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The relevance of the interstitial model for the metallic bond has been studied on 2D simple metal lattices:
the lithium square lattice and the magnesium triangular one. As on 1D systems the valence electron density
is essentially interstitial on both systems. However, the magnetic treatment of the inverse lattice problemsup
to now always associated with the interstitial description of simple metalsswas proven false on the magnesium
lattice which remains highly delocalized. The reasons of the different behavior of the Li and Mg systems
have been investigated, as well as the conductivity problem associated with a magnetic description of the
inverse lattice. A phase transition, semiconductor versus insulator, has been exhibited on the Mg lattice.
The insulator phase (long distances) corresponding to an atom-centered solution, the semiconductor phase
(short distances) corresponding to an interstitial solution.

Introduction

In the building of a covalent bond, the valence electron
density increases between the two atoms, but the density maxima
stay on the atoms. The H2 molecule, for instance, is well
described from the s orbitals of the hydrogen atoms. In a simple
metal bond however, the valence density maximum is shifted
from the atoms to the middle of the bond. The Li2 molecule,
for example, exhibits such a behavior. In this case the s orbitals
of the atoms are not sufficient to build a reasonable first-order
approximation of the diatom wave function, the contribution
of the pσ orbitals being too important. The same type of
behavior has been witnessed in metallic clusters,1-3 the density
maxima being located in the interstices between the atoms, and
the s-p hybridization being very strong. From the bulk point
of view, solid-state physicists would describe the building of
such a bond by the overlapping of the lithium s and p bands,
the valence electrons moving freely in the resulting hybridized
s-p band, which spans the interstices between the atoms.
From this analysis, the idea of describing the simple metals

in terms of interstitial orbitals comes quite naturally. The initial
interstitial model (proposed by McAdon and Goddard2) involved
three different ideas: (1) the valence space is spanned by
interstitial orbitals (IO) localized between the atoms; (2) the
R/â coupling is abandoned, the IO being singly occupied; (3)
when building the metallic bonds, i.e., going from an atomic
localization of the valence electrons to an interstitial one, one
goes also from a strongly delocalized picture to a strongly
correlated one (the valence configuration interaction (CI) being
well reproduced by a magnetic Hamiltonian); this last idea was
stressed by one of us (M.B.L.) and co-workers.4

This model has been confirmed on clusters4 where its results
(for energies as well as for wave functions) were successfully
compared to ab initio valence complete active space self-
consistent field (CASSCF) calculations. The same model was
proved relevant on 1D systems5 (lithium chain).
One may however wonder whether the interstitiality of the

valence density (point 1) and the strong correlation hypothesis
(points 2 and 3) are indissociable.

The present work will study the application of the above
model to 2D systems, a square lithium lattice and a triangular
magnesium one. We shall see that while the lithium slab follows
well all the hypotheses of the original model, the magnesium
system is well described in terms of IO but remains a highly
delocalized system. We shall discuss the possible reasons of
this difference.

Results

The calculations performed in this work have been made
using the unrestricted Hartree-Fock (UHF)6 version of the ab
initio Hartree-Fock CRYSTAL program.7 The calculations
were performed using a double cell (four atoms, four squares
for the lithium; four atoms, eight triangles for the magnesium)
and theP1 space symmetry groupsin order to allow symmetry
breakings to occur.
Atomic basis sets (see Table 1) are of valence double-ú plus

polarization quality, the core electrons are treated using a
pseudopotential method.8 To allow more flexibility and to avoid
higher l atomic wave functions, we also used an interstice-
centered s orbital (located at the center of the square for the
lithium system, and at the center of the triangle for the
magnesium one). Their exponents were optimized so that to
minimize the energy of the lowest HF solution.
All energies given in this paper do take into account

corrections for basis set superposition errors; for each geometry,
the energy of the free atom is given by a calculation of one
atom, surrounded by ghost atoms which support the appropriate
basis set. These ghosts are located at the positions where the
neighboring atoms or interstices would be in the 2D system.X Abstract published inAdVance ACS Abstracts,February 1, 1996.

TABLE 1: Basis Sets

lithium magnesium

atomic atomic

exp coef
interstitial

exp exp coef
interstitial

exp

s 2.4642 -0.0164 0.09 0.4342 -0.0135 0.14
1.9914 0.0358 0.7570-0.1350
0.5819 0.1321 0.1010 0.6422
0.0709 -0.6071

s′ 0.0600 1.0000 0.0700 1.0000
p 0.1200 1.0000 0.0950 1.0000
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A. Lithium Square Lattice. Restricted Hartree-Fock
(RHF) calculations as well as different UHF calculations have
been performed on this system.
Figure 1 reports the different potential curves.
As for the lithium clusters, but contrarily to the 1D chain,

the RHF solution is weakly bounded (Ecoh/at) 0.129 eV atReq
) 3.105 Å). The analysis of the Mulliken population exhibits
an essentially atomic s population (g75% at 5.75 au) associated
to a nonnegligiblepσ contribution (0.174 at 5.75 au), the
interstice-centered s orbitals are however only weakly populated
(0.057 at 5.75 au). Let us remember that this solution is not
asymptotically correct, since it dissociates in a mixture of neutral
and ionic atomic states.
As can be seen in Figure 1, the lowest solution is the UHF

antiferromagnetic interstitial solution (UHF-AF-I). This solution
is strongly bounded, its cohesive energy isEcoh/at) 0.532 eV
at the interactomic distance ofReq ) 2.98 Å. The study of
both the Mulliken population analysis and the valence charge
density map (see Figure 2a) shows its interstitial character. The
valence density maxima are located at the center of the squares.
They constitute an inverse square lattice isomorphic to the
original one (1 square for 1 atom and 1 electron). The
population of the atomic s orbitals is only about 50% of the
total one, thepσ orbitals (with for instance 0.226ej at 5.75 au)
and the interstitice-centered s orbitals (with 0.266ej at 5.75 au)
share the remaining 50%. The spin density map (see Figure
2b) as well as theR-â population analysis exhibit a large spin
density wave on the interstices, at 5.75 au:

As in the lithium systems studied in refs 4 and 5, the
corresponding interstitial ferromagnetic solution (UHF-F-I) was
found to be stable. Its cohesive energy isEcoh/at ) 0.194 eV
(i.e., larger than the binding energy of the RHF solution), and
its equilibrium geometry is slightly larger than the antiferro-
magnetic one (Re1 ) 3.197 Å). Its interstitial character is
undoubtable, the charge density presenting large maxima at the
square centers, the Mulliken population analysis exhibiting an
even larger contribution of both thepσ (0.240 at 5.75 au) and
the interstitice-centered s orbitals (0.356ej at 5.75 au). The
stability of those ferromagnetic solutions is clearly due to the
strong electronic delocalization in the interstices that lowers the
kinetic energy with respect to the ferromagnetic atomic solu-
tions, which are always repulsive. We did not perform a
localization of the Block orbitals in order to obtain the interstitial

Wannier orbitals; however, the stability of the UHF ferromag-
netic solution, the strong localization of the valence density in
the interstices, the one-to-one correspondence between density
maxima and electrons shows us that there is a set of Wannier
orbitals strongly localized in the interstices with small orthogo-
nalization tails. It is obvious that the same remarks can be done
for the intertitial antiferromagnetic solution, with the same
conclusions, i.e., theR andâ Wannier orbitals would be strongly
localized in neighboring interstices with only small delocaliza-
tion tails.
In the Hartree-Fock approximation, the UHF atomic solution

is the correct dissociation limit. Such a solution (the ground
state at long interatomic distances) does also exist at short
interatomic ones. The antiferromagnetic atomic UHF solution
(UHF-AF-A) was computed. It does coexist with the interstitial
antiferromagnetic UHF solution. As can be expected, this
solution is weakly bounded (Ecoh/at) 0.188 eV atReq ) 3.275
Å). The Mulliken population analysis confirms the atomic
character of this solution with a population of an essentially

Figure 1. Lithium square lattice: potential curves of the different HF
solutions.

FR - Fâ

FR + Fâ
) 0.88

Figure 2. Antiferromagnetic interstitial solution (6 Å). The nuclei
are located on the lattice vertices. (a, top) Valence charge density map.
(b, bottom) Valence spin density map. Positive spin, solid lines;
negative spins, dashed lines.
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atomic s character (0.829 at 5.75 au); the contribution of thepσ
orbitals is much smaller than in the interstitial solution (0.172
at 5.75 au), decreasing quickly when the interatomic distance
increases, i.e., equivalent to thepσ population of the RHF
solution). The population of the square-centered s orbitals is
negligible (0.001 at 5.75 au).
The strong localization of the valence electrons in the

interstices for the UHF-AF-I solution, the large spin-density
wave associated, and the existence of a bounded ferromagnetic
interstitial solution show that, as for the clusters and the chain,
the square lithium lattice is, in its inverse picture, a highly
correlated system, well described by a magnetic approach. We
extracted theJ parameter of a Heisenberg Hamiltonian as a
function of the interatomic separation. Following the Anderson
approach,9 the UHF-AF-I solution can be assimilated to a Neel
state; therefore, the energy difference between the interstitial
ferromagnetic and antiferromagnetic UHF solutions is equal to
the HeisenbergJ parameter (for further details and justifications
about the procedure see ref 5). The ground state of this magnetic
Hamiltonian corresponds to the valence correlated wave func-
tion, its energy is known to beEferro- 1.1692 J.10 It is bounded
byEcoh/at) 0.595 eV and its equilibrium distance isReq) 2.946
Å.
From this study, one can conclude that the lithium square

lattice, as the lithium clusters and 1D chain follows well the
interstitial/magnetic model, i.e., (i) there is a shift of the valence
electron density from the atoms to the interstices (here the
squares) which constitute an inverse lattice and (ii) there is an
associated shift from a highly delocalized system in the original
atomic lattice to a highly correlated one in the (interstitial)
inverse lattice description.
B. Magnesium Triangular Lattice. For the magnesium

triangular lattice, we obtained two different RHF solutions (an
atom-centered one and an interstice-centered one) and a UHF
interstitial antiferromagnetic solution.
Figure 3 displays the potential curves of the different

solutions.
The magnesium atom is a closed-shell system and the Mg2

molecule is a van der Waals system; therefore one could naively
expect that the lowest HF solution would be an atom-centered
solution, but such a description, corresponding to a filled s-band
system, could not account for the Mg metallic nature. The
calculations on the triangular magnesium lattice exhibit two
different RHF solutions. Both have the sameP3 symmetry and
coexist as two true minima of the potential RHF surface over
a whole range of interatomic distances (from 3.45 to 3.65 Å).
What are those solutions? At short interatomic distances, the

most stable solution (RHF-I) presents an interstitial character,
while the other solution (RHF-A) has an atomic one. Their
energetic order is reversed at long interatomic distances, the
atomic solution being the lowest one, as can be expected from
the dissociation limit in closed-shell Mg atoms. The crossing
point is at 3.58 Å (see Figure 3). From those simple observa-
tions, one can say that the RHF potential energy surface presents
two nonintersecting valleys, i.e., a bistability phenomenon.
Both the valence density map (Figure 4a) and the Mulliken

population analysis show the interstitial character of the RHF-I
solution. As one sees in Figure 4a, the density maxima are
located at the triangle centers. Let us note that the associated
inverse lattice is isomorphic to the (001) graphite plane. The
number of triangles is equal to the number of electrons, leading
to a half-filled band in this inverse lattice picture. Unlike the
lithium system, the density maxima are very small; the electron
density remains strongly delocalized, evenly spread on the bonds
of the inverse latticesas are theπ electrons in the graphite slab.
On the other hand, the Mulliken population analysis exhibits a
strong s-p mixing with less than 50% of the population on the
s Mg orbitals, the remaining population being on the pσ Mg
orbitals. The triangle-centered s orbitals are very weakly
populated (0.066 at 3.20 Å). The potential curve (see Figure
3) presents a minimum at 3.22 Å, but the RHF-I solution is not
bound compared to the free atoms (Ecoh/at) -0.02 eV). Let
us note that this nonbinding result cannot be kept against the
interstitial hypothesis since the triangular Mg lattice is only a
convenient ideal system whose stability is not ensured.
The valence charge density map of the RHF-A solution is

given in Figure 4b. The atomic character of this solution is
obvious, the density maxima being located on circles centered
on the Mg nuclei. The density minima are located at the centers
of the triangles. The Mg-Mg bond middle points correspond
to saddle points. Moreover the analysis of the Mulliken
populations indicates that more than 85% (1.705 at 3.90 Å) of
the population is on the s Mg orbital, the missing electronic
population being in the pσ orbitals while the s triangle-centered
orbitals are nearly empty. This solution is repulsive (see Figure
3) and dissociates well, toward RHF solution of the free atoms.
Let us now have a look at the band structures of these two

RHF solutions. Figure 5 displays the two band diagrams along
theΓMKΓ path. The RHF-I one is typical of a semiconductor.
In fact it is very similar to theπ-band diagram of a graphite
(001) slab, with a band crossing at the K point. The band width
is equal to 6t, as for the graphiteπ band, at the equilibrium
distancet ) 4.26 eV. On the other hand, the band diagram of
RHF-A (Figure 5b) confirms its insulator closed-shell (filled
band) character, with a large gap at the Fermi level (3.1 eV).
All the above results (Mulliken populations, charge density

map, band diagram) converge to the interpretation of the
crossing point between the two RHF solutions as a first-order
semiconductor-insulator phase transition. It would be very
interesting to see the effects of the electronic correlation on this
hypothesis. However, due to the very different nature of the
two RHF solutions, one can reasonably expect that the inclusion
of the correlation would not change the qualitative nature of
the problem.
This system presents also a UHF antiferromagnetic interstitial

solution (UHF-AF-I), as can be expected when a symmetry
breaking occurs on an alternant lattice (let us remind that the
inverse hexagonal, half-filled band lattice is a nonfrustated one
and can support a Neel state). However the spin polarization
is very weak, the energy stabilization being only 0.06 eV
(compared to the RHF-I solution), and theR-â population is

Figure 3. Magnesium triangular lattice. Potential curves of the
different HF solutions.
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nonvanishing in the interstices only, and

FR - Fâ

FR + Fâ
) 0.36

From those results, one can see that theR and â interstice-
centered Wannier orbitals would have very large delocalization
tails on the neighboring triangles; the overlap between nearest-

neighbor ones being close to 1. This solution is slightly bound
compared to the free atoms (Ecoh/at) 0.05 eV) atReq ) 3.23
Å).
The above results confirm the interstitial localization of the

valence electrons, i.e., the first hypothesis of the interstitial/
magnetic model. However, the UHF interstitial solution is
quasi-degenerated with the RHF-I one, its spin polarization is
very small and its valence density (as for RHF-I) is delocalized
over the whole inverse hexagonal lattice. All these reasons
consolidate in order to weaken the systematic validity of the
magnetic picture of the inverse lattice (points 2 and 3 of the
model). The inverse “graphitic lattice” remains a highly
delocalized system.

Discussion

The conclusion of the previous section confirms the validity
of the description of simple metal systems in terms of IO.
However, the up to now associated strongly correlated model
has been proven wrong on the magnesium case. One can
wonder why the lithium inverse lattice is relevant of a magnetic
description while the magnesium one is relevant of a strongly
delocalized picture. Different reasons can be given in order to
explain this phenomenon.
(i) Let us look at the valence electronic densities per Å2. In

the lithium Heisenberg solution, one finds 0.115ej/Å2, while
in the RHF-I solution of the magnesium lattice one has
0.226ej/Å2, i.e., a density double than for the lithium square
lattice. A magnetic picture supposes that each electron occupies
a different orbital in an orthogonal set. A double density per

Figure 4. Magnesium triangular lattice. Valence charge density map
of for the RHF solutions. The nuclei are located on the lattice vertices.
(a, top) The interstice-centered one (3.2 Å). (b, bottom) The atom-
centered one (3.9 Å).

Figure 5. Magnesium triangular lattice. Band diagram of the RHF
solutions. (a, top) The interstice-centered one (3.2 Å). (b, bottom)
The atom-centered one (3.9 Å).
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Å2 therefore means orbitals twice as small and a kinetic energy
twice as large. It is therefore understandable that it could be
energetically more interesting to delocalize the electrons over
the whole inverse lattice.
(ii) Another point of view is the energetic cost of the

hybridization necessary to build nearly orthogonalR andâ sets
of interstitial orbitals. While this condition is easy to get from
an s-p hybridization in the case of a square lattice (only four
orbitals involved for each vertex), it is impossible without the
participation of d orbitals for the triangular lattice (six orbitals
involved at each vertex). Since d orbitals are very costly in
terms of kinetic energy, it is more interesting to delocalize the
electrons over the whole system.
The other point that needs to be discussed is the problem of

the conductivity in a magnetic model, i.e, a model describing
usually insulator systems. Let us first note that because of its
strongly correlated nature, the lithium square system (in its
inverse interstitial description) cannot be represented by a single
determinant. The lowest reasonable approximation of its wave
function is the ground-state solution of the Heisenberg Hamil-
tonian (ΨHeis). The conductivity properties are therefore
commanded by its ionization spectrum. As Malrieu mentioned
in ref 12, we shall show that the interaction matrix between the
ionic states built from the Heisenberg ground state is isomorphic
to a Hückel Hamiltonian. The relevant Hamiltonian for the
singly ionic states is of course thet-JHamiltonian, while their
vector space is generated by theapΨHeis, p referring to a local
interstitial orbital,ap being the annihilation operator. One has

whereΦi stands for a single determinant. Since half of the
apΦi are zero, the ionic states should be renormalized to

Let us now evaluate the interaction matrix:

where〈k,p〉 means thatk andp are nearest neighbors.

δ〈p,q〉 ) 0 if p andq are not nearest neighbors. Therefore, one
sees that the ionic spectrum of the Heisenberg ground state is
given by a matrix isomorphic to the Hu¨ckel one on the inverse
lattice. The one-site energy isEHeis + ∆E + U (U being the
ionization energy) and the nearest-neighbor hopping integral is
the one between two neighboring interstices. One has then
recovered the familar ground of the usual band description.

Conclusion
Hartree-Fock calculations have been performed on 2-di-

mensional simple metal lattices: the square lithium lattice and
the triangular magnesium lattice. The results obtained on both
systems confirm the validity of the description of simple metals
in terms of interstitial orbitals. The valence density of the lowest
Hartree-Fock solution is always centered in the interstice
between the atoms (squares or triangles). However, the original
model was always associating interstitial electronic localization
with a strongly correlated description in the inverse lattice. We
have shown that those two ideas should be dissociated, since
both strongly correlated (lithium lattice) and strongly delocalized
(magnesium lattice) cases have been encountered. Their mutual
relevance have been shown to be linked with the electronic
density per unit space and the facility of building nearly
orthogonalR and â orbitals sets (in the antiferromagnetic
interstitial UHF solution). The conductivity problem in a
magnetic description has been investigated. It has been shown
that the ionization spectrum of the ground state of a Heisenberg
Hamiltonian is relevant of a description isomorphic to the
classical band model.
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