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recent industrial developments have resulted in an increase in use of so-called technology-critical elements (TCEs), for which the potential impacts on aquatic biota remain to be evaluated. In the present study, quantitative ion character activity relationships (QICARs) have been developed to relate intrinsic metal properties to their toxicity towards freshwater aquatic organisms. In total, 23 metal properties were tested as predictors of acute ec 50 values for 12 data-rich metals, for algae, daphnids and fish (with and without species distinction). Simple and multiple linear regressions were developed using the toxicological data expressed as a function of the total dissolved metal concentrations. The best regressions were then tested by comparing the predicted ec 50 values for the tces (germanium, indium, gold, rhenium and platinum group elements -pgeswhich include iridium, platinum, palladium, rhodium, and ruthenium) with the few measured values that are available. The eight 'best' QICAR models (adjusted r 2 > 0.6) used  m 2 r as the predictor. For a given metal ion, this composite parameter, also known as the covalent index, is a measure of the importance of covalent interactions relative to ionic interactions. The toxicity of the tces was reasonably well predicted for most of the TCEs, with values falling within the 95 percent prediction intervals for the regressions of the measured versus predicted ec 50 values. Exceptions included au(i) (all test organisms), au(iii) (algae and fish), pt(ii) (algae, daphnids), ru(iii) (daphnids) and rh(iii) (daphnids, fish). We conclude that qicars show potential as a screening tool to review toxicity data and flag 'outliers', which might need further scrutiny, and as an interpolating or extrapolating tool to predict TCE toxicity.

INTRODUCTION

Until the beginning of the 21 st century, industrial uses of nonferrous metals were mostly focused on 'base metals', i.e., elements such as copper, lead, nickel or zinc, that are found in the first four rows of the Periodic Table of the Elements. However, recent developments in areas such as electrical engineering, computing, renewable energy technologies and medicine have expanded this range of metals. Gold, indium, germanium, rhenium and the platinum group elements (PGEs) belong to this group of newly-used 'Technology-Critical Elements' (TCEs), where the term 'critical' refers to the increasing technological importance of these elements and their limited number of sources [START_REF] Gulley | China, the United States, and competition for resources that enable emerging technologies[END_REF]. Extensive ecotoxicological databases exist for the base metals, for example in the US-ECOTOX database (US EPA 2020) and the European ECHA database (ECHA 2020), and they are used in environmental risk assessments around the world. In the case of most TCEs, however, these data are still very scarce, limiting our ability to properly assess their possible environmental impacts.

When new organic molecules are synthesized and are poised to enter commerce, Quantitative Structure-Activity Relationships (QSARs) can be used to predict their environmental fate and toxicity. These models relate the properties of the new molecule (e.g., water solubility, octanol-water partition coefficient) to its biological reactivity (Boethling and Mackay 2000). For metals, the development of such models has been less comprehensive since far fewer 'new' inorganic compounds have been introduced commercially compared to new organic chemicals. However, there have been a number of successful efforts to relate the toxicity of various base metals to their ionic properties (Walker et al. 2013). These Quantitative Ion Character Activity Relationships (QICARs) This article is protected by copyright. All rights reserved.
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have used ion properties such as electronegativity, softness, ionization potential and electrochemical potential as predictors (Kinraide 2009;Wang et al. 2016;Wolterbeek and Verburg 2001). To date, these models have been developed for and tested with data-rich metals and target species such as algae [START_REF] Fujiwara | Evaluation of metal toxicity in Chlorella kessleri from the perspective of the periodic table[END_REF][START_REF] Hickey | Microtesting appraisal of atp and cell recovery toxicity end-points after acute exposure of Selenastrum capricornutum to selected chemicals[END_REF]Mu et al. 2014), daphnids [START_REF] Kaiser | Correlation and prediction of metal toxicity to aquatic biota[END_REF]Tatara et al. 1997;Wu et al. 2013) and fish (Ownby and Newman 2003;Wu et al. 2013). However, they have not been systematically tested with data-poor metals such as the TCEs.

The objective of the present study was to develop robust organism-specific QICAR models for a wide range of data-rich metals, and then apply them to data-poor TCEs (germanium, indium, gold, rhenium and platinum group elements -PGEs -which include iridium, platinum, palladium, rhodium, and ruthenium) to predict their acute aquatic toxicity (algae, daphnids, fish) on the basis of their ionic properties. Many of the TCEs exist in oxidation states of +III or higher, which is not the case for the majority of the data-rich elements. Our study was thus designed to test whether this difference in oxidation state would affect the ability of QICARs developed for data-rich elements to predict the toxicity of the TCEs.

The toxicological data used to construct the models and the values predicted with the models were expressed as dissolved EC 50 values (total dissolved metal concentration that elicits a 50% response in the studied population). Given the important influence of metal speciation on metal bioavailability and toxicity, a second study was also conducted to predict toxicity from free metal ion concentrations and ionic properties. These results will be published in a follow-up paper.

This article is protected by copyright. All rights reserved.
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MATERIALS AND METHODS

QICAR modeling involves establishing a mathematical relationship between two separate databases. Here, these databases are a compilation of the ion characteristics of the metals in the two groups (the training set of data-rich metals and the prediction set of data-poor TCEs), and a compilation of the toxicological data that are available for each group.

Building of the metal characteristics database

To construct the metal characteristics database, the most significant metal characteristics that had been previously reported in QICAR studies were compiled (Walker et al. 2013). These characteristics can be grouped into five categories, i.e. The first step of the database building was thus to compile the data and verify whether the metal characteristics were available for the metal training dataset, i.e., for Ag, Ca, Cd, Co, Cu, K, Mg, Mn, Na, Ni, Pb, Zn and for the studied TCEs, i.e. Au(I), Au(III), Ge (IV), Ir(III), In(III), Pd(II), Pd(IV), Pt(II), Pt(IV), Re(V), Re(VII), Rh(III), Ru(III), Ru(IV). When one of the ion characteristics was missing for a particular metal, the characteristic was eliminated from the modeling process. The second step was to perform a Principal Component Analysis (PCA) to determine correlations among metal characteristics, in order to reduce the number of characteristics to be included in the models. For the construction of the QICARs, we prioritized non-redundant metal characteristics that were available for the training metals and that best bracketed the characteristics for the data-poor TCEs.

Preparation of the toxicity database

Freshwater toxicological data were obtained from different sources, such as national curated databases and from specific searches of the recent literature for updated or missing data. Data were compiled for short-term exposures conducted with algae (48 h, 72 h or 96 h, depending on the species), daphnids (48 h) and fish (96 h). Their measured responses (growth inhibition; immobilization; mortality) were noted, along with the species that had been tested, the experimental conditions (exposure duration, temperature) and details regarding the composition of the exposure media. For model construction, we only retained EC 50 values that had been derived from toxicity tests where the metal concentrations had been measured (i.e., not just nominal metal This article is protected by copyright. All rights reserved.

Accepted Article concentrations). The compiled EC 50 values were analyzed for outliers using boxplot representations (data not shown). Values were considered as outliers when they fell outside the interval of three times the interquartile range [START_REF] Addinsoft | XLSTAT 2018: Data analysis and statistical solutions for Microsoft Excel[END_REF].

Growth inhibition was the only endpoint used for algae, whereas both immobility and survival were used as toxicity endpoints for daphnid tests. All the daphnid EC 50 values were pooled for a given metal, regardless of the endpoints, since no outliers were revealed with this approach. In the Cu and Cd fish databases, the toxicity tests were performed with different life stages (from larvae to adults). Since the study of outliers did not reveal any trends that would have justified the exclusion of certain life stages for any metals, results for these life stages were pooled.

Model building

Simple linear regressions (SLR) were constructed between each selected training metal characteristic (as well as its logarithm) and the logarithms of the mean measured EC 50 values, without species distinction. The log-transformation of the metal characteristics was additionally performed to reduce their variances as compared to that of the series of -log EC 50 values. A second set of SLRs was constructed with speciesspecific EC 50 s for the species for which the number of independent tests was the largest, i.e., Pseudokirchneriella subcapitata for algae, Daphnia magna and Ceriodaphnia dubia for daphnids, and Oncorhynchus mykiss and Pimephales promelas for fish.

In a second step, multiple linear regressions (MLR) were performed using a stepwise approach, with all the selected metal characteristics and their logarithms as input variables. To reduce the number of tested variables, we compared the variances of the - The chosen models were then analyzed to determine if the assumptions for linear regression were met. The normality of the residuals was tested using the Shapiro-Wilk test (α = 0.05) whereas their lack of autocorrelation was assessed using the Durbin-Watson (DW) test (Supporting information and Table SI-1). Results of both tests are provided directly in the text only when the assumptions were not verified. Otherwise, statistical results are given in Table SI-2. Once developed, the models were tested using the log-transformed average EC 50 values for the TCEs. Model building and correlation statistics were performed using XLSTAT 2018.2 and higher [START_REF] Addinsoft | XLSTAT 2018: Data analysis and statistical solutions for Microsoft Excel[END_REF]).

This article is protected by copyright. All rights reserved.
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RESULTS

Metal characteristics database

Almost all the metal characteristics were found for the training metals, with the exception of electron affinity (E*) values for Cd, Mg, Mn and Zn, which were indicated to be 'not stable' (Handbook of Chemistry and Physics -Rumble ( 2018)) (Table SI-3).

For the studied TCEs, no IP or ∆IP values were found for Au(III), Ir(III), Pd(IV), Pt(IV), Re(V), Re(VII) and Ru(IV), whereas E 0 and ∆E 0 were missing for Re(V) (Table SI-4).

However, the lack of data was the most acute for ∆β, σ p and log K OH , with data available for only 5 out of 17 for ∆β, 8 out of 17 for σp and 11 out of 17 for log K OH , which thus precluded the use of ∆β, σ p and log K OH in the subsequent model development. This situation reflects the lack of thermodynamic data describing the binding of these TCEs to inorganic ligands.

The metal characteristics that remained at this stage for building the QICAR models were AW, V, ρ, MP, α, AN, r, CR, Vdw,  m , z, z/r, z 2 /r and  m 2 r. Among these characteristics, only the values for V, AN, CR and Vdw bracketed those of the TCEs (Table SI-5), and they were prioritized over the other characteristics to construct the models in the subsequent steps. At this point, a PCA was performed with the 14 remaining metal characteristics to identify possible redundancies among them (Figure 1). 
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constituted of AN, which correlated with AW (r = 0.999) and ρ (r = 0.908). AN was chosen because, as was the case for V, its range of values for the training metals included the AN values for the studied TCEs. In the third PCA group, z 2 /r strongly correlated with z (r = 0.984) and z/r (r = 0.937). The ratio z 2 /r was chosen due to its prominence in earlier QICAR models (Newman and McCloskey 1996;Van Kolck et al. 2008). The electronegativity,  m , correlates with ρ (r = 0.797), which had already been eliminated, and with  m 2 r (r = 0.777); both parameters were kept but were not used concurrently in the models. MP and r did not correlate with any other characteristics and were thus also kept. To summarize, V, AN, z 2 /r, χ m or χ m 2 r, MP and r were retained to construct the QICAR models.

Toxicity database

Algae. and Pd(II), were found to be the most toxic of the TCEs, with EC 50 values of 2.8 x 10 -8 M for Pd(IV) and (1.7 ± 1.2) x 10 -7 M for Pd(II) (mean ± standard deviation when n > 2).

Six This article is protected by copyright. All rights reserved. 
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Discussion

Quality of the toxicological database

The quality of toxicological models such as those developed in the present work is intrinsically linked to the quality of the database used to construct them. Here, the toxicological database was based on acute toxicity data that complied with the pre-set conditions: (i) that the total dissolved metal concentrations had been measured, (ii) that the toxicological data were obtained, as much as possible, from several sources and (iii)

This article is protected by copyright. All rights reserved.
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that the tested species were among those recommended by OECD and USEPA in their guidance documents for aquatic toxicity testing to predict EC 50 values.

In the algal toxicological database, copper had the highest number of available tests ( 62) with 38 performed with the recommended OECD and US EPA algal species P.

subcapitata. In contrast, the Ni database (n=25) included a variety of algal species, 11 in total, the highest number among the algal databases. The least extensive databases were those for the major cations (Ca, K, Mg, Mn and Na). Although these elements have been 
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since three of the five EC 50 values were reported as "higher than a certain value" and thus

were not usable for the present study. Data for the major cations were again challenging to find in the literature, mostly because the total dissolved concentrations in the exposure media were again rarely measured.

Statistical analyses of the EC 50 values for each class of organism revealed that the incidence of outliers was linked to the use of additional species other than P. subcapitata for algae, such as C. reinhardtii and C. vulgaris for Cd, Chlorella sp. for Ni and C.

kessleri for Pb, and additional fish species other than P. promelas and O. mykiss, such as Danio rerio, Lepomis macrochirus and Perca flavescens for Cd. In contrast, outliers in the daphnia database were not related to the use of particular species. Note that the outliers in the algal and fish databases were removed before the data were used in the QICAR modeling.

There are far fewer EC 50 values for the TCEs than for the training metals. In total, one or two algal EC 50 values were available for each of the TCEs (n=12), with a maximum of five data points for Pd(II); P. subcapitata was again the most studied algal species. Ceriodaphnia dubia, D. magna and D. magna straus were the only daphnia species for which toxicological data were available for the TCEs, but the database did include 10 elements; Pd(II) and Pt(IV) had the highest number of data points (n=6) whereas only one test result was available for Au(I), Ir(III), Ge(IV) and Ru(III). Few EC 50 values were available for fish exposed to TCEs since for several experiments, the results were reported as "higher than a certain value" and thus could not be used in the present study (Table SI -18). Nonetheless, seven elements were represented with one or This article is protected by copyright. All rights reserved.
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two EC 50 values; O. mykiss was the most studied species but no P. promelas data were available.

Best QICAR models Among the studied metal characteristics and based on the EC 50 values for the training metals, the best predictor of the metal acute toxicity towards algae, daphnids and fish is the composite value  m 2 r or its log transformed value (Figures 2, 3 and4). The  m term represents the electronegativity of the metal, e.g. its ability to attract electrons when it interacts with a ligand in solution or a membrane-bound metal transport site, whereas r is its ionic radius. Their combination as the composite  m 2 r parameter was introduced in such as Na (0.88) and Ca (1.00), the interaction with ligands is predominantly an ionic interaction between the cation and the donor atom(s) in the ligand, whereas metals with high  m 2 r values (class B) tend to form bonds with covalent character. This classification was completed with the use of z 2 /r, which describes "the ability of cations to form ionic bonds" and takes into account the charge on the cation and the ability of ions with small radii to approach ligands donor groups closely. Since publication of their landmark 1980

This article is protected by copyright. All rights reserved.
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paper,  m 2 r has been a recurrent parameter used in QICAR models, either alone or in combination with z 2 /r or log K OH (Walker et al. 2013).

In the present study, the best models used  m 2 r as the sole parameter to describe the toxicity of total dissolved metals to freshwater aquatic organisms, without the further need to add another characteristic or index such as z 2 /r. Moreover, this latter index showed very poor correlations with metal toxicity for all the studied organisms. Note that log K OH was not tested due to the lack of values for some data-poor elements.

Quality of the QICARs prediction

Very good correlations were found between  m 2 r and the toxicity of the training metals, with r 2 adj values higher than 0.8 for all organisms except for O. mykiss (r 2 adj = 0.62) (Figure SI-10). However, predictions for the TCEs were not as good, in particular for Au (algae, daphnia, fish), Pd(II) (fish), Pt(II) (algae, daphnia) and for Rh and Ru 

CONCLUSION

Eight 'best' models (r 2 adj > 0.6) were constructed to predict acute EC 50 values for twelve data-rich metals and ten data-poor TCEs, using toxicity testing data for freshwater algae, daphnids and fish (Table 1). All of these models used the covalent index,  m 2 r, in simple linear regressions, illustrating that a metal's ability to form covalent bond is a good proxy for its toxicity.

QICAR models show potential as a screening tool that could be used to review This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
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  physical properties (atomic weight -AW; atomic volume -V; density -ρ; melting point -MP; polarizability -α; molar refractivity -MR); electronic structure (atomic number -AN; ionization energy and potential -IP and ∆IP, respectively; electron affinity -E*); redox properties (oxidation number -ox; standard electrode potential -E 0 and electrochemical potential, ∆E 0 ); binding properties (ionic radius -r; covalent radius -CR; Van der Waals radius -Vdw; electronegativity -χ m ) and various composite indices (ionic potential -z/r, where z = the charge on the ion; ionic index -z 2 /r; covalent index χ m 2 r; covalent binding stability -∆β; Pearson softness parameter -σ p ; absolute value of the first hydrolysis constant -log K OH ; AN/∆IP). These ion characteristics were mostly found using the Handbook of physics and chemistry (Rumble 2018). Exceptions included σ p (Ahrland 1968; Williams et al. 1982), log K OH (Academic Software 2001; Smith et al. 2004) and ∆β, which was either retrieved from Newman and McCloskey (1996) or This article is protected by copyright. All rights reserved. Accepted Article calculated from stability constants found in the IUPAC (Academic Software 2001) or NIST databases (Smith et al. 2004).

  log EC 50 values with the variances of the metal characteristics and their log-transformed This article is protected by copyright. All rights reserved. Accepted Article values, using the Fisher test (α = 0.05). When the original values of a given metal characteristic had a variance similar to that of the -log EC 50 values, the log transformed metal characteristics were not considered. The 'entry' parameter significance of the MLR was tested using a Student t test at α = 0.05 whereas the removal of a variable was tested at α = 0.1. Metal parameter multicollinearity was assessed using the Variance Inflation Factor (VIF; < 10 as an indication of negligible collinearity). The 'best' metal characteristics were then selected based on several goodness of fit statistics for the developed model: the highest adjusted r 2 (r 2 adj ); the lowest root mean square error (RMSE); the highest F value with a p value lower than 0.05 (the F and p values being obtained with an Analysis of Variance (ANOVA) to test the significance of the model to predict the -log EC 50 values based on the selected metal characteristics); the closeness of the Mallows Cp coefficient to the target value of Cp (Cp= k+1, k being the number of variables in the model), and the lowest AIC (Akaike's Information Criterion). As was the case for the SLRs, MLRs were constructed with and without species distinction.

A

  first group of metal characteristics was composed of V, which correlated with α (r = 0.889), CR (r = 0.931) and Vdw (r = 0.720). V was chosen because the range of its values for the training metals bracketed the V values for the studied TCEs and it represents two variables (V = AW/ρ). It was also chosen in preference to CR because of the potential difficulty in differentiating between CR and r. A second group of characteristics was This article is protected by copyright. All rights reserved.

  TCEs [Au(III), In(III), Rh(III), Ru(III), Ru(IV), Pt(IV)] have EC 50 values ranging between 1.1 x 10 -6 M [Ru(IV)] and 1.4 x 10 -5 M ([In(III)]. The least toxic elements among the studied TCEs are Au(I), Ge(IV), Pt(II) and Re(VII), with EC 50 values between 1.0 x 10 -4 M [Au(I)] and 1.2 x 10 -3 M [Ge(IV)]. Daphnids. The EC 50 values for the training metals used to construct the daphnia models are presented in TableSI-8; comparable data for the TCEs are presented in TableSI-9. Among the studied metals, the cations Ca, Mg, Mn and Na are the least toxic with average EC 50 values of about 1 x 10 -2 M. Zinc and Co have comparable toxicity, with average EC 50 values of (1.4 ± 1.1) × 10 -5 M for Zn and (4.6 ± 2.7) × 10 -5 M for Co.Cadmium, Cu and Pb toxicity values are in the µM range whereas Ag is the most toxic of the studied metals with EC 50 values ranging between 1.0 × 10 -9 M and 1.5 × 10 -6 M.Several daphnia species were examined for each metal; for example, Ni toxicity was assessed using 13 different species. Nevertheless, D. magna and C. dubia were the most studied species. Each metal data set was examined for outliers, first by taking into account all species, then only D. magna and finally C. dubia (TableSI-8). Among the studied TCEs, Au(I) has the lowest EC 50 value (6.9 x 10 -7 M), whereas the toxicity of Au(III), Pd(II) and Pt(IV) are in the µM range. The least toxic TCEs are Ir(III), Pt(II), Fish. The compiled toxicity test data are presented in Table and in Table. Among the training elements and taking into account all the fish species, Ag is the most toxic metal with an average EC 50 value of (2.0 ± 3.4) × 10 -7 M. The least toxic cation is Na with EC 50 values ranging from 9.6 to 11 x 10 -2 , followed by Mg, Ca and K, the EC 50 values of which are in the 1 x 10 -2 M range. Lead and Cu were found to be more toxic (µM range) than Mn, Cd, Ni and Zn, based on their average EC 50 values. However, a wide dispersion around the average EC 50 values was observed for Cd (five orders of magnitude) and Ni (four orders of magnitude), which suggests that such comparisons of metal toxicity should be undertaken with caution.Although many fish species (n=24) were present in the database, the most studied species were O. mykiss and P. promelas for each of the studied metals. Pd(IV) is the most toxic TCE for fish with an EC 50 value of 1.4 x 10 -6 M, followed by both Au species with EC 50 values of 2.0 x 10 -5 M for Au(I) and 4.6 x 10 -5 M for Au(III). Ge(IV), Mn(II), Pd(II), Rh(III) and Pt(IV) have EC 50 values within the concentration range between 1.3 x 10 -4 M [Pt(IV)] and 9.9 x 10 -4 M [Ge(IV)]. Modeling All-species Algae and P. subcapitata models (designated model A-and model PS) Fourteen SLRs and four MLRs were constructed with the metal characteristics and the -log EC 50 values compiled for algae (without species distinction) exposed to the studied training metals. The best model (Model A12) was the SLR built with log  m 2 r as the predictor, yielding a r 2 adj of 0.89 and a RSME of 0.722 (

Figure 2A ;

 2A Figure 2A; Figure SI-1). Among the constructed MLRs, Model A16 had a very high r 2 adj

  studied over the years, they were rarely measured in the exposure medium (i.e., nominal concentrations or indirect estimates based on conductivity measurements were used -Santos et al. (2007), Venancio et al. (2017)) and thus many of the earlier studies were not useful for the present study. The daphnia database included many more tests than the algal database. The largest individual database was again for Cu with 239 data points and seven different daphnia species. The Ni database had the highest number of studied species (13 in total) whereas in contrast EC 50 values for Co were only available for C. dubia. Although the database for the major cations was again the least extensive in terms of the number of experiments, one large data set was found in the literature, thanks especially to the work of Mount and colleagues who did extensive work on C. dubia (Mount et al. 2016). The Ag database contained only nine EC 50 values but they came from eight different sources, suggesting good representativeness of the data. The toxicological data concerning fish are numerous for Cd, Cu, Ni, Pb and Zn, with a total of 201 results for Cu with eight species represented. The US EPA (2016) report from which the Cd data were extracted provided responses for 25 different species, and a total of 100 data points. In contrast, the Co database had only two available results for P. promelas This article is protected by copyright. All rights reserved.

  the early 1980's by Nieboer and Richardson in order to classify metals into three subcategories, i.e., class A, class B and borderline metals (Nieboer and Richardson 1980). This classification was carried out in the context of trying to understand and predict metal toxicity. At that time, Nieboer and Richardson demonstrated that "the index  m 2 r is an estimate of the quotient obtained by dividing the valence orbital energy by the ionic energy". In other words,  m 2 r represents the importance of covalent interaction in metalligand binding, relative to ionic interaction. For elements with low  m 2 r values (class A)

(

  daphnia). Several factors may be contributing to the poorer predictive power of the models for these elements. First, the toxicity data for the TCEs were extracted from very few experimental tests, meaning that the EC 50 values are not as robust as those for the training metals. Secondly, the  m 2 r values for the training metals that were used to construct the models ranged between 0.88 (Na) and 4.28 (Ag). As a consequence, for elements for which the  m 2 r values lie outside this range, such as Au(I) (7.89) and Au(III) (4.90), the model predictions necessarily involve an extrapolation, rather than an interpolation, and this may contribute to the poorer performance of the model. Note, however, that the  m 2 r values of Pd, Pt, Rh and Ru do fall within the range within which the models have been constructed. Thirdly, the toxicity testing of some TCEs were often performed with compounds having a chemical structure much more complex than those This article is protected by copyright. All rights reserved.

  existing data and identify 'outliers', i.e. toxicity values that lie outside the QICAR prediction intervals. These outliers might be values that are abnormally low(and driving This article is protected by copyright. All rights reserved.Accepted Articleregulation setting), or values that are unusually high; in both cases, the outliers might reflect inaccurate toxicity test results or inadequate predictive tools. The QICARs could be used to flag values that merit further scrutiny and possible retesting.In the case of TCEs, QICARs might also be used as an interpolation or extrapolation tool, to estimate their toxicity. Indeed, both parameters,  m (electronegativity) and r (ionic radius) forming the covalent index are easily retrieved from the basic Handbook of physics and chemistry (Rumble 2018). Improvement in QICAR predictions of TCE toxicity should include consideration of metal speciation in the exposure media (for both training and prediction sets of metals) and concurrent measurements of metal accumulation in the test species. Since metal-ion specific probes are generally not available for the TCEs, consideration of metal speciation will necessarily involve the use of chemical equilibrium models to calculate the major metal species present in the exposure media. Such models are inherently sensitive to the quality of the thermodynamic data that are available for the metal, and this may well be a limiting factor for some of the TCEs, which are data-poor not only in the case of toxicity data, but also with respect to their behavior in aqueous solution. Concurrent measurements of metal bioaccumulation, with a distinction between surface bound and internalized metal, would help establish links between metal speciation, metal accumulation and toxicity. The lack of such information currently hinders attempts to explain the mode of action of the TCEs.Supplemental Data-The Supplemental Data are available on the Wiley Online Library at DOI: 10.1002/etc.xxxx.
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 2 Figure 2: (A) Simple linear regression of the negative logarithm of the mean measured
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 3 Figure 3: (A) Simple linear regression of the negative logarithm of the mean measured
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 4 Figure 4: (A) Simple linear regression of the negative logarithm of the mean measured

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  Accepted Articleof the training metals, which were usually added as dissociable chloride or nitrate salts, and this might have contributed to the deviations from the QICAR predictions. For example, Pt(II) was added as tetraammineplatinum hydrogen carbonate and tetrammineplatinum diacetate whereas Pt(IV) was added as dihydrogen hexahydroxoplatinate and platinum chloride. Similarly, Rh was added as diammonium sodium hexakis(nitrito-N) rhodate and as rhodium nitrate hydrate. In the present study, we have expressed the EC 50 values as total dissolved metal concentrations, but to know to what extent these complex forms remain intact in the aqueous exposure media within the timeframe of the toxicity test would be very helpful. This is also true for the training metals, the speciation of which can vary as a function of pH, carbonate and DOM concentrations in exposure media. Given the central role of the free metal ion activity in the prediction of metal toxicity towards aquatic organisms[START_REF] Campbell | Interactions between trace metals and organisms: a critique of the free-ion activity model[END_REF], ongoing projects are now focusing on developing QICAR models based on the free metal ion activity to determine if this improves the prediction of TCE toxicities.

Table 1 :

 1 Compilation of the best models to predict metal acute toxicity towards freshwater algae, daphnids and fish, with and without species-specificity (models based on total dissolved metal concentrations).

	Model (-log EC 50 )	r 2	adj
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The comparable data for the TCEs are plotted in the figures in the manuscript and in the SM file. Readers are invited to contact the corresponding author for any additional information (severine.le-faucheur@univ-pau.fr).
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