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Smart connected environments as well as digital contents are more and more present in our daily life. The former monitors various data produced by sensors, while the latter contains valuable additional information (e.g., technical data sheets, maintenance reports, employee register). When an event occurs, users generally want to figure out why this event happened. Unfortunately, most information systems in connected environments do not combine sensor network data with document corpora. Consequently, users have to look for an event explanation by querying both complementary sources with different systems, which is indeed very tedious, time consuming and requires a huge compilation effort. In this article, we apply the 5W1H model ("What? Who? Where? When? Why? How?"), commonly used in question-answering, to bridge the gap between sensor networks and document corpora. Our framework entitled ISEE (Information System for Event Explainability) offers an original approach that (i) defines events along four dimensions, (ii) interconnects semantic information coming from sensor networks and documents with 5W1H connections, and (iii) provides to the user a set of preliminary event explanation according to 5W1H answers. A real motivating use-case based on a smart-building is presented and experimental results are discussed.

Introduction

Due to their great potential in the improvement of safety, comfort, productivity and energysaving, smart connected devices have become ubiquitous in our everyday lives, impacting different domains from hospitals, malls, farms and buildings to cities, vehicles and electrical grids.

Over the last decade, in order to boost even more life quality in smart connected environments, 5 an untold number of research work has been conducted to propose additional services based on the exploitation of collected data [START_REF] Thoma | On iot-services: Survey, classification and enterprise integration[END_REF]. Event detection is one of those services. Events can be defined as "the real-world occurrences that unfold over space and time" [START_REF] Wang | Eventory-an event based media repository[END_REF]. In the literature, three main types of events are distinguished: (1) socio-cultural events that have an associated place, theme and audience (e.g., concerts, festivals, sports events); (2) news article events, which correspond to current information (e.g., Spain won the football world cup in 2010, several school closures caused by Covid-19); (3) events detected by devices such as sensors which monitor the physical world and indicate the triggering of a given phenomenon (e.g., fire detection, stroke detection for patients, air pollution detection). In this paper, we focus on the explainability of events detected by sensors [START_REF] Karaman | Event detection from social media: 5w1h analysis on big data[END_REF], and more specifically those that occur in smart connected environments with heterogeneous information systems (IS) (i.e., document IS and sensor network IS). Let's take the example of a light wastage event in a smart building office (e.g., a light sensor detects luminosity level and triggers an alert if it's greater than 30 lux during night). The natural reaction of the smart building manager, when the alert occurs, is to try to figure out why it happened by querying various information sources (e.g., why was the event triggered? Was there anyone in the office when the event triggered? If not, who was the last person to enter the office?). However, to the best of our knowledge, there is no paper that aims to explain events that occur in smart connected environments, using both sensor network and document corpus data. To sum up, the limit of traditional approaches of event explainability in smart connected environments are as follows:

(i) Data scope: a wide spectrum of data dispersed across heterogeneous data sources with different structures, languages, semantics and versions (e.g., structured data tables in the sensor network IS and semi-structured or unstructured data sheets in document IS).

(ii) Manual search: existing sensor network information systems do not allow interconnecting sensor network and document corpus. It is up to the user to build these connections through multiple queries: first, the user has to query sensor network, then explore the interesting leads by querying many times the two data sources. The user could be overwhelmed by a huge amount of unnecessary data. Moreover, the user has also to reformulate his queries many times to refine the results until getting the correct event explanation, which is very tedious, time consuming and requires a huge compilation effort.

(iii) Poorly structured results: at the end of this process, the elements constituting the explanation are dispersed across various documents and sensor data (e.g., staff directory, records of employees assigned to the office, the office badge access report, a list of equipment that can produce light in the office). It is again up to the manager of the connected environment to sum up.

To overcome these limitations and build a well-structured event explanation, we found it very interesting to apply the 5W1H technique in our context. The 5W1H [START_REF] Karaman | Event detection from social media: 5w1h analysis on big data[END_REF] is an approach usually used for the extraction of structured semantics from online news. In our context, 5W1H will allow us to bring together heterogeneous data sources and select more efficiently relevant information by driving the information retrieval process through the six questions (What? Who? Where? When? Why? How?). Moreover, we assume that structuring the final explanation in the form of 5W1H result will aim at insuring the simple, intuitive and user-friendly aspect of the event explanation.

In this paper, we propose ISEE (Information System for Event Explainability), an event explainability framework for smart connected environments with a heterogeneous information system based on the 5W1H. Commonly, to build an event explanation, the framework has to: (a) express one or multiple queries; (b) match sensor network and document collection data and select the subset of relevant information; (c) construct and present results that can be easily understood by the end user. In this paper, we focus exclusively on point (b). On one hand, we propose an efficient process for the interconnection of sensor networks and document collection data. And on the other hand, we provide algorithms for retrieving and scoring relevant information in order to explain the triggering of an event. The 5W1H will be the guiding principle of our proposal for making semantic connections between sensor and document data, and computing explanation of an event occurrence. Consequently, it leverages existing works such as event modelisation, information retrieval (IR), semantic IR, and 5W1H question-answering. The originality of our proposal relies on a context-aware (event-aware) semantic interconnection within an iterative filtering process for sensor network and document corpus data. In what follows, we present a scenario that motivates our proposal in Section 2. We describe the ISEE framework in Section 3. We present two experiments in Section 4. Then, we present the state of the art in Section 5. Finally, Section 6 concludes the paper and discusses the upcoming works.

MOTIVATING SCENARIO

We consider a real example of a four floors smart connected office building (Figure 1 1 ). Various sensors (e.g., light, temperature, PIR motion sensors), mobile entities (e.g., people, laptops) and static entities (e.g., air extraction system, doors, lamps) are deployed in the different rooms/floors. An associated information system also manages a large corpus of documents having different contents, structures and formats (e.g., company web site, employee data file, sensors and laptops technical sheets, maintenance reports). Let's now suppose that an abnormal energy consumption has been detected in office 413 on the fourth floor last night. The building manager would like obviously to understand why it happened (e.g., why the event was triggered? Which employee is assigned to office no. 413? Who was the night watchman yesterday? Is there any other interesting data from other sensors? Have there been any recent reports of equipment malfunctions in the fourth floor?...). Using sensors IS, the manager is swamped with rooms raw data: CO2 concentration, room air humidity, room temperature, luminosity, and PIR motion sensor data. Similarly, corresponding documentary resources are huge and numerous and an effective querying process difficult. Does the brightness detected by the luminosity sensor in office no. 413 at 8pm correspond to the visit of the night watchman Garret? Was Perrin the employee who forgot the light on when he left his office at 5pm? Is a lamp in office no. 413 defective? Considering all of the above, the following challenges emerge: (i) How to fully exploit event data (sensor, time, location, etc.) in order to guide an information retrieval process? (ii) How to interconnect the two different data sources (sensor network and document corpus) in order to build event explanation? (iii) How to structure the final explanation in a simple, clear and user-friendly way? Furthermore, according to the context, the building manager may need an explanation within a more or less short period of time. We will also consider this constraint by defining emergency levels. In the following section, we describe the ISEE proposal which addresses all the three above-mentioned issues. 

The ISEE Framework

As outlined previously, our environment consists of two information systems: a sensor network IS and a heterogeneous document corpus IS. We assume that we have several domain ontologies to model semantics of the sensor network [START_REF] Mansour | Event detection in connected environments, Theses[END_REF] and document corpus data (e.g., human resources ontology and building domain ontology). Before the ISEE Framework (Figure 2) starts building explanation for events that trigger in the environment, a preliminary data integration step is necessary (domainknowledge integration process in Figure 2). It consists of a two steps process:

-Ontology instantiation: this step aims to exploit the heterogeneous data sources (i.e., sensor network and document corpora data) in order to instantiate domain-ontologies (Ontology instantiation in Figure 2, Section 3.3.1).

-Ontology matching: ontology matching techniques [START_REF] Feld | The automotive ontology: managing knowledge inside the vehicle and sharing it between cars[END_REF] are used in order to build traditional alignments (e.g., equivalence, generalisation, and specialisation) between entities of domain ontologies (Ontology matching in Figure 2, Section 3.3.2).

Once the semantic model of the environment is built, the framework can start building explanations for events through the ISEE process (ISEE process, Figure 2). ISEE process is based on an iterative context-aware interconnection and filtering processes which are performed in three main steps:

1. 4W concepts connection: a first network of a context-aware interconnections between concepts is built based on the event definition ((1) in Figure 2, Section 3.4.1) and the previously built traditional alignments.

2. 4W instances connection: a second level of interconnections between instances is built based on the event triggering data ((2) in Figure 2, Section 3.4.2).

3. ISEE tuples scoring: the previously built graphs are parsed, ISEE explanation tuples are built and ranked according to a relevance score ((3) in Figure 2, Section 3.4.

3).

In what follows, we formally define events and event characteristics in Section 3.1. Section 3.2 formally defines event explanation. We detail domain-knowledge integration process in Section 3.3.

Finally, Section 3.4 presents the ISEE process.

Event definition

In this study, we define an event as a 4-dimensional space called eSpace. The event eSpace consists of Features, Sources, Time, and Location dimensions and an event data to represent sensor observations that help to detect the event. In what follows, we first define an event, then, we detail the definition of a dimension, finally, we define an event eSpace. Definition 3.1. An Event e is defined as a 4-tuple ⟨id, l, eSpace, u⟩, where:

-id is the unique identifier of the event -l is a label -eSpace is a 4-dimensional space that defines the event components as a set of dimensions (cf. Definition 3.3) and event-related data -u is a level of urgency assigned to e where u ∈ {low, moderate, high} For example, a light wastage event can be defined as follows:

LightW astageEvent ∶ < 1, 'LightW astage', eSpace, 'low' >
The level of urgency here dictates the required level of event explanation based on the user preference. For instance, if u = low (i.e., the user can wait a certain period of time before receiving the explanation) then one could fully explain the event although the processing time is significant.

However, if u = high (i.e., there is an urgent need for the explanation) the explanation should be light in order to return quick results to the user. Features: ⟨3, Luminosity, {Cost, Energy}, {hasFeature}, {Lumens > 30}⟩ Time: ⟨5, TimeInterval, {TemporalEntity, TimeInstant}, {inDateTime, inTemporalPosition}, {timestamp duration 1hour, timestamp includedIn [07:00:00pm, 07:00:00am]}⟩ Note that qualitative and quantitative operators are used to define constraints on such dimensions [START_REF] Mansour | Event detection in connected environments, Theses[END_REF]. For example, includedIn and duration are operators dedicated to temporal data (i.e., qualitative operators) whereas > is an operator for numeric data (i.e., quantitative operators). Definition 3.3. An Event Space eSpace is defined as a 6-tuple ⟨id, Features, Sources, Time, Location, I⟩, where:

-id is the unique identifier of the event space -F eatures is the dimension describing the event features -Sources is the dimension describing the event sensor -T ime is the dimension describing the event temporal data -Location is the dimension describing the event spatial data -I is the set of event instance data.

I is empty when the event is defined, then data tuples are inserted every time the event is triggered. I = {< id 1 , Data 1 >, ..., < id p , Data p >}, id i∈1,p is the event instance id and Data i∈1,p is the set of sensor observations that triggered the event. Data i∈1,p = {obs 1 , .., obs q }, obs i∈1,q =< id obs , sensor, time, location, value >. id obs , time, location and value are the observation id, time, location and value respectively. Sensor is the sensor which made the observation.

For example, the light wastage event space could be defined as follows:

eSpace Note that, before defining events, all components of the environment are defined and integrated into the information system. In our context, the main components of the environment are sensors, entities (e.g., people, laptop) and documents (e.g., equipment technical data sheets, employee records). For those who are interested, the definitions are described in our previous paper [START_REF] Guennouni | A novel framework for event interpretation in a heterogeneous information system[END_REF].

Event explainability

In this section, we define event explanation in our context and give some examples. As already explained in Section 3.1, the user can assign three different levels of urgency to the event (i.e., low, medium and high). According to one level of urgency, the framework must return an explanation that corresponds to the user need in terms of content and waiting time. Hence, we propose three different levels of explanation, namely raw event explanation e r , medium event explanation e m , and full event explanation e f which correspond respectively to high, medium and low event urgency.

(i) Raw event explanation: this first level of explanation contains the event triggering data. It aims to provide the user with necessary data for rapid decision-making when the event explanation urgency is high (e.g., fire event). Raw event explanation is built based on the processing of the corresponding event instance (i.e., a tuple < id i , Data i > of the set of event instance data I, Definition 3.3). Definition 3.4. A raw event explanation e r is defined as a 4W1H tuple. It is formalized as follows e r : < W hat, W ho, W hen, W here, How >, where:

-W hat is the event feature -W ho is the sensor which triggered the event -W hen is the event triggering time -W here is the event triggering location -How is the set of observations from Data i that triggers the event The following describes an example of a raw explanation of the light wastage event: (ii) Medium event explanation: this level of explanation incorporates the raw explanation and adds a Why field. When an event occurs, there are one or many entities in the environment that contributed to its triggering. The Why field is constituted of 4W1H tuples, each detailing information about one of these entities. The 4W1H tuples are expressed in the form of concepts (e.g., Employee, Office, LightingSystem) without specifying exactly which instances (e.g., Roland Perrin, Office413, Lamp45) are actually related to the event that was triggered. Definition 3.5. A medium event explanation e m is composed of the raw event explanation e r and a Why field. It is formalized as follows e m : < e r , W hy >. Thus, e m constitutes a 5W1H tuple e m : < W hat, W ho, W hen, W here, How, W hy >, where:

-W hat, W ho, W hen, W here and How are the five fields that constitute the raw event explanation e r (Definition 3.4)

-The Why field is defined as a set of 4W1H tuples, W hy ∶ {t 1 , t 2 , ..., t n }, t i∈1,n : < m what ,
m who , m when , m where , m how >, where: * m what denotes the set of concepts describing entities that may trigger the event * m who is a concept identified as responsible for the event triggering * m when is the set of temporal concepts that links m who to the event * m where is the set of spatial concepts that links m who to the event * m how is one or several triples: < m who , predicate, object > which determine the way m who has contributed to the event triggering. Here, the predicate is the property connecting m who to an object and object ∈ m what .

For example, the medium explanation of the light wastage event could be represented as (iii) Full event explanation: Similarly, the full event explanation e f incorporates the medium event explanation e m enriched by a new Why field (i.e., W hy ′ ) containing additional details. This W hy ′ field is mainly based on event triggering data (Section 3.4.2). More precisely, it consists of a set of candidate instances corresponding to concepts previously mentioned in e m associated with a score. Definition 3.6. A full event explanation e f is represented as follows: e f : < e m , W hy ′ >. The W hy ′ field is defined as a set of 4W1H tuples with scores, W hy

′ ∶ {t ′ 1 , t ′ 2 , ..., t ′ m }, t ′ i∈1,m : < f what , f who , f when , f where , f how , f score >
where the five first elements are instances which correspond to e m concepts and f score is a value between 0 and 1.

For example, the full explanation of the light wastage event could be represented as follows To summarize, our ISEE framework aims at building event explanation in smart connected environments based on event definition and triggering data. To structure the event explanations, the ISEE framework offers three different levels of explanation (i.e., raw, medium and full event explanation) that take their inspiration from the 5W1H model [START_REF] Hamborg | Giveme5w1h: A universal system for extracting main events from news articles[END_REF]. We synthesize all these elements in our event explainability model called ISEE model (Figure 3). It illustrates the life cycle of an event (i.e., event definition, event triggering and event explanation) and details the connections between the different classes. The ISEE process detailed in Section 3.4 aim at instantiating the classes of the third layer of this model (i.e., event explanation layer). 

Domain knowledge integration process

Our ISEE framework (Figure 2) is based on the assumption that parsing semantic interconnec-265 tions between domain ontologies using event definition and triggering data, will enable building a novel and detailed event explanation. In our context, ontologies are domain ontologies that cover heterogeneous knowledge (i.e., those related to the environment, the sensor network and the document corpus). The first step of domain-knowledge integration process (Section 3.3.1) aims at instantiating these ontologies using sensor network and document corpus data. Then, the ontology 270 matching process (Section 3.3.2) performs a back-office ontology matching process between domain ontologies to build traditional alignment relations (i.e., equivalence, generalization and specification). In this section, we present and detail the two steps of domain knowledge integration process. 

Ontology instantiation

The main obstacle that has to be faced when trying to find an event explanation is the barrier that separates information systems dealing with sensor network data and those dealing with document corpus data. To address this problem, we rely on ontologies to build a semantic model of the environment, then, ontology alignment techniques to connect them. The ontologies will allow us to describe the semantics of the domain as a graph of concepts and relations. To populate these ontologies with the raw data produced by sensors or extracted from text files, instantiation (or population) techniques [START_REF] Petasis | Ontology population and enrichment: State of the art[END_REF][START_REF] Lubani | Ontology population: Approaches and design aspects[END_REF] are used. Ontology instantiation process consist in adding new instances of concepts and relations into an existing ontology. For example in Figure 4, we can see that the concept Employee has two instances Claire Legrand and Antoine Durand. These two instances could be extracted, for example, from the employee record of the building office.

Two main approaches are used in the literature for ontology instantiation: (1) algorithmic/heuristic based approaches [START_REF] Svetashova | Ontology-enhanced machine learning: A bosch use case of welding quality monitoring[END_REF][START_REF] Öztürk | OPPCAT: ontology population from tabular data[END_REF][START_REF] Corcoglioniti | Frame-based ontology population with PIKES[END_REF] which usually involve NLP techniques, predefined mapping rules and human intervention for control and validation; (2) machine learning-based approaches [START_REF] Kordjamshidi | Global machine learning for spatial ontology population[END_REF][START_REF] Ayadi | Ontology population with deep learning-based NLP: a case study on the biomolecular network ontology[END_REF][START_REF] Liu | Device-oriented automatic semantic annotation in iot[END_REF] which also use NLP techniques associated with annotation methods from the semantic web. In our context, we used an algorithm-based approach, further details are presented in Section 4. 

Ontology matching

As stated earlier, the second step of domain-knowledge integration process (Figure 2) aims at aligning the concepts of domain ontologies and the sensor network ontology. These connections are built in back-office independently of the event triggering data. They constitute the backbone of our ISEE framework and allow navigating from the event into the concepts of domain ontologies. We detail this process in Algorithm 1.

Several alignment techniques can be used [START_REF] Otero-Cerdeira | Ontology matching: A literature review[END_REF][START_REF] Euzenat | Ontology matching[END_REF]. The system gives the user the flexibility in choosing the alignment method. This is represented in the algorithm as a function f. Algorithm 1 runs through all ontologies and computes the semantic similarity between each couple of concepts using the function f (Algorithm 1, line 6). If the confidence score of the correspondence is higher than a threshold, then the correspondence is added to the final set of results (Algorithm 1, lines 7-9). For example, in Figure 5, we can see that the pair of concepts Luminosity and LightingSystem are aligned with a specialisation relation (⊃) that has a high confidence score (i.e., 0.82). The correspondence <Luminosity, ⊃, LightingSystem, 0.82> is returned within the results. Note that, not all correspondences are shown in Figure 5, some were omitted for the sake of clarity. 

ISEE process 305

In this section, we present and detail the implementation of the ISEE process (Figure 2). The first step of ISEE process (Section 3.4.1) aims to build a network of What, Who, When and Where labeled semantic interconnections between the event and relevant concepts of the different ontologies.

The second step (Section 3.4.2) performs a second filtering process at the instance level, to keep only those related to the triggered event. Based on this set of instances, a second network of 310 What, Who, When and Where semantic interconnections is built. Finally, the last step (Section 3.4.3) parses the previous semantic networks, in order to score all the corresponding ISEE tuple candidates which will be returned within the triggered event explanation.

Concept level semantic interconnections

Based on the previously built ontology alignments, Step 1 of the ISEE process (Figure 2) 315 aims at linking an event definition with concepts of the knowledge repository. These semantic interconnections are used to build the medium event explanation (Definition 3.5). We detail this step in Algorithm 2. Event triggering provides a lot of interesting information, notably the spatio-temporal context (e.g., the time and the location of the light wastage event, the list of equipment that can produce light in Office 413, the office badge access report, etc.). Based on this information and on the output of Algorithm 2 (4W concept connections), Step 2 of ISEE process aims at linking a triggered event with instances related to the previously filtered concepts. These semantic connections are then used 340 to build the full event explanation (Definition 3.6). We detail this process in Algorithm 3.

To build the Who, When and Where connections at the instance level, the instances of the concepts previously interconnected to the event, through the Who semantic connections, are parsed to select those having a location and a time that is closed to the event triggering (Algorithm 3, lines 2-14). For example, in Figure 7, the concept Employee is considered because it has a Who semantic 345 Note that for both Who and What semantic connections, we selected instances that are closed 365 to the spatio-temporal information related to the triggered event thanks to its Time and Location dimensions. We select such instances even if only one of the two dimensions matches (i.e., if it satisfies only the temporal dimension or only the spatial one). 

Score based ISEE tuples identification

Step 3 of the ISEE process (Figure 2) aims at scoring each event explanation (i.e., ISEE tuples). ISEE tuple contains What, Who, When, Where, How and Why' fields (Definition 3.6).

The Why' field is the one that explains the event and details the information about the candidates of the explanation. Therefore, the ISEE tuples score calculation will focus on this field. Algorithm 4 computes iteratively each Why' field and score it (line 3). The score calculation is based on four evaluation criteria, namely, the completeness (comp) which denotes the number of 4W1H questions answered by the Why' field, the diversity (diver) that counts the number of what instances connected to the event explanation, the confidence score (conf ) summarizing the original alignment scores and the spatio-temporal proximity (prox) of the explanation. Hence, we propose the following scoring formula:

Score tuple = 1 α + β + γ + δ * (α. comp +β.diver + γ. conf +δ.prox)
-α, β, γ, δ are weighting coefficients, they balance the importance given to each of the four evaluation criterions.

-comp denotes the completeness of the Why' field -prox denotes the spatio-temporal proximity the Why' field to the event triggering time and location. 

prox(i where , i when ) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 0 if i when < event.t 0 

EXPERIMENTAL RESULT

In this section, we present the results of a small and large scale experiments. In order to validate the genericity of the framework, the two experiments were conducted in two different application domains. The small scale experiment considers the example of a smart car park, while the large scale experiment deals with the example of a large office building. The main purpose of the small-scale experiment is to carry out quantitative and qualitative assessments of the semantic interconnections between the sensor network and the document corpus data. Thus, validate the effectiveness of our ISEE framework performance. The large-scale experiment aims to measure the impact of the choice of the alignment method (ontology matching, Figure 2) on the following steps of the framework. It also measures the completeness of the returned results in order to prove that ISEE framework can provide the user with a first guide to explain events within connected environments.

Small-scale experiment

This first experiment focuses on the example of a high CO2 event in a smart connected car park. First, we present document corpus and sensor network data sets. Then, we detail the experimentation procedure and present the obtained results.

Connected environment data

Document Corpus: we hand-picked 35 technical data sheets: 20 car technical data sheets and 15 others for different environment equipment systems (e.g., ventilation system, air conditioning system, lighting system, etc.). We used two ontologies: the building ontology SAREF4BLDG [START_REF] Poveda-Villalón | Extending the saref ontology for building devices and topology[END_REF] and The Automotive Ontology [START_REF] Feld | The automotive ontology: managing knowledge inside the vehicle and sharing it between cars[END_REF]. We added in the building ontology the classes and properties which allow us to reference objects in the environment with respect to time and location. The automotive ontology already contained all the entities we needed, therefore, we did not apply any changes. To instantiate the two ontologies, we used the collected document corpus. We developed a first python-based prototype of the ISEE framework. We used the RDFLib2 python library and domain ontologies to annotate textual documents. Then, the annotations were parsed to build RDF triples. Finally, RDF triples were introduced as new instances into domain ontologies. According to this domain-specific ontology instantiation process, the prototype generated an average of 652 RDF triplets per document.

Sensor Network data: to model the sensor network, we used the HSSN ontology [START_REF] Mansour | Event detection in connected environments, Theses[END_REF]. We extended HSSN with the notion of events by adding the classes and properties related to the proposed event definition syntax (Definition 3.1). Then, we instantiated the ontology and integrated a set of 78 sensors related to smart car parks as described in Section 3 (8 CO2 sensors, 8 humidity sensors, 8 temperature 450 sensors, 40 vehicle presence detectors, 8 smoke detectors and 6 surveillance cameras). Sensor data was simulated automatically3 using the BLE library module of the nRF5 SDK v11.0.0 API. To import the spreadsheet data into Protege, we used the plugin Cellfie4 .

Evaluation results

In what follows, we detail the quantitative and the qualitative evaluation results, respectively.

• Qualitative Evaluation

To assess the framework's ability to build semantic interconnections between the two data sources, we summarized in Table 1 the total number of semantic links generated for each step. For this first experiment, we set α, β, δ and γ to 1/4, respectively. The result of Step 1 of the ISEE process (Figure 6, and Algorithm 2) is described in the second column of Table 1. The first knowledge filtering stage reduces the knowledge repository to a total of 19 concepts (6 related to the event through a What connection and 13 related to the event through a Who connection). These 19 concepts in turn link 113 What and Who candidate instances as well as a huge number of When and Where candidate instances within the HSSN, automotive, and building ontologies. Then, the result of Step 2 of the ISEE process (Figure 7, and Algorithm 3) is described in the third column of Table 1. This second knowledge filtering stage reduces the knowledge repository to a total of 44 instances (related to the event through different semantic connections).

We can see that the number of instances potentially linked to the event decreased from 113 in

Step 1 to 44 in Step 2, while the number of ISEE tuples increases from 6 in Step 1 to 11 tuples in

Step 2. Besides, the importance of urgency level can also be seen here. Indeed, the filtering process from step 1 to step 2 requires a significant processing time which justifies the need of different urgency level. Finally, Step 3 (Algorithm 4) parses 44 semantic connections between the event and the related instances to score the ISEE tuples (Section 3.4.3, column 4 of Table 1). The top five ranked tuples consist of four car instances and one instance of a ventilation system. The four cars are highly polluting (a high average level of CO2 emissions), while the ventilator has been the subject of several technical maintenance during the last two months.

To sum up, Table 1 demonstrates that the ISEE framework actually builds semantic interconnections between sensor network and document collection data. It also shows the importance of urgency level.

Fields

Step 1

Step 2

Step 3 

Urgency level

• Quantitative Evaluation

We evaluated the relevance of the built ISEE interconnections throughout the following metrics:

Precision (P), Recall (R) and F1-score for Steps 1 and 2, and Precision@n (P@n) for

Step 3, as Step 3 returns a ranked list. Besides, we mainly focused on What, Who, and Why candidate's evaluation, since these are the parts that require the most complex processing in our 2), the precision and recall are almost the same, since the number and the relevance of selected concepts depends directly on the semantic similarity measure (e.g., LowEmissionsCO2 concept is a false positive that was identified as a Who candidate since 'CO2 and 'EmissionsCO2' concepts are semantically close). In Step 2 (Table 2), the F1-score has improved, this is due to the fact that What and Who instances are selected according to the exact event triggering data (i.e., list of sensors, time and location), which allows, in most cases, to select the correct candidates. However, instances of the relevant concepts that were not selected in Step 1 are ignored by the selection process. Besides, although the car instance '2018 Hyundai H1 II Cargo' has a high CO2 emission level, it was not identified as a Who candidate, since it left the block C two minutes before event triggering. An improvement of the filtering process according to the type of event could therefore enhance the quality of instances selection process in Step 2. In Step 3 (Table 3), we noticed that the P@n decreases when the value of the n increases. This is due to the fact that a few ISEE tuples have been misclassified, this suggests that the score calculation formula (Section 3.4.3) must be improved, notably by adding additional classification criteria.

To sum up, this first experiment had two main objectives: (1) to show that ISEE Framework is able to interconnect sensor network and document collection data. This was demonstrated through the 4W1H connections built between domain ontologies in steps 1 and 2 (Columns 2 and 3 in Table 1); (ii) to demonstrate that the proposed filtering process is actually able to build relevant interpretations. This was also proved through the evaluation of ISEE tuples (Table 3).

P@n P@3 P@5 p@8

Step 3 ISEE tuples 1 0.8 0.75 Table 3: Evaluation of Step 3 of ISEE framework based on Precision@n metric

Large-scale experiment

To further examine how effective our proposal is in practice, and how the choice of the alignment algorithm (ontology matching, domain-knowledge integration process in Figure 2) can impact its performance (Step 3, ISEE process in Figure 2), we apply it to a real-world data set [START_REF] Hong | High-dimensional time series clustering via crosspredictability[END_REF]. This large-scale experiment focuses on the explanation of the aforementioned example of light wastage event (Section 2) in a large office building on a university campus. This smart building consists of four floors and a total of 53 rooms equipped with several types of sensors. In the following, we detail the procedure for instantiating domain ontologies based on this data set (Section 4.2.1).

Then, we detail the proposed evaluation metrics in Section 4.2.2. Finally, Section 4.2.3 presents the evaluation results.

Connected environment data

Document Corpus: we used two domain ontologies to model document corpus data, the smart building ontology SAREF4BLDG [START_REF] Poveda-Villalón | Extending the saref ontology for building devices and topology[END_REF] and the human resource ontology EOSK [START_REF] Wu | Enriching employee ontology for enterprises with knowledge discovery from social networks[END_REF].

We hand-picked 150 technical data sheets (e.g., data sheets for lamps, laptops, projectors, ventilation system, badge access system, etc.) 5 to instantiate the smart building ontology following the same procedure of the first experiment. In order to instantiate the human resource ontology EOSK, we used the API Fake Name Generator6 which randomly generates employee record text files. Then, we assigned to each of the 80 employee instances, an office as well as entry and exit times.

Sensor Network data: to model the sensor network, we used the HSSN ontology [START_REF] Mansour | Event detection in connected environments, Theses[END_REF]. The data set [START_REF] Euzenat | Ontology matching[END_REF] contains data collected from 204 sensors deployed in 51 rooms on 4 different floors.

Each room is instrumented with 5 different types of sensors: a CO2 sensor, a temperature sensor, a humidity sensor, a light sensor and a motion detection sensor. The data from each sensor is recorded every 15 minutes and the data set contains one-week worth of data. Similar to the small scale experiment, to import the spreadsheet data into Protege we used the plugin Cellfie. A total of 30,584,853 observations were added into the ontology.

Evaluation metrics

In this section, we detail two evaluation metrics: an evaluation metric of the alignment technique that highlights the important aspects of the alignment in our context (ontology matching, domainknowledge integration process in Figure 2) and an evaluation metric of the explanation completeness (step 3, ISEE process in Figure 2).

The alignment technique evaluation

The alignment technique (ontology matching, domain-knowledge integration process in Figure 2) constitutes the cornerstone of our proposal and the basis of the following steps of ISEE framework (steps 1, 2, and 3 of ISEE process in Figure 2). Various existing alignment tools can be integrated in the ISEE process. The correctness of the ISEE final explanation depends directly on that of the initial alignment. If the number or quality of this alignment is not satisfactory, the framework may malfunction or return erroneous results. Consequently, we propose a metric to evaluate the alignment method. This metric is based on three evaluation criteria, namely the connectivity of correspondences, their number and confidence score. We For this experiment, we set the weighting coefficients to 0.33.

The Completeness evaluation

This metric assesses the completeness of the explanation returned to the user. As the What, Who, When, Where and How fields are built using the event triggering data (Definition 3.4), the completeness assessment considers the Why and Why' fields (steps 2 and 3, ISEE process Figure 2). 

Comp

Evaluation results

As stated earlier, the purpose of this large-scale experiment is to evaluate the impact of the alignment algorithm on the performance of the ISEE framework as well as the completeness of the built explanations. In order to match domain ontologies (i.e., HSSN, SAREF4BLDG and EOSK), we chose three different alignment tools which are widely used in the literature: The Alignment API [START_REF] David | The alignment API 4.0[END_REF], AgreementMakerLight [START_REF] Faria | Agreementmakerlight 2.0: Towards efficient large-scale ontology matching[END_REF], and BLOOMS [START_REF] Jain | Ontology alignment for linked open data[END_REF]. Table 4 presents the alignment tools evaluation and the corresponding completeness scores. Columns 2, 3 and 4 correspond respectively to the three components Con, Num and Conf of the alignment evaluation metric (Section 4.2.2).

The "score" column calculates the score of the alignment tools. The columns "Why Concepts" and "Why' instances" are respectively the total number of Why concept and Why' instance connections.

The column "ISEE tuples" refers to the number of ISEE tuples. Finally, the column "ISEE tuples

Completeness" computes the average completeness score of the ISEE tuples.

As you can see in the third column of Table 4, the number of the built correspondences differs according to the alignment algorithm as each one uses different techniques [START_REF] Euzenat | Ontology matching[END_REF] (structural, terminological, etc.). The alignment API and BLOOMS produce similar correspondences (the same concepts are aligned by both alignment tools). This may be explained by the fact that both use of alignments built by the alignment algorithms has a direct impact on the number of connections build in the following steps. This impact continues until the final result is obtained (i.e., the total number of ISEE tuples). This can be explained by the fact that the ISEE steps are based on each other. Thus, a poor result in one step affects the following steps. The number of 4W connections built by the two alignment tools The Alignment API and BLOOMS is not so much impacted by the difference in the number of alignments produced by the latter. This is surely due to the fact that in the example of light wastage event, the concepts that have not been aligned are not necessary for the construction of the explanation. The 3 tuples returned by AgreementMakerLight are contained in the 7 tuples returned by the two other alignment tools (i.e., The Alignment API, BLOOMS). Besides, these 3 tuples do not contain the tuple best ranked by the expert. This proves that the more concepts are aligned, the more the ISEE framework is able to build different explanation tuples and find the most relevant ones. The ISEE tuples returned by The Alignment API and BLOOMS were almost similarly classified (only one ISEE tuple was classified differently). This is due to the fact that the score calculation formula (Section 3.4.3) has two criteria related to the ontology alignment:

diver which refers to the diversity of the what instances and conf which is the average confidence scores of the alignment. For the diver criterion, both The Alignment API and BLOOMS returned almost the same alignment which means that the diver value is the same for both tools. For the conf criterion different value was returned by the tools. However, this had little influence on the final score. The most relevant tuple (choose by the expert) was returned in the first position by both tools. The column "ISEE tuples completeness" calculates the completeness of the resulting explanations. The results are positive and demonstrate that the ISEE process is able to construct explanations correctly even if the number of aligned concepts is not so large. We do not see here the impact of the number of the built alignments on the average completeness score. This is because the three alignment algorithms produce a fairly close total number of alignments. Moreover, the average completeness does not favour the number of tuples but rather the completeness of each of these tuples.

To summarize this second experiment demonstrated that the choice of the alignment algorithm is important and strongly affects the performance of the framework, in particular the number of explanations returned to the user. The completeness score showed that the ISEE process is able to provide a complete explanation to the user even in a large scale dataset. Finally, for this experiment, both The Alignment API and BLOOMS gave good results. Hence, we chose 0.6 as the Threshold for the alignment tool evaluation. This threshold will be further validated in our future work.

RELATED WORK

This section is organised in two parts. First, we present works on event explainability for connected environments and more generally sensor network data explainability. Then, we present works on event explainability for document collections.

First, concerning connected environments, major research proposals aim at event detection (e.g., detection of energy wastes in smart buildings, traffic monitoring and accident detection, detection of machine malfunctions) [START_REF] Mansour | Event detection in connected environments, Theses[END_REF][START_REF] Nasridinov | Event detection in wireless sensor networks: Survey and challenges[END_REF]. There are less research works that go further and propose event explanation services. We can mention two categories of approaches. The first one focuses on video sources (e.g., camera) to explain events. It involves machine learning models associated with enrichment techniques from the semantic web. The three frameworks detailed in [START_REF] Borzin | Surveillance event interpretation using generalized stochastic petri nets[END_REF][START_REF] Azough | Description and discovery of complex events in video surveillance[END_REF][START_REF] Cavaliere | A human-like description of scene events for a proper uav-based video content analysis[END_REF] are dedicated to video data. The second one deals with works on heterogeneous sources (e.g., temperature sensor, humidity sensor, camera) to interpret events. It involves logic programming and inference techniques associated with enrichment techniques from the semantic web to deduce semantic explanations of events. In [START_REF] Whitehouse | Semantic streams: A framework for composable semantic interpretation of sensor data[END_REF][START_REF] Wun | A system for semantic data fusion in sensor networks[END_REF], authors detail two frameworks for events explanation based on heterogeneous sensor data.

In this second part, we focus on works concerning event explainability within document collections. We pointed out three domains of work that deal with events in documents: sentiment variation, genes mutation and 5W1H question-answering. The first one concerns the explainability of sentiment variation on Twitter. It involves Latent Dirichlet Allocation (LDA) based models used along with NLP techniques to automatically extract changing sentiments and topics (described in semantic graphs) within a period of time. The authors in [START_REF] Tan | Interpreting the public sentiment variations on twitter[END_REF][START_REF] Thomas | Event based sentence level interpretation of sentiment variation in twitter data[END_REF] propose two frameworks dedicated to sentiment variation analysis. The second domain concerns the explainability of genes mutation within biomedical scientific papers. It involves meta-knowledge schemes associated with text mining techniques. In [START_REF] Ananiadou | Event interpretation: A step towards event-centred text mining[END_REF], the authors detail a framework dedicated to genes mutation explainability.

The latter domain deals with 5W1H question-answering within online news articles (i.e., "who did what, when, where, how and why?"). It involves a wide range of NLP, machine learning and clustering techniques associated with reasoning methods on domain specific knowledge. The four frameworks detailed in [START_REF] Karaman | Event detection from social media: 5w1h analysis on big data[END_REF][START_REF] Hamborg | Giveme5w1h: A universal system for extracting main events from news articles[END_REF][START_REF] Jin | News feature extraction for events on social network platforms[END_REF][START_REF] Shao | Answering who/when, what, how, why through constructing data graph information graph, knowledge graph and wisdom graph[END_REF], are dedicated to 5W1H question-answering. Table 5 compares the aforementioned event explanation tools with ISEE framework according to the used data sources (Columns 2-3), data types (Column 4) and the questions the approach answers (Columns 5-10).

As you can see, event interpretation tools in the literature are dedicated either to sensor network or to a specific type of document corpus (e.g., tweets, online news). None of the proposed tools consider both of them. Moreover, the majority of research work that propose a full explanation (which answers the six questions of 5W1H) are those that deals with document corpus data. The tools that consider only sensor network data do not give a full explanation. This demonstrate the importance of the information that document corpus data provides.

To summarize, event explainability or more generally information retrieval on sensor networks and document corpus data have been always considered as two distinct areas of research. In this paper, we showed that breaking down the walls between these two heterogeneous data sources, can have a huge added value for the users of smart connected environments. We used the 5W1H model to bridge this gap and lead the interconnection process of these heterogeneous data sources. 

CONCLUSION

Event explainability is the core concern of the work presented in this paper. Regarding information systems in connected environments, the combination of sensor network and document corpus data is essential since document corpus provide significant amounts of important and valuable information (e.g., technical data sheets, maintenance reports, customer sheets). Actually, connected environments do not support any connection between sensor network and document corpus data.

Hence, a user has to look for an event explanation by himself through multiple queries on both data sources which is indeed very tedious, time consuming and requires a huge compilation effort.

For all those reasons, we proposed the ISEE framework, dedicated to event explainability in connected environments. ISEE is based on both (i) sensor network and document corpus data, and

(ii) specific domain ontologies in order to link semantically such heterogeneous data. ISEE process consists of three steps. Based on the event definition data, the first step builds What and Who links between the event and related concepts of the specific domain ontologies. The second one, based on the event triggering data, builds What,Who, When, and Where links between the event and related instances of the specific domain ontologies. Those two previous steps aim at filtering iteratively concepts and instances of the domain ontologies. This approach makes it possible to reduce computations for different urgency levels since a first filtering reduces the ontologies to only the concepts semantically linked to the event definition data, then a second filtering reduces the ontologies to a few instances of these concepts semantically linked to the event triggering data.

Finally, the last step, based on all the semantic links built previously, creates in turn different weighted instances of Why explanations named ISEE tuples. To sum up, 4 algorithms respectively support each of the steps of the event explanation process. These algorithms are based on formal definitions of the ISEE environment. In addition, an ISEE model formally describes an event explanation. A first experiment demonstrates that the ISEE process works and so could be very helpful for one end-user to easily and simply interpret an event triggered in his environment. No need any more to parse manually a huge amount of sensor and documentary data.

In terms of prospects, we are considering as a priority to test the ISEE process on different types of events in order to make further improvements necessary for the scale-up and validate the alignment tool evaluation threshold. In addition, various scenarios remain to be studied. For example, when several events are triggered at the same time, should we consider each event independently and then look for possible interactions between them? Another case to be studied is that of composite events, i.e., an event composed of several events. When a composite event is triggered, should we adapt the proposed ISEE algorithms to better explain this composite event? We will address all these issues in future works.
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 1 Figure 1: The fourth floor of the SDH building sample
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 2 Figure 2: ISEE general overview
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 32 An Event Dimension d is defined as a 5-tuple ⟨id, o, C, R, C d ⟩, where: -id is the unique identifier of the dimension -o is the origin concept which best reflects d -C is the set of concepts related to d -R is the set of relations related to d -C d is the set of constraints associated with d For example, Features and Time dimensions of the light wastage event can be defined as follows:

  e r ∶ < What: Luminosity, Who: LightSensor826, When: 28/08/13 20:00:00, Where: Office 413, How: {< 36145, lightSensor826, 28/08/13 19:00:00, Office 413, 62 >, ..., < 36191, lightSensor826, 28/08/13 20:00:00, Office 413, 68 >} > As you can see in this example, the How field contains all the observations that triggered the event. These observations comply with the constraints specified in the light wastage event definition (Section 3.1): light levels are above 30 lux which corresponds to the constraint on the Feature dimension (Lumens > 30) and observation times are on a one-hour time slot after the working hours which corresponds to the constraints on the Time dimension (timestamp duration 1hour, timestamp includedIn [07:00:00pm, 07:00:00am]).

  follows (the concepts are shown in blue): e m : < e r , {< m what : {Lamp}, m who : Employee, m when : {TemporalEntity}, m where : {Office, MeetingRoom, BreakRoom}, m how : {<Employee, turnsOn, Lamp>, <Employee, turnsOff, Lamp>} >, ...} > e r is the raw event explanation that has been illustrated previously. The following tuple, within the Why field, represents a potential explanation of the light wastage event. The construction of such tuples will be detailed in Section 3.4.1.

(

  concepts and instances are shown in blue and purple respectively): e f : < e m , {< f what : {Lamp:L014, Lamp:L015}, f who : Employee:Roland Perrin, f when : TemporalEntity:28/08/13 18:32:50, f where : Office:Office413, f how : {<Employee:Roland Perrin, turnsOn, Lamp:L014>, <Employee:Roland Perrin,turnsOn, Lamp:L015>}, f score : 0.83 >, ...} > The When and Where instances correspond to the office assigned to the employee Roland Perrin and the time at which he left this office. The score calculation metric will be detailed later in Section 3.4.3.
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 3 Figure 3: The ISEE model
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 4 Figure 4: An example of ontology instantiation
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 5 Figure 5: An example of ontology alignments

Algorithm 1

 1 Domain-ontologies matching input : O ← Sensor network and document corpora ontologies f ← An alignment function output: A set of correspondences Result ← {} for each o i in O do for each conceptp in o i do for each o j in O, with j > i do 5 for each conceptq in o j do 6 <correspondanceType, score> ← f(conceptp, conceptq) 7 if score ≥ Threshold then 8 Result ← Result ∪ < conceptp, correspondanceType, conceptq, score> 9

Figure 6 : 2 .

 62 Figure 6: An example of What and Who concept connections
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 7 Figure 7: An example of a 4W instance connection

comp = m 5 ,

 5 m the number of 4W1H questions answered by the Why' field. -diver refers to the diversity of the what instances diver = n I , n is the number of what instances linking the Why' field to the event and I is the total number of what instances -conf is the average confidence scores of the alignments that were used to build the Why' field (Section 3.3.2) conf= 1 p ∑ p i=1 c i , c i is the confidence score of the ith alignment.

  propose the following scoring formula: Score alignment = 1 α+β+γ (α. Con +β.Num + γ. Conf) α, β and γ are weighting coefficients -Con denotes the connectivity score of the alignment method, it assesses the ability of the alignment technique to interconnect the maximum number of ontologies Con = Number of aligned ontologies Total number of ontologies -Num the proportion of the aligned concepts N um = Number of aligned concepts Total number of concepts -Conf denotes the mean of correspondence confidence scores Conf = 1 n ∑ n i=1 c i , n is the total number of correspondences and c i the confidence score of the ith correspondence.

  .[START_REF] Borzin | Surveillance event interpretation using generalized stochastic petri nets[END_REF] if i when and i where are empty 0.75 if i when < event.t and i where is empty 1 if i where = event.l and i when < event.t i where and i when are the When and Where instances of the Why' field, event.t and event.l are event triggering time and location respectively.

	Algorithm 4 ISEE tuples scoring
	input: ResultStep3 ← the Why' class Instances from Algorithm 3
	event ← the triggered event
	1 WhyInstances ← GetWhyInstances(Result step3)

2 for each i why in WhyInstances do 3 i why .Scores ← GetScore(event, i why )

4 end

Table 1 :

 1 The ISEE links computed in steps 1, 2 and 3

		Medium	Low	Low
	What concepts	6	6	-
	Who concepts	13	13	-
	What instances	50	13	-
	Who instances	63	11	-
	Where instances	-	10	-
	When instances	-	10	-
	ISEE tuples	6	11	11
			19 concepts	
		19 concepts		11	ranked
	Total		44 instances	
		113 instances		ISEE tuples
			11 ISEE tuples	

Table 2 :

 2 Evaluation of Steps 1 and 2 of ISEE framework based on the three evaluation metrics Precision, Recall and F1-score ISEE Framework. Ground truth was built manually by experts. Evaluation results are shown in

		Step 1		Step 2	
	Fields				
		What concepts Who concepts What instances Who instances
	P	0.66	0.92	0.76	1
	R	0.83	0.92	0.81	0.84
	F1-score	0.73	0.92	0.78	0.91

Table 2 (

 2 Step 1 and 2) and Table3(Step 3). In Step 1 (Table

  = αC what + βC who + γC when + δC where + θC how α + β + γ + δ + θ α, β, γ, δ, and θ are weighting coefficients -C what , C who , C when , C where , and C how refer respectively to the completeness of the fields m what , m who , m when , m where , and m how if the level of explanation required is medium or f what , f who , f when , f where , and f how if it's high. The completeness of a field is equal to 1 if it is provided in the explanation and 0 if it is not.

Table 4 :

 4 Evaluation of the alignment algorithms and the completeness an external resource based alignment technique (i.e., Wordnet and Wikipedia respectively)7 . In the "score" column of Table4, we compute the alignment algorithm scores based on the metric presented in Section 4.2.2. The following three columns (i.e., 6, 7 and 8), show that the number

		Alignment evaluation		Completeness evaluation	
	Alignment tools							
					Why Con-	Why'	ISEE	ISEE tuples
		Con	Num Conf Score				
					cepts	instances	tuples	completeness
	The Alignment		29/					
		3/3	0.74	0.61	18	23	7	0.88
	API		242					
	Agreement-		18/					
		2/3	0.75	0.49	8	13	3	1
	MakerLight		242					
			28/					
	BLOOMS	3/3	0.78	0.63	18	23	7	0.88
			242					

Table 5 :

 5 Comparison of event explanation tools

		Data sources			5W1H question answering	
	Tools			Data types						
		IoT Corpus		What Who When Where How Why
	[30, 31, 33]		✓	Text (news)	✓	✓	✓	✓		✓
	[3, 35, 34]		✓	Text (tweets)	✓	✓	✓	✓	✓	✓
	[20, 25, 27]	✓		Video	✓	✓	✓	✓		
	[28, 29]	✓		Any	✓	✓	✓	✓		
	ISEE	✓	✓	Any	✓	✓	✓	✓	✓	✓

Sample data available at: https://citris-uc.org/about/sutardja-dai-hall/about-facilities/floorplans/

Available at: https://pypi.org/project/rdflib/

Simulated data is available at https://github.com/nabila2016/High-CO2-event.git

Available at https://github.com/protegeproject/cellfie-plugin

The majority of these data sheets were collected from the two websites Amazon and Cdiscount.

Available at https://namefake.com/api

Note that The alignment API allows the use of several alignment techniques. For this experiment we choose a Wordnet based alignment technique.