading to the selective
formation of 4, which was isolated in 69% yield.

Scheme 1. Synthetic path of phosphine/sulfoxide-supported carbone 4.
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2.2. Dichlorogermylene Coordination

Previous experimental results and DFT calculations have already established that
phosphine/sulfoxide-supported carbone 4 exhibits a strong nucleophilic character [39].
The potential usefulness of 4 as a ligand towards transition metals was demonstrated by
selective reactions with several organometallic complexes [Au(I), Rh(I)] [39]. Therefore, its
coordinating ability toward GeCl2/dioxane should be an interesting approach to access
original low-valent germanium derivatives.

Ligand 4 reacts immediately with one equivalent of GeCl2 dioxane leading to the
selective formation of complex 5 which has been isolated as colorless crystals from a
saturated solution of CH2Cl2/pentane (yield 80%, Scheme 2). In comparison with the
hexaphenylcarbodiphosphorane analogue [33], complex 5 exhibits a good solubility in
common organic solvent and could be fully characterized by NMR spectroscopy. The
31P NMR spectrum displays a signal at lower field (δ = 49.5 ppm) compared to that of
free ligand 4 (δ = 29.0 ppm), reminiscent of the protonated precursor 3 (δ = 45.0 ppm).
In the 13C NMR spectrum, the central carbon atom appears as a doublet at δ = 47.0 ppm
(JPC = 77.3 Hz). The addition of a second equivalent of GeCl2·dioxane to 5, or the direct
use of two equivalents of GeCl2·dioxane with 4, leads to the quantitative formation of bis-
germylene complex 6, which has been isolated in the crystalline form from C6D6 solution
(yield 75%). It has been fully characterized by NMR spectroscopy, and particularly, the 31P
NMR spectrum indicates a signal at δ = 51.2 ppm and the central carbon atom appears in
13C NMR spectrum as a doublet at δ = 46.6 ppm (JPC = 79.1 Hz).

Scheme 2. Coordination of phosphine/sulfoxide-supported carbone 4 with one or two equivalents of germylene dichloride.

Isolated in the crystalline form, the molecular structures of complexes 5 and 6 were
confirmed by X-ray diffraction analysis (Figure 2, see Supplementary Materials). The
selected geometrical parameters for experimental structures can be found in Table 1.

As expected, the S1-C1 (1.650 Å) and P1-C1 (1.725 Å) bond lengths in 5 are very similar
to those observed in the protonated precursor 3 (1.653 Å and 1.719 Å respectively), because
of their similar environments. The repulsion between the pπ-lone pair at the carbon and the
one at the Ge atom explains the long C1-Ge1 bond length (2.071 Å). It is slightly longer than
the one observed by Alcarazo et al. with carbodiphosphoranes (2.063 Å) but much longer
than a typical C-Ge bond (1.95 Å) [40]. The P1-C1-S1 angle decreased significantly upon
complexation with GeCl2 (from 121◦ in 3 or 4 to 113.7◦ in 5). The introduction of a third
heteroatom (Ge) around the carbon, which is less electronegative than P and S, influences
the atomic orbital distribution with a pronounced s character toward the C-Ge bond
and increased p-character in the C-P and C-S bonds. This phenomenon together with the
covalent radius of the germanium atom justify the narrowing of the P1-C1-S1 angle in 5 [41].
Nevertheless, the C1 atom environment remains almost planar (∑◦ = 357.5◦). In 6, with
the coordination of the second GeCl2 unit, the previously discussed repulsion disappears,
leading to a shortening of the C1-Ge1 bond length to 1.980 Å. The other bond lengths
and angles (P1-C1, C1-S1, PCS) remain almost unchanged (Table 1). The dative nature of
the Ge1-Ge2 bond is confirmed by its length (2.582 Å), way longer than classical Ge-Ge
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σ-bonds (2.40–2.50 Å) [42]. The same tendency was observed for carbodiphosphoranes [33]
or NHC [43].

Figure 2. Molecular structures of 5 (left) and 6 (right). Ellipsoids are drawn at the 30% probability level; hydrogen atoms
are omitted for clarity. Selected bond lengths (Å) and angles (◦): 5: C1-Ge1 2.071(2), C1-P1 1.725(2), C1-S1 1.650(2), P1-C10
1.802(3), S1-O1 1.457(2), Ge1-Cl2 2.299(1), Ge1-Cl1 2.331(1), S1-C22 1.780(3), S1-C16 1.784(3). P1-C1-S1 113.73(14), P1-C1-Ge1
128.12(13), Ge1-C1-S1 115.65(13), C1-Ge1-Cl2 96.82(7), Cl2-Ge1-Cl1 95.37(3), Cl1-Ge1-C1 98.81(7); 6: C1-Ge1 1.980(2), C1-P1
1.748(2), C1-S1 1.665(2), Ge1-Ge2 2.582(1), Ge1-Cl1 2.185(1), Ge1-Cl2 2.245(1), Ge2-Cl4 2.267(1), Ge2-Cl3 2.275(1), P1-C10
1.792(2), S1-O1 1.455(1), S1-C22 1.778(2), S1-C16 1.782(2), P1-C1-S1 112.40(10), P1-C1-Ge1 127.01(9), Ge1-C1-S1 117.30(9), C1-
Ge1-Cl1 105.44(5), Cl1-Ge1-Cl2 101.33(2), Cl2-Ge1-Ge2 107.25(2), Cl1-Ge1-Ge2 109.25(2), Ge1-Ge2-Cl4 92.09(2), Cl4-Ge2-Cl3
98.84(3), Ge1-Ge2-Cl3 89.41(2).

Table 1. Selected geometrical parameters for 3, 4, 5 and 6 1.

3 4 5 6

P1-C1 1.719(15) 1.800(1) 1.725(2) 1.748(2)
S1-C1 1.653(13) 1.593(1) 1.650(2) 1.665(2)

P1-C1-S1 120.98(9) 120.74(8) 113.73(14) 112.40(10)
C1-Ge1 - - 2.071(2) 1.980(2)

Ge1-Ge2 - - - 2.582(1)
1 Bond lengths in Å and angle in deg.

Contrary to the carbodiphosphorane analogues, chloride abstraction from 5 using
AlCl3 or KB(C6F5)4 in order to prepare germyliumylidene derivatives only led to complex
mixtures. Nevertheless, when 5 is treated in the presence of one equivalent of 4 at 60 ◦C for
60 h, we observed the gradual consumption of 5 with the concomitant formation of a new
compound that exhibits a signal at δ = 56.3 ppm in 31P NMR (this reaction does not occur
in the absence of 4) (Scheme 3). In fact, the process is base-catalyzed, but with 10 mol %
of 4, the reaction time is slower and needs 90 h [Note: catalytic amounts (15 mol %) of
alternative Lewis bases such as DMAP or Et3N can be used but the reactions are less
selective, see Supplementary Materials for more details]. The structure of the new product
7, determined by X-ray diffraction analysis (Figure 3), involves the 1,3-migration of a
phenyl group from the sulfur to the germanium atom. Considering the ligand moiety, this
isomerization transforms a bis-ylide (carbone) to an original yldiide [44]. Unfortunately,
because of the presence of 4 in the media, product 7 could not be isolated in pure form for
complete characterization despite several attempts.
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Scheme 3. Evolution of 5 in presence of 4 upon heating at 60 ◦C.

Figure 3. Molecular structure of 7. Ellipsoids are drawn at the 30% probability level; hydrogen
atoms are omitted for clarity. Selected bond lengths (Å) and angles (◦): P1-C1 1.707(3), C1-S1
1.744(3), C1-Ge1 1.891(3), Ge1-C22 1.927(3), Ge1-Cl2 2.172(1), Ge1-Cl1 2.173(1), P1-C10 1.805(3), S1-O1
1.499(2), S1-C16 1.800(4), P1-C1-S1 114.48(18), S1-C1-Ge1 120.89(17), Ge1-C1-P1 122.37(19), C1-Ge1-
C22 119.52(14), C1-Ge1-Cl2 111.27(10), C22-Ge1-Cl2 104.77(10), C1-Ge1-Cl1 111.72(10), C22-Ge1-Cl1
106.65(11), Cl2-Ge1-Cl1 101.15(4), O1-S1-C1 112.64(15), O1-S1-C16 105.28(16), C1-S1-C16 100.04(16).

2.3. Conclusions

In summary, the excellent coordination ability of the phosphine/sulfoxide-supported
carbone ligand 4 allows the preparation of Ge(II)-complex 5. The strong donation of 4
results in an enriched germylene 5, which becomes sufficiently nucleophilic to coordinate
a second GeCl2 unit. The two original and stable coordination complexes 5 and 6 were
fully characterized by NMR spectroscopy and X-ray diffraction analysis. Interestingly,
the Ge(II)-complex 5 shows an original isomerization in the presence of 4 that transforms
the bis-ylide ligand into an yldiide, thanks to a phenyl migration. Efforts are currently
underway to extend the diversity of organometallic complexes that can be obtained with 4
to consider its application in catalysis.

3. Materials and Methods
3.1. General Comments

All manipulations were performed under an inert atmosphere of argon by using
standard Schlenk techniques or high-pressure NMR tube techniques. Dry and oxygen-free
solvents were used. 1H, 13C, 19F and 31P NMR spectra were recorded on Brucker Avance II
300 MHz, Avance III HD 400 MHz and Avance I and II 500 MHz spectrometers (Brucker,
Karlsruhe, Germany). Chemical shifts are expressed in parts per million with residual
solvent signals as internal reference (1H and 13C{1H}). 19F and 31P NMR chemical shifts
were reported in ppm relative to CFCl3 and 85% H3PO4, respectively. The following
abbreviations and their combinations are used: br, broad; s, singlet; d, doublet; t, triplet;
q, quartet; hept, heptuplet; m, multiplet. 1H and 13C resonance signals were attributed
by means of 2D COSY, HSQC and HMBC experiments. Mass spectra were recorded
on a Hewlett Packard 5989A spectrometer (Hewlett-Packard, Palo Alto, CA, USA). All



Molecules 2021, 26, 2005 6 of 9

commercially available reagents were used without further purification otherwise noted.
Preparation of diphenylsulfonium, 2 and 4 were prepared following previously reported
procedures [39].

3.2. Synthesis

Diphenylmethylsulfoxonium triflate 1: A suspension of diphenylmethylsulfonium
triflate (14.96 g, 42.7 mmol, 1 eq.), Na2CO3 (13.58 g, 128.1 mmol, 3 eq.) and meta-
chloroperbenzoic acid (MCPBA) (22.13 g, 128.1 mmol, 3 eq.) in water (400 mL) was stirred
at RT for three days. Na2CO3 (4.53 g, 42.7 mmol, 1 eq.) and MCPBA (7.28 g, 42.7 mmol,
1 eq.) were added and the mixture was stirred at RT for one additional day. A 37% aqueous
solution of HCl was added to the solution until pH = 1. White solid was filtrated off and
washed with an aqueous solution of HCl at pH = 1 (3 × 20 mL). The product was then
extracted with CH2Cl2 (3 × 20 mL). The solution was dried then the solvent was removed
under reduced pressure. The residue was purified by successive crystallizations in ace-
tone/pentane, yielding 1 as colorless crystals (8.30 g, 22.6 mmol, 53%). 1H NMR (300 MHz,
298 K, Acetone-d6): δ = 4.86 (s, 3H, CH3), 7.91–7.98 (m, 4H, CHar), 8.04–8.11 (m, 2H, CHpara),
8.31–8.37 (m, 4H, CHar). 13C{1H} NMR (75 MHz, 298 K, Acetone-d6): δ = 39.7 (s, CH3), 128.4
(s, CHar), 132.0 (s, CHar), 132.9 (s, Cipso), 138.1 (s, CHpara). The signal of the triflate could
not be detected. 19F NMR (282 MHz, 298 K, DMSO-d6) δ = −77.7 (s). Mp = 157 ◦C. HRMS
(ES +): m/z [M]+ calculated for C13H13OS = 217.0687, found = 217.0690.

Protonated phosphine/sulfoxide precursor 3: In situ prepared LDA (18.2 mmol, 2 eq.)
in THF (20 mL) was added dropwise to a suspension of 1 (4 g, 10.9 mmol, 1.2 eq.) in THF
(100 mL) at −80 ◦C and the reaction was stirred at this temperature for 2 h. A suspension
of 2 (2.92 g, 9.1 mmol, 1 eq.) in THF (50 mL) was then added dropwise to the solution at
−80 ◦C. The solution was allowed to warm up to RT then heated at 60 ◦C for two days.
The solution was concentrated (2/3 of the solvent removed) and a white precipitate was
observed. The solvent was filtered off and the white solid was washed with small volumes
of THF (4 × 2 mL). The remaining solid was extracted in CH2Cl2 then dried under a high
vacuum. Ylide 3 was obtained as a white powder (3.9 g, 6.37 mmol, 70%). 31P{1H} NMR
(202 MHz, 298 K, CDCl3): δ = 45.0 ppm (s). 1H NMR (300 MHz, 298 K, CDCl3): δ = 0.76 (d,
JHH = 6.5 Hz, 12H, CH3iPr), 3.08–3.24 (m, 4H, CH2), 3.40 (hept, JHH = 6.5 Hz, 1H, CHiPr),
3.43 (hept, JHH = 6.5 Hz, 1H, CHiPr), 3.80 (d, JPH = 13.7 Hz, 1H, PCHS), 7.57 (m, 9H, CHar),
8.05–8.16 (m, 2H, CHar), 8.18–8.25 (m, 4H, CHar). 13C{1H} NMR (75 MHz, 298 K, CDCl3):
δ = 19.9–20.1 (m, CH3iPr), 31.6 (d, JCP = 137.2 Hz, PCHS), 39.1 (d, JPC = 8.6 Hz, CH2), 45.1
(d, JPC = 5.7 Hz, CHiPr), 121.2 (q, JCF = 318.9 Hz, CF3), 126.7 (d, JPC = 121.1 Hz, Cipso P side),
127.1 (s, CHar), 130.0 (d, JPC = 13.7 Hz, CHar), 130.4 (s, CHar), 132.8 (d, JPC = 11.7 Hz, CHar),
134.4 (s, CHar), 134.5 (d, JPC = 3.1 Hz, CHar), 140.4 ppm (d, JPC = 2.4 Hz, Cipso S side). 19F
NMR (282 MHz, 298 K CDCl3): δ = −78.1 (s). HRMS (ES +): m/z [M]+ calculated for
C27H34ON2PS = 465.2130, found = 465.2133. The elemental analysis calculated (%) for
C28H34F3N2O4PS2: C 54.71, H 5.58, N 4.56; found: C 54.63, H 5.47, N 4.51.

Phosphine/sulfoxide-carbone-GeCl2 complex 5: To a solution of 4 (37.1 mg, 0.08 mmol,
1 eq.) in C6D6 (0.6 mL), GeCl2•dioxane (9 mg, 0.08 mmol, 1 eq.) was added. The reaction
is complete after a few minutes. C6D6 was removed under reduced pressure and the
residue afforded crystals (38.9 mg, 0.064 mmol, 80% yield) from a saturated solution of
CH2Cl2/pentane. 31P {1H} NMR (202 MHz, 298 K, C6D6): δ = 49.5 ppm (s). 31P {1H}
NMR (162 MHz, 298 K, CD2Cl2): δ = 50.9 ppm (s). 1H NMR (500 MHz, 298 K, CD2Cl2):
δ = 0.70 (d, JHH = 6.5 Hz, 6H, CH3iPr), 0.81 (d, JHH = 6.5 Hz, 6H, CH3iPr), 3.08–3.18 (m, 2H,
CH2), 3.19–3.28 (m, 2H, CH2), 3.58–3.69 (m, 2H, CHiPr), 7.59–7.71 (m, 9H, CHar), 8.07–8.14
(m, 6H, CHar). 13C{1H} NMR (126 MHz, 298 K, CD2Cl2): δ = 19.9 (m, CH3iPr), 39.3 (d,
JPC = 8.9 Hz, CH2), 46.0 (d, JPC = 4.6 Hz, CHiPr), 47.0 (d, JPC = 77.3 Hz, PCS), 129.1 (s, CHar)
129.9 (d, JPC = 125.5 Hz, Cipso P side), 130.1 (d, JPC = 13.9 Hz CHar), 130.3 (s, CHar) 132.9 (d,
JPC = 11.8 Hz, CHar), 134.2 (d, JPC = 3.1 Hz, CHar), 134.7(s, CHar), 140.7 (d, JPC = 3.1 Hz,
Cipso S side). HRMS (DCI-CH4): m/z [M + H]+ calcd for C27H34Cl2GeN2OPS: 609.0713;
found: 609.0715.
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Phosphine/sulfoxide-carbone-GeCl2-GeCl2 complex 6: To a solution of 4 (37.1 mg,
0.08 mmol, 1 eq.) in C6D6 (0.6 mL), GeCl2•dioxane (18 mg, 0.16 mmol, 2 eq.) was added.
Product 6 directly crystallized in C6D6 (45.0 mg, 0.06 mmol, 75% yield). 31P {1H} NMR
(202 MHz, 298 K, C6D6): δ = 51.2 ppm (s). 31P {1H} NMR (202 MHz, 298 K, CD2Cl2):
δ = 51.2 ppm (s). 1H NMR (300 MHz, 298 K, CD2Cl2): δ = 0.70 (d, JHH = 6.4 Hz, 6H, CH3iPr),
0.82 (d, JHH = 6.5 Hz, 6H, CH3iPr), 3.09–3.18 (m, 2H, CH2), 3.18–3.28 (m, 2H, CH2), 3.60–3.70
(m, 2H, CHiPr), 7.60–7.71 (m, 9H, CHar), 8.06–8.13 (m, 3H, 6CHar). 13C{1H} NMR (126 MHz,
298 K, CD2Cl2): δ = 19.7–20.3 (m, CH3iPr), 39.3 (d, JPC = 9.2 Hz, CH2), 46.1 (d, JPC = 5.3 Hz,
CHiPr), 46.6 (d, JPC = 79.1 Hz, PCS), 129.1 (s, CHar), 129.7 (d, JPC = 125.0 Hz, Cipso deduced
from J-Mod), 130.2 (d, JPC = 13.9 Hz, CHar), 130.4 (s, CHar), 132.8 (d, JPC = 11.8 Hz, CHar),
134.4 (d, JPC = 3.1 Hz, CHar), 134.8 (s, CHar), 140.5 (d, JPC = 2.95 Hz, Cipso S side). HRMS for
6 did not afford satisfactory results.

Isomer 7: To a solution of 5 (48.6 mg, 0.08 mmol, 1 eq.) in C6D6 (0.6 mL), one equivalent
of 4, 37.1 mg, 0.08 mmol, 1 eq.) was added. The reaction was heated at 60 ◦C until complete
consumption of 5 (after 60 h). Crystals of 7 could be obtained from the crude mixture.
Unfortunately, despite several attempts, 7 was only analyzed by spectroscopy as a mixture.
The spectroscopic data were extracted from a mixture containing 7 and 4 in a 51% to
45% ratio (4% of protonated phosphine/sulfoxide precursor 3). The reaction can also
be performed with 10 mol% of 4 (3.7 mg, 0.008 mmol). 31P {1H} NMR (121 MHz, 298 K,
C6D6): δ = 56.3 ppm (s). 1H NMR (300 MHz, 298 K, C6D6): δ = 0.45 (d, JHH = 6.5 Hz, 3H,
CH3iPr), 0.83 (d, JHH = 6.6 Hz, 3H, CH3iPr),1.34–1.50 (m, 6H, CH3iPr), 2.40–2.70 (m, 2H,
CH2), 3.05–3.15 (m, 2H, CH2), 4.10–4.40 (m, 2H, CHiPr), 6.75–7.25 (m, 9H, CHar), 7.75–7.85
(m, 2H, CHar), 7.85–8.15 (m, 4H, CHar). 13C{1H} NMR (126 MHz, 298 K, C6D6): δ = 20.6
(d, JPC = 2.4 Hz, CH3iPr), 20.7 (d, JPC = 5.7 Hz, CH3iPr), 21.7 (d, JPC = 6.1 Hz, CH3iPr), 38.0
(d, JPC = 12.3 Hz, CH2), 38.1 (d, JPC = 12.7 Hz, CH2), 44.5 (d, JPC = 7.4 Hz, CHiPr), 44.9 (d,
JPC = 5.0 Hz, CHiPr), 59.1 (d, JPC = 121.5 Hz, PCS), 127.2 (s, CHar), 128.0 (s, CHar), 128.3 (s,
CHar), 128.7 (d, JPC = 12.1 Hz), 128.9 (s, CHar), 130.2 (d, JPC = 109.6 Hz Cipso P side), 130.3 (s,
CHar), 132.6 (d, JPC = 2.9 Hz, CHar), 133.4 (s, CHar), 133.8 (d, JPC = 10.3 Hz, CHar), 140.4
(d, JPC = 6.2 Hz, Cipso S side), 147.8 (d, JPC = 21.9 Hz, Cipso Ge side). HRMS (DCI-CH4): m/z
[M + H]+ calcd for C27H34Cl2GeN2OPS: 609.0713; found: 609.0721.

3.3. X-ray Data

The data of the structures for 5, 6 and 7 were collected at 193 K on a Bruker-AXS APEX
II CCD Quazar diffractometer (7) equipped with a 30 W air-cooled microfocus source or on
a Brucker-AXS D8-Venture diffractometer (5 and 6) equipped with a CMOS area detector
with MoKα radiation (wavelength = 0.71073 Å) by using phi- and omega-scans. The data
were integrated with SAINT, and an empirical absorption correction with SADABS was
applied [45]. The structures were solved using an intrinsic phasing method (ShelXT) [46]
and refined using the least–squares method on F2 (ShelXL-2014) [47]. All non-H atoms
were treated anisotropically. All H atoms attached to C atoms were fixed geometrically and
treated as riding on their parent atoms with C-H = 0.95 Å (aromatic), 0.98 Å (CH3), 0.99 Å
(CH2) or 1.0 Å (CH) with Uiso(H) = 1.2Ueq(CH, CH2) or Uiso(H) = 1.5Ueq(CH3).

Supplementary crystallographic data for CCDC-2068304 (5), CCDC-2068305 (6), CCDC-
2068306 (7) can be obtained free of charge from The Cambridge Crystallographic Data
Centre via https://www.ccdc.cam.ac.uk/structures/ accessed on 25 March 2021.

Supplementary Materials: The following are available online. NMR spectra and crystallographic data.
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