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ABSTRACT:  A new family of carbon-bound boron enolates, generated by a kinetically controlled halogen 

exchange between chlorocatecholborane and silylketene acetals, is described. These C-boron enolates are 

demonstrated to activativate 1,3-enyne substrates in the presence of a Pd(0)/Senphos ligand complex, re-

sulting in the first examples of a carboboration reaction of an alkyne with enolate-equivalent nucleophiles. 

Highly substituted dienyl boron building blocks are produced in excellent site-, regio-, and diastereoselectiv-

ity by the described catalytic cis-carboboration reaction. 

 

 

Alkenyl boronates are versatile building blocks in synthetic chemistry.1 The ability of organoboron 

compounds to engage in Suzuki-Miyaura cross couplings2 and to transform into various derivatives3 have 

made alkenyl boronates highly appealing in organic synthesis.  In this context, numerous approaches4 have 

been developed to synthesize di-5 and tri-6 substituted alkenyl boronates. The synthesis of tetrasubstituted 

alkenyl7 boronates on the other hand, particularly in regioselective and stereoselective fashion, has been 

more challenging.8 Pioneering work by Suginome et al. (Scheme 1, a) established the nickel- or palladium 

catalyzed intramolecular boryl migration approach using alkyne substrates tethered with boryl moiety.9 Sim-

ilarly, nickel and palladium catalyzed intermolecular carboboration of alkynes with various carbon sources 

(Scheme 1b) was reported.10 More recently, copper-catalyzed three-component coupling of an alkyne, B2pin2, 

and an electrophile (Scheme 1c) has received attention.11 Despite these advances, carboboration reactions 

are still relatively limited in substrate scope and generality. In particular, stereoselective carboborations to 

produce tetra-substituted alkenes often face regio- and dia-stereoselectivity issues for internal unsymmet-

rical alkynes.11a-e We recently reported the trans-hydroboration and trans-cyanoboration of 1,3-enynes cata-

lyzed by a 1,4-azaborine biaryl phosphine (Senphos)-Pd complex.12 The distinguishing feature of the Pd-

Senphos catalyst system is the proposed unusual outer-sphere oxidative addition mechanism13 (a coopera-

tive activation of the 1,3-enyne by LPd(0) and a Lewis acidic boron species) that introduces the boron group 

into the alkyne substrate with concomitant formation of a Pd--allyl species (vs. a more conventional -mi-

gratory insertion pathway by reactions illustrated in Scheme 1, a-c). Given the known versatility of Pd π-allyl 

intermediate to achieve diverse functionalizations,14 we envisioned that new bond connections can be 



 

Then pinacol 

achieved with a variety of nucleophilic boron reagents. In this communication, we report the first carbobo-

ration reaction of an alkyne with a boron enolate, thus expanding the scope of carboboration reactions to 

include the ubiquitous family of enolate nucleophiles.15 The highly substituted dienyl boronates (containing 

a tetra-substituted alkene unit) are produced with exquisite site-, regio-, and diastereo-selectivity (Scheme 

1d). Senphos ligand type structures are demonstrated to be uniquely enabling in achieving high catalytic 

efficiency and selectivity in this transformation.   

 

Scheme 1. Regio- and Stereoselective Synthesis of Tetrasubstituted Alkenyl boronates 

 

 

 

 

 

 

 

 

 

 



 

Key to successful development is the discovery of a new family of C-boron enolates as a suitably ac-

tivating carboboration reagent. Treatment of a silylketene acetal 1 with catecholborane BcatCl cleanly fur-

nishes C-catecholboron enolate 2, which we have unambiguously structurally characterized by single crystal 

X-ray diffraction analysis (eq. 1). Compound 2 represents a rare example of a C-boron enolate without boron 

quaternization. The boron atom is completely planar (sum of bond angles = 360°), and the C=O bond is 

pointed in a direction relative to the C–B bond (∠B-C-C=O = –124.4(2)°) that is inconsistent with intramolec-

ular coordination.  The 1H (gem-dimethyl signal at δ 1.5 ppm , 13C (carbonyl carbon signal at δ 177.0 ppm), 

and 11B NMR (signal at δ 34 ppm) of a CDCl3 solution of 2 are also fully consistent with the C-boron enolate 

structure vs. O-boron enolate in solution. 

 

Figure 1. Generation of C-boron enolates  

 

 

 

 

 

To date, only few examples of  unquaternized C-boron enolates have been reported.16 Abiko et al. 

reported the first C-boron enolates derived from carboxylic esters in their double aldol reaction study, which 

exists as equilibrium with the corresponding O-boron enolates.17 Marder’s group observed C-boron enolates 

in a diborylation reaction, the stability of which was attributed to carbonyl oxygen coordination to β-boryl 

group.18 Recently, Chiu group synthesized C-pinacolboron enolates through alkenyl ester 1,4-hydroboration 

followed by a thermodynamically driven O-to-C isomerization.19  

 

 

Scheme 2. C-Boron Enolates without Boron Quaternization accessed via thermodynamic control 

 

The distinguishing feature of our method illustrated in eq 1 is that the C-boron enolate is formed under ki-

netically controlled conditions. The reaction between BcatCl and silylketene acetal 1 does not lead to an 

observable built up of O-boron enolate by NMR. Furthermore, DFT calculations (see ESI for computational 

details) for the reaction between BcatCl and silylketene acetal 1, performed at the SMD(CH2Cl2)-W97XD/6-

31G(d,p) level of theory (Scheme 3),20,21 evidence a two-step mechanism (scheme 3) and predict that the 

rate-determining TMSCl elimination step is significantly more energetically unfavorable for the O-boron eno-

late pathway (G‡ = 29.4 kcal/mol, red color) than for the C-boron enolate pathway (G‡ = 20.4 kcal/mol, 



 

blue color). DFT calculations also predict that the kinetically favored C-boron enolate product is also more 

stable than the O-boron enolate by 5.7 kcal/mol. 

 

Scheme 3.  Energy profiles for the reaction between BcatCl and 1 computed at SMD(CH2Cl2)-W97XD/6-
31G(d,p) level of theory (G in kcal/mol). 
 

 

With a C-boron enolate in hand that is sufficiently Lewis acidic to possibly activate the 1,3-enyne 

substrate in an outer-sphere oxidative addition fashion, we surveyed a series of ligands to optimize the car-

boboration reaction. In the presence of 5 mol% (COD)Pd(CH2TMS)2/ Senphos L1, reaction of 1,3-enyne 3 

with C-boron enolate 2 (generated from 2 equiv. BcatCl and 3 equiv. silyl ketene acetal 1, see Supporting 

Information for experimental details) in toluene at 50 °C affords the corresponding cis-carboboration prod-

uct 4 in 10% yield with >98:2 cis-addition selectivity (Table 1, entry 1). In the absence of the catalyst under 

otherwise identical reaction conditions, no background reaction is observed. Switching the C(3) substituent 

R3= i-Pr on the ligand to a sterically less demanding Et group improves the product yield (entry 2). A further 

decrease in the steric demand at the C(3) ligand position does not lead to further improvement in yield (entry 

3, R3 = Me). Interestingly, changing the R group on the phosphorous atom from R = Ph to Cy improves the 

product yield significantly when R3 = Me (entry 6). However, the corresponding R3= i-Pr ligand L4 remains 

ineffective in supporting the Pd catalysis (entry 4). Moderate yield was achieved with ligand L5 (R3 = Et, R = 

Cy, entry 5). Having established the optimal ligand structure as L6, we determined that the corresponding 

carbonaceous ligand CC-L6 (entry 7) and the commercially available, structurally related MePhos22 (entry 

8) are inferior ligands in terms of both efficiency and selectivity, highlighting the importance of the electronic 

structure provided by the BN heterocyclic Senphos ligands.23 We also note that elevating the temperature 

from 50 °C to 60 °C results in a significant decrease in yield, presumably due to the competing decomposition 

of the reactive C-boron enolate 2 (entry 6 vs entry 9).24  

 

 



 

Table 1. Ligand Survey of Internal 1,3-enyne cis-Carboborationa 

 

entry L Yield 
(%)b 

Selectivityb 

1 L1 10 > 98:2 cis addition 
2 L2 45 > 98:2 cis addition 
3 L3 43 > 98:2 cis addition 
4 L4 5 N.D. 
5 L5 72 > 98:2 cis addition 
6 L6 90(88)c > 98:2 cis addition 
7 
8 
9 

CC-L6 
MePhos 

L6 

48 
30 
30d 

88:12 cis addition 
88:12 cis addition 

> 98:12 cis addition  
 

 

a See SI for detailed procedure. b Yield and selectivity were determined by 1H NMR analysis of unpurified 
reaction mixtures with CH2Br2 as the internal standard. c Isolated yield (in parenthesis) of the Bpin adduct. d 

Reaction performed at 60 °C.  
 
 

Having identified optimal conditions, we next explored the scope of this transformation with differ-

ent C-boron enolates (Table 2). Aryl substituents such as methoxy (entry 6f), trifluoromethyl (entry 6g), and 

aryl halides (entries 6h and 6i) are well tolerated. For as of yet to be determined reasons, a lower yield was 

observed for the para-methyl substituted aryl C-boron enolate (6d) while the ortho-methyl substituted C-

boron enolate (entry 6e) performed with high efficiency. Silyl ether (entry 6k) and cyclic alkene (entry 6l) 

functional groups are also tolerated. Sterically demanding cyclic C-boron enolates (entries 6p and 6q) are 

also suitable substrates, albeit a lower yield was observed. 

 

 

 

 

 

 

 

 

 

 



 

Table 2. Reaction Scope of C-Boron Enolatesa,b 

 

 

a See SI for detailed procedure. Selectivity was determined by 1H NMR analysis of the purified product. b 
Isolated yields are reported as the average of two runs. c 18 h reaction time. 
  

We then evaluated the generality of this method with respect to the internal 1,3-enyne (Table 3). 1,3-

Enynes bearing an aryl group at the R1 position generally give higher yields than alkyl groups (entry 6c, 8a-

c vs. 8f-g). When the steric demand at the R2 position increases (R2 > Me), the reaction becomes more slug-

gish (entries 8h-k), however, the high diastereoselectivity is maintained. We are pleased to determine that 

heteroaryl derived enynes (furan: entry 8l, and thiophene: entry 8m) are excellent substrates for the carbob-

oration reaction. We have obtained the X-ray crystal structure of product 8e,25 thus unambiguously estab-

lishing the connectivity and the diastereoselectivity of the reaction. Notably, the solid structure of compound 

8e shows an almost perpendicular diene structure with a C=C–C=C dihedral angle of –69.4(2)°, which high-

lights the steric demand imposed by the highly substituted alkene.26 Overall, Table 3 illustrates that across 

all surveyed 1,3-enynes high site-, regio- and diastereoselectivity can be achieved for the carboboration.  

 

 

 

 



 

Table 3. Reaction Scope of Internal 1,3-Enynesa,b 

 

a See SI for detailed procedure. Selectivity was determined by 1H NMR analysis of the purified product. b 
Isolated yields are reported as the average of two runs. c 18 h reaction time. d18 h reaction time with 10 mol% 
[Pd]/L6. 
 
 

The highly substituted dienyl Bpin products can serve as useful intermediates in subsequent stereo-

specific transformations. For example, 4-Bpin can be readily oxidized to afford the 2-furanone scaffold 9, 

which comprises an important class of heterocyclic compounds in fragrances27 and biologically active mole-

cules.28 Reduction of 4-Bpin produces the dienyl boronic acid 10 which can further undergo Suzuki-Miyaura 

cross coupling with aryl or alkenyl halides to furnish the corresponding bis-aryl conjugated diene (11a) and 

triene (11b), respectively. 

 

 

 

 

 

 

 



 

Scheme 4.  Derivatization of Reaction Products 

 

 

 

A plausible reaction mechanism is illustrated in Scheme 5. In the presence of Senphos ligand L the 

(COD)Pd(CH2TMS)2 precatalyst reductively eliminates 1,2-bis(trimethylsilyl)ethane to form the active 

LPd(0) species I,29 which then subsequently binds to the 1,3-enyne. The LPd(0)-enyne complex II is then 

activated by the Lewis acidic C-boron enolate to furnish the outer-sphere oxidative adduct III. The Pd -allyl 

is then attacked by an enolate equivalent to yield the product with concomitant regeneration of LPd(0) spe-

cies I.14 C-Boron enolates are uniquely effective for this coupling reaction due to its more Lewis acidic boron 

center (vs. O-boron enolate) that can help activate the enyne substrate via an outer-sphere oxidation mech-

anism.30 The stronger Lewis acidic character of the C-boron enolate versus O-boron enolate is corroborated 

by the electronic structure calculations where an analysis of LUMOs with a strong boron contribution revelas 

a significant lower energy for C-boron enolate (see ESI). 

 

 

Scheme 5.  Proposed Catalytic Cycle 

 

 

 

 

In summary, we discovered a new class of C-boron enolates via a kinetically controlled halogen ex-

change between chlorocatecholborane and silylketene acetals. These C-boron enolates are uniquely capable 



 

in activating 1,3-enyne substrates in the presence of a Pd(0)/Senphos ligand complex via a proposed outer-

sphere oxidative addition reaction mechanism, resulting in the first examples of a carboboration reaction of 

an alkyne with enolate-equivalent nucleophiles. The described catalytic cis-carboboration reaction produces 

highly substituted dienyl boron building blocks in high site-, regio-, and diastereoselectivity under mild con-

ditions. Current efforts are directed toward developing new metal/Senphos-catalyzed processes as well as a 

better understanding of the underlying reaction mechanisms.  
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