

Interactions of C. frondosa-derived inhibitory peptides against angiotensin I-converting enzyme (ACE), α -amylase and lipase

Yi Zhang, Shudong He, Xin Rui, Benjamin Simpson

▶ To cite this version:

Yi Zhang, Shudong He, Xin Rui, Benjamin Simpson. Interactions of C. frondosa-derived inhibitory peptides against angiotensin I-converting enzyme (ACE), α -amylase and lipase. Food Chemistry, 2022, 367, pp.130695. 10.1016/j.foodchem.2021.130695 . hal-03328917

HAL Id: hal-03328917 https://univ-pau.hal.science/hal-03328917

Submitted on 22 Aug 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Interactions of C. frondosa-derived inhibitory peptides against angiotensin I-converting 2 enzyme (ACE), α-amylase and lipase 3 Yi Zhang ^{1,2}*, Shudong He ³, Xin Rui ⁴, Benjamin K. Simpson ^{1,*} 4 5 ¹ Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-6 7 Bellevue, Québec, Canada H9X 3V9 8 ² IPREM, E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, 64000 Pau, France 9 ³ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, 10 Anhui, China 11 ⁴ College of Food Science and Technology, Nanjing Agricultural University, Jiangsu Province, 12 China 13 14 * Corresponding author: 15 Dr. Benjamin K. Simpson Tel: +1 514-398-7737; E-mail: benjamin.simpson@mcgill.ca 16 17 18 First author & co-corresponding author: 19 Dr. Yi Zhang; E-mail: yi.zhang10@mcgill.ca 20 21 Other authors: 22 Dr. Shudong He. E-mail: shudong.he@hfut.edu.cn Dr. Xin Rui. E-mail: ruix@njau.edu.cn 23

Abstract

The study illustrates the molecular mechanisms by which marine-derived peptides exhibited different structures and inhibition functions to concurrently inhibit multiple enzymes involved in chronic diseases. Peptides (2 mg/mL) exhibited inhibition against angiotensin-converting enzyme (ACE, inhibition of 52.2–78.8%), pancreatic α -amylase (16.3–27.2%) and lipase (5.3–17.0%). Further in silico analyses on physiochemistry, bioactivity, safety and interaction energy with target enzymes indicated that one peptide could inhibit multiple enzymes. Peptide FENLLEELK potent in inhibiting both ACE and α -amylase showed different mechanisms: it had ordered extended structure in ACE active pocket with conventional H-bond towards Arg₅₂₂ which is the ligand for activator Cl⁻, while the peptide folded into compact "lariat" conformation within α -amylase active site and the K residue in peptide formed intensive H-bonds and electrostatic interactions with catalytic triad Asp₁₉₇–Asp₃₀₀–Glu₂₃₃. Another peptide APFPLR showed different poses in inhibiting ACE, α -amylase and lipase, and it formed direct interactions to lipase catalytic residues Phe₇₇ & His₂₆₃.

Keywords

Peptides; inhibition; ACE; α-amylase; lipase

1. Introduction

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Peptides produced from foods can perform inhibitory activities against enzymes involved in chronic diseases. Although synthetic inhibitor compounds are mainly used to combat chronic diseases, their negative side effects such as hepatotoxicity, necessitate the discovery of natural bioactive peptides as alternatives (Daliri, Lee, & Oh, 2018). Angiotensin I-converting enzyme (ACE, EC 3.4.15.1) plays a key role in the regulation of blood pressure via renin-angiotensin system and kallikrein-kinin system by means of converting inactive decapeptide angiotensin-I into potent vasoconstrictor angiotensin-II, as well as inactivating the vasodilator bradykinin (Toopcham, Mes, Wichers, Roytrakul, & Yongsawatdigul, 2017). Pancreatic α-amylase (EC 3.2.1.1) catalyzes the hydrolysis of α -linked polysaccharides (e.g., starch) for glucose production, and its inhibition results in a reduction of blood glucose levels after carbohydrate diet for controlling type 2 diabetes (Admassu, Gasmalla, Yang, & Zhao, 2018). Lipase (EC 3.1.1.3) acts specifically on the ester bonds of triglycerides to release free fatty acids, mono- and di- glyceride, and its inhibitors, e.g., a commercialized drug "orlistat", can delay the absorption of free fatty acids into systemic circulation and adipocytes (Rajan, Palaniswamy, & Mohankumar, 2020) for obesity management. Moreover, hypertension, diabetes and obesity are correlated, and unhealthy diet is one of their fundamental causes. Thus, it is of great interest to discover and understand the mechanisms of food-derived peptides with inhibitory activity against enzymes such as these. The source of the peptides in this research is a marine species, Atlantic sea cucumber (Cucumaria frondosa). Our previous study disclosed antioxidant peptides from C. frondosa via enzymatic hydrolysis (Zhang, He, Bonneil, & Simpson, 2020b) similar to antioxidant peptides from foods such as rice bran and beans (Ngoh & Gan, 2016; Wang, Chen, Fu, Li, & Wei, 2017),

and these peptides with multi-functions have potential research and application value. Currently,

in silico approaches based on peptide database and computational programs are widely used in combination with conventional in vitrolin vivo methods to study bioactive peptides in terms of screening, proteolysis, bioactivity, toxicity and allergenicity, and to derive information on their binding conformations and interactions with enzymes (Kang, Jin, Lee, Kim, Koh, & Lee, 2020; Zhang, Aryee, & Simpson, 2020a). In this study, peptides with inhibitory activities against ACE, pancreatic α -amylase, and pancreatic lipase were obtained in vitro, and the identified peptide sequences were analyzed using in silico tools to assess their properties and interpret inhibition mechanisms.

2. Materials and methods

2.1. Enzymes, chemicals, and peptides

ACE (from rabbit lung), α-amylase (from porcine pancreas), lipase (Type II, from porcine pancreas), and chemicals including acetonitrile (ACN), 3,5-dinitrosalicylic acid (DNS), ethyl acetate, formic acid, Hip-His-Leu, maltose, olive oil, phenolphthalein, starch, and triton X-100 were purchased from Sigma-Aldrich Co., USA. Peptides were produced from fresh *C. frondosa* using alcalase (A) and trypsin (T) with concentrations of 3000 and 2000 U/g at a ratio of 1:3 (w/v), respectively. The reaction mixture was incubated with agitation at 25 °C for 2 h; afterwards, the mixture was heated at 100 °C for 1 min to inactivate enzymes, and further filtered with 0.22 μm membranes (Millipore, USA). Peptides were fractioned using 10 kDa, 5 kDa, 3 kDa and 2 kDa cut-off ultrafiltration membranes (Millipore, USA) centrifuged at 3000 g, and 14 peptide fractions (A_{<10}, A₁₀₋₅, A_{<5}, A₅₋₃, A_{<3}, A₃₋₂, A_{<2}, and T_{<10}, T₁₀₋₅, T_{<5}, T₅₋₃, T_{<3}, T₃₋₂, T_{<2}) were obtained. The peptides in A_{<2} and T_{<2} fractions were subsequently selected based on their relatively high multi-enzymes inhibitory properties and identified using LC-MS/MS and Peaks

software (Zhang et al., 2020b).

2.2. Determinations of multi-enzyme inhibitory activities

ACE inhibitory activity of peptides was determined based on the method described previously (Zhang, Li, Fu, & Mou, 2019) with Hip-His-Leu as substrate to produce hippuric acid at 37 °C, pH 8.3, and the reaction was terminated by HCl and measured spectrophotometrically at 280 nm. Alpha-amylase inhibitory activity of the peptides was determined using starch as substrate to produce maltose at 37 °C, pH 6.0, and the reaction was terminated by adding the color reagent containing DNS, potassium sodium tartrate and NaOH then measured spectrophotometrically at 540 nm (Cardullo et al., 2020). The amount of generated maltose was calculated using a standard curve (0–0.2%, w/v). Lipase inhibitory activity of peptides was determined using olive oil as substrate to produce free fatty acids at 37 °C, pH 7.5. The assay was terminated by boiling the reaction mixture before measuring fatty acids by titration with NaOH using phenolphthalein as indicator (Huang, Chow, & Tsai, 2012).

2.3. Characterizations of peptide biochemical properties

Peptide sequences were submitted to various *in silico* tools listed in **Table S1**. Physiochemical properties including isoelectric point (pI), water solubility and hydrophobicity of the peptides were predicted using Peptide property calculator. Probability of bioactivity was predicted using PeptideRanker (Han, Maycock, Murray, & Boesch, 2019). Inhibitory activities towards ACE, α-amylase and lipase were predicted by BIOPEP-UWM using "Bioactive peptides" database and "Analysis" program. Location of bioactive fragments in a peptide and the frequency of bioactive fragments occurrence (parameter A) were returned (Minkiewicz, Iwaniak, & Darewicz, 2019). Toxicity was predicted using ToxinPred where SVM-based method with threshold value of 0.0 was selected (Gupta et al., 2013). Allergenicity was predicted using

"Allergenic proteins with their epitopes" database in BIOPEP-UWM.

2.4. Molecular docking

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Molecular docking between each peptide and enzymes ACE, α-amylase and lipase, respectively, was performed using BIOVIA Discovery Studio (Accelrys, San Diego, CA, USA). The crystal structures of human ACE (PDB ID: 108A), human pancreatic α-amylase (PDB ID: 5KEZ) and human pancreatic lipase (PDB ID: 1LPB) were obtained from Protein Data Bank (PDB). The enzyme structures were optimized to minimize the energy and to remove water molecules before docking. CDOCKER docking program was applied where a more negative CDOCKER energy, i.e., higher (-)CDOCKER energy value, indicated more favorable docking affinity, and "F" means docking failure (Zhang et al., 2020b). The binding site of each enzyme contained its active site, and the values of binding site were adjusted according to those reported for enzyme - reference peptide interaction as follows: binding sites for ACE were created using the coordinates x: 36.189, v: 43.643, z: 55.175 and a radius of 16 Å. A known ACE inhibitory peptide, PRY (Fu, Alashi, Young, Therkildsen, & Aluko, 2017) was used as control (C1). The docking of α-amylase was carried out with a radius of 16 Å and coordinates x: -5.95348, y: 3.30228, z: -25.4401. A known α-amylase peptide, YPYSCWVRH (Goldbach et al., 2019) was used as control (C2). For lipase, binding site with a radius of 15 Å and coordinates x: 8.02469, y: 23.5388, z: 55.7064 was created. A known lipase inhibitory peptide, YFS (Stefanucci et al., 2019) was used as control (C3).

2.5. Statistical analyses

Triplicate measurements were performed for enzyme inhibition determinations. Statistical significance was analyzed using SPSS 22.0 (IL, USA).

3. Results and discussion

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

3.1. *In vitro* multi-enzyme inhibitory activities of peptides

As shown in **Fig. 1**, the peptides strongly inhibited ACE (52.2–78.8%) followed by α amylase (16.3–27.2%), and least for pancreatic lipase (5.3–17.0%). It suggests that C. frondosa could be source material to produce enzyme-inhibitory peptides. Other closely related species recently reported with ACE inhibitory peptide activities include Stichopus japonicus and Holothuria atra (Dewi, Patantis, Fawzya, Irianto, & Sa'diah, 2020; Zhong, Sun, Yan, Lin, Liu, & Cao, 2018). However, peptides derived from sea cucumber with α-amylase and lipase inhibitory activities have not been reported. ACE inhibitory activity (**Fig. 1a**) showed that the peptides with relatively low MW, i.e., <2 kDa and 2-3 kDa, had significantly high ACE inhibitory activity (p < 0.05) which agreed with previous findings on Acaudina molpadioidea peptides (Zhao, Li, Liu, Dong, Zhao, & Zeng, 2007). Peptide fractions A₂ and T₂ (MW <2 kDa, 2 mg/mL) from C. frondosa inhibited ACE activity by 78.8% and 65.4%, respectively, which were higher than their counterparts generated from *H. atra* (57.4%, MW <3 kDa, 1 mg/mL) (Dewi et al., 2020) and *S. japonicus* gonads (50%, MW <3 kDa, 1.32 mg/mL) (Zhong et al., 2018). Previously found peptides exhibiting high αamylase inhibitory activity were mainly from plant sources (Awosika & Aluko, 2019), and only a few from aquatic sources, e.g., shrimp and red seaweed (Admassu et al., 2018; Yuan, Li, Pan, Wang, & Chen, 2018). This study indicated that sea cucumber is a potential marine source of αamylase inhibitory peptides. Peptide fractions $A_{<2}$ and $T_{<2}$ had 27.2% and 24.1% α -amylase inhibitory activities, respectively (Fig. 1b). Collagen is the main protein component in sea cucumber, and a study on camel skin collagen hydrolysates also found peptides with potent ACE

and pancreatic α-amylase inhibitory activities (Mudgil, Jobe, Kamal, Alameri, Al Ahbabi, &

Maqsood, 2019). Inhibition effect of the peptides on pancreatic lipase was low (**Fig. 1c**) with $A_{<2}$ and $T_{<2}$ showing 18.3% and 15.3% inhibitory activities against lipase, respectively. Similarly, peptides produced from yellow field pea showed both α-amylase and lipase inhibitory activities, and 50% reduction in lipase activity was achieved by a high concentration (4–12 mg/mL) of peptides (Awosika et al., 2019).

3.2. In silico analyses of peptide properties

Peptide sequences obtained from *de novo* sequencing with both average local confident (ALC) values \geq 90% and local confidence (LC) values \geq 70% were selected (**Table 1**). There were 11 sequences in A_{<2}, and 32 sequences in T_{<2}. All peptides consisted of 5–9 amino acids. Peptides in A_{<2} had pI values from 5.10 to 11.29, and 46% were water soluble, while peptides in T_{<2} had broader pI values from 3.85 to 11.39, and 72% showed high water solubility. Potential anti-health properties were predicted that no peptide was toxic and allergenic, suggesting the peptides had low possibility to pose a food safety issue.

The potential bioactivity of each peptide was assessed (**Table 1**). Peptide YDWRF (No. 1 in $A_{<2}$) had the highest possibility to be the most bioactive, and peptide WDLFR (No. 4 in $A_{<2}$, No. 30 in $T_{<2}$) had the 2^{nd} highest score. In total, 55% peptides in $A_{<2}$ had bioactive potential ≥ 0.8 , but only 9% peptides in $T_{<2}$ fraction had bioactivity ≥ 0.8 , suggesting that alcalase produced more bioactive peptides than trypsin. Specifically, 100% of peptides in $A_{<2}$ fraction and 87.5% of peptides in $T_{<2}$ fraction were found with ACE inhibitory fragments. The composition of certain amino acids, including aromatic, hydrophobic, basic, and positively-charged amino acids contribute to ACE inhibitory activity (Lee & Hur, 2017). In the study, peptide EVPLFR with parameter A value of 1.0 was found with ACE inhibitory fragments EV, VP, PL, LF, LFR and FR that comprised of aliphatic amino acids (V, L), aromatic amino acids (F, R, P), and they

provided high affinity towards the active site of ACE due to hydrophobicity (Lee et al., 2017; Li, Le, Shi, & Shrestha, 2004). No α -amylase and lipase inhibitory fragments were found in peptides, which was due to the lack of relevant dataset in BIOPEP-UWM. Admassu et al. (2018) reported 2 α -amylase inhibitory peptides, GGSK and ELS, produced from red seaweed. Ngoh et al. (2016) reported 7 α -amylase inhibitory peptides from Pinto beans that possessed amino acids such as L, P, G and F, similar to the data from this work. Findings on lipase inhibitory peptides are still insufficient. ε-Polylysine (25–30 K residues) is commercially used as food additives in Japan because of its inhibition against human and porcine pancreatic lipase. Tripeptides containing high content of R residues were synthesized and exhibited strong inhibition against lipase (Stefanucci et al., 2019). Peptides NPVWKRK and CANPHELPNK derived from *Spirulina platensis* decreased the accumulation of triglyceride by binding pancreatic lipase (Fan, Cui, Zhang, & Zhang, 2018). In this study, several peptides containing these characteristic amino acids that were responsible for the inhibition of α -amylase and lipase were observed (**Fig. 1**).

3.3 Inhibition mechanisms of peptides inhibiting multi-enzymes

According to the (-)CDOCKER energy data (**Table 1**) that present the overall energy consumed by peptide as inhibitor when bound with enzyme active site, all the produced peptides possessed inhibitory activities against ACE and pancreatic α -amylase. Six peptides were able to inhibit ACE, pancreatic α -amylase and lipase. Peptides generated by trypsin generally exhibited higher inhibitory activities than alcalase produced peptides, which differed with the results obtained using peptide database in subsection 3.2. For each peptide, the data from molecular docking only matched those returned from online tools to a small extent. It suggested that the structure of the peptides played a key role in inhibiting enzymes. The control peptide C1, PRY, is a strong competitive inhibitor of ACE by forming H-bond (Fu et al., 2017) and it showed a

docking energy of -57.7345. All peptides produced from *C. frondosa* had lower docking energy values, indicating they were stronger ACE inhibitors than PRY. The control peptide C2, YPYSCWVRH, is a selective and competitive inhibitor against α -amylase (Goldbach et al., 2019), and its binding to pancreatic α -amylase consumed energy of -134.391. Peptides FENLLEELK, FNTDSALER, SYNELLTK in this study appeared to be stronger α -amylase inhibitors than C2 as they consumed much lower energies. The control tripeptide C3, YFS, showed a CDOCKER energy of -61.3976 against pancreatic lipase. Among the 6 peptides successfully docked onto lipase, peptide APFPLR had a similar docking energy value to C3, and the other 5 peptides appeared to be stronger inhibitors than C3. The peptides that failed in docking with lipase were too large to fit in lipase active site. The structure–function relationship of multi-enzyme inhibitory peptide was illustrated by peptide FENLLEELK (**Fig. S1**a), which had robust inhibitory activities against ACE and pancreatic α -amylase, as well as peptide APFPLR (**Fig. S1**b) which showed moderate inhibitory activities against ACE, pancreatic α -amylase and lipase.

3.3.1. Inhibition mechanisms of peptide FENLLEELK

The overall structure of human ACE is in an ellipsoid shape with a central groove that extends to the internal enzyme molecule, and peptide FENLLEELK buried in the groove (**Fig. 2a**). It had an extended conformation that enabled its access to ACE active site crevice (**Fig. 2b**); thus, was able to prevent zinc, the essential cofactor of ACE, from binding with the conserved HEXXH zinc binding motif in ACE (His₃₈₃, His₃₈₇, Glu₄₁₁) (Natesh, Schwager, Sturrock, & Acharya, 2003) located at the bottom of peptide–ACE interaction surface. Each residue in the peptide participated in the interaction with atoms in ACE active site (**Fig. 2c**). The F residue on the N-terminal of the peptide formed desirable carbon hydrogen bonds with Asn₆₆ (2.45 Å),

Try₆₂ (2.45 Å) but the interaction was slightly weakened by unfavorable positive-positive interaction with Arg₁₂₄ (4.67 Å) (Zhao, Zhang, Yu, Ding, & Liu, 2020). The K residue on the peptide C-terminal formed attractive charge interaction with Asp₁₂₁ (4.35 Å) and a salt bridge with Glu₁₂₃ (1.9 Å) via lysyl side chain, apart from attractive charge interaction with Arg₁₂₄ (5.38 Å) and a conventional H-bond with Trp₂₂₀ (2.87 Å) from the –COO⁻ group. FENLLEELK had 3 E residues and 3 L residues. The carboxyl side chain from E residues formed strong electrostatic interactions with Arg₁₂₄, His₄₁₀, Arg₅₂₂, Lys₁₁₈, as well as a conventional H-bond with Arg₅₂₂ which was reported as the chloride ion ligand for ACE activation for substrate hydrolysis (Natesh et al., 2003). The isobutyl group of L residues formed hydrophobic interactions with Trp₅₉, Phe₃₉₁ and Val₅₁₈. The interactions between peptide and ACE active site including H-bond, electrostatic and hydrophobic effects were intense.

Peptide FENLLEELK was also buried in the active site cleft of human pancreatic α amylase as seen from the top view of the surface (**Fig. 3a**). Compared to the pose when docking
with ACE (**Fig. 2b**), the same peptide formed a more compact pose in a unique lariat fold when
interacting with lipase (**Fig. 3b**). Previous research found that lariat-type peptides were potent
and highly selective to α -amylase over other glycosidases (Jongkees, Caner, Tysoe, Brayer,
Withers, & Suga, 2017). The six residues on peptide N-terminal, i.e., FENLLE formed a head-toside chain macrocycle, while the C-terminal residue K stretched to the base of the active site
cleft to form interactions with atoms in α -amylase active pocket. The macrocycle composed of
six amino acids was stabilized by various intermolecular H-bond and charge interactions (**Fig. 3c**)
and was responsible for a few interactions with the α -amylase active site. The F residue formed
pi-charge electrostatic bond with Trp59; the N residue formed conventional H-bond with Val354
(2.61 Å); the L residue formed electrostatic interactions with Val354 (4.34 Å) and His305 (4.88 Å);

however, the E residue formed an undesirable charge repulsion with negatively charged Asp₃₅₆ (5.3 Å) (**Fig. 3d**). The "tail" of the lariat peptide residue K towards the end of active site pocket, was the one contributing the most to the inhibition, due to the large number of interactions to the active atoms especially the catalytic triad in α -amylase (Asp₁₉₇–Asp₃₀₀–Glu₂₃₃). Although it formed an unfavorable donor-donor clash with Ala₁₉₈, the –NH₃ group on the side chain made two conventional H-bonds (2.38 Å, 2.7 Å) and one attractive charge interaction (4.33 Å) with Asp₁₉₇, the catalytic nucleophile of α -amylase, and one electrostatic interaction (4.75 Å) with Asp₃₀₀, as well as one conventional H-bond (1.96 Å) and one salt bridge (2.07 Å) with Glu₂₃₃ which is the catalytic acid-base of α -amylase (Goldbach et al., 2019).

3.3.2. Inhibition mechanisms of peptide APFPLR

The pose of APFPLR in ACE active site was extended to block the entrance for substrate binding. The binding between peptide and non-catalytic residues in ACE active site was facilitated by electrostatic interactions, hydrophobic interactions and H-bonds (**Fig. S2a**). Conversely, peptide APFPLR engaged intensively with pancreatic α -amylase. It formed a curled structure among the A, P, F, P residues and stretched its R residue to the bottom of the α -amylase active site with its guanidino group in the side chain interacting with the α -amylase catalytic triad with both H-bonds and attractive charge interactions (**Fig. S2b**).

Peptide APFPLR was one of the several peptides that docked on human pancreatic lipase, a receptor used in this study in an activated form and in complex with co-lipase, an amphiphilic protein facilitating the opening of the lid domain (**Fig. 4a**) to allow efficient lipolysis at a hostile lipid-water interface (Stefanucci et al., 2019). APFPLR formed a stretched pose with its C-terminal towards the end of the interaction surface to occupy the narrow and shallow active site groove of lipase (**Fig. 4b**), and its catalytic triad Ser₁₅₂–Asp₁₇₆–His₂₆₃ was blocked at the bottom

of the interaction surface of lipase–peptide complex (**Fig. 4c**). A strong interaction network was formed between the peptide and the residues in lipase active pocket (**Fig. 4d**), and the comprised residues A, P and L are aliphatic that favored the binding with lipase active site. The A residue on peptide N-terminal formed H-bonds with Thr₂₁ and Glu₂₂. Other residues in the peptide mainly made hydrophobic interactions with lipase active site atoms. For example, the pyrrolidine side chain of P residue made a hydrophobic interaction towards Cys₁₈₁; the benzyl side chain of F residue made hydrophobic interactions with Ile₂₀₉ and Val₂₁₀; and the L residue formed hydrophobic interactions with Phe₇₇, Pro₁₈₀, Tyr₁₁₄, Ala₁₇₈, among which the Phe₇₇ is the H-bond donor and electrostatic stabilizer to form oxyanion hole for substrate hydrolysis (Eydoux et al., 2008). The R residue on C-terminal interacted with Asp₇₉ and Phe₇₇ with conventional H-bond and/or charge-charge interaction via its –NH₃ group. Moreover, the C-terminal (–COO⁻) made a carbon H-bond (2.4 Å) and a charge-charge interaction (4.82 Å) with His₂₆₃, which is in the catalytic triad to be attacked by Asp₁₇₆ and acts as a general base in lipase catalysis (Eydoux et al., 2008).

4. Conclusions

Peptides derived from C. frondosa inhibited ACE, α -amylase and lipase based on in vitro and in silico data. Peptide with the same sequence adjusted its conformational structure to bind towards the active sites of multi-enzymes. FENLLEELK exhibited potent inhibitory activities against ACE and α -amylase by forming different poses and weak interactions. APFPLR inhibited pancreatic lipase due to the amphipathicity of the constituent amino acids, structural features and intense interactions with catalytic residues. This research illustrated the molecular mechanisms and structure–function relationship of multi-enzyme inhibitory peptides against different

295	enzymes.
296	
297	Declaration of Competing Interest
298	The authors declare no conflict of interest.
299	
300	Acknowledgements
301	This work was funded by Natural Sciences and Engineering Research Council of Canada
302	(NSERC) Discovery Grants.
303	
304	References
305	Admassu, H., Gasmalla, M. A., Yang, R., & Zhao, W. (2018). Identification of bioactive
306	peptides with α -amylase inhibitory potential from enzymatic protein hydrolysates of red
307	seaweed (Porphyra spp). Journal of Agricultural and Food Chemistry, 66(19), 4872-
308	4882.
309	Awosika, T. O., & Aluko, R. E. (2019). Inhibition of the <i>in vitro</i> activities of α-amylase, α-
310	glucosidase and pancreatic lipase by yellow field pea (Pisum sativum L.) protein
311	hydrolysates. International Journal of Food Science & Technology, 54(6), 2021-2034.
312	Cardullo, N., Muccilli, V., Pulvirenti, L., Cornu, A., Pouységu, L., Deffieux, D., Quideau, S., &
313	Tringali, C. (2020). C-glucosidic ellagitannins and galloylated glucoses as potential
314	functional food ingredients with anti-diabetic properties: A study of α -glucosidase and α -
315	amylase inhibition. Food Chemistry, 313, 126099.
316	Daliri, E. BM., Lee, B. H., & Oh, D. H. (2018). Current trends and perspectives of bioactive
317	peptides. Critical Reviews in Food Science and Nutrition, 58(13), 2273-2284.

Dewi, A. S., Patantis, G., Fawzya, Y. N., Irianto, H. E., & Sa'diah, S. (2020). Angiotensin-318 319 converting enzyme (ACE) inhibitory activities of protein hydrolysates from Indonesian sea cucumbers. International Journal of Peptide Research and Therapeutics, 26, 2485-320 2493. 321 Eydoux, C., Spinelli, S., Davis, T. L., Walker, J. R., Seitova, A., Dhe-Paganon, S., De Caro, A., 322 Cambillau, C., & Carrière, F. d. r. (2008). Structure of human pancreatic lipase-related 323 324 protein 2 with the lid in an open conformation. *Biochemistry*, 47(36), 9553-9564. 325 Fan, X., Cui, Y., Zhang, R., & Zhang, X. (2018). Purification and identification of anti-obesity peptides derived from Spirulina platensis. Journal of Functional Foods, 47, 350-360. 326 327 Fu, Y., Alashi, A. M., Young, J. F., Therkildsen, M., & Aluko, R. E. (2017). Enzyme inhibition kinetics and molecular interactions of patatin peptides with angiotensin I-converting 328 329 enzyme and renin. International Journal of Biological Macromolecules, 101, 207-213. 330 Goldbach, L., Vermeulen, B. J., Caner, S., Liu, M., Tysoe, C., van Gijzel, L., Yoshisada, R., Trellet, M., van Ingen, H., & Brayer, G. D. (2019). Folding then binding vs folding 331 332 through binding in macrocyclic peptide inhibitors of human pancreatic α-amylase. ACS Chemical Biology, 14(8), 1751-1759. 333 Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Raghava, G. P., & Consortium, O. 334 335 S. D. D. (2013). *In silico* approach for predicting toxicity of peptides and proteins. *PloS* One, 8(9), e73957. 336 Han, R., Maycock, J., Murray, B. S., & Boesch, C. (2019). Identification of angiotensin 337 converting enzyme and dipeptidyl peptidase-IV inhibitory peptides derived from oilseed 338 339 proteins using two integrated bioinformatic approaches. Food Research International,

115, 283-291.

340

- 341 Huang, Y.-L., Chow, C.-J., & Tsai, Y.-H. (2012). Composition, characteristics, and *in-vitro*
- physiological effects of the water-soluble polysaccharides from Cassia seed. Food
- 343 *Chemistry, 134*(4), 1967-1972.
- Jongkees, S. A., Caner, S., Tysoe, C., Brayer, G. D., Withers, S. G., & Suga, H. (2017). Rapid
- discovery of potent and selective glycosidase-inhibiting de novo peptides. Cell Chemical
- 346 *Biology*, 24(3), 381-390.
- 347 Kang, N. J., Jin, H.-S., Lee, S.-E., Kim, H. J., Koh, H., & Lee, D.-W. (2020). New approaches
- 348 towards the discovery and evaluation of bioactive peptides from natural resources.
- 349 *Critical Reviews in Environmental Science and Technology*, 50(1), 72-103.
- Lee, S. Y., & Hur, S. J. (2017). Antihypertensive peptides from animal products, marine
- organisms, and plants. *Food Chemistry*, 228, 506-517.
- Li, G.-H., Le, G.-W., Shi, Y.-H., & Shrestha, S. (2004). Angiotensin I-converting enzyme
- inhibitory peptides derived from food proteins and their physiological and
- 354 pharmacological effects. *Nutrition Research*, 24(7), 469-486.
- 355 Minkiewicz, P., Iwaniak, A., & Darewicz, M. (2019). BIOPEP-UWM database of bioactive
- peptides: Current opportunities. *International Journal of Molecular Sciences*, 20(23),
- *357 5978*.
- Mudgil, P., Jobe, B., Kamal, H., Alameri, M., Al Ahbabi, N., & Maqsood, S. (2019). Dipeptidyl
- peptidase-IV, α-amylase, and angiotensin I converting enzyme inhibitory properties of
- novel camel skin gelatin hydrolysates. *LWT*, *101*, 251-258.
- Natesh, R., Schwager, S. L., Sturrock, E. D., & Acharya, K. R. (2003). Crystal structure of the
- human angiotensin-converting enzyme–lisinopril complex. *Nature*, 421(6922), 551-554.

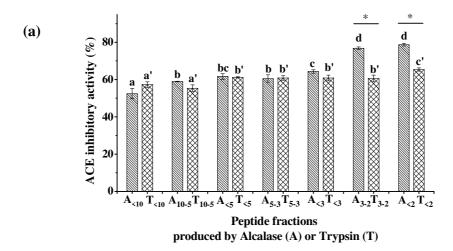
- 363 Ngoh, Y.-Y., & Gan, C.-Y. (2016). Enzyme-assisted extraction and identification of
- antioxidative and α-amylase inhibitory peptides from Pinto beans (*Phaseolus vulgaris* cv.
- 365 Pinto). Food Chemistry, 190, 331-337.
- Rajan, L., Palaniswamy, D., & Mohankumar, S. K. (2020). Targeting Obesity with plant-derived
- pancreatic lipase inhibitors: A comprehensive review. Pharmacological Research, 155,
- 368 104681.
- 369 Stefanucci, A., Luisi, G., Zengin, G., Macedonio, G., Dimmito, M. P., Novellino, E., & Mollica,
- A. (2019). Discovery of arginine-containing tripeptides as a new class of pancreatic
- 371 lipase inhibitors. Future Medicinal Chemistry, 11(1), 5-19.
- Toopcham, T., Mes, J. J., Wichers, H. J., Roytrakul, S., & Yongsawatdigul, J. (2017).
- Bioavailability of angiotensin I-converting enzyme (ACE) inhibitory peptides derived
- from Virgibacillus halodenitrificans SK1-3-7 proteinases hydrolyzed tilapia muscle
- 375 proteins. *Food Chemistry*, 220, 190-197.
- Wang, X., Chen, H., Fu, X., Li, S., & Wei, J. (2017). A novel antioxidant and ACE inhibitory
- peptide from rice bran protein: Biochemical characterization and molecular docking
- 378 study. LWT, 75, 93-99.
- Yuan, G., Li, W., Pan, Y., Wang, C., & Chen, H. (2018). Shrimp shell wastes: Optimization of
- peptide hydrolysis and peptide inhibition of α -amylase. Food Bioscience, 25, 52-60.
- Zhang, T., Li, M., Fu, X., & Mou, H. (2019). Purification and charicterization of angiotensin I-
- 382 converting enzyme (ACE) inhibitory peptides with specific structure X-Pro. European
- *Food Research and Technology, 245*(8), 1743-1753.
- Zhang, Y., Aryee, A. N., & Simpson, B. K. (2020a). Current role of *in silico* approaches for food
- enzymes. Current Opinion in Food Science, 31, 63-70.

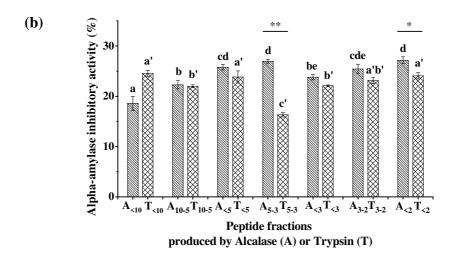
Zhang, Y., He, S., Bonneil, É., & Simpson, B. K. (2020b). Generation of antioxidative peptides 386 387 from Atlantic sea cucumber using alcalase versus trypsin: In vitro activity, de novo sequencing, and in silico docking for in vivo function prediction. Food Chemistry, 306, 388 125581. 389 Zhao, W., Zhang, D., Yu, Z., Ding, L., & Liu, J. (2020). Novel membrane peptidase inhibitory 390 peptides with activity against angiotensin converting enzyme and dipeptidyl peptidase IV 391 392 identified from hen eggs. Journal of Functional Foods, 64, 103649. 393 Zhao, Y., Li, B., Liu, Z., Dong, S., Zhao, X., & Zeng, M. (2007). Antihypertensive effect and purification of an ACE inhibitory peptide from sea cucumber gelatin hydrolysate. 394 395 Process Biochemistry, 42(12), 1586-1591. Zhong, C., Sun, L.-C., Yan, L.-J., Lin, Y.-C., Liu, G.-M., & Cao, M.-J. (2018). Production, 396 optimisation and characterisation of angiotensin converting enzyme inhibitory peptides 397 398 from sea cucumber (Stichopus japonicus) gonad. Food & Function, 9(1), 594-603.

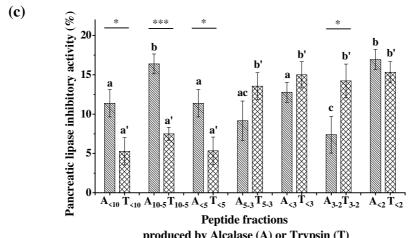
Table 1

The sequences, physiochemical properties, bioactivities, safety and docking energies of inhibitory peptides.

No.	Peptide sequence	equence De novo sequencing		Physicochemical property		Bioactivity (Peptide	Enzyme inhibitory activity			Safety		(-)CDOCKER Energy		
						` *	ACE α-amyla		α-amylase	Toxicity Allerge				
		ALC (%)	LC (%)	pΙ	H ₂ O solubility	Ranker)	Location of fragments	Parameter A			nicity	ACE	α-amylase	lipase
Alcalase-produced peptides														
1	YDWRF	97	96 97 98 98 97	6.36	Good	0.965565	YDW <u>RF</u>	0.2000		No		112.639	101.845	F
2	VVLLPLR	95	95 96 100 100 88 94 93	10.8	Poor	0.375063	VVLLPLR	0.4286		No		112.618	100.133	F
3	LDLPLR	95	92 90 97 97 98 95	6.64	Good	0.601238	LDLPLR	0.5000		No		107.664	117.235	F
4	WDLFR	94	94 86 98 97 94	6.52	Good	0.956441	WDLFR	0.6000		No		88.8559	81.5657	F
5	ELPPHFL	93	90 88 96 97 95 93 96	5.10	Poor	0.821660	ELPPHFL	0.4286		No		108.682	84.4674	74.5224
6	APFPLR	92	84 88 93 93 98 95	10.9	Poor	0.947738	APFPLR	0.8333		No		81.5545	70.4191	60.7478
7	VPFLPR	92	90 87 96 97 92 90	10.8	Poor	0.797496	VPFLPR	0.3333		No		80.8358	75.3007	F
8	PLQLRP	91	96 99 96 94 81 82	11.3	Good	0.599230	PLQLRP	0.8333		No		85.5900	76.1232	F
9	TEFHLL	91	90 96 73 91 97 97	5.10	Poor	0.395475	TEFHLL	0.5000		No		129.975	104.348	F
10	PVFPLR	90	96 97 97 74 86 92	11.3	Poor	0.864694	P <u>VF</u> PLR	0.6667		No		86.2038	68.7906	F
11	EVPLRFW	90	88 79 94 98 88 90 93	6.86	Good	0.830047	<u>EV</u> PLRFW	0.7143		No		112.161	95.4367	F
Trypsin-produced peptides														
1	VELWR	97	93 100 98 98 97	6.84	Good	0.298764	<u>ve</u> lwr	0.4000		No		107.935	105.588	F
2	WALLVDAPR	96	90 99 100 99 96 96 97 98 97	6.52	Poor	0.419358	WALLVDAPR	0.4444		No		141.922	126.433	F
3	LLVNFR	96	98 99 96 92 96 97	10.8	Poor	0.429748	LLVNFR	0.3333		No		121.291	116.337	F
4	VVNLWR	96	98 97 94 94 96 97	10.8	Poor	0.378438	VVNLWR	0.1667		No		114.319	110.854	F
5	QAPVKPR	96	95 98 98 95 96 96 95	11.4	Good	0.422813	QAPVKPR	0.7143		No		104.272	97.6040	F
6	LQLWR	96	94 94 97 96 99	10.8	Good	0.704684	LQLWR	0.4000		No		103.409	108.075	F
7	FPSLVGR	95	96 97 99 100 98 95 82	10.6	Poor	0.643490	FPSLVGR	0.4286		No		105.061	99.8073	F
8	LEEQSR	95	94 98 98 88 95 98	4.15	Good	0.0511313	LEEQSR	0.1667		No		148.099	120.492	F


9	WLDVLR	95	96 95 93 93 97 96	6.52	Good	0.631447	WLDVLR	0.3333	 No	 123.579	121.832	F
10	LLMELR	95	97 96 88 96 97 97	6.86	Good	0.345431	LLMELR	0.3333	 No	 131.147	121.354	F
11	LLLEMEK	94	79 97 97 98 95 99 98	4.15	Good	0.0988306	LLLEMEK	0.2857	 No	 159.526	131.090	F
12	LLELLK	94	89 89 98 96 99 97	6.85	Good	0.157782	LLELLK		 No	 135.126	117.700	F
13	FENLLEELK	93	79 93 95 91 96 98 98 98 98	3.85	Good	0.163453	FENL <u>LEE</u> LK	0.1111	 No	 205.065	167.002	F
14	MNLPFR	93	86 93 96 93 96 97	10.6	Poor	0.902172	MNLPFR	0.3333	 No	 110.060	105.355	F
15	FVLELR	93	82 92 96 98 98 96	6.62	Good	0.319959	FVLE <u>LR</u>	0.1667	 No	 135.643	120.277	F
16	EYVFR	93	92 90 93 96 97	6.81	Good	0.351391	EYVFR	0.8000	 No	 113.542	119.242	F
17	LNLDLLR	93	92 91 94 90 92 96 96	6.64	Good	0.457278	LNLDLLR	0.2857	 No	 144.478	131.423	93.0810
18	SNNVLFR	93	85 85 97 94 98 98 96	10.6	Poor	0.673915	SNNVLFR	0.4286	 No	 136.041	118.587	F
19	LENVLR	93	91 96 86 90 97 98	6.86	Good	0.126053	LENVLR	0.1667	 No	 137.731	124.212	F
20	VMQDQVLR	93	90 95 91 91 89 93 99 97	6.61	Good	0.222451	VMQDQVLR	0.1250	 No	 159.909	137.249	F
21	KVSWR	92	84 95 92 93 97	11.4	Good	0.330550	KVSWR		 No	 107.854	112.654	F
22	SYNELLTK	92	84 86 93 95 86 97 99 97	6.58	Good	0.213744	SYNELLTK	0.2500	 No	 169.344	148.307	F
23	LLQLAR	92	95 97 86 91 90 92	10.8	Poor	0.252639	LLQLAR	0.5000	 No	 108.805	109.644	F
24	FNTDSALER	92	82 82 97 96 88 89 98 100 96	3.93	Good	0.191898	FNTDSALER		 No	 174.249	159.707	F
25	LNFEPR	91	91 87 92 97 89 95	6.86	Good	0.470901	LNFEPR	0.8333	 No	 129.363	101.454	72.3177
26	TTDVLR	91	85 82 93 94 98 96	6.33	Good	0.0895658	TTDVLR	0.1667	 No	 124.179	119.971	94.1367
27	FEQFFK	91	87 96 97 98 95 72	6.61	Good	0.833484	FEQFFK		 No	 148.119	122.455	F
28	FVTVLR	90	89 89 86 88 96 96	10.6	Poor	0.259446	FVTVLR	0.1667	 No	 116.674	113.835	F
29	MANLQR	90	88 92 90 92 88 95	10.6	Poor	0.257394	MANLQR	0.1667	 No	 128.732	114.027	82.5811
30	WDLFR	90	82 85 96 94 95	6.52	Good	0.956441	WDLFR	0.6000	 No	 112.303	115.031	F
31	ELFDPR	90	92 86 89 91 89 93	3.93	Good	0.561531	ELFDPR	0.3333	 No	 127.572	98.7788	F
32	EVPLFR	90	92 85 92 88 87 96	6.86	Good	0.535712	EVPLFR	1.0000	 No	 113.853	98.6151	F


Notes: In the "Enzyme inhibitory activity" category, the location of fragments with ACE inhibitory bioactivity were presented with blue underlines for each peptide. The "---" means no data returned from the online tools. The "F" in the "(–)CDOCKER Energy" category means the failure of molecular docking of the peptide with human pancreatic lipase.


Figure Captions

- **Fig. 1.** ACE inhibitory activity (**a**), pancreatic α-amylase inhibitory activity (**b**), and pancreatic lipase inhibitory activity (**c**), of peptides produced via alcalase (A) or trypsin (T) hydrolysis (MW ranges of <10 kDa, 10–5 kDa, <5 kDa, 5–3 kDa, <3 kDa, 3–2 kDa and <2 kDa). Different letters in alcalase (A)-produced peptides (a, b, c, d, e) or trypsin (T)-produced peptides (a', b', c') means significant difference (p < 0.05). Significance levels of *p < 0.05, **p < 0.01 and ***p < 0.001 were for A- versus T-produced peptides.
- **Fig. 2.** Molecular interaction between inhibitory peptide FENLLEELK and human ACE. Top view of FENLLEELK binding with ACE (a). Molecular surface (H-bond donor and H-bond acceptor in pink and green, respectively) between peptide and ACE active site (peptide molecule in stick and colored by element; key residues of ACE zinc-binding motif in yellow stick) (b). Interactions of ACE-peptide complex (interacting residues of ACE shown in different color based on different interactions) (c).
- **Fig. 3.** Molecular interaction between inhibitory peptide FENLLEELK and human pancreatic α-amylase. Top view of FENLLEELK binding with α-amylase (a). Molecular surface (H-bond donor and H-bond acceptor in pink and green, respectively) between peptide and α-amylase active site (peptide molecule in stick and colored by element; key residues of α-amylase in yellow stick) (b). FENLLEELK in lariat shape (c). Interactions of α-amylase–peptide complex (interacting residues of α-amylase shown in different color based on different interactions) (d).
- **Fig. 4.** Molecular interaction between inhibitory peptide APFPLR and human pancreatic lipase. Pancreatic lipase–co-lipase–peptide complex (a). Top view of APFPLR binding with lipase (b). Molecular surface (H-bond donor and H-bond acceptor in pink and green, respectively) between peptide and lipase active site (peptide molecule in stick and colored by element; key residues of lipase in yellow stick (c). Interactions of lipase–peptide complex (interacting residues of lipase shown in different color based on different interactions) (d).

Fig. 1

produced by Alcalase (A) or Trypsin (T)

Fig. 2

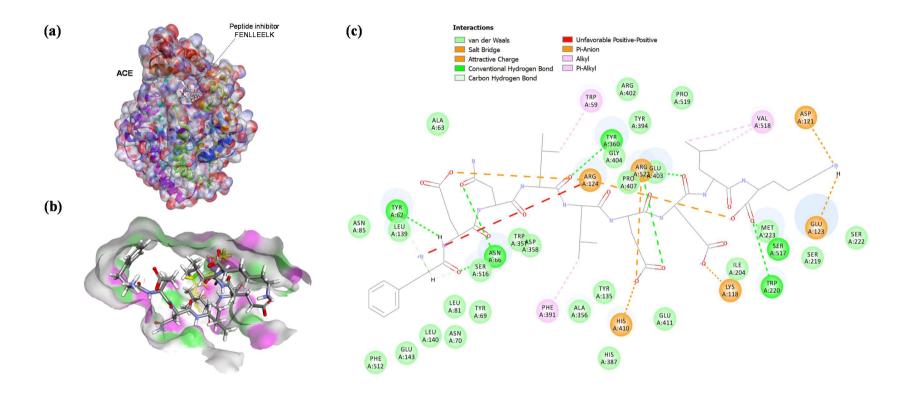


Fig. 3

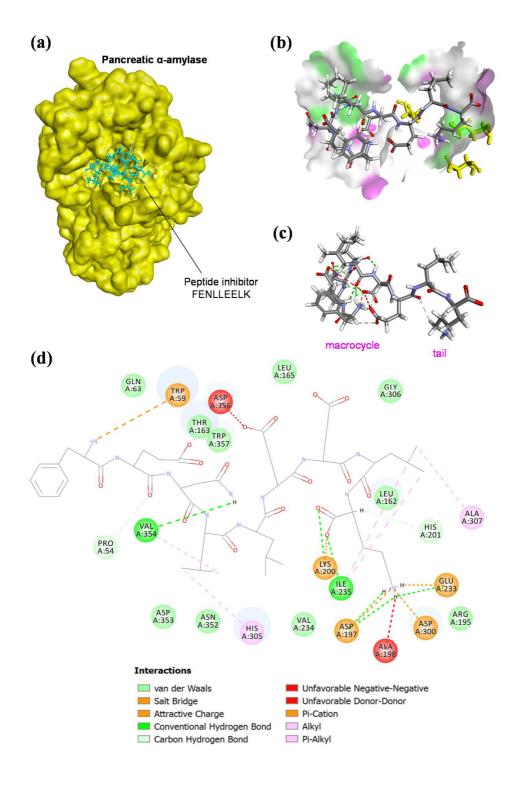
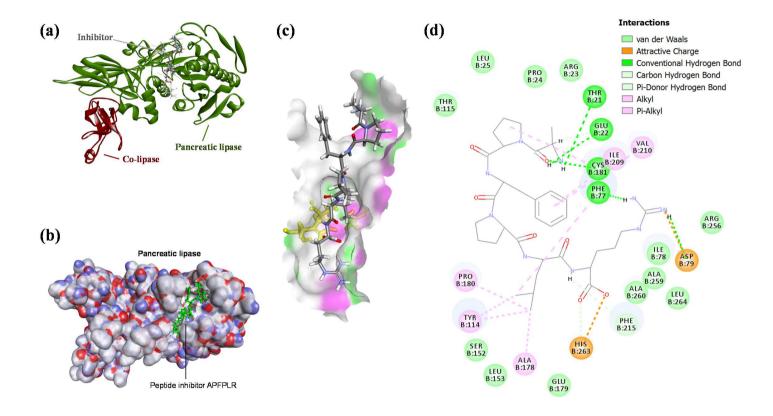



Fig. 4

