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Adaptations of the molecular dynamics engine DL_POLY_2 were recently made to facilitate the investigation of questions
arising mainly in the study of solvation dynamics. This paper presents the new facilities, with consideration of practical
points for their efficient use and illustrative results obtained with them. Supplementary Information provides further details
of their implementation to encourage future improvements and extensions.
The adaptations of DL_POLY_2 for solvation studies are:

† Species by species and inter-species breakdown of the total energy for systems containing several species, such as
solutions or models of adsorption, with, as an illustration, diffusion of a particular water molecule in a microporous silica
zeolite, silicalite. The new facilities allow correlation of the trajectory of the molecule with its interaction with the host
matrix.

† Solvation-induced spectral shifts, illustrated by the absorption shift and Stokes shift of a cyanoaromatic dye in solution in
methanol. We discuss the relative importance of different contributions to the total spectral shift.

† Free energies by thermodynamic integration, illustrated by calculation of the excess free energy of liquid
dimethylsulphoxide. We examine the use of different weighting functions for the mixed Hamiltonian to avoid or to delay
divergence in thermodynamic integration.

Keywords: molecular dynamics; solvation; spectroscopy; free energy

1. Introduction

DL_POLY is a general purpose, parallel molecular

simulation package developed by Daresbury Laboratory

in the UK to support academic research. Since its release

in 1996, it has become widely used by research groups

throughout the world and has been successfully exploited

in numerous and varied studies of molecular systems

which testify to its versatility [1,2]. The software and

documentation is available free of cost under an academic

licence from the website www.ccp5.ac.uk/DL_POLY/.

It is fair to say, however, that while DL_POLYprovides

a versatile and powerful molecular dynamics ‘engine’

capable of performing a wide range of simulations, it offers

less in the provision of system analysis tools. The

introduction of new features that extend the capabilities

of the package in this regard is therefore of interest to many

researchers. These features are already implemented, at

least partially, in other molecular dynamics packages

mainly devoted to biosimulations like Gromacs [3], Namd

[4] or Charmm [5]. In this paper, we describe extensions of

the DL_POLY_2 code to facilitate studies of solubility,

which include the calculation of the energy decomposition

in terms of the different interacting species, solvent-

induced spectroscopic shifts and the free energy of

solvation.

2. Methods

The modifications described in this paper have been

implemented in the DL_POLY_2 program and released as

version 2.20. DL_POLY_2 is a modular code written

primarily in Fortran 77 with components of Fortran 90.

Extensive modifications of the existing code were

required, most of which were confined to the subroutines

that calculate energy terms and forces. An additional

module was also created, named solvation_module, which

hosts the solvation-specific arrays (and some variables)

and gathers additional utilities (see below). This section

gives an overview of the modifications. See the online

Supplementary Information (SI) for more details of their

implementation.

The energy/force subroutines affected were those

which calculate the intramolecular terms: (bonds, valence

angles, dihedrals and inversions); non-bonding pair
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interactions (van der Waals); coulombic (direct sum and

Ewald methods); and three- and four-body non-bonding

angular terms. Some subroutines were not modified due to

the difficulty of isolating species-specific energy terms.

These include the smoothed particle-mesh Ewald method

[6] and the density-dependent interactions based on

Tersoff’s method [7] and the Finnis–Sinclair [8] and

embedded atom model [9] for metallic structures.

Classical molecular dynamics simulations assume a

force field or empirical potential energy function of the

atomic (nuclear) coordinates, parameterised to represent a

particular electronic energy surface, usually the electronic

ground state. Calculation of solvent-induced spectral shifts

required the introduction of a new feature: the ‘ghost’

molecule. The ghost molecule here represents part of the

system, typically a chromophore in an excited state, for

which different force field parameters apply. The ghost is

located at the exact same position as the ground state

chromophore, but it is not fully coupled to the other parts

of the system. It functions as a probe of the interactions in

the other state, e.g. those with the solvent environment

surrounding the chromophore in its excited state.

Formally, the ghost does not possess any dynamics of its

own and exerts no force. It is simply mapped on to the

location of the ground state structure, from where its

interaction with the solvent is computed at regular time

intervals. The ground state chromophore may be part of a

larger molecule and can be defined, with the ghost

molecule, as a contiguous part of it. For spectroscopic

purposes, the remainder of the molecule is then treated on

the same basis as the solvent.

The most obvious use of these facilities is associated

with a change of the chromophore–solvent interactions in

the excited state. Note, however, that it is quite permissible

to change intramolecular terms such as bond stretching

constants and reference bond lengths.

An option has also been provided in the program,

which at intervals switches the identities of the ground

state chromophore and the ghost molecule. As a result of

this switch, the simulation is able to follow the relaxation

of the solvent in response to the instantaneous creation of

the excited state, responsible for the experimentally

measurable time-dependent Stokes shift of dyes in solution

and this data is available in the output files. Similarly, the

relaxation after an instantaneous quench between the

excited and ground states could be followed, with some

adaptation by the user, to model vibrational cooling.

Modifications to calculate the free energy of solvation

are partly based on those made for the solvent-induced

shift calculations. Thus, the Hamiltonian used to propagate

the system in thermodynamic integration is a weighted

average of those of the initial and final states, but one

needs to configurationally average the full energy

difference between the states. This is readily accomplished

by adapting the ‘ghost’ molecule scheme.

3. Illustrations

3.1 Energy decomposition

The new version of DL_POLY distinguishes the contri-

butions of different molecular species to the total energy.

This is by means of a proper bookkeeping of the energy

contributions and is of use in several fields. While we

concentrate here on the configurational or potential energy,

decomposition of the kinetic energy is provided too. In

practice, it is the total temperatures that are reported.

Decomposition of the kinetic energy helps to check thermal

equilibrium between all components of a simulation

coupled to the same temperature bath. Adaptation to

distinguish rotational and translational temperatures should

be straightforward. Other possibilities that come to mind

include the study of the energy loss of particles bombarding

a surface, as in sputtering [10] or radiation damage [11],

simulations in the presence of external fields, which may

lead to significant heating or cooling of the molecular

system, and thermodynamics of solvation [12].

The new facility should be useful for the study of a

variety of inhomogeneous systems, such as molecules at

interfaces [13]. Here, we illustrate decomposition of the

potential energy, by returning to a recent study of the

diffusion of water in the orthorhombic phase of the pure

silica zeolite silicalite [14]. The reader is referred to this

paper for details of the methods and force fields (SPC/E for

water and a modification of the BKS force field for

silicalite).

The microporous zeolite contains two channel systems

that intersect tangentially – straight channels along the

crystal b-direction and zig-zag or sinusoidal channels in

the ac-plane, lying along a (see Figure 1). Direct diffusion

along the c crystal direction is thus impossible. Rather,

diffusion along c occurs via alternate half zig-zag steps in

the ac-plane, interspaced by (at least) half unit cell steps

along the b-direction. Simulated annealing revealed a

specific adsorption site of water in the channel intersec-

tions, adsorption energy ca. 240 kJ/mol, and unspecific

adsorption in the channels, with adsorption energy ca.

221.5 kJ/mol.

Interestingly, plots of the mean squared displacement

of water molecules in the zeolite showed that the onset of

regular diffusion along the c-direction lags about 100 ps

behind the onsets in the a and b directions. This suggests

that molecules switching between the straight and the zig-

zag channels must overcome a potential energy barrier.

The obvious candidate is climbing out of the specific

adsorption site. The energy decomposition facility in

DL_POLY allows us to visualise this barrier. Figure 1(a)

and (b) shows two orthogonal projections of the zeolite

framework and part of the trajectory of a particular water

molecule, in a simulation at 300K.

The energy decomposition facility in DL_POLY was

used to prepare Figure 1(c), showing the sum of the water-
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framework electrostatic and van der Waals energy terms.

The trajectory is colour coded as a function of time as

the molecule diffuses along the b-direction (also y in the

orthorhombic unit cell). We highlight periods spent in the

adsorption site at the beginning and the end, separated by

diffusion down the channel. Overall, the molecule also

moves half a unit cell along the c-direction (see above).

Along the trajectory, we observe a ca. 20 kJ/mol jump up

and down in the potential energy, consistent with the

adsorption energies found in simulated annealing and with

the activation of diffusion along c.

3.2 Solvation and Stokes shifts of optical spectra

3.2.1 Classical simulation of solvation shifts

The second feature introduced in the new solvation module

of DL_POLY is the ability to propagate a simulation with

one force field, and to periodically calculate what the

configurational energy would be if part or all of the system

were represented by different intra- or intermolecular force

fields. The secondary force field is in no way connected

with the dynamics. It merely serves to probe what the

interactions would be. Use of this feature causes the energy

decomposition to come into play at regular intervals,

successively once each timewith the force field used for the

dynamics and with the probed force field, as described in

more detail in the SI.

This facility was introduced with the aim of simulating

a system switching between electronic energy surfaces.

While the transition process itself obviously is an

electronic process, beyond the reach of classical molecular

dynamics, it often may reasonably be approximated by a

sudden jump between energy surfaces (Franck–Condon

approximation [15]), before and after which the nuclear

motions may be described by classical mechanics.

The facility is quite general. Both intra- and inter-

molecular interactions may be altered in the second or

‘ghost’ force field. A possible use that comes to mind is the

study of the elastic relaxation around ‘molecular magnet’

transition metal complexes [16]. Here, we illustrate the

facility by simulating the solvent-induced spectral shifts of

electronic absorption and fluorescence transitions in a liquid

solution.

Figure 2 illustrates schematically a molecule under-

going an optical absorption–emission cycle from a

configuration close to the ground state minimum. Within

the present description with empirical force fields, the

absorption energy of the system at time t is

hnabsðtÞ ¼ EeðQðtÞ;RðtÞÞ2 EgðQðtÞ;RðtÞÞ; ð1Þ

where the ground and excited state energies, E g and E e,

respectively, are described by different force fields

involving in principle both intramolecular (Q) and

intermolecular (R) coordinates. For example, dependence
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Figure 1. Illustration of the use of the energy decomposition
facility. A single water molecule (coloured line shows centre of
mass trajectory) diffuses 1.5 unit cells down the b crystal
direction in silicalite (black), in a simulation at room temperature
(see Ref. [14] for details). (a, b) Orthogonal projections on the ac
and the bc planes. (c) Total water–host interaction energy vs.
time. The targeted water molecule is at first trapped in a specific
adsorption site (red) in the cavity formed by the intersection of
the channels along a and b. A thermal fluctuation promotes it to
the channel along b (green), where it diffuses until it is again
trapped (blue) in another cavity (colour online). Water trapped in
the cavities is about 20 kJ/mol more stable than during diffusion
along the channel.
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on the intramolecular coordinates could arise from a shift

of the equilibrium geometry of the molecule and of its

vibrational frequencies, reflecting the fact that in the

quantum description, the electrons are less tightly bound to

the nuclei in the excited state. Intermolecular interactions

generally are sufficiently small compared to intramole-

cular interactions to be treated as an additive perturbation,

so that the ground state energy can be written as a sum of

intra- and intermolecular contributions:

EgðQ;RÞ ¼ E
g
intraðQÞ þ E

g
interðRÞ; ð2Þ

and similarly for the excited state e. The solvation shift of

the optical absorption spectrum follows from sampling

Ee
interðRÞ2 E

g
interðRÞ at regular intervals and binning the

results. If the actual shape of the absorption spectrum is

required, sampling Ee
intraðQÞ2 E

g
intraðQÞ is not satisfactory

since it will not generate the progression of intramolecular

vibronic bands of polyatomic molecules. A better plan is to

obtain the vibronic progression either from an experiment

in a weakly interacting solvent (e.g. hexane) or from a

quantum calculation of vibronic frequencies and Franck–

Condon overlap factors. The full vibronic (line) spectrum

of the molecule in vacuo may subsequently be convoluted

with the distribution of the solvation shifts.

Two main kinds of contribution to the solvation shift

are electrostatic interactions and dispersion forces. The

effects of both are explored here. They may be modelled,

respectively, by introducing different partial charges or

different van der Waals parameters in the excited state

force field. Variations of the charges may be deduced from

quantum chemistry, followed by population analysis or

electrostatic potential fitting. The variations are not

systematic, but depend on the polar nature of the molecule

and on the electronic states involved. For example,

intramolecular charge transfer in common laser dyes such

as coumarins usually increases in the p2 p* excited state,

but decreases in the case of n2 p* transitions. On the

other hand, some systematic variation of van der Waals

parameters between the ground and excited states can be

expected, since molecules in their excited states usually

are less tightly bound and more polarisable. Thus, one

would expect to have to increase both the van der Waals

radii and the depths of the potential wells (greater

polarisability in the excited state implies larger coeffi-

cients for the 21=r 6 terms).

Note in passing that the solvent shift of the emission

spectrum is in general not obtained just by reversing the

roles of the ground and excited states. Absorption of a

photon produces a new electronic state that in general will

not be in equilibrium with the solvent cage corresponding

to the ground state. Spontaneous emission is a stochastic

process with a Poisson distribution of waiting times, with a

characteristic mean lifetime, say tF, of the order of a few

nanoseconds in the case of strongly emitting fluorescent

dyes. Only if the solvent relaxation is notably faster than

the emission process will the emission correspond to that

from a dye at equilibrium in a relaxed solvent cage. In

general then, the emission solvation shift is time

dependent, leading to a time-dependent ‘Stokes shift’

between the absorption and the emission spectrum. In fact,

measurement and simulation of the time-dependent shift

has long been used [17] to probe solvent relaxation on

timescales of the order of 100 fs–10 ns, a subject of topical

interest being solvation in ionic liquids [18].

Because fluorescence emission is not an equilibrium

process, provision is made in the solvation module of

DL_POLY to simulate the whole cycle in Figure 2. The user

can thus switch at regular intervals between using the ground

and excited state force fields, respectively, for propagation

of the system, while probing the other force field. By

repeating this process and binning the solvation shift at

different lags after the switch, one can build up the time-

dependent emission spectrum. Beware that in practice this

will be expensive. Commonly, at least a thousand runs are

needed to average fluctuations of the relaxation of the

solvent cage. The length of the runs will naturally depend on

the viscosity, but a few tens of picoseconds would not be

unusual for common laboratory solvents at room tempera-

ture. Adding to this the relaxation of the ground state back to

its equilibrium solvent cage to complete the cycle in Figure

2, one should thus expect to simulate a total of 10–100 ns of

dynamics.

E
ne

rg
y

Q, R

g>

e>

hnem

hnabs

Figure 2. Schematic representation of an absorption–emission
process, in which a photon (energy hnabs) is absorbed with the
nuclei in a configuration close to the minimum of the ground state
energy surface (jg .), carrying the system to the excited state
surface (je .). The nuclei subsequently relax towards the
minimum of the excited state energy surface. Emission (photon
energy hnem) carries the system back to the ground state. The
surfaces depend on both intra-(Q) and intermolecular coordinates
(R).
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3.2.2 Example: 9,10-dicyanoanthracene in methanol

As an example, we now consider the solvation shifts of

9,10-dicyanoanthracene (DCA, Figure 3) in methanol.

DCA is of interest as a widely used photosensitiser in

homogeneous and inhomogeneous photo-oxidation [20].

Table 1 shows measured absorption and emission shifts for

the first excited singlet state of DCA, relative to the

transition in vacuum. Full details of the simulations are

available in Ref. [19], our purpose here being to illustrate

the use of the solvation module in DL_POLY. Briefly,

simulations were performed at room temperature and 1

atm pressure, in the Berendsen NPT ensemble [21], on a

single DCA molecule in a box of 2197 methanol

molecules (OPLS all atom model [22]). The model of

DCA (equilibrium geometry, harmonic bond, angle and

dihedral force constants, point charges) was developed

with reference to B3LYP/6-311G(d,p) DFT calculations.

Partial atomic charges from an electrostatic potential fit

were small (the largest being^0:45e on the cyano group).
The molecule is centro-symmetric, so it has no permanent

dipole in either electronic state and charge jumps between

the ground and excited states were very small, ca. 0.02e.

Solute–solvent van der Waals forces were represented by

Lennard-Jones potentials. The contribution to the config-

urational energy of interactions between the solvent (S)

and the dye (D) in state s (s ¼ g; e) is thus a sum over pairs

of atoms i, j separated by distances rij:

Vs
solute–solvent ¼

X
ieD; jeS

qsi qj

4p10rij

þ 4pe sij
ss
ij

rij

� �12

2
ss
ij

rij

� �6
 !

:

We took initial parameters for the ground state of DCA

from fits to 6 2 exp interaction models in the literature,

which were subsequently reoptimised to improve the

predicted structures and enthalpies of sublimation of two

different cyanoanthracene crystals [19]. Finally, cross-

terms with the OPLS model of methanol were determined

using the Lorentz–Berthelot mixing rules.

Taking into account the remarks made in Section 3.2.1,

the excited state was modelled by increasing the depths of

the Lennard-Jones potential wells (1’s) on N and C atoms

(ring and cyano groups) or their radii (s’s). Indeed, as

expected, analysis of the molecular orbitals shows that H’s

do not participate in the transition. The solvation facilities

in DL_POLY can be used to identify the contributions of

different components in the total solvation shifts. We

discuss below the influence on the total solvation shift

(summing all contributions) of varying separately or

together the force field parameters controlling electro-

statics or the van der Waals forces. All the data shown may

be extracted with the new facilities and toolkit provided

with DL_POLY.

Figure 4 shows the influence on the solvation shifts of

varying either the solute point charges q or the depths 1 of

the Lennard-Jones potential wells. From symmetry, the

lowest order permanent multipole of DCA is a quadrupole.

The contribution of electrostatic interactions (shifted

potential approximation) to the total solute–solvent

CNNC

Figure 3. 9,10-Dicyanoanthracene.

Table 1. Absorption solvation shift and Stokes shift of DCA in
methanol.

Absorption shift (cm21) Stokes shift (cm21)

Exp.a 21360 2700
Calc. 21300 2480

aRef. [19].
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Figure 4. Distributions of the absorption (black) and the
emission (grey) solvation spectral shifts of DCA in methanol as
either charges only (a) or 1’s only (b) are changed in the excited
state, averaged over 1500 configurations from runs of 10 ns.
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interaction is correspondingly small, i.e. solvation is

essentially non-polar. It is therefore not surprising that,

even in the polar solvent methanol, the electrostatic

contribution to the solvation shifts is very small.

Fluctuations of the solvent cage lead to a broadening of

about 100 cm21 FWHM. Next, the solute–solvent Len-

nard-Jones potential well depths are increased in Figure

4(b) by 7%, this value being a typical order of magnitude of

the ratio of solvation absorption spectral shifts to enthalpies

of sublimation in non-polar systems [23,24]. Increasing

only the depth of the Lennard-Jones wells induces a

solvation red shift of<620 cm21 in both the absorption and

the emission. The absorption and emission shifts differ little

because the small increase in the depth of the potential wells

does not influence the structure of the solvent cage, i.e.

relaxation in the excited state is negligible in this case. Note

that in both the above cases, the distributions are

symmetrical about their mean values.

Increasing just the Lennard-Jones radii for solute–

solvent interactions, here by 5%, has a stronger effect, see

Figure 5(a). The mean absorption shift, 600 cm21, is larger

than previously. The mean emission shift is about

1020 cm21. The distribution of the solvation shifts is

sharper and less skewed in the excited state. Figure 5(b)

shows that the solvation shell expands slightly in response

to the creation of the excited state, as shown by the CC pair

correlation functions between methanol and DCA in its

ground and excited states, g0CCðrÞ and g*CCðrÞ. This is

highlighted as a hole in DgCCðrÞ ¼ g*CCðrÞ2 g0CCðrÞ

between 3 and 4 Å in Figure 5(c). Observe in Figure 5(b)

that some equilibrium C–C distances are mapped into the

repulsive wall of the excited state potential function,

explaining the tail of positive solvation shifts observed in

the simulation. On the other hand, equilibrated pair

distances in the excited state tend to be mapped back to the

attractive, but (compared to the wall) flatter part of the

ground state interaction potential, beyond its minimum.

Hence, the distribution of equilibrium emission shifts is

sharper, less skewed and on average greater than that of

absorption (see also Figure 5(c)).

Figure 6 shows the total solvation shifts when all three

changes are combined. The average solvation shifts and

the Stokes shift between absorption and emission are in

fair agreement with the experimental values (Table 1).

3.3 Free energy differences

3.3.1 Theory

The third new capability added to DL_POLY is

thermodynamic integration to obtain free energies of
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emission (grey) solvation spectral shifts of DCA in methanol
when the s’s only are changed in the excited state, averaged
over 1500 configurations from runs of 10 ns; (b) first peak of the
C–C pair correlation function between DCA and methanol,
(thin, ground state, g0CCðrÞ; thick, excited state, g*CCðrÞ),
superposed on the corresponding Lennard-Jones interactions
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solvation (a feature which can also be exploited in studies

not related to solubility). Atoms of the system are

classified as an unchanged part, the solvent, S, an initial

solute or state of a solute, A, or a final solute, B, which just

might be A, but with a different force field. One wishes to

estimate the free energy difference between states

described by initial and final Hamiltonians H0 and H1

defined by

H0 ¼ KS þ KA þ VAA þ VAS þ VSS; ð3Þ

H1 ¼ KS þ KB þ VBB þ VBS þ VSS; ð4Þ

where K and V refer, respectively, to kinetic and potential

energy contributions. Thermodynamic integration is

a well-established technique for calculating free

energies (see [25,26]). It is based on the concept of a

‘mixed’ Hamiltonian which combines two systems

together in one:

Hl ¼ ð12 lÞH0 þ lH1; ð5Þ

where lð0 # l # 1Þ is the so-called ‘mixing parameter’.

For such a Hamiltonian, it is easy to show that in the

canonical (NVT) ensemble,

›A

›l
¼ kH1 2 H0ll; ð6Þ

in which A represents the Helmholtz free energy and the

term kH1 2 H0ll is the average energy difference between
full Hamiltonians H1 and H0 in a system governed by the

mixed Hamiltonian (5) with a fixed value of l. It follows

from Equation (6) that

D1
0A ¼

ð1
0

kH1 2 H0lldl; ð7Þ

where D1
0A is the free energy difference between the

independent systems described by Hamiltonians H0 and

H1. In practice, integral (7) is calculated numerically from

a series of averages, each obtained from a molecular

dynamics simulation using a distinct value of l.

One has, of course, to be able to simulate the system

described by the mixed Hamiltonian. Mixing the full

Hamiltonians, necessary for estimation of Gibbs free

energy differences, leads to problems arising from an

effective rescaling of the atomic masses in the kinetic

contribution, and to instabilities in the integration of the

equations of motion. Though DL_POLY does permit

scaling of kinetic energies if required, it is fortunately not

necessary for calculations of the free energy of solvation in

the canonical ensemble. For this purpose, one may

redefine HðlÞ as

HðlÞ ¼ K þ ð12 lÞV0 þ lV1; ð8Þ

where K is the kinetic energy common to both states 0 and

1, and V0 and V1 are the potential energies:

V0 ¼ VAA þ VAS þ VSS; ð9Þ

V1 ¼ VBB þ VBS þ VSS; ð10Þ

K ¼ KA þ KB þ KS: ð11Þ

These equations describe transformation of a solute A

and non-interacting degrees of freedom corresponding to B

into solute B with non-interacting degrees of freedom of A.

The mixed Hamiltonian is thus:

HðlÞ ¼ KA þ KB þ KS þ ð12 lÞðVAA þ VASÞ

þ lðVBB þ VBSÞ þ VSS: ð12Þ

Thus, unlike the mixing rule (5), even when atoms are

added or deleted on going from A to B, there is no kinetic

energy correction term, since, even at l ¼ 0 (or 1), A and B

are both simultaneously present, one physically and the

other as degrees of freedom.

The estimate of the Helmholtz free energy difference is

thus:

D1
0A ¼

ð1
0

kV1 2 V0lldl: ð13Þ

The reader will notice that for l – 0; 1, solutes A and B

interact indirectly via their interactions with a common

solvent S, notably their contributions to the pressure. It is

therefore important to ensure that the numerical

integration of (13) is pursued sufficiently close to the

limits.

It will furthermore be noticed that the l ¼ 0; 1 states

above are not directly relevant to measurable free energy

differences. Typically one wishes to compute the free

energy difference between dissolving A or B in S, in which

case account has to be taken of the free energy difference

involved in returning (resp. taking) A (B) to or from their

respective reference states, as illustrated in Figure 7. When

theHamiltonians aremixed, the valueD1
0A computed above

should be corrected by adding , HAA . 2 , HBB ..

Similarly, the correction in potential mixing is

, VAA . 2 , VBB ..

3.3.2 Mixing rules

It is well known that calculating the required averages in

Equation (6) or (13) is problematic when l approaches the

values of 0 or 1. Near these extremes, it is the full

difference of the Hamiltonians which is sampled, but in

configurations whose evolution is governed by the

weighted Hamiltonian Hl. Typically, this leads to

sampling bad van der Waals contacts, so that the averages
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are subject to large fluctuations. A useful technique to help

with this difficulty is to replace the simple mixing

parameter l by a function f(l) so that Equation (7) for

example becomes

D1
0A ¼

ð1
0

ðH1 2 H0Þ
›f ðlÞ

›l

� �� �
l

dl: ð14Þ

The function f(l) is chosen so that its derivative with

respect to l tends to zero at l ¼ 0 and l ¼ 1, while f(l)

itself tends to 0 and 1, respectively, at these locations.

Appropriate forms of f(l) thus dampen the large

fluctuations associated with the end points of the

thermodynamic integration and obviate the need for

simulations at the end points where the averages are

formally zero. This strategy shifts the numerical difficulty

from integrating divergences at the end points to accurate

sampling of a fast-varying function in a narrow internal

subinterval as done by Beutler et al. [27]. In DL_POLY, we

have included the following forms for f(l):

(1) Standard linear mixing:

f ðlÞ ¼ l;

(2) Non-linear mixing:

f ðlÞ ¼ 12 ð12 lÞk;

where k is a positive integer;

(3) Trigonometric mixing:

f ðlÞ ¼
1

2
{1þ sin½pðl2 1=2Þ�};

(4) Error function mixing:

f ðlÞ ¼
affiffiffiffi
p

p

ðl
0

exp½2a2ðx2 1=2Þ2�dx;

where a2 is a real parameter of order 10–11; and

(5) Polynomial mixing:

f ðlÞ ¼ 12 ð12 lÞk
Xk21

i¼0

ðk2 1þ iÞ!

ðk2 1Þ!i!
l i;

where k is a positive integer.

Figure 8 compares these weighting functions. Forms

(3)–(5) have desirable properties with regard to both end

points of the thermodynamic integration, while form (2) is

suitable for systems with problems at one end point, as

when atoms are created or deleted only. Not all forms of

weighting are equally proficient at damping the fluctu-

ations at the extremes of the range of l, as will be seen in

examples presented below.

In general thermodynamic integration, if the initial and

final systems are very similar, for example substitution of a

chemical group by another of a very similar size and

interactions, the perturbation induced by the substitution is

minor. The simple linear mixing rule may then give

reasonable results. For more complex substitutions, it is

undesirable to sample the full interactions kV1 2 V0lwhen
particles are actually disappearing in the dynamics. This

0 0.25 0.5 0.75 1

λ

0

0.25

0.5

0.75

1

f(
λ)

Figure 8. Weighting functions f(l) of the mixing parameter l in
thermodynamic integration: linear (straight line), non-linear
(here k ¼ 6, dotted line), trigonometric (dashed line), error
function (dot-dashed line) and polynomial (k ¼ 6, double-dot-
dashed line).
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Figure 7. Thermodynamic cycles for the solvation free energy
difference of two species A and B in a solvent S. Initial state: A in
solution and B in some reference state; final state: B in solution
and A withdrawn, in its reference state. Upper cycle: at the end
points of integration in potential mixing, B (resp. A) is present as
degrees of freedom. The corrections 2dAB and dAA correct for
suppressing/reinstating internal interactions in B or A. Lower
cycle: in Hamiltonian mixing, the corrections must allow for
annihilation (creation ex nihilo) of B (A).
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situation can be avoided by using one of the mixing rules

(3)–(5). On the other hand, the faster the approach of f(l)

to 0 or 1 at the end points, the steeper will be its variation

in the centre of the interval. Attention should then be paid

to the spacing of the discrete l values to achieve accurate

results. These points are illustrated in the next section.

3.3.3 Illustration: excess free energy of liquid

dimethylsulphoxide

We illustrate the calculation of free energy differences

with the Helmholtz excess free energy of dimethylsulph-

oxide (DMSO), for an all atom model reparameterised by

Bordat et al. [28]. Simulations were performed in the

Berendsen NVT ensemble [21], at room temperature and

atmospheric pressure. Formally, as l ranges from 0 to 1,

we insert one extra molecule in a box already containing

430 other molecules (representing the experimental

density). In practice, the transformation is run in reverse,

gradually removing the extra molecule. DMSO was

represented as a rigid unit. A 2 fs timestep was used and

electrostatic interactions were treated by the reaction field

method with a dielectric constant 1 ¼ 46.

We evaluate the excess free energy by removing one

molecule from the box between l ¼ 1 and l ¼ 0.

Referring to Figure 7, solute A is absent and solute B is

a DMSO molecule, here a rigid unit. Since we used

potential energy mixing, the correction to D1
0A is

, VAA . 2 , VBB .. However, , VAA . vanishes

trivially and , VBB .¼ 0 for the rigid unit modelling of

the DMSO molecule. Therefore, the experimentally

relevant excess free energy D
f
i A is in this case simply D1

0A.

Removing a molecule represents a rather violent

perturbation for the rest of the solution which has to

fill in the hole left by the disappearing molecule. We

apply and comment on all the available mixing rules to

illustrate the points made in the previous section.

Taking account of the direction in which the

transformation is run in the simulations, the estimated

excess free energy is

DexcF ¼ 2DL
1 A ¼ 2

ðL
1

dA

dl
dl: ð15Þ

DexcF is plotted in Figure 9 as a function of the lower

bound L, for the non-linear mixing rule (2) with k ¼ 3 to

k ¼ 10. Note the logarithmic spacing of the l points used

to try to control the divergence of the integrand close to

l ¼ 0. Despite this precaution, the integral is unconverged

(non-zero slopes of the graphs) for all values of k.

Figure 10 compares the linear mixing (rule (1)) with

the trigonometric and the error function weightings. As

expected, linear mixing leads to poor convergence. The

trigonometric weighting function gives better results,

though visibly still not completely converged. Error

function weighting gives fully converged results, even for

L as large as 0.1. On the other hand, the integral varies

very fast forL close to 0.5, requiring more sampling points

than the trigonometric function. The excess free energy

estimated from the error function is 235.4 kJ/mol.

Finally, Figure 11 shows DL
1 A obtained with the

polynomial weighting function. This mixing rule, displayed

in Figure 8 for k ¼ 6, has a similar behaviour to the error

function weighting, leading to a converged value for the

excess free energy. We suspect that a compromise between

convergence at the end points and not-too fast decay of the

polynomial function in the middle of the interval, can be

more easily struck by tuning the k exponent than by tuninga

in the error function weighting (in fact, a can be changed

only by recompiling the code). Here, k ¼ 6 yields good

results. Higher values lead to a behaviour similar to the error

function. DL
1 A depends slightly on k in Figure 11. This

reflects room for improvement of the sampling points in the

centre of the interval [0,1]. However, for k ¼ 3 to k ¼ 8, the

excess free energy converges quickly towards a value of

230.3 kJ/mol. This result is close to the experimental value

of 229.7 kJ/mol [29] and to a previous thermodynamic

integration calculation [28], with the programYASP [30]. In
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Figure 10. DL
1 A for the linear (triangles), trigonometric (circles)

and error function (squares) mixing rules.
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Figure 9. Convergence of the excess free energy of DMSO as a
function of the lower bound of thermodynamic integration, DL

1 A,
Equation (15), for mixing rule number (2) for different exponents
k in the [3–10] range. Convergence of the integral is
unsatisfactory in all cases.
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conclusion, thermodynamic integration can provide accu-

rate results, provided attention is paid both to the mixing

rule, determined by the similarities or differences character-

ising the end points, and to the sampling points, determined

in turn by the weighting function.

4. Conclusions

It is to be hoped that the new facilities for solvation studies

in DL_POLY will be relevant to the work of a wide range

of users. Further developments should be possible, such as

adapting the force-field switching facility from its present

application in spectral shift calculations to the calculation

of vibrational relaxation. Another possible use is to switch

between the full molecular force field of a system and one

either with attenuated interactions or a coarse-grained

model, which might prove useful in some problems of

exploring the configurational space.
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Figure 11. DL
1 A for mixing rule (5) for k in the [3–8] range.
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