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Abstract. The properties of hcp magnesium are investigated using the density functional
method with the linear combination of atomic orbitals as implemented in the CRYSTAL95
code. The lattice equilibrium parameters and the binding energy have been calculated at the
Hartree–Fock level, at the hybrid Hartree–Fock density functional level, and at the Kohn–Sham
density functional level using local and non-local exchange and correlation potentials. The
electronic properties (band structures, topologies of the Fermi surface, and densities of states)
and the elastic constants are computed for each type of functional, and compared to experimental
data.

1. Introduction

Density functional theory (DFT) is one of the techniques commonly used for studying
accurately the electronic structure of atoms and molecules. It has been demonstrated
as effective and competitive with other quantum chemical methods [1–3]. For periodic
systems, DFT is at present the only suitable technique for treating the electronic correlation
with the standard computer programs from general treatment methods because it takes into
account explicitly exchange and correlation functionals and potentials. Density functional
linear combination of atomic orbitals (LCAO) calculations generally improve the lattice
parameters, the thermochemical data, and the elastic behaviour of covalent, ionic, and
semi-ionic crystals as compared to pure Hartree–Fock results [4–6]. Little is known con-
cerning metallic systems. Following up our investigations on the hexagonal-close-packed
(hcp) magnesium system [7], which has been the subject of extensive theoretical and
experimental work [8–13], we have carried out a systematic and comparative study of
Hartree–Fock (HF), DFT local density approximation (LDA), and DFT generalized gradient
approximation (GGA) calculations on hcp Mg properties. In this work, several forms of the
exchange–correlation functional are used to improve the agreement between the calculated
and experimental properties and to establish the limits of each approach.

The outline of this paper is as follows. In section 2, methods and computational details
are presented. In sections 3, 4, and 5, the results on structural and thermodynamical
properties, and of electronic structure and elastic property calculations for Mg are
successively summarized and discussed.
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2. Computational details

In the present study, the CRYSTAL95 computer program [14] has been used. It has been
generalized in order to apply DFT-LCAO methods as well as the HF-LCAO technique to
periodic systems. We refer the reader to previous publications for a description of the
periodic Hartree–Fock crystalline orbital LCAO self-consistent-field computational scheme
as implemented in this code [4–6]. The DFT method is used at two levels of approximation.
In the first level, different correlation functionals have been applied to the Hartree–Fock
electronic density in the so-calleda posteriori DFT correlation method. This method is
referred to as the hybrid HF-DFC/HF method where ‘/HF’ indicates that HF electronic
density is used as the input density for the correlation density functional. At the second
level of approximation, the exchange and correlation potentials are included in the crystal
Hamiltonian. In this case, the Kohn–Sham equations are solved self-consistently and this
method is denoted as ‘DFX-DFC/DFX-DFC’ where the symbols ‘DFC’ and ‘DFX’ are
substituted for with the appropriate names of the correlation and exchange functionals
respectively. The exact exchange–correlation energy functional may be expressed in terms of
the electron density, gradients of the density, higher-order derivatives of the electron density,
and numerous non-local terms. The local exchange–correlation functional only depends on
the electron density, and the non-local corrections correspond to gradients of the density. In
our study, we have used a set of local density approximation (LDA) and generalized gradient
approximation (GGA) exchange and correlation functionals which gave reasonable results
in previous calculations on covalent and ionic crystals [5, 6]. Local density approximation
calculations were performed with the Dirac–Slater exchange (LDA) [15] and the von Barth
and Hedin correlation (VBH) [16] energy functionals. The non-local exchange potential
given by Becke (BEC) [17] is used while the non-local correlation potential is that given
by Perdew (P91) [18].

The Kohn–Sham LCAO periodic method based on numerical integration at each cycle of
the self-consistent-field process is computationally more expensive than the periodic LCAO
Hartree–Fock method which is almost fully analytical. For this reason, the HF-DFC/HF
model can be interesting from a computational point of view if it gives reasonable results.
The extension of the existing HF-LCAO CRYSTAL code to a DFT one allows a very direct
comparison between these methods using the same code, the same basis set, and the same
computational conditions.

Such calculations are affected by two kinds of error: the basis-set incompleteness and
the numerical approximations introduced in the implementation of the HF (or KS) equations.
The all-electron basis set adopted in this work is similar to that used in previous studies
on magnesium compounds [19]: 13 atomic orbitals per atom have been used from linear
combinations of Gaussian-type functions (GTF) which are each the product of a radial
Gaussian times a real solid harmonic. The basis set can be written as 8-6-11G where the
numbers refer to the level of contraction. The exponents of the last two sp shells have
been optimized at the HF level by searching for the minimum crystalline total energy for
the experimental geometry. The convergence of the exchange series imposes lower limits
on the values of these exponential coefficients. The more the spatial extension of the basis
functions increases, the less well the exchange series converges. The two optimal external
exponents (0.100 and 0.425) take this limit into account. The effects of d functions optimized
to minimize the total energy (αd = 0.234) have been shown to be negligible at the HF-
DFC/HF level: such data as lattice parameters and the binding energy are not significantly
improved, and elastic constants even become worse. These effects are just analysed in the
non-local approximation (BEC-P91). Such a basis set is obviously inadequate for a metal



Hartree–Fock and Kohn–Sham properties of hcp Mg 10971

system like the present one, but in their HF calculations on hcp beryllium, Dovesiet al
[20] showed, trying a number of extended s–p sets and several contraction schemes, that
the quality of the basis did not depend as much on the number of independent Gaussian
orbitals as on the range of the exponents that they span.

The computational conditions were chosen to minimize the numerical errors introduced
in the evaluation of the Coulomb and exchange series as well as in the reciprocal-space
integration. The Fock matrix was diagonalized at 133k-points within the irreducible
Brillouin zone. 793k-points are needed to determine the Fermi energy and reconstruct
the density matrix by means of a Fourier interpolation from the calculated eigenvalues and
eigenvectors. The use of 270k-points instead of 793 changes the total energy by about
0.04 eV per atom. The resulting total-energy error propagates through first and second
energy derivatives to the lattice parameters, binding energy (BE), and elastic constants. The
error bars for these data are about 0.01Å, 0.01 eV, and 108 N m−2 respectively. The
equilibrium geometry for each type of calculation is obtained by optimizing simultaneously
the two lattice parametersa and c with respect to the crystalline energy by a gradient
method (the Newton–Raphson method). All binding energy results include the zero-point
vibrational energy (ZPE) and the basis-set superposition error corrections (BSSE). For each
optimized geometry, the energy of the free atom has been evaluated by considering one Mg
atom surrounded by 19 ghosts, supporting an adequate basis set and located at the lattice
position of the neighbouring atoms.

At each level of approximation, the electronic structure is investigated. The results
include Mulliken population analysis, plots of band structures, and density-of-states (DOS)
functions. The accuracy of the band structures is evaluated by examining the Fermi surface
(FS) in a reduced zone scheme. In an extended zone scheme, for such divalent hcp metals
as Mg, Zn or Cd, the first double zone has a region not occupied by electrons. This region
of holes is called ‘the monster’. On the other hand, some electrons occupy several bits of
the third and fourth zones which are called the ‘pockets of electrons’. Extensive theoretical
[8, 21] and experimental [22] studies have been made, and no reasonable doubt remains as
to the existence and the general topology of these pieces of FS. A comparison of calculated
dimensions at different levels of approximation with experimental ones is made.

The technique used to calculate the elastic constants was already described by Catti
et al [23]. The total crystalline energy of the system is calculated for a number of different
deformations of the unit cell and fitted against the strain component to polynomial functions
up to the fourth order. Thus the second derivatives of energy at the minimum can be
calculated, and yield the elastic constants.

3. Structural properties and binding energy

Table 1 reports the BE for the calculated equilibrium conformation for the different levels
of approximation. The relative percentages of the deviation from the experimental data
[24, 25] for the lattice parameters (a andc) are reported, to summarize the performance of
each method. A correction of 0.04 eV per atom resulting from the zero-point vibrational
contribution from the Debye model is included in the binding energy.

The agreement is good for the predicted lattice constants. The relative error on lattice
parametera varies between−1.9% and 3.7% for LDA-VBH and HF calculations, resp-
ectively. In all cases, the lattice parameterc is underestimated compared to the extrap-
olated 0 K value, by−3.5% to−1% for the LDA-VBH and HF levels of approximation,
respectively. HF calculations are well known to overestimate lattice constants. However,
there are some examples showing an underestimation. (The relative error at the HF level



10972 I Baraille et al

Table 1. Lattice parameters (a and c) and binding energies (BE) calculated using exchange
and correlation energy-density functionals. Thea = 3.19 Å and c = 5.18 Å values correspond
to lattice constants extrapolated to 0 K. The relative percentages of the deviations from the
experimental data (a = 3.19 Å and c = 5.18 Å) are given in parentheses.

HF-P91/ LDA-VBH/ BEC-VBH/ BEC-P91/
Experiment [24] HF HF LDA-VBH BEC-VBH BEC-P91

a (Å) 3.21 3.31 3.19 3.13 3.25 3.23
(3.19) (3.7) — (−1.9) (1.9) (1.2)

c (Å) 5.21 5.13 5.03 5.00 5.10 5.12
(5.18) (−1.0) (−2.9) (−3.5) (−1.5) (−1.2)

c/a 1.624 1.553 1.576 1.597 1.571 1.585

BE (eV) 1.51 0.27 1.42 1.80 1.28 1.37

for the Na2O lattice parameter is of the order of that forc (−1%)). Botha posteriori and
Kohn–Sham DFT models decrease the lattice constants with respect to the HF ones. The
LDA-VBH calculations give errors of−0.06 Å and−0.18 Å on a andc, respectively. Non-
local models in both cases reduce the error fora (0.06 Å and 0.04Å for BEC-VBH and
BEC-P91 calculations, respectively) and forc (−0.08 Å and−0.06 Å for BEC-VBH and
BEC-P91 calculations, respectively). In all cases, the two competing effects on the lattice
parameters lead to an underestimatedc/a ratio compared to the almost ideal experimental
value (1.624). For an ideal hcp structure with thec/a ratio equal to 1.633, each atom has
twelve equivalent nearest neigbours. Any deviation from this value separates these twelve
neighbours into two categories and induces an anisotropy which is all the more important
asc/a is smaller than 1.633. Although both lattice parameters calculated at the LDA-VBH
level are the smallest obtained relatively to the experimental data, thec/a ratio calculated at
this level is the best that we obtained. It is worth noting that the inclusion of a d function in
the basis set at the BEC-P91 level improves thec/a ratio from 1.585 to 1.596 (a = 3.21 Å
andc = 5.12 Å).

As can be expected, the HF binding energy is substantially underestimated compared
to the experimental value, confirming the need for the correlation effects. The LDA
calculations including the present LDA-VBH ones and the earlier work of Chou and Cohen
[9] overestimate the cohesive energy by 19% and 9%, respectively. The BEC-P91 results
are closer to the experimental value. The inclusion of a d function (BEC-P91(+d)) leads
to 1.43 eV. The correlation-only functional HF-P91 performs as well as or even better
than Kohn–Sham methods. This compares with the results obtained by Causà and Zupan
[5] for some covalent, ionic, and semi-ionic crystals. Indeed, for these compounds the
binding energies obtained by the Hartree–Fock LCAO method are more improved by the
a posterioricalculations of the electronic correlation than by means of the density functional
theory. The minimum deviations calculated by Causà and Zupan are of−8.2% and−18%
for the HF-P91 and BEC-P91 methods respectively. The difference between the HF and KS
densities, which is not even detectable for the BE calculations, is investigated by analysing
the electronic properties at each level of approximation.

4. Electronic properties

All of the electronic properties were evaluated for the optimized geometry at each level of
approximation.
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Table 2. Mulliken population data (in units of|e|) for the valence atomic orbitals (s, px , py ,
pz). z is chosen to lie along thec-axis of the hcp structure.

HF LDA-VBH BEC-VBH BEC-P91 BEC-P91(+d)a

s 0.776 0.948 0.957 1.016 1.007
px 0.411 0.389 0.366 0.346 0.343
py 0.411 0.389 0.366 0.346 0.343
pz 0.415 0.387 0.385 0.351 0.340

a The remaining population in the d shell is equal to 0.023|e|.

In table 2, we reported the numbers of valence electrons per Mg atom with s, px , py and
pz characters obtained by a Mulliken population analysis (z is chosen to lie along thec-axis
of the hcp structure). Table 2 shows the weak anisotropy for the different p components.
The difference between the pz and px (or py) populations is consistent with the departure
from the idealc/a ratio (see table 1). The ratios of px + py/pz charges are very close to 2
(completely spherical charge-density distribution), except for BEC-VBH calculations. This
was also found by Blahaet al [11] and Chou and Cohen [9] in LAPW and pseudopotential
calculations respectively. In the case of the BEC-P91(+d) method, the remaining population
in the d shell is very low (0.023|e|).

Figure 1. The band structure calculated at the BEC-P91(+d) level of approximation for hcp
Mg along the lines0KM0AHL and ALMHK in the first Brillouin zone.

At each level of approximation, band structures were obtained along the lines
0KM0AHL and ALMHK in the first Brillouin zone. Except for the case of HF calc-
ulations, ours results are very similar to each other and to previous ones [11, 21] as far as
the topologies of occupied bands are concerned. This means that the FS contains all of the
following elements (described by Stark [22]): a first-zone pocket around H (cap); a second-
zone hole (monster); third-zone electrons around0 (lens), around L (butterfly), and around
K (needles); and a fourth-zone electron pocket around L. As an example of a topology,
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Table 3. Calculated Fermi surface dimensions (in au−1) and conduction bandwidths (from
the bottom up the Fermi level)1F (in eV) compared to experimental, free-electron data, and
LMTO results [21]. (1) First-band holes. (2) Second-band monsters. (3a) Third-band needles.
(3b) Third-band butterflies. (3c) Third-band lenses. (4) Fourth-band cigars.

Experiment LMTO
[22] Free [21] HF LDA-VBH BEC-VBH BEC-P91 BEC-P91(+d)

(1) HA — 0.042 0.029 Absent 0.024 0.021 0.019 0.029
HL — 0.096 0.039 Absent 0.024 0.018 0.029 0.039
HK — 0.107 0.071 Absent 0.053 0.035 0.056 0.074

(2) 6L 0.064 0.112 0.063 — — — — —
HA — 0.142 0.029 Absent 0.024 0.018 0.029 0.039
HL — 0.096 0.039 Absent 0.024 0.018 0.029 0.039
0Min 0.370 0.341 0.369 0.378 0.375 0.353 0.354 0.357
0Kin 0.370 0.341 0.369 0.380 0.372 0.351 0.355 0.357
0Mout 0.476 0.477 0.469 0.392 0.473 0.453 0.459 0.466
0Kout 0.622 0.634 0.621 0.606 0.632 0.597 0.611 0.622

(3a) K0 0.067 0.061 0.062 0.165 0.076 0.076 0.071 0.067
KM 0.033 0.032 0.036 0.048 0.040 0.043 0.039 0.036

(3b) L6 0.206 0.252 0.200 — — — — —
LH 0.184 0.252 0.200 — 0.156 0.177 0.176 0.179
LM — 0.087 0.082 Absent 0.056 0.058 0.069 0.073
LA — 0.051 0.047 Absent 0.034 0.038 0.040 0.041

(3c) 0A 0.080 0.085 0.084 0.023 0.072 0.063 0.068 0.072
0M 0.312 0.341 0.320 0.119 0.290 0.265 0.274 0.283
0K 0.312 0.341 0.320 0.119 0.291 0.265 0.275 0.284

(4) LA — 0.051 0.047 Absent 0.034 0.038 0.040 0.040
LM 0.043 0.087 0.080 Absent 0.056 0.058 0.069 0.073
LH — 0.252 0.198 Absent 0.156 0.177 0.176 0.179

1F 6.1 [26] 7.13 — 7.40 7.01 6.94 6.91

figure 1 shows the band structure obtained at the BEC-P91(+d) level of approximation.
The band structures only differ in the quantitative dimensions of various elements of the
FS and in the value of the conduction bandwidth (from the bottom up to the Fermi level)
(see table 3). It should be noted that the HF method clearly failed to give a correct picture
of the electronic band structure of Mg. Dovesiet al [20] have shown, in the hcp Be
case, that the HF band structure is very much dependent on the computational conditions
(lattice parameters and basis set). For the DFT methods, our results are in quantitative
agreement with the experimental ones. It can be observed however that these results are
dependent on the lattice parameters. For the same geometry, calculations at the BEC-P91
level with or without d functions lead to approximately the same results to within about
2%. The slightly different values that we reported for0Min and0Kin lines in the second-
band monster are due to the small anisotropy induced by the values of some optimized
c/a ratios. Except for the LA line in the fourth-zone cigar and the KM one in the third-
band needles, the worst deviations from experiment are 15% for LDA-VBH and BEC-P91,
13.5% for BEC-P91(+d), and 9% for LMTO calculations [21]. It is worth noting that there
is no difference between the results for the fourth-zone electron pockets and the butterflies
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along the LM and LA lines. This may be attributable to the fact that our calculations
did not include the spin–orbit coupling effect. As in previous calculations, our calculated
bandwidths1F are overestimated compared to the experimental value (6.1 eV) measured
by photoelectron spectroscopy [26]. Hufner [27] has suggested that this discrepancy is
attributable to the photoelectron process; the data must be corrected in the framework of
Mahan–Nozìeres–DeDominicis theory. However, the corrected value that Hufner proposed
(6.2 eV) remains smaller than those obtained in our calculations and in the free-electron
approximation (7.13 eV).

Figure 2. Total and projected densities of states at the BEC-P91(+d) level of approximation.
The Fermi level is shown by a vertical line.

Total and projected densities of states (DOS) at the BEC-P91(+d) level are given in
figure 2. The very low contribution of d orbitals in the occupied part of the conduction band
is clearly shown, and confirms the negligible role played by d functions in our computed
electronic densities. The DOSs obtained with the other DFT methods are very similar, and
compare very well with the previous ones [9, 21]. At the bottom of the conduction band,
the total DOS functions exhibit a parabolic dependence characteristic of the free-electron
gas, and have essentially a s-like contribution. At the top, below the Fermi level (εF ), they
are disturbed by the lattice potential, and have an increasing p contribution. Our results
relating to s and p contributions are in agreement with the APW densities of states obtained
by Gupta and Freeman [28], but their predicted d contribution is found to be very important
(about 30% atεF ). On the other hand, the results of Citrinet al [13] did not include any d
contribution, but they are dominated by the s density of states even just belowεF . These
results were found to be in better agreement with experimental data, especially in the region
close to the Fermi level, than those given by Gupta and Freeman [29].
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5. Elastic constants

The six independent components of the elastic tensor were obtained as follows.C11

and C33 were computed directly by deforming thea- and c-edges of the primitive
cell. C12 and C13 were calculated indirectly via the linear combinationsC11 + C12 and
C11+ C12+ 2C33+ 0.5C13 from a strain involving the deformation of the twoa-sides and
of the threea-sides, respectively. The shear constantC44 is obtained from the deformation
of theα-angle.C66 and the bulk modulus are computed from the formulae 0.5(C11− C12)

and(1/9)(2C11+ 2C12+ 4C33+ C13).

Table 4. Elastic constants (in units of 1011 N m−2) and bulk moduliB (in GPa) calculated at
each level of approximation; comparison with experimental data [30].

Experiment HF HF-P91 BEC-VBH LDA-VBH BEC-P91(+d)

C11 0.6347 0.933 0.924 0.647 0.787 0.637
C33 0.6645 1.023 1.435 0.708 0.947 0.682
C44 0.1863 — — 0.162 0.110 0.190
C66 0.1878 0.429 0.391 0.247 0.259 0.242
C12 0.2594 0.028 0.143 0.153 0.269 0.152
C13 0.2170 0.096 0.067 0.208 0.246 0.241
B 36.90 36.99 42.64 34.88 44.92 35.89

The calculated elastic constants are reported in table 4, together with experimental data
[30]. The HF model failed to give reasonable elastic constants.C11 andC33 are too high
by approximately 50% compared with the experimental values whileC12 andC13 are too
small. The good agreement between our bulk modulus and the experimental value is clearly
fortuitous. Thea priori DFT approximation does not improve these results except for the
C12-value. Kohn–Sham models more correctly reproduce the elastic constants, even if the
relative error on the LDA-VBH values is found to be about 40% forC33, C44, andC66, and
20% forC11. The agreement between our BEC-VBH and BEC-P91(+d) calculated values
and the experimental data is quite satisfactory (within 2% forC11, 7% forC33, and 13% for
C44). However, the calculatedC12-values are about 40% smaller than the experimental one,
and this explains the error of 30% on theC66-values. As a general rule, the off-diagonal
elastic constants such asC12 are affected by larger errors, and the agreement noted for the
C13-values (within 12%) can be considered surprising. On the other hand, the LDA-VBH
approximation gives underestimated lattice parameters, producing a too-small equilibrium
volume of the cell (42.45̊A3 instead of 45.65̊A3), while the BEC-VBH and BEC-P91(+d)
ones lead to values close to the experimental ones (46.65 and 45.53Å3, respectively).

The bulk modulus values obtained for BEC-VBH (34.88 GPa) and BEC-P91(+d)
(35.89 GPa) calculations are better than our previous values deduced from a first-principles
pseudopotential recently published [7] (39.0 and 39.3 GPa)

6. Conclusions

We have calculated various properties of magnesium in the hcp structure using the LCAO
approach which is generally believed to be inadequate for nearly free-electron systems,
within Hartree–Fock or density functional schemes. The results reported in this paper
show that a number of properties, especially electronic ones, can be accounted for within
DFT-LCAO methods. The standard basis set used for ionic compounds provides a correct
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description of the metallic character of the system, especially when non-local correlation and
exchange potentials are used. However, the inclusion of d functions noticeably improves
the calculated results.
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