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ISEE: A Heterogeneous Information System for Event Explainability
in Smart Connected Environments

Abstract

Smart connected environments as well as digital contents are more and more present in our daily

life. The former monitors various data produced by sensors, while the latter contains valuable

additional information (e.g., technical data sheets, maintenance reports, employee register). When

an event occurs, users generally want to figure out why this event happened. Unfortunately, most

information systems in connected environments do not combine sensor network data with document

corpora. Consequently, users have to look for an event explanation by querying both complementary

sources with different systems, which is indeed very tedious, time consuming and requires a huge

compilation effort. In this article, we apply the 5W1H model (”What? Who? Where? When?

Why? How?”), commonly used in question-answering, to bridge the gap between sensor networks

and document corpora. Our framework entitled ISEE (Information System for Event Explainability)

offers an original approach that (i) defines events along four dimensions, (ii) interconnects semantic

information coming from sensor networks and documents with 5W1H connections, and (iii) provides

to the user a set of preliminary event explanation according to 5W1H answers. A real motivating

use-case based on a smart-building is presented and experimental results are discussed.

Keywords: Event explainability, Sensor, Document, Semantics, 5W1H, Heterogeneous

Information System, Smart-building

1. Introduction

Due to their great potential in the improvement of safety, comfort, productivity and energy-

saving, smart connected devices have become ubiquitous in our everyday lives, impacting different

domains from hospitals, malls, farms and buildings to cities, vehicles and electrical grids.

Over the last decade, in order to boost even more life quality in smart connected environments,5

an untold number of research work has been conducted to propose additional services based on the

exploitation of collected data [1]. Event detection is one of those services. Events can be defined

Preprint submitted to Journal of LATEX Templates June 17, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S2542660521000986
Manuscript_80bd2dbaf366458b497915369b0e3219

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S2542660521000986
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S2542660521000986


as ”the real-world occurrences that unfold over space and time” [2]. In the literature, three main

types of events are distinguished: (1) socio-cultural events that have an associated place, theme

and audience (e.g., concerts, festivals, sports events); (2) news article events, which correspond to10

current information (e.g., Spain won the football world cup in 2010, several school closures caused

by Covid-19); (3) events detected by devices such as sensors which monitor the physical world and

indicate the triggering of a given phenomenon (e.g., fire detection, stroke detection for patients,

air pollution detection). In this paper, we focus on the explainability of events detected by sensors

(3), and more specifically those that occur in smart connected environments with heterogeneous15

information systems (IS) (i.e., document IS and sensor network IS). Let’s take the example of a light

wastage event in a smart building office (e.g., a light sensor detects luminosity level and triggers an

alert if it’s greater than 30 lux during night). The natural reaction of the smart building manager,

when the alert occurs, is to try to figure out why it happened by querying various information sources

(e.g., why was the event triggered? Was there anyone in the office when the event triggered? If20

not, who was the last person to enter the office?). However, to the best of our knowledge, there

is no paper that aims to explain events that occur in smart connected environments, using both

sensor network and document corpus data. To sum up, the limit of traditional approaches of event

explainability in smart connected environments are as follows:

(i) Data scope: a wide spectrum of data dispersed across heterogeneous data sources with25

different structures, languages, semantics and versions (e.g., structured data tables in the sensor

network IS and semi-structured or unstructured data sheets in document IS).

(ii) Manual search: existing sensor network information systems do not allow interconnecting

sensor network and document corpus. It is up to the user to build these connections through

multiple queries: first, the user has to query sensor network, then explore the interesting leads by30

querying many times the two data sources. The user could be overwhelmed by a huge amount

of unnecessary data. Moreover, the user has also to reformulate his queries many times to refine

the results until getting the correct event explanation, which is very tedious, time consuming and

requires a huge compilation effort.

(iii) Poorly structured results: at the end of this process, the elements constituting the35

explanation are dispersed across various documents and sensor data (e.g., staff directory, records of

employees assigned to the office, the office badge access report, a list of equipment that can produce

light in the office). It is again up to the manager of the connected environment to sum up.
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To overcome these limitations and build a well-structured event explanation, we found it very

interesting to apply the 5W1H technique in our context. The 5W1H [3] is an approach usually40

used for the extraction of structured semantics from online news. In our context, 5W1H will allow

us to bring together heterogeneous data sources and select more efficiently relevant information by

driving the information retrieval process through the six questions (What? Who? Where? When?

Why? How?). Moreover, we assume that structuring the final explanation in the form of 5W1H

result will aim at insuring the simple, intuitive and user-friendly aspect of the event explanation.45

In this paper, we propose ISEE (Information System for Event Explainability), an event ex-

plainability framework for smart connected environments with a heterogeneous information system

based on the 5W1H. Commonly, to build an event explanation, the framework has to: (a) express

one or multiple queries; (b) match sensor network and document collection data and select the

subset of relevant information; (c) construct and present results that can be easily understood by50

the end user. In this paper, we focus exclusively on point (b). On one hand, we propose an ef-

ficient process for the interconnection of sensor networks and document collection data. And on

the other hand, we provide algorithms for retrieving and scoring relevant information in order to

explain the triggering of an event. The 5W1H will be the guiding principle of our proposal for

making semantic connections between sensor and document data, and computing explanation of an55

event occurrence. Consequently, it leverages existing works such as event modelisation, information

retrieval (IR), semantic IR, and 5W1H question-answering. The originality of our proposal relies

on a context-aware (event-aware) semantic interconnection within an iterative filtering process for

sensor network and document corpus data. In what follows, we present a scenario that motivates

our proposal in Section 2. We describe the ISEE framework in Section 3. We present two experi-60

ments in Section 4. Then, we present the state of the art in Section 5. Finally, Section 6 concludes

the paper and discusses the upcoming works.

2. MOTIVATING SCENARIO

We consider a real example of a four floors smart connected office building (Figure 11). Various

sensors (e.g., light, temperature, PIR motion sensors), mobile entities (e.g., people, laptops) and65

static entities (e.g., air extraction system, doors, lamps) are deployed in the different rooms/floors.

1Sample data available at: https://citris-uc.org/about/sutardja-dai-hall/about-facilities/floorplans/
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Figure 1: The fourth floor of the SDH building sample

An associated information system also manages a large corpus of documents having different con-

tents, structures and formats (e.g., company web site, employee data file, sensors and laptops

technical sheets, maintenance reports). Let’s now suppose that an abnormal energy consumption

has been detected in office 413 on the fourth floor last night. The building manager would like70

obviously to understand why it happened (e.g., why the event was triggered? Which employee is

assigned to office no. 413? Who was the night watchman yesterday? Is there any other interesting

data from other sensors? Have there been any recent reports of equipment malfunctions in the

fourth floor?...). Using sensors IS, the manager is swamped with rooms raw data: CO2 concen-

tration, room air humidity, room temperature, luminosity, and PIR motion sensor data. Similarly,75

corresponding documentary resources are huge and numerous and an effective querying process

difficult. Does the brightness detected by the luminosity sensor in office no. 413 at 8pm correspond

to the visit of the night watchman Garret? Was Perrin the employee who forgot the light on when

he left his office at 5pm? Is a lamp in office no. 413 defective? Considering all of the above, the

following challenges emerge: (i) How to fully exploit event data (sensor, time, location, etc.) in80

order to guide an information retrieval process? (ii) How to interconnect the two different data

sources (sensor network and document corpus) in order to build event explanation? (iii) How to

structure the final explanation in a simple, clear and user-friendly way? Furthermore, according to

the context, the building manager may need an explanation within a more or less short period of

time. We will also consider this constraint by defining emergency levels. In the following section,85

we describe the ISEE proposal which addresses all the three above-mentioned issues.
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Figure 2: ISEE general overview

3. The ISEE Framework

As outlined previously, our environment consists of two information systems: a sensor network

IS and a heterogeneous document corpus IS. We assume that we have several domain ontologies to

model semantics of the sensor network [4] and document corpus data (e.g., human resources ontology90

and building domain ontology). Before the ISEE Framework (Figure 2) starts building explanation

for events that trigger in the environment, a preliminary data integration step is necessary (domain-

knowledge integration process in Figure 2). It consists of a two steps process:

– Ontology instantiation: this step aims to exploit the heterogeneous data sources (i.e., sen-

sor network and document corpora data) in order to instantiate domain-ontologies (Ontology95

instantiation in Figure 2, Section 3.3.1).

– Ontology matching: ontology matching techniques [18] are used in order to build traditional

alignments (e.g., equivalence, generalisation, and specialisation) between entities of domain

ontologies (Ontology matching in Figure 2, Section 3.3.2).

Once the semantic model of the environment is built, the framework can start building explanations100

for events through the ISEE process (ISEE process, Figure 2). ISEE process is based on an iterative

context-aware interconnection and filtering processes which are performed in three main steps:
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1. 4W concepts connection: a first network of a context-aware interconnections between con-

cepts is built based on the event definition ((1) in Figure 2, Section 3.4.1) and the previously

built traditional alignments.105

2. 4W instances connection: a second level of interconnections between instances is built

based on the event triggering data ((2) in Figure 2, Section 3.4.2).

3. ISEE tuples scoring: the previously built graphs are parsed, ISEE explanation tuples are

built and ranked according to a relevance score ((3) in Figure 2, Section 3.4.3).

In what follows, we formally define events and event characteristics in Section 3.1. Section 3.2110

formally defines event explanation. We detail domain-knowledge integration process in Section 3.3.

Finally, Section 3.4 presents the ISEE process.

3.1. Event definition

In this study, we define an event as a 4-dimensional space called eSpace. The event eSpace

consists of Features, Sources, Time, and Location dimensions and an event data to represent sensor115

observations that help to detect the event. In what follows, we first define an event, then, we detail

the definition of a dimension, finally, we define an event eSpace.

Definition 3.1. An Event e is defined as a 4-tuple ⟨id, l, eSpace, u⟩, where:

– id is the unique identifier of the event

– l is a label120

– eSpace is a 4-dimensional space that defines the event components as a set of dimensions (cf.

Definition 3.3) and event-related data

– u is a level of urgency assigned to e where u ∈ {low,moderate, high} �

For example, a light wastage event can be defined as follows:

LightWastageEvent ∶ < 1, ’LightWastage’, eSpace, ’low’ >125

The level of urgency here dictates the required level of event explanation based on the user

preference. For instance, if u = low (i.e., the user can wait a certain period of time before receiving

the explanation) then one could fully explain the event although the processing time is significant.
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However, if u = high (i.e., there is an urgent need for the explanation) the explanation should be

light in order to return quick results to the user.130

Definition 3.2. An Event Dimension d is defined as a 5-tuple ⟨id, o,C,R,Cd⟩, where:

– id is the unique identifier of the dimension

– o is the origin concept which best reflects d

– C is the set of concepts related to d

– R is the set of relations related to d135

– Cd is the set of constraints associated with d �

For example, Features and Time dimensions of the light wastage event can be defined as follows:

Features: ⟨3, Luminosity, {Cost, Energy}, {hasFeature}, {Lumens > 30}⟩
Time: ⟨5, TimeInterval, {TemporalEntity, TimeInstant}, {inDateTime, inTemporalPosition},

{timestamp duration 1hour, timestamp includedIn [07:00:00pm, 07:00:00am]}⟩140

Note that qualitative and quantitative operators are used to define constraints on such dimen-

sions [4]. For example, includedIn and duration are operators dedicated to temporal data (i.e.,

qualitative operators) whereas > is an operator for numeric data (i.e., quantitative operators).

Definition 3.3. An Event Space eSpace is defined as a 6-tuple ⟨id, Features, Sources, Time,

Location, I⟩, where:145

– id is the unique identifier of the event space

– Features is the dimension describing the event features

– Sources is the dimension describing the event sensor

– Time is the dimension describing the event temporal data

– Location is the dimension describing the event spatial data150

– I is the set of event instance data.

I is empty when the event is defined, then data tuples are inserted every time the event is

triggered. I = {< id1,Data1 >, ...,< idp,Datap >}, idi∈1,p is the event instance id and Datai∈1,p
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is the set of sensor observations that triggered the event. Datai∈1,p = {obs1, .., obsq}, obsi∈1,q =<
idobs, sensor, time, location, value >. idobs, time, location and value are the observation id,155

time, location and value respectively. Sensor is the sensor which made the observation. �

For example, the light wastage event space could be defined as follows:

eSpaceLightWastage ∶ ⟨2, Features, Sources, Time, Location, I⟩

– Features: ⟨3, Luminosity, {Cost, Energy}, {hasFeature}, {Lumens > 30}⟩

– Sources: ⟨4, LightSensor, {LightingSystem, Lamp}, {senses, madesObservation}, {}⟩160

– Time: ⟨5, TimeInterval, {TemporalEntity, TimeInstant}, {inDateTime, inTemporalPosition},

{timestamp duration 1hour, timestamp includedIn [07:00:00pm, 07:00:00am]}⟩

– Location: ⟨6, Location, {Coordinate, Position, Floor, Room, SpacialArea}, {hasLocation,

hasAssignedOffice}, {}⟩

– I ∶ {< 7,{< 36145, lightSensor826, 28/08/13 19:00:00, Office 413, 62 >, ...,165

< 36191, lightSensor826, 28/08/13 20:00:00, Office 413, 68 >} >}

Note that, before defining events, all components of the environment are defined and integrated

into the information system. In our context, the main components of the environment are sen-

sors, entities (e.g., people, laptop) and documents (e.g., equipment technical data sheets, employee

records). For those who are interested, the definitions are described in our previous paper [5].170

3.2. Event explainability

In this section, we define event explanation in our context and give some examples. As already

explained in Section 3.1, the user can assign three different levels of urgency to the event (i.e., low,

medium and high). According to one level of urgency, the framework must return an explanation

that corresponds to the user need in terms of content and waiting time. Hence, we propose three175

different levels of explanation, namely raw event explanation er, medium event explanation em, and

full event explanation ef which correspond respectively to high, medium and low event urgency.

(i) Raw event explanation : this first level of explanation contains the event triggering

data. It aims to provide the user with necessary data for rapid decision-making when the

event explanation urgency is high (e.g., fire event). Raw event explanation is built based on180
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the processing of the corresponding event instance (i.e., a tuple < idi,Datai > of the set of

event instance data I, Definition 3.3).

Definition 3.4. A raw event explanation er is defined as a 4W1H tuple. It is formalized as

follows er: <What,Who, When, Where, How >, where:

– What is the event feature185

– Who is the sensor which triggered the event

– When is the event triggering time

– Where is the event triggering location

– How is the set of observations from Datai that triggers the event �

The following describes an example of a raw explanation of the light wastage event:190

er ∶ < What: Luminosity,

Who: LightSensor826,

When: 28/08/13 20:00:00,

Where: Office 413,

How: {< 36145, lightSensor826, 28/08/13 19:00:00, Office 413, 62 >, ...,195

< 36191, lightSensor826, 28/08/13 20:00:00, Office 413, 68 >} >

As you can see in this example, the How field contains all the observations that triggered the

event. These observations comply with the constraints specified in the light wastage event

definition (Section 3.1): light levels are above 30 lux which corresponds to the constraint on

the Feature dimension (Lumens > 30) and observation times are on a one-hour time slot after200

the working hours which corresponds to the constraints on the Time dimension (timestamp

duration 1hour, timestamp includedIn [07:00:00pm, 07:00:00am]).

(ii) Medium event explanation : this level of explanation incorporates the raw explanation

and adds a Why field. When an event occurs, there are one or many entities in the environment

that contributed to its triggering. The Why field is constituted of 4W1H tuples, each detailing205

information about one of these entities. The 4W1H tuples are expressed in the form of

concepts (e.g., Employee, Office, LightingSystem) without specifying exactly which instances

(e.g., Roland Perrin, Office413, Lamp45) are actually related to the event that was triggered.
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Definition 3.5. A medium event explanation em is composed of the raw event explanation

er and a Why field. It is formalized as follows em: < er,Why >. Thus, em constitutes a 5W1H210

tuple em: <What,Who, When, Where, How, Why >, where:

– What, Who, When, Where and How are the five fields that constitute the raw event

explanation er (Definition 3.4)

– The Why field is defined as a set of 4W1H tuples, Why ∶ {t1, t2, ..., tn}, ti∈1,n: < mwhat,

mwho, mwhen, mwhere, mhow >, where:215

∗ mwhat denotes the set of concepts describing entities that may trigger the event

∗ mwho is a concept identified as responsible for the event triggering

∗ mwhen is the set of temporal concepts that links mwho to the event

∗ mwhere is the set of spatial concepts that links mwho to the event

∗ mhow is one or several triples: <mwho, predicate, object > which determine the way220

mwho has contributed to the event triggering. Here, the predicate is the property

connecting mwho to an object and object ∈mwhat. �

For example, the medium explanation of the light wastage event could be represented as

follows (the concepts are shown in blue):

em: < er, {< mwhat: {Lamp},225

mwho: Employee,

mwhen: {TemporalEntity},

mwhere: {Office, MeetingRoom, BreakRoom},

mhow: {<Employee, turnsOn, Lamp>, <Employee, turnsOff, Lamp>} >, ...} >

er is the raw event explanation that has been illustrated previously. The following tuple,230

within the Why field, represents a potential explanation of the light wastage event. The

construction of such tuples will be detailed in Section 3.4.1.

(iii) Full event explanation : Similarly, the full event explanation ef incorporates the

medium event explanation em enriched by a new Why field (i.e., Why′) containing addi-

tional details. This Why′ field is mainly based on event triggering data (Section 3.4.2). More235
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precisely, it consists of a set of candidate instances corresponding to concepts previously

mentioned in em associated with a score.

Definition 3.6. A full event explanation ef is represented as follows: ef : < em,Why′ >. The

Why′ field is defined as a set of 4W1H tuples with scores, Why′ ∶ {t′1, t′2, ..., t′m}, t′i∈1,m: <
fwhat, fwho, fwhen, fwhere, fhow, fscore > where the five first elements are instances which240

correspond to em concepts and fscore is a value between 0 and 1. �

For example, the full explanation of the light wastage event could be represented as follows

(concepts and instances are shown in blue and purple respectively):

ef : < em,

{< fwhat: {Lamp:L014, Lamp:L015},245

fwho: Employee:Roland Perrin,

fwhen: TemporalEntity:28/08/13 18:32:50,

fwhere: Office:Office413,

fhow: {<Employee:Roland Perrin, turnsOn, Lamp:L014>, <Employee:Roland Perrin,turnsOn,

Lamp:L015>},250

fscore: 0.83 >, ...} >

The When and Where instances correspond to the office assigned to the employee Roland

Perrin and the time at which he left this office. The score calculation metric will be detailed

later in Section 3.4.3.

To summarize, our ISEE framework aims at building event explanation in smart connected255

environments based on event definition and triggering data. To structure the event explanations,

the ISEE framework offers three different levels of explanation (i.e., raw, medium and full event

explanation) that take their inspiration from the 5W1H model [6]. We synthesize all these elements

in our event explainability model called ISEE model (Figure 3). It illustrates the life cycle of an

event (i.e., event definition, event triggering and event explanation) and details the connections260

between the different classes. The ISEE process detailed in Section 3.4 aim at instantiating the

classes of the third layer of this model (i.e., event explanation layer).
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Figure 3: The ISEE model

3.3. Domain knowledge integration process

Our ISEE framework (Figure 2) is based on the assumption that parsing semantic interconnec-265

tions between domain ontologies using event definition and triggering data, will enable building a

novel and detailed event explanation. In our context, ontologies are domain ontologies that cover

heterogeneous knowledge (i.e., those related to the environment, the sensor network and the doc-

ument corpus). The first step of domain-knowledge integration process (Section 3.3.1) aims at

instantiating these ontologies using sensor network and document corpus data. Then, the ontology270

matching process (Section 3.3.2) performs a back-office ontology matching process between domain

ontologies to build traditional alignment relations (i.e., equivalence, generalization and specifica-

tion). In this section, we present and detail the two steps of domain knowledge integration process.
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Figure 4: An example of ontology instantiation

3.3.1. Ontology instantiation

The main obstacle that has to be faced when trying to find an event explanation is the275

barrier that separates information systems dealing with sensor network data and those dealing with

document corpus data. To address this problem, we rely on ontologies to build a semantic model of

the environment, then, ontology alignment techniques to connect them. The ontologies will allow

us to describe the semantics of the domain as a graph of concepts and relations. To populate

these ontologies with the raw data produced by sensors or extracted from text files, instantiation280

(or population) techniques [7, 8] are used. Ontology instantiation process consist in adding new

instances of concepts and relations into an existing ontology. For example in Figure 4, we can

see that the concept Employee has two instances Claire Legrand and Antoine Durand. These two

instances could be extracted, for example, from the employee record of the building office.

Two main approaches are used in the literature for ontology instantiation: (1) algorithmic/heuristic285

based approaches [9, 10, 11] which usually involve NLP techniques, predefined mapping rules and

human intervention for control and validation; (2) machine learning-based approaches [12, 13, 14]

which also use NLP techniques associated with annotation methods from the semantic web. In our

context, we used an algorithm-based approach, further details are presented in Section 4.
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Figure 5: An example of ontology alignments

3.3.2. Ontology matching290

As stated earlier, the second step of domain-knowledge integration process (Figure 2) aims at

aligning the concepts of domain ontologies and the sensor network ontology. These connections are

built in back-office independently of the event triggering data. They constitute the backbone of our

ISEE framework and allow navigating from the event into the concepts of domain ontologies. We

detail this process in Algorithm 1.295

Several alignment techniques can be used [15, 16]. The system gives the user the flexibility in

choosing the alignment method. This is represented in the algorithm as a function f. Algorithm 1

runs through all ontologies and computes the semantic similarity between each couple of concepts

using the function f (Algorithm 1, line 6). If the confidence score of the correspondence is higher

than a threshold, then the correspondence is added to the final set of results (Algorithm 1, lines300

7-9). For example, in Figure 5, we can see that the pair of concepts Luminosity and LightingSystem

are aligned with a specialisation relation (⊃) that has a high confidence score (i.e., 0.82). The

correspondence <Luminosity, ⊃, LightingSystem, 0.82> is returned within the results. Note that,

not all correspondences are shown in Figure 5, some were omitted for the sake of clarity.
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Algorithm 1 Domain-ontologies matching
input : O← Sensor network and document corpora ontologies

f← An alignment function

output: A set of correspondences

1 Result← {}

2 for each oi in O do

3 for each conceptp in oi do

4 for each oj in O, with j > i do

5 for each conceptq in oj do

6 <correspondanceType, score> ← f(conceptp, conceptq)

7 if score ≥ Threshold then

8 Result ← Result ∪ < conceptp, correspondanceType, conceptq , score>

9 end

10 end

11 end

12 end

13 end

14 return Result

3.4. ISEE process305

In this section, we present and detail the implementation of the ISEE process (Figure 2). The

first step of ISEE process (Section 3.4.1) aims to build a network of What, Who, When and Where

labeled semantic interconnections between the event and relevant concepts of the different ontologies.

The second step (Section 3.4.2) performs a second filtering process at the instance level, to keep

only those related to the triggered event. Based on this set of instances, a second network of310

What, Who, When and Where semantic interconnections is built. Finally, the last step (Section

3.4.3) parses the previous semantic networks, in order to score all the corresponding ISEE tuple

candidates which will be returned within the triggered event explanation.

3.4.1. Concept level semantic interconnections

Based on the previously built ontology alignments, Step 1 of the ISEE process (Figure 2)315

aims at linking an event definition with concepts of the knowledge repository. These semantic

interconnections are used to build the medium event explanation (Definition 3.5). We detail this

step in Algorithm 2.
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Figure 6: An example of What and Who concept connections

In order to build the What, Who, When and Where labeled interconnections, we use the align-

ments produced by domain-knowledge integration process (Section 3.3.2) and the concepts repre-320

senting each of these 4 dimensions in the sensor network ontology (Algorithm 2, lines 1-8). For

example in Figure 6, the Feature dimension of the Light wastage event is represented by the concept

Luminosity. Besides, the concepts Luminosity and Lighting System are aligned via a specialisation

relation (represented in red). Thus, a What labeled semantic connection is built between the Light

wastage event and the concept Lighting System. The same process is computed for the Time and325

Location dimensions. To build the Who labeled semantic connections, which link the event to

the concepts responsible of its triggering, we use the concepts previously connected to the event

through the What labeled semantic connections (e.g., Lighting System concept) and we parse their

direct neighbours (Algorithm 2, lines 9-17). For example, the Lighting System concept has three

neighbours: Location, Person and WattConsumption concepts. Thus, a Who labeled semantic con-330

nection is then built between Light wastage event and the Person concept. Moreover, as concepts

Person and Employee were previously linked via a specialisation relation, a Who labeled semantic

connection is also built between the Light wastage event and the Employee concept. For the sake

of simplicity, we do not detail here all the What and Who labeled semantic interconnections.
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Algorithm 2 4W concept matching
input : O← sensor network and document corpora ontologies

ResultStep1← sensor network and document corpora ontology alignments from Algorithm 1

event← event definition

Entities← the set of concepts that represent environment entities

output: A set of triples with What, Who, When, and Where as predicates

1 Result← {}, owhat ← event.eSpace.Features.o, owho ← event.eSpace.Sources.o

2 WhatConcepts← GetAlignedConcepts(owhat,ResultStep1) ∪GetAlignedConcepts(owho,ResultStep1)
3 for each cwhat in WhatConcepts do

4 Result← Result ∪ < event.id,What, cwhat >
5 end

/* do the same for the Time and Location dimensions */

6 WhoConcepts← {}
7 for each cwhat in WhatConcepts do

8 WhoConcepts ← GetNeighbourConcepts(cwhat)

9 for each cwho in WhoConcepts do

10 if cwho in Entities then

11 Result← Result ∪ < event.id,Who, cwho >
12 AlignedWhoConcepts← GetAlignedConcepts(cwho,ResultStep1)
13 for each c in AlignedWhoConcepts do

14 Result← Result ∪ < event.id,Who, c >
15 end

16

17 end

18 end

19 end

20 return Result

3.4.2. Instances level semantic interconnections335

Event triggering provides a lot of interesting information, notably the spatio-temporal context

(e.g., the time and the location of the light wastage event, the list of equipment that can produce

light in Office 413, the office badge access report, etc.). Based on this information and on the output

of Algorithm 2 (4W concept connections), Step 2 of ISEE process aims at linking a triggered event

with instances related to the previously filtered concepts. These semantic connections are then used340

to build the full event explanation (Definition 3.6). We detail this process in Algorithm 3.

To build the Who, When and Where connections at the instance level, the instances of the

concepts previously interconnected to the event, through the Who semantic connections, are parsed

to select those having a location and a time that is closed to the event triggering (Algorithm 3, lines

2-14). For example, in Figure 7, the concept Employee is considered because it has a Who semantic345
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Figure 7: An example of a 4W instance connection

connection (blue arrow) with the event. The instance Roland Perrin of the Employee concept

is selected because this employee left Office 413 one hour before the event was triggered (using

the two triples < Roland Perrin, hasOfficeLeavingTime, 28/08/13 18:32:50> and < Roland Perrin,

hasAssignedOffice, Office413>). Consequently, a new Who labeled connection at the instance level

(pink arrow) is built between the Light wastage event and the filtered instance Roland Perrin. Of350

course, the When and Where connections are also built between the Light wastage event, Office

413 and the time instance 28/08/13 18:32:50 respectively. In Figure 7, we do not show the When

and Where connections for visibility reasons. Obviously, in Figure 7, we do not create other Who

labeled connection at the instance level as the other employees were not in the proper office at the

right time. To build What semantic connections at the instance level, the approach is similar to the355

Who semantic connections presented previously. Actually, the instances of the concepts previously

interconnected to the event, through the What semantic connections, are parsed to select those

having a location and a time that is closed to the event triggering (Algorithm 3, lines 15-25). For

example in Figure 7, the concept Lamp is considered because it has a What semantic connection

(blue arrow) with the event. The two instances L014 and L015 of the Lamp concept are selected360

because they are located in the same place as the event (i.e., Office413). Consequently, a new What

labeled connection at the instance level (pink arrow) is built between the Light wastage event and

the filtered instances L014 and L015. Of course, the instances L013 and L019 of the Lamp concept
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are not considered because they are not located in the same place as the event.

Note that for both Who and What semantic connections, we selected instances that are closed365

to the spatio-temporal information related to the triggered event thanks to its Time and Location

dimensions. We select such instances even if only one of the two dimensions matches (i.e., if it

satisfies only the temporal dimension or only the spatial one).

Algorithm 3 4W instance matching
input : O← sensor network and document corpora ontologies

eventTime, eventLocation← event triggering time and location

Result step2← What, Who, Where and When labeled triples from Algorithm 2

output: A set of triples with What, Who, When, and Where as predicates

1 Result← {}
2 WhoConcepts ← GetWhoConcepts(Result step1)

3 for each cwho in WhoConcepts do

4 WhoInstances ← GetInstances(cwho,O)

5 for each iwho in WhoInstances do

6 Track ← GetTracks(iwho)

7 selectedTrack ← SelectTrack(Tracks, eventTime, eventLocation, Threshold)

8 if selectedTrack NOT Null then

9 Result ← Result ∪ < event.id,Who, iwho >
10 Result ← Result ∪ < event.id,When, selectedTrack.time >
11 Result ← Result ∪ < event.id,Where, selectedTrack.location >
12 end

13 end

14 end

15 WhatConcepts ← GetWhatConcepts(Result step2)

16 for each cwhat in WhatConcepts do

17 WhatInstances ← GetInstances(cwhat, O)

18 for each iwhat in WhatInstances do

19 Trackwhat ← GetTracks(iwhat)

20 selectedTrackwhat ← SelectTrack(Tracks, eventTime, eventLocation, Threshold)

21 if selectedTrackwhat NOT Null then

22 Result ← Result ∪ < event.id,What, iwhat >
23 end

24 end

25 end

/* The instances connected to the event through 4W connections are used to instantiate the Why class */

26 return Result

3.4.3. Score based ISEE tuples identification

Step 3 of the ISEE process (Figure 2) aims at scoring each event explanation (i.e., ISEE

tuples). ISEE tuple contains What, Who, When, Where, How and Why’ fields (Definition 3.6).
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The Why’ field is the one that explains the event and details the information about the candidates

of the explanation. Therefore, the ISEE tuples score calculation will focus on this field. Algorithm

4 computes iteratively each Why’ field and score it (line 3). The score calculation is based on

four evaluation criteria, namely, the completeness (comp) which denotes the number of 4W1H

questions answered by the Why’ field, the diversity (diver) that counts the number of what instances

connected to the event explanation, the confidence score (conf) summarizing the original alignment

scores and the spatio-temporal proximity (prox) of the explanation. Hence, we propose the following

scoring formula:

Score tuple = 1

α + β + γ + δ ∗ (α. comp+β.diver + γ. conf +δ.prox)

– α,β, γ, δ are weighting coefficients, they balance the importance given to each of the four370

evaluation criterions.

– comp denotes the completeness of the Why’ field

comp = m
5

, m the number of 4W1H questions answered by the Why’ field.

– diver refers to the diversity of the what instances

diver = n
I

, n is the number of what instances linking the Why’ field to the event and I is the375

total number of what instances

– conf is the average confidence scores of the alignments that were used to build the Why’ field

(Section 3.3.2)

conf= 1
p ∑

p
i=1 ci, ci is the confidence score of the ith alignment.

– prox denotes the spatio-temporal proximity the Why’ field to the event triggering time and380

location.

prox(iwhere, iwhen) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if iwhen < event.t

0.25 if iwhen and iwhere are empty

0.75 if iwhen < event.t and iwhere is empty

1 if iwhere = event.l and iwhen < event.t

iwhere and iwhen are the When and Where instances of the Why’ field, event.t and event.l are

event triggering time and location respectively.
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Algorithm 4 ISEE tuples scoring
input: ResultStep3← the Why’ class Instances from Algorithm 3

event← the triggered event

1 WhyInstances ← GetWhyInstances(Result step3)

2 for each iwhy in WhyInstances do

3 iwhy .Scores ← GetScore(event, iwhy)

4 end

4. EXPERIMENTAL RESULT385

In this section, we present the results of a small and large scale experiments. In order to validate

the genericity of the framework, the two experiments were conducted in two different application

domains. The small scale experiment considers the example of a smart car park, while the large scale

experiment deals with the example of a large office building. The main purpose of the small-scale

experiment is to carry out quantitative and qualitative assessments of the semantic interconnections390

between the sensor network and the document corpus data. Thus, validate the effectiveness of our

ISEE framework performance. The large-scale experiment aims to measure the impact of the choice

of the alignment method (ontology matching, Figure 2) on the following steps of the framework. It

also measures the completeness of the returned results in order to prove that ISEE framework can

provide the user with a first guide to explain events within connected environments.395

4.1. Small-scale experiment

This first experiment focuses on the example of a high CO2 event in a smart connected car

park. First, we present document corpus and sensor network data sets. Then, we detail the

experimentation procedure and present the obtained results.

4.1.1. Connected environment data400

Document Corpus: we hand-picked 35 technical data sheets: 20 car technical data sheets and

15 others for different environment equipment systems (e.g., ventilation system, air conditioning

system, lighting system, etc.). We used two ontologies: the building ontology SAREF4BLDG [17]

and The Automotive Ontology [18]. We added in the building ontology the classes and properties

which allow us to reference objects in the environment with respect to time and location. The405

automotive ontology already contained all the entities we needed, therefore, we did not apply any
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changes. To instantiate the two ontologies, we used the collected document corpus. We developed

a first python-based prototype of the ISEE framework. We used the RDFLib2 python library and

domain ontologies to annotate textual documents. Then, the annotations were parsed to build RDF

triples. Finally, RDF triples were introduced as new instances into domain ontologies. According410

to this domain-specific ontology instantiation process, the prototype generated an average of 652

RDF triplets per document.

Sensor Network data: to model the sensor network, we used the HSSN ontology [4]. We ex-

tended HSSN with the notion of events by adding the classes and properties related to the proposed

event definition syntax (Definition 3.1). Then, we instantiated the ontology and integrated a set of415

78 sensors related to smart car parks as described in Section 3 (8 CO2 sensors, 8 humidity sensors,

8 temperature 450 sensors, 40 vehicle presence detectors, 8 smoke detectors and 6 surveillance cam-

eras). Sensor data was simulated automatically3 using the BLE library module of the nRF5 SDK

v11.0.0 API. To import the spreadsheet data into Protege, we used the plugin Cellfie 4.

4.1.2. Evaluation results420

In what follows, we detail the quantitative and the qualitative evaluation results, respectively.

• Qualitative Evaluation

To assess the framework’s ability to build semantic interconnections between the two data sources,

we summarized in Table 1 the total number of semantic links generated for each step. For this

first experiment, we set α,β, δ and γ to 1/4, respectively. The result of Step 1 of the ISEE process425

(Figure 6, and Algorithm 2) is described in the second column of Table 1. The first knowledge

filtering stage reduces the knowledge repository to a total of 19 concepts (6 related to the event

through a What connection and 13 related to the event through a Who connection). These 19

concepts in turn link 113 What and Who candidate instances as well as a huge number of When

and Where candidate instances within the HSSN, automotive, and building ontologies. Then, the430

result of Step 2 of the ISEE process (Figure 7, and Algorithm 3) is described in the third column

of Table 1. This second knowledge filtering stage reduces the knowledge repository to a total of 44

instances (related to the event through different semantic connections).

2Available at: https://pypi.org/project/rdflib/
3Simulated data is available at https://github.com/nabila2016/High-CO2-event.git
4Available at https://github.com/protegeproject/cellfie-plugin
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We can see that the number of instances potentially linked to the event decreased from 113 in

Step 1 to 44 in Step 2, while the number of ISEE tuples increases from 6 in Step 1 to 11 tuples in435

Step 2. Besides, the importance of urgency level can also be seen here. Indeed, the filtering process

from step 1 to step 2 requires a significant processing time which justifies the need of different

urgency level. Finally, Step 3 (Algorithm 4) parses 44 semantic connections between the event

and the related instances to score the ISEE tuples (Section 3.4.3, column 4 of Table 1). The top

five ranked tuples consist of four car instances and one instance of a ventilation system. The four440

cars are highly polluting (a high average level of CO2 emissions), while the ventilator has been the

subject of several technical maintenance during the last two months.

To sum up, Table 1 demonstrates that the ISEE framework actually builds semantic intercon-

nections between sensor network and document collection data. It also shows the importance of

urgency level.

Fields Step 1 Step 2 Step 3

Urgency level Medium Low Low

What concepts 6 6 -

Who concepts 13 13 -

What instances 50 13 -

Who instances 63 11 -

Where instances - 10 -

When instances - 10 -

ISEE tuples 6 11 11

Total
19 concepts

113 instances

19 concepts

44 instances

11 ISEE tuples

11 ranked

ISEE tuples

Table 1: The ISEE links computed in steps 1, 2 and 3

445

• Quantitative Evaluation

We evaluated the relevance of the built ISEE interconnections throughout the following metrics:

Precision (P), Recall (R) and F1-score for Steps 1 and 2, and Precision@n (P@n) for

Step 3, as Step 3 returns a ranked list. Besides, we mainly focused on What, Who, and Why

candidate’s evaluation, since these are the parts that require the most complex processing in our450
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Fields
Step 1 Step 2

What concepts Who concepts What instances Who instances

P 0.66 0.92 0.76 1

R 0.83 0.92 0.81 0.84

F1-score 0.73 0.92 0.78 0.91

Table 2: Evaluation of Steps 1 and 2 of ISEE framework based on the three evaluation metrics Precision,

Recall and F1-score

ISEE Framework. Ground truth was built manually by experts. Evaluation results are shown in

Table 2 (Step 1 and 2) and Table 3 (Step 3). In Step 1 (Table 2), the precision and recall are

almost the same, since the number and the relevance of selected concepts depends directly on the

semantic similarity measure (e.g., LowEmissionsCO2 concept is a false positive that was identified

as a Who candidate since ’CO2 and ’EmissionsCO2’ concepts are semantically close). In Step 2455

(Table 2), the F1-score has improved, this is due to the fact that What and Who instances are

selected according to the exact event triggering data (i.e., list of sensors, time and location), which

allows, in most cases, to select the correct candidates. However, instances of the relevant concepts

that were not selected in Step 1 are ignored by the selection process. Besides, although the car

instance ’2018 Hyundai H1 II Cargo’ has a high CO2 emission level, it was not identified as a Who460

candidate, since it left the block C two minutes before event triggering. An improvement of the

filtering process according to the type of event could therefore enhance the quality of instances

selection process in Step 2. In Step 3 (Table 3), we noticed that the P@n decreases when the value

of the n increases. This is due to the fact that a few ISEE tuples have been misclassified, this

suggests that the score calculation formula (Section 3.4.3) must be improved, notably by adding465

additional classification criteria.

To sum up, this first experiment had two main objectives: (1) to show that ISEE Framework is

able to interconnect sensor network and document collection data. This was demonstrated through

the 4W1H connections built between domain ontologies in steps 1 and 2 (Columns 2 and 3 in

Table 1); (ii) to demonstrate that the proposed filtering process is actually able to build relevant470

interpretations. This was also proved through the evaluation of ISEE tuples (Table 3).
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P@n P@3 P@5 p@8

Step 3 ISEE tuples 1 0.8 0.75

Table 3: Evaluation of Step 3 of ISEE framework based on Precision@n metric

4.2. Large-scale experiment

To further examine how effective our proposal is in practice, and how the choice of the alignment

algorithm (ontology matching, domain-knowledge integration process in Figure 2) can impact its

performance (Step 3, ISEE process in Figure 2), we apply it to a real-world data set [19]. This475

large-scale experiment focuses on the explanation of the aforementioned example of light wastage

event (Section 2) in a large office building on a university campus. This smart building consists

of four floors and a total of 53 rooms equipped with several types of sensors. In the following,

we detail the procedure for instantiating domain ontologies based on this data set (Section 4.2.1).

Then, we detail the proposed evaluation metrics in Section 4.2.2. Finally, Section 4.2.3 presents480

the evaluation results.

4.2.1. Connected environment data

Document Corpus: we used two domain ontologies to model document corpus data, the

smart building ontology SAREF4BLDG [17] and the human resource ontology EOSK [20].

We hand-picked 150 technical data sheets (e.g., data sheets for lamps, laptops, projectors,485

ventilation system, badge access system, etc.) 5 to instantiate the smart building ontology

following the same procedure of the first experiment. In order to instantiate the human

resource ontology EOSK, we used the API Fake Name Generator 6 which randomly generates

employee record text files. Then, we assigned to each of the 80 employee instances, an office

as well as entry and exit times.490

Sensor Network data: to model the sensor network, we used the HSSN ontology [4]. The

data set [16] contains data collected from 204 sensors deployed in 51 rooms on 4 different floors.

Each room is instrumented with 5 different types of sensors: a CO2 sensor, a temperature

sensor, a humidity sensor, a light sensor and a motion detection sensor. The data from each

5The majority of these data sheets were collected from the two websites Amazon and Cdiscount.
6Available at https://namefake.com/api
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sensor is recorded every 15 minutes and the data set contains one-week worth of data. Similar495

to the small scale experiment, to import the spreadsheet data into Protege we used the plugin

Cellfie. A total of 30,584,853 observations were added into the ontology.

4.2.2. Evaluation metrics

In this section, we detail two evaluation metrics: an evaluation metric of the alignment technique

that highlights the important aspects of the alignment in our context (ontology matching, domain-500

knowledge integration process in Figure 2) and an evaluation metric of the explanation completeness

(step 3, ISEE process in Figure 2).

The alignment technique evaluation

The alignment technique (ontology matching, domain-knowledge integration process in Figure

2) constitutes the cornerstone of our proposal and the basis of the following steps of ISEE505

framework (steps 1, 2, and 3 of ISEE process in Figure 2). Various existing alignment tools

can be integrated in the ISEE process. The correctness of the ISEE final explanation depends

directly on that of the initial alignment. If the number or quality of this alignment is not

satisfactory, the framework may malfunction or return erroneous results. Consequently, we

propose a metric to evaluate the alignment method. This metric is based on three evaluation510

criteria, namely the connectivity of correspondences, their number and confidence score. We

propose the following scoring formula:

Score alignment = 1
α+β+γ (α.Con+β.Num + γ.Conf)

– α,β and γ are weighting coefficients

– Con denotes the connectivity score of the alignment method, it assesses the ability of515

the alignment technique to interconnect the maximum number of ontologies

Con = Number of aligned ontologies
Total number of ontologies

– Num the proportion of the aligned concepts

Num = Number of aligned concepts
Total number of concepts

– Conf denotes the mean of correspondence confidence scores520

Conf = 1
n ∑

n
i=1 ci, n is the total number of correspondences and ci the confidence score

of the ith correspondence.
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For this experiment, we set the weighting coefficients to 0.33.

The Completeness evaluation

This metric assesses the completeness of the explanation returned to the user. As the What,

Who, When, Where and How fields are built using the event triggering data (Definition 3.4),

the completeness assessment considers the Why and Why’ fields (steps 2 and 3, ISEE process

Figure 2).

Comp = αCwhat + βCwho + γCwhen + δCwhere + θChow
α + β + γ + δ + θ

– α,β, γ, δ, and θ are weighting coefficients525

– Cwhat,Cwho,Cwhen,Cwhere, and Chow refer respectively to the completeness of the fields

mwhat, mwho, mwhen, mwhere, and mhow if the level of explanation required is medium

or fwhat, fwho, fwhen, fwhere, and fhow if it’s high. The completeness of a field is equal

to 1 if it is provided in the explanation and 0 if it is not.

4.2.3. Evaluation results530

As stated earlier, the purpose of this large-scale experiment is to evaluate the impact of the

alignment algorithm on the performance of the ISEE framework as well as the completeness of the

built explanations. In order to match domain ontologies (i.e., HSSN, SAREF4BLDG and EOSK),

we chose three different alignment tools which are widely used in the literature: The Alignment

API [21], AgreementMakerLight [22], and BLOOMS [23]. Table 4 presents the alignment tools eval-535

uation and the corresponding completeness scores. Columns 2, 3 and 4 correspond respectively

to the three components Con, Num and Conf of the alignment evaluation metric (Section 4.2.2).

The ”score” column calculates the score of the alignment tools. The columns ”Why Concepts” and

”Why’ instances” are respectively the total number of Why concept and Why’ instance connections.

The column ”ISEE tuples” refers to the number of ISEE tuples. Finally, the column ”ISEE tuples540

Completeness” computes the average completeness score of the ISEE tuples.

As you can see in the third column of Table 4, the number of the built correspondences differs

according to the alignment algorithm as each one uses different techniques [16] (structural, ter-

minological, etc.). The alignment API and BLOOMS produce similar correspondences (the same

concepts are aligned by both alignment tools). This may be explained by the fact that both use545
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Alignment tools
Alignment evaluation Completeness evaluation

Con Num Conf Score
Why Con-

cepts

Why’

instances

ISEE

tuples

ISEE tuples

completeness

The Alignment

API
3/3

29/

242
0.74 0.61 18 23 7 0.88

Agreement-

MakerLight
2/3

18/

242
0.75 0.49 8 13 3 1

BLOOMS 3/3
28/

242
0.78 0.63 18 23 7 0.88

Table 4: Evaluation of the alignment algorithms and the completeness

an external resource based alignment technique (i.e., Wordnet and Wikipedia respectively)7. In

the ”score” column of Table 4, we compute the alignment algorithm scores based on the metric

presented in Section 4.2.2. The following three columns (i.e., 6, 7 and 8), show that the number

of alignments built by the alignment algorithms has a direct impact on the number of connections

build in the following steps. This impact continues until the final result is obtained (i.e., the total550

number of ISEE tuples). This can be explained by the fact that the ISEE steps are based on each

other. Thus, a poor result in one step affects the following steps. The number of 4W connections

built by the two alignment tools The Alignment API and BLOOMS is not so much impacted by the

difference in the number of alignments produced by the latter. This is surely due to the fact that

in the example of light wastage event, the concepts that have not been aligned are not necessary for555

the construction of the explanation. The 3 tuples returned by AgreementMakerLight are contained

in the 7 tuples returned by the two other alignment tools (i.e., The Alignment API, BLOOMS). Be-

sides, these 3 tuples do not contain the tuple best ranked by the expert. This proves that the more

concepts are aligned, the more the ISEE framework is able to build different explanation tuples and

find the most relevant ones. The ISEE tuples returned by The Alignment API and BLOOMS were560

almost similarly classified (only one ISEE tuple was classified differently). This is due to the fact

that the score calculation formula (Section 3.4.3) has two criteria related to the ontology alignment:

7Note that The alignment API allows the use of several alignment techniques. For this experiment we choose a

Wordnet based alignment technique.
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diver which refers to the diversity of the what instances and conf which is the average confidence

scores of the alignment. For the diver criterion, both The Alignment API and BLOOMS returned

almost the same alignment which means that the diver value is the same for both tools. For the565

conf criterion different value was returned by the tools. However, this had little influence on the

final score. The most relevant tuple (choose by the expert) was returned in the first position by

both tools. The column ”ISEE tuples completeness” calculates the completeness of the resulting

explanations. The results are positive and demonstrate that the ISEE process is able to construct

explanations correctly even if the number of aligned concepts is not so large. We do not see here the570

impact of the number of the built alignments on the average completeness score. This is because

the three alignment algorithms produce a fairly close total number of alignments. Moreover, the

average completeness does not favour the number of tuples but rather the completeness of each of

these tuples.

To summarize this second experiment demonstrated that the choice of the alignment algorithm575

is important and strongly affects the performance of the framework, in particular the number of

explanations returned to the user. The completeness score showed that the ISEE process is able to

provide a complete explanation to the user even in a large scale dataset. Finally, for this experiment,

both The Alignment API and BLOOMS gave good results. Hence, we chose 0.6 as the Threshold

for the alignment tool evaluation. This threshold will be further validated in our future work.580

5. RELATED WORK

This section is organised in two parts. First, we present works on event explainability for

connected environments and more generally sensor network data explainability. Then, we present

works on event explainability for document collections.

First, concerning connected environments, major research proposals aim at event detection (e.g.,585

detection of energy wastes in smart buildings, traffic monitoring and accident detection, detection

of machine malfunctions) [4, 24]. There are less research works that go further and propose event

explanation services. We can mention two categories of approaches. The first one focuses on

video sources (e.g., camera) to explain events. It involves machine learning models associated

with enrichment techniques from the semantic web. The three frameworks detailed in [25, 26, 27]590

are dedicated to video data. The second one deals with works on heterogeneous sources (e.g.,

temperature sensor, humidity sensor, camera) to interpret events. It involves logic programming
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and inference techniques associated with enrichment techniques from the semantic web to deduce

semantic explanations of events. In [28, 29], authors detail two frameworks for events explanation

based on heterogeneous sensor data.595

In this second part, we focus on works concerning event explainability within document col-

lections. We pointed out three domains of work that deal with events in documents: sentiment

variation, genes mutation and 5W1H question-answering. The first one concerns the explainability

of sentiment variation on Twitter. It involves Latent Dirichlet Allocation (LDA) based models used

along with NLP techniques to automatically extract changing sentiments and topics (described in600

semantic graphs) within a period of time. The authors in [30, 31] propose two frameworks dedicated

to sentiment variation analysis. The second domain concerns the explainability of genes mutation

within biomedical scientific papers. It involves meta-knowledge schemes associated with text min-

ing techniques. In [32], the authors detail a framework dedicated to genes mutation explainability.

The latter domain deals with 5W1H question-answering within online news articles (i.e., “who605

did what, when, where, how and why?”). It involves a wide range of NLP, machine learning and

clustering techniques associated with reasoning methods on domain specific knowledge. The four

frameworks detailed in [3, 6, 33, 34], are dedicated to 5W1H question-answering. Table 5 compares

the aforementioned event explanation tools with ISEE framework according to the used data sources

(Columns 2-3), data types (Column 4) and the questions the approach answers (Columns 5-10).610

As you can see, event interpretation tools in the literature are dedicated either to sensor network

or to a specific type of document corpus (e.g., tweets, online news). None of the proposed tools

consider both of them. Moreover, the majority of research work that propose a full explanation

(which answers the six questions of 5W1H) are those that deals with document corpus data. The

tools that consider only sensor network data do not give a full explanation. This demonstrate the615

importance of the information that document corpus data provides.

To summarize, event explainability or more generally information retrieval on sensor networks

and document corpus data have been always considered as two distinct areas of research. In this

paper, we showed that breaking down the walls between these two heterogeneous data sources, can

have a huge added value for the users of smart connected environments. We used the 5W1H model620

to bridge this gap and lead the interconnection process of these heterogeneous data sources.
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Tools
Data sources

Data types
5W1H question answering

IoT Corpus What Who When Where How Why

[30, 31, 33] ✓ Text (news) ✓ ✓ ✓ ✓ ✓

[3, 35, 34] ✓ Text (tweets) ✓ ✓ ✓ ✓ ✓ ✓

[20, 25, 27] ✓ Video ✓ ✓ ✓ ✓

[28, 29] ✓ Any ✓ ✓ ✓ ✓

ISEE ✓ ✓ Any ✓ ✓ ✓ ✓ ✓ ✓

Table 5: Comparison of event explanation tools

6. CONCLUSION

Event explainability is the core concern of the work presented in this paper. Regarding informa-

tion systems in connected environments, the combination of sensor network and document corpus

data is essential since document corpus provide significant amounts of important and valuable in-625

formation (e.g., technical data sheets, maintenance reports, customer sheets). Actually, connected

environments do not support any connection between sensor network and document corpus data.

Hence, a user has to look for an event explanation by himself through multiple queries on both data

sources which is indeed very tedious, time consuming and requires a huge compilation effort.

For all those reasons, we proposed the ISEE framework, dedicated to event explainability in630

connected environments. ISEE is based on both (i) sensor network and document corpus data, and

(ii) specific domain ontologies in order to link semantically such heterogeneous data. ISEE process

consists of three steps. Based on the event definition data, the first step builds What and Who

links between the event and related concepts of the specific domain ontologies. The second one,

based on the event triggering data, builds What,Who, When, and Where links between the event635

and related instances of the specific domain ontologies. Those two previous steps aim at filtering

iteratively concepts and instances of the domain ontologies. This approach makes it possible to

reduce computations for different urgency levels since a first filtering reduces the ontologies to only

the concepts semantically linked to the event definition data, then a second filtering reduces the

ontologies to a few instances of these concepts semantically linked to the event triggering data.640

Finally, the last step, based on all the semantic links built previously, creates in turn different

weighted instances of Why explanations named ISEE tuples. To sum up, 4 algorithms respectively

support each of the steps of the event explanation process. These algorithms are based on formal

31



definitions of the ISEE environment. In addition, an ISEE model formally describes an event

explanation. A first experiment demonstrates that the ISEE process works and so could be very645

helpful for one end-user to easily and simply interpret an event triggered in his environment. No

need any more to parse manually a huge amount of sensor and documentary data.

In terms of prospects, we are considering as a priority to test the ISEE process on different types

of events in order to make further improvements necessary for the scale-up and validate the align-

ment tool evaluation threshold. In addition, various scenarios remain to be studied. For example,650

when several events are triggered at the same time, should we consider each event independently

and then look for possible interactions between them? Another case to be studied is that of compos-

ite events, i.e., an event composed of several events. When a composite event is triggered, should

we adapt the proposed ISEE algorithms to better explain this composite event? We will address

all these issues in future works.655
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de l’Adour (Nov. 2019).

[5] N. Guennouni, C. Sallaberry, S. Laborie, R. Chbeir, A novel framework for event interpretation

in a heterogeneous information system, in: Proceedings of the 12th International Conference

on Management of Digital EcoSystems, 2020, pp. 140–148.670

32



[6] F. Hamborg, C. Breitinger, B. Gipp, Giveme5w1h: A universal system for extracting main
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