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Abstract 17 

The cultivable fungal diversity from PAH-contaminated sediments was examined for the tolerance 18 

to polycyclic aromatic hydrocarbon (PAH). The 85 fungal strains, isolated in non-selective media, 19 

revealed a large diversity by ribosomal internal transcribed spacer (ITS) sequencing, even including 20 

possible new species. Most strains (64%) exhibited PAH-tolerance, indicating that sediments retain 21 

diverse cultivable PAH-tolerant fungi. The PAH-tolerance was linked neither to a specific taxon nor 22 

to the peroxidase genes (LiP, MnP and Lac). Examining the PAH-removal (degradation and/or 23 

sorption), Alternaria destruens F10.81 showed the best capacity with above 80% removal for 24 

phenanthrene, pyrene and fluoranthene, and around 65% for benzo[a]pyrene. A. destruens F10.81 25 

internalized pyrene homogenously into the hyphae that contrasted with Fusarium pseudoygamai 26 

F5.76 in which PAH-vacuoles were observed but PAH removal was below 20%. Thus, our study 27 

paves the way for the exploitation of fungi in remediation strategies to mitigate the effect of PAH 28 

in coastal marine sediments. 29 

 30 

 31 

 32 
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Introduction  36 

Polycyclic aromatic hydrocarbons (PAHs) are important pollutants threatening the marine 37 

environment due to their toxicity (Duran and Cravo-Laureau, 2016). Although the more 38 

spectacular input of PAHs in marine environments is due to accidental oil spills, the main source 39 

remains on natural oil seeps (Duran and Cravo-Laureau, 2016). PAHs accumulate in sediments 40 

because of their hydrophobicity constituting a chronic contamination (Rothermich et al., 2002). 41 

Their fate in the environment depends on biotic and abiotic factors (Duran and Cravo-Laureau, 42 

2016).  43 

Many microorganisms including archaea, bacteria, algae and fungi are able to degrade PAHs 44 

(Duran and Cravo-Laureau, 2016; Bordenave et al., 2008; Germouche M'rassi et al., 2015; Haritash 45 

and Kaushik, 2009). In the last years, the interest on PAHs removal and biodegradation by fungi 46 

has increased (Mineki et al., 2015; Morales et al., 2017). The fungal removal of PAHs consists in 47 

three main processes: two oxidation processes involving extracellular peroxidases (lignin 48 

peroxidase, manganese peroxidase and laccase; Chen et al., 2001; Scheel et al., 2000), and 49 

membrane attached monooxygenases (cytochrome P450; Črešnar and Petrič, 2011; Syed et al., 50 

2010), and absorption and storage of PAHs in lipid vacuoles (Verdin et al., 2005). The ability of 51 

fungi to use PAHs as sole carbon and energy sources has been described (Rafin et al., 2000). 52 

However, it has been reported that most of fungi require co-metabolism with another carbon 53 

source for PAH degradation (Cerniglia et al., 1986).  54 

Fungi have been found in all marine habitats (Orsi et al., 2013), revealing their high diversity 55 

(Jones, 2000). Ascomycota and Basidiomycota are the main fungal phyla found in marine 56 

environments as described for soil ecosystems (Clemente et al., 2001; Field et al., 1992; Godoy et 57 

al., 2016; Li et al., 2008; Mineki et al., 2015; Potin et al., 2004; Valentín et al., 2006). Although 58 

fungi of terrestrial origin have been isolated from marine ecosystems (Li and Wang, 2009), recent 59 

molecular analysis revealed specific fungal sequences suggesting the existence of novel species of 60 

marine fungi (Amend et al., 2019; Grossart and Rojas-Jimenez, 2016). Fungi isolated from marine 61 

habitats exhibit similar morphological characteristics to their terrestrial counterparts (Méjanelle et 62 

al., 2000). However, they might possess particular properties to survive in marine environments 63 

(Amend et al., 2019), particularly in PAHs contaminated sediments (Greco et al., 2018). Such 64 

properties, as salinity tolerance and the capacity to degrade and accumulate PAHs, less 65 

bioavailable due to adsorption solid materials, remain to be explored (Bonugli-Santos et al., 2015; 66 

Bugni and Ireland, 2004; Trincone, 2010). 67 
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This study aimed to explore the cultivable marine fungi, recovered from oil-contaminated saline 68 

sediments, for their PAH-tolerance capacity. For this purpose fungal strains were isolated from 69 

various marine coastal environments, characterized and identified by ITS sequence analysis, and 70 

their features explaining the PAH tolerance examined.  71 

 72 

Material and Methods 73 

Culture media  74 

The culture media used in this study were based on the seawater minimal medium (swMM; Brito 75 

et al., 2006), which composition was as follow: KCl 0.75 g/L, CaCl·2H2O 1.47 g/L, NH4Cl 1.5 g/L, 76 

MgSO4·7H2O 6.64 g/L, NaCl 20 g/L, Na2CO3 0.265 g/L, 1 mL of trace elements solution (H3BO3 300 77 

mg/L, FeSO4·7H2O 1.1 g/L, CoCl2·6H2O 190 mg/L, MnCl2·2H2O 50 mg/L, ZnCl2 42 mg/L, NiCl2·6H2O 78 

24 mg/L, Na2MoO4·2H2O 2mg/L), 1mL of vitamin solution (biotine 2 mg/L, ρ-aminobenzoate 10 79 

mg/L, thiamine 10 mg/L, pantothenate 5 mg/L, pyridoxamine 50 mg/L, vitamin B12 20 mg/L, 80 

nicotinate 20 mg/L), and 100 µL of phosphate buffer 50 mM. The pH was adjusted with HCl to 6.5. 81 

Chemicals were purchased from Sigma Aldrich (Germany). 82 

The malt dextrose agar (MDA) and malt dextrose (MD) media, in which distillated water was 83 

exchanged by swMM (MDAsw and MDsw respectively) to keep salinity conditions, were used for 84 

the isolation and for maintaining fungal strains. 85 

Selection and conservation of fungal strains 86 

Oil polluted sediment collected from different coastal areas were used as inoculum for the 87 

isolation of fungal strains with the ability to degrade PAHs. Each sample was inoculated directly in 88 

MDAsw and incubated for 5 days. Also, dilutions at 10-1, 10-2 and 10-3 were performed taking 100 89 

mg of each source.  90 

The isolated fungal strains were conserved as conidia and mycelia in glycerol at -70°C. Fungi were 91 

inoculated in MDsw grown until conidia overwhelmed cultures. Mycelia and conidia were 92 

recovered from the flask and then dispatched in at least 3 Eppendorf tubes (100 mg of biomass 93 

each) for each strain. After addition of 1 mL glycerol (30% solution), the tubes were frozen and 94 

kept at -70 °C until use. In order to check viability one tube with mycelia was tested after 7 days of 95 

storage by inoculating MDsw culture. 96 
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Fungi identification sequencing and phylogenetic analysis 97 

Fungi were harvested from MDAsw cultures from 10 days of incubation and DNA was extracted 98 

using the QUIAGEN DNeasy® UltraClean® Microbial Kit (Cat. No. 12224-40) following the 99 

manufacturer instructions. The identification was based on ITS sequences, which were amplified 100 

using the primers ITS1F (CTTGGTCATTTAGAGGAAGTAA) and ITS4 (TCCTCCGCTTATTGATATGC) that 101 

amplify the ITS1, 5.8S and ITS2 region of the rRNA genes operon. The amplified region allows the 102 

identification at the species level and even at the subspecies level (Fajarningsih, 2016). The PCR 103 

reaction mix was prepared with 1 µL of extracted DNA in 9.5 µL of DEPC-treated water, 1 µL of 104 

each primer (20 µM), 12.5 µL AmpliTaq Gold 360 Master Mix 2X (Thermo Fisher Scientific, USA). 105 

The amplification was performed through 35 cycles of 95 °C (30 s), 55 °C (30 s) and 72 °C (1 min), 106 

with a previous activation start of 95 °C (10 min) and final extension step at 72 °C (10 min). ITS 107 

amplified fragments were sequenced at the Eurofins platform (France).  108 

Sequence data were edited using Chromas Pro version 1.34. For identification, fungal ITS rRNA 109 

sequences were compared with NCBI (National Centre for Biotechnology Information; 110 

http://www.ncbi.nlm.nih.gov) database as previously described (Giloteaux et al., 2010). Fungal ITS 111 

sequences in this study and reference sequences from GenBank were edited and aligned using 112 

CLUSTAL-W (Thompson et al., 2003) as described (Bruneel et al., 2008). The aligned sequences 113 

were imported into MEGA 3.1 (Kumar, 2004) for creating Neighbour-joining (NJ) trees based on 114 

pairwise genetic distances. The quality of the branching patterns for NJ was assessed by bootstrap 115 

resampling of the data sets with 1,000 replications and rooted to Rhizopus oryzae CBS 112.07T (NR 116 

103595.1) and Trametes versicolor CFMR FP-135156-SpT (NR 154494.1). The sequences 117 

determined in this study have been submitted to the ITS NCBI database and assigned Accession 118 

nos. MT889820 to MT889904. 119 

Fungal tolerance to PAHs 120 

The tolerance to hydrocarbons was tested by inoculating and cultivating the fungi in swMM 121 

supplemented with 25 mg/L of each fluoranthene, phenanthrene, pyrene and 5 mg/L of 122 

benzo[a]pyrene as only carbon source. The analytical grade PAHs (Aldrich Chemical Co) were 123 

added to the media as solution in acetone. Fungal strains were inoculated in the plates and 124 

incubated at 20 °C in darkness during 15 days in order to maintain culture condition closer to that 125 

observed in the environment. The capacity of fungi to grow and develop conidia was considered as 126 

tolerance while in absence of development the strain was classified as no-tolerant.  127 
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Fungal PAHs removal rates 128 

Between 80-100 mg of mycelia and conidia were recovered of MDAsw plates and inoculated in 80 129 

mL flasks with 30 mL of MDsw (1% MD). Fluoranthene, phenanthrene, pyrene and benzo[a]pyrene 130 

were then added from a stock solution prepared in acetone that contain 20 mg/L of each 131 

hydrocarbon. Samples were set for 1 hour before incubation to let acetone evaporate. An un-132 

inoculated flask was used as abiotic control and PAHs concentration reference. Cultures were 133 

incubated in darkness for 20 days at 20 °C with gentle shaking at 80 rpm, in order to maintain 134 

culture condition closer to that observed in the environment. Hydrocarbons were extracted after 135 

incubation adding 30 mL of ethyl acetate and shacked for 15 min at 600 rpm. The recovery yield 136 

was estimated to be about 98% of the initial concentration using the abiotic controls as reference. 137 

Chrysene was used as internal standard during extraction in a concentration of 10 mg/L. Two 138 

milliliters of organic phase was pulled in a glass vial for its analysis in Gas Chromatography 139 

equipped with Flame Ionization Detector (GC-FID) (Agilent Technologies®, Network 6850 GC 140 

System) with a capillarity C18 reverse column (30 m*0.25 mm*0.25 µm). For the analysis, 1 µL was 141 

injected with a split ration of 1/50 using helium as carrier gas. Column temperature ramp settle 142 

from 200 to 240 °C with stepped temperature increase of 5 °C/min and held during 1 min at 240°C. 143 

Flame ionization detector was settled at 290 °C.  144 

The removal capacities (degradation and/or sorption) for selected strains (Alternaria destruens 145 

F10.81 and Fusarium pseudonygamai F5.76 strains exhibiting the highest and the lowest removal 146 

capacities, respectively) was determined in triplicate with an incubation period of 15 days at with 147 

gentle shaking at 80 rpm in order to maintain culture condition closer to that observed in the 148 

environment. PAHs extraction was performed as above described. Phanerochaete chrysosporium 149 

strain was used as reference for PAH-removal capacity, which often serves as reference for the 150 

comparison of PAH-removal capacities even between strains from different phyla, as it is the fungi 151 

the most studied in PAH-degradation (Cao et al., 2020). A one-way of analysis of variance (ANOVA) 152 

was used to assess the significance of PAH-removal differences between samples with a 153 

significance level of p < 0.05.  154 

PCR detection of peroxidase and laccase genes  155 

The presence of genes encoding for enzymes known to be related to PAHs degradation: laccase 156 

(lac), manganese peroxidase (MnP1, MnP2, MnP3) and lignin peroxidase (LiP1, LiP2, LiP3, LiP4, 157 

LiP5, LiP6) was checked by PCR amplification. Phanerochaete chrysosporium, an effective PAH 158 
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degrader (Bamforth and Singleton, 2005; May et al., 1997), was used as positive control for the 159 

presence of the peroxidase genes. The sequences of the primers and the Tm for the amplification 160 

of the different genes are presented in Table 1. The reaction mix was prepared with 1 µL of 161 

extracted DNA in 9.5 µL of DEPC-treated water, 1 µL of each primer (20 µM), 12.5 µL AmpliTaq 162 

Gold 360 Master Mix 2X (Thermo Fisher Scientific, USA). The amplification was performed through 163 

35 cycles of 95 °C (30 s), Tm (Table1, 45 s) and 72 °C (45 s), with a previous activation start of 95 °C 164 

(10 min) and final extension step at 72 °C (10 min). Peroxidase genes amplified fragments were 165 

sequenced at the Eurofins platform (France).  166 

PAHs internalization and transport 167 

The capacity to internalize and transport PAHs through hyphae was examined for selected strains 168 

(F. pseudonygamai F5.76 and A. destruens F10.81). The experimental setup consisted on an empty 169 

petri dish with two MDAsw cubes over a crystal slide with a separation of 6 mm between them. 170 

One of the cubes contained pyrene at 30 mg/L while the other no. The fungi were inoculated in 171 

the cube with pyrene and incubated for 7 days in darkness at 20°C. The transport of PAHs was 172 

evaluated inside the mycelia that reach the cube without pyrene using an epifluorescence 173 

microscope (Nikon, Eclipse E600) with DAPI light filter (excitation 345 nm, emission 485 nm) for 174 

PAH detection (fluorescence wavelengths range from 210-380 nm) (Verdin et al., 2005).     175 

 176 

Results and discussion 177 

Identification of fungal strains Isolated from coastal sediments 178 

In total, 85 fungal strains were isolated from PAHs contaminated coastal sediments in seawater 179 

media containing malt dextrose agar (swMDA). The strains were identified with the complete ITS 180 

sequence (including ITS1, 5.8S rRNA gene, and ITS2 regions), which provide accurate identification 181 

of fungi species even at the subspecies level (Fajarningsih, 2016). The phylogenetic analysis 182 

showed that 83 strains belong to the Ascomycota Phylum and two strains belong to the 183 

Basidiomycota Phylum (Fig. 1 and 2). Such result was not surprising since fungi belonging to 184 

Ascomycota have been found prevalent in marine sediments (Babu et al., 2010; Birolli et al., 2018; 185 

Ravelet et al., 2000) and other environments (Reyes-César et al., 2014). The 85 fungal strains fall 186 

into six different Orders: Capnodiales (59 strains), Eurotiales (14 strains), Trichosphaeriales (1 187 
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strain), Hypocreales (2 strains), Pleosporales (7 strains) and Polyporales that belong to 188 

Basidiomicota Phylum (2 strains).  189 

The isolated strains affiliated to Eurotiales included strains belonging to Talaromyces (T. helicus), 190 

Aspergillus (A. fumigatus and A. chevalieri), and Penicillium (P. glandicola, P. crustosum, and P. 191 

bialowiezense) genera (Fig. 1). Talaromyces and Aspergillus genera are known for their ability of 192 

PAH degradation in soil (Fayeulle et al., 2019), while Aspergillus genera, especially A. fumigatus, 193 

has been detected in oil-contaminated mangrove sediments (Ghizelini et al., 2019). The isolated 194 

strains related to the Nigrospora genus (Trichosphaeriales), N. rubi and N. gorlenkoana, are 195 

described for the first time in marine sediments. The presence of these strains in the sediments 196 

might be explained by plant material entering into the sea by air transportation or runoff, as they 197 

are known to be associated with plants (Hao et al., 2020). Similarly, the strains affiliated to the 198 

Hypocreales, Fusarium pseudonygamai (plant pathogen), Lecanicillium longisporum and 199 

Akanthomyces muscarius (entomopathogens) have been described only in soil so far (Ansari and 200 

Butt, 2012; Bashyal et al., 2016; Danilovich et al., 2020). Regarding the Pleosporales, the strain 201 

F1.72, closely related to Neosulcatispora strelitziae and Phaeosphaeria podocarpi, recently 202 

described fungal species (Crous et al., 2014, 2016), represents probably also a novel fungal 203 

species. However, further analysis, including multi-locus based phylogeny, is required to 204 

characterize the strain. Two other strains were closely related to species within the Pleosporales, 205 

Alternaria destruens and Epicoccum poae, which have been isolated from plants (Kumar and 206 

Kaushik, 2013; Chen et al., 2017). So far, these strains have not been shown to exhibit 207 

hydrocarbon degradation capacity. The strains affiliated to the Polyporales were related to 208 

Trametes versicolor and Bjerkandera adusta that are known to be able to degrade hydrocarbon 209 

(Lladó et al., 2012; Andriani et al., 2016). 210 

All the Capnodiales were affiliated to two complexes of the Cladosporium genus (Fig. 2) defined by 211 

a multi-locus phylogeny (Schubert et al., 2007). Among the Cladosporioides complex, the isolated 212 

strains were affiliated to species known to be associated with human and animals diseases such as 213 

C. crousii, C. welwitschiicola, C. austroafricanum, C. pini-ponderosae, and C. puyae (Sandoval-Denis 214 

et al., 2016), and with marine organisms such as C. colombiae (Ravi Theja and Chandra, 2020). 215 

Similarly, the isolated strains belonging to the Herbarum complex, C. rhusicola, C. subcinereum, C. 216 

angustiherbarum have been described involved in human and animals infections (Sandoval-Denis 217 

et al., 2016), while C. allicinum was found associated with marine organisms (Poli et al., 2020; 218 
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Bovio et al., 2019) and several strains related to C. herbarum have been described for their ability 219 

to degrade PAH in marine sediment (Marco-Urrea et al., 2015; Xiao et al., 2020). Noteworthy, the 220 

strain D16.68 is the more distant from Cladosporium species (Fig. 2) suggesting that it might 221 

represent a novel species within the Cladosporium genus, but further phylogenetic analysis based 222 

on multi-locus are required to elucidate the taxonomic position. Although Cladosporium has been 223 

already reported in saline environments (Zalar et al., 2007), in hydrocarbon contaminated 224 

sediments (Ravelet et al., 2000) showing as well resistance to metals (Shao and Sun, 2007), it was 225 

surprising to obtain mainly strains of this genus. It is likely that members of the Cladosporium 226 

genus are well adapted to the culture conditions imposed during the screening procedure. The 227 

cultural approach owns some limitations. Indeed, the development of conidia is controlled by 228 

different factors (Tan et al., 1995), such as the presence of PAHs (Zafra et al., 2015), influencing 229 

the selection of cultivable strains. In order to overcome such limitations, the application of 230 

different culture conditions will enlarge the diversity of isolated strains. 231 

Despite the limitations inherent of the cultivable approach, a large diversity of cultivable fungi was 232 

obtained from hydrocarbon-contaminated marine sediments, spanning 11 fungal genera. The 233 

isolated strains included not only strains affiliated to Orders which members were isolated from 234 

marine sediments (Mouton et al., 2012; Ravelet et al., 2000) showing the capacity to degrade 235 

PAHs (Fedorak et al., 1984; Simister et al., 2015), but also some isolated strains yet not described 236 

in marine sediments, nor for their tolerance to the presence of PAHs. Thus, our study shows that a 237 

large fungal diversity remains hidden in marine sediments, which represent a metabolic potential 238 

for the development of remediation strategies for the mitigation of the effect of PAHs.  239 

 240 

PAHs tolerance and removal capacities of the fungal isolated strains 241 

Most of the isolated fungal strains (54 strains, 64%) were able to grow in the presence of at least 242 

the presence of one PAH showing their tolerance to hydrocarbons (Fig. 3). Among them, 61% 243 

tolerate the presence of benzo[a]pyrene, 52% pyrene and 45% fluoranthene. Few fungal strains 244 

were able to develop in presence of phenanthrene either alone (19%) or in mixture with other 245 

PAHs (14%). Similar results showing high tolerance of fungal strains to pyrene, and low tolerance 246 

to phenanthrene and PAHs mixture have been reported in the same range of concentrations (Lee 247 

et al., 2014). Toxic effects on fungal growth have been observed with phenanthrene (Lisowska, 248 

2004) and metabolites produced from PAHs mixture (Lundstedt et al., 2003). Interestingly, the 249 
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tolerance capacity is consistent with the phylogeny (Fig. 3), the members of the same Order 250 

showing similar tolerance patterns. Noteworthy, the two groups Cladosporioides and Herbarum 251 

within the Capnodiales Order showed distinct tolerance capacities, which further support the 252 

classification into two distinct groups.  253 

In order to assess the PAHs removal capacity (degradation and/or sorption) of fungal isolated 254 

strains, maltose and dextrose were added as extra carbon source, since fungi have been shown to 255 

have low ability to use PAHs as sole carbon source (Harrison, 2009). In these conditions, fungal 256 

strains belonging to the Pleosporales Order showed the most efficient removal capacities while 257 

strains affiliated to the Hypocreales Order showed the lowest removal capacity (Fig. 3). In the 258 

Pleosporales Order, 85% of the strains showed removal capacity above 70%. The Cladosporoides 259 

group of the Capnodiales Order exhibited the less number of strains with removal capacities above 260 

70%. The comparison of the removal capacities of the isolated strains showed two main clusters 261 

(Fig. 4) separating the strains with high removal capacities from those with low removal capacities. 262 

Interestingly, members of the same species showed divergent removal capacities. Such 263 

discrepancies have been described (Lee et al., 2014), strains from the same species showing 264 

different metabolic capacities.  265 

The analysis also showed that pyrene and fluoranthene (4 rings PAHs) clustered together, further 266 

confirmed by strong correlation between pyrene and fluorentene removal capacities (Pearson 267 

coefficient: 0.996, R2: 0.993), indicating that they were removed by almost a similar pattern of 268 

fungal strains (Fig. 3). The benzo[a]pyrene (5 rings PAH) and phenanthrene (3 rings PAH) were 269 

apart indicating that the patterns of fungal strains able to remove them were different. Such 270 

observations highlighted that the removal capacity depends also on the PAH structure as 271 

previously suggested (Ghosal et al., 2016).  272 

In order to further characterize the genetic PAH degradation potential of the isolated fungal 273 

strains, the presence of genes encoding manganese peroxidase (MnP), lignin peroxidase (LiP) and 274 

laccase (Lac), known to participate in the degradation of PAHs (Ghosal et al., 2016), was examined 275 

in their genomes by PCR (Fig. 4). All strains posses at least one of these genes, the LiP2 being the 276 

most distributed (82/85 strains, 96%) among the isolated fungal strains (Fig. 4). Noteworthy, when 277 

the LiP2 gene was not present, the strain possessed the MnP2 gene. Almost all strains (80/85 278 

strains, 94%) possessed at least a manganese peroxidase gene, MnP2 gene being the most 279 

detected (75/85 strains, 88%). Such results were not surprising since most of the peroxidase 280 
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enzymes are known to be produced in marine environment (Bonugli-Santos et al., 2015). 281 

Surprisingly, the Lac gene, found in many marine fungal species (Ben Ali et al., 2020; D’Souza-Ticlo 282 

et al., 2009), was detected in only 4 strains, which exhibited the most genetic potential possessing 283 

more than 5 of the targeted genes. However, since various types of Lac genes have been described 284 

in fungi (Moreno et al., 2017; Yang et al., 2016), the primers used to detect the presence of Lac 285 

genes are probably not well suited for recovering the entire Lac gene diversity. The use of primers 286 

targeting broader Lac gene diversity or targeting at least Lac gene detected within the Ascomycota 287 

phyla (the major phyla of the isolated strains) is required to better define the presence of Lac 288 

genes in the isolated strains. Similar observations can be drawn for the LiP and MnP genes 289 

indicating that further efforts are needed for in depth characterization of the genetic potential of 290 

the isolated strains.  291 

Interestingly, the genetic potential of Alternaria destruens F10.81, exhibiting the highest PAH 292 

removal capacity, was different to that of Fusarium pseudonygamai F5.76, showing the lowest 293 

removal capacity, by just the presence of the LiP1 gene. Although it cannot be excluded that the 294 

expression of the genes might be controlled by different regulation mechanisms in both strains, 295 

such observation suggested that the presence of the LiP, MnP and Lac genes was not linked with 296 

the PAH-removal capacity. In the same way, Pearson correlation analysis was unable to establish 297 

correlation between the genetic profiles (LiP, MnP and Lac) and PAH-removal capacity of the 298 

isolated fungal strains, but confirmation by determining the activity of the enzymes would be 299 

required in order to conclude on the involvement of the enzymes in PAH-removal. Anyway, 300 

considering the observed genetic potential and despite the inherent bias of the molecular tools 301 

used in our study, these results suggested that other mechanisms are probably involved in PAH 302 

removal. Thus, further studies are required for elucidating whether the PAH-removal potential of 303 

the isolated strains involves degradation and/or sorption mechanisms. The mechanisms described 304 

so far involve monooxygenase genes (Cerniglia, 1997; Cerniglia and Sutherland, 2010), particularly 305 

the intracellular P450 monooxygenase gene that implies the internalization of PAH into fungal cells 306 

(Cerniglia, 1997). In order to determine whether the internalization of PAH and the hyphae PAH 307 

transport are mechanisms involved in PAH removal, the Alternaria destruens F10.81 and Fusarium 308 

pseudonygamai F5.76 strains were selected, because they exhibited the highest and lowest PAH 309 

removal capacities respectively, for further characterization. 310 

 311 
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PAH removal characterization of Alternaria destruens F10.81 and Fusarium pseudonygamai 312 

F5.76 313 

The removal capacity of Alternaria destruens F10.81 and Fusarium pseudonygamai F576 was 314 

compared with that of Phanerochaete chrysosporium, which is the most studied fungi for PAH-315 

degradation (Cao et al., 2020). It serve often as control fungi even for comparing PAH-removal 316 

capacity from strains belonging to different phyla (Cao et al., 2020), because it exhibit the capacity 317 

to degrade a broad range of organic compounds (Deschler et al., 1998; Duran et al., 2002), 318 

including several PAHs (Pointing, 2001). Under our conditions P. chrysosporium presented low 319 

rates of PAHs removal (< 30%), just above to that exhibited by F. pseudoygamai F5.76 and around 320 

3 times less to that observed for A. destruens F10.81 (Fig. 5). In fungi, gene regulation involves 321 

complex control mechanisms as those observed for peroxidases genes. It is known that in most 322 

fungal strains the LiP, MnP and Lac genes are expressed during the idiophase, the fungal 323 

secondary phase, when nitrogen is limited and under the control of complex regulation signals 324 

(Junghanns et al., 2005; Kamitsuji et al., 2004; Knop et al., 2015; Duran et al., 2002; Solé et al., 325 

2012), although the expression of MnP genes have been observed under high nitrogen content in 326 

fungal genera such as Pleurotus and Trametes (Kaal et al., 1995; Janusz et al., 2013; Stajić et al., 327 

2006). Thus, the differences observed in removal capacities between the fungal strains are 328 

probably due to the medium composition and culture conditions.  329 

It is likely that the seawater medium with high nitrogen content as well as the culture conditions 330 

used in our study limited the removal capacities of P. chrysosporium (Singh and Chen, 2008) and F. 331 

pseudoygamai F5.76. In contrast, A. destruens F10.81 exhibited removal rates above 80% for all 332 

PAHs except for benzo[a]pyrene (65% removal; Fig. 5). Such higher PAH removal capacity of A. 333 

destruens F10.81 suggested that either its genes involved in PAH removal respond to different 334 

regulation signals than the other two strains or the PAH removal was performed by other 335 

mechanisms. For example, the expression of LiP, MnP and Lac genes has been observed under 336 

high nitrogen content in some fungal species (i.e. Pleurotus ostreatus and Trametes trogii) and 337 

even under both high and low nitrogen content for Dichomitus squalens, while for other fungal 338 

species, such as P. chrysosporium, the peroxidase genes are expressed under nitrogen limitation 339 

(Janusz et al., 2013; Stajić et al., 2006). The expression of genes involved in PAH-removal even in 340 

high nitrogen content might be an asset for the fungal saprotrophic life-style in marine 341 
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environments where secreted enzymes, such as peroxidases, are likely to be lost by rapid diffusion 342 

in the aquatic environment (Richards et al., 2012). 343 

Possible PAH removal has been described through biosorption mechanisms, which include 344 

adsorption onto cell surface (Raghukumar et al., 2006) and absorption into the cell (Verdin et al., 345 

2005; Yang et al., 2013). Several studies have demonstrated the capacity of fungi to uptake PAHs 346 

(Deng et al., 2010; Wu et al., 2009) and also to transport them along the fungal hyphae (Furuno et 347 

al., 2012; Schamfuß et al., 2013). Both strains, Fusarium pseudoygamai F5.76 and Alternaria 348 

destruens F10.81, were able to uptake and transport pyrene (Fig. 6). Clear pyrene containing 349 

vacuoles were observed in F. pseudoygamai F5.76 (Fig. 6c,d) while pyrene was homogeneously 350 

distributed in A. destruens F10.81 (Fig. 6e,f) suggesting that the fungal strains have developed 351 

different strategies for PAH uptake. It has been demonstrated that the vacuoles serves for possible 352 

storage of PAHs as carbon source and for PAH transport along the hyphae allowing the distribution 353 

of PAH within the mycelia network (Darrah et al., 2006; Furuno et al., 2012). Consistently, pyrene 354 

was also accumulated into conidia in F. pseudoygamai F5.76 (Fig. 6c,d), which represents carbon 355 

source reserve for the development of conidia as previously reported (Allaway et al., 1997; Bago et 356 

al., 2002). In contrast, the homogenous pyrene distribution in A. destruens F10.81 (Fig. 6e,f) 357 

suggested a diffusion mechanism. Such different pyrene uptake mechanism probably explains the 358 

highest removal capacities of A. destruens F10.81 in comparison to F. pseudoygamai F5.76 (Fig. 5). 359 

However, further studies are required to determine whether higher pyrene absorption or internal 360 

degradation by monooxygenease (i.e. cytochrome P450) are the underlying physiological 361 

mechanisms of PAH removal in A. destruens F10.81.  362 

 363 

Conclusion 364 

The exploration of the cultivable fungal diversity of hydrocarbon-contaminated coastal sediments 365 

revealed that coastal sediment hide fungal diversity yet unexplored for their metabolic potential, 366 

especially regarding PAH removal capacity. A large proportion of the isolated strains (48%), 367 

dispatched within 6 fungal genera, exhibited PAH-tolerance with a removal capacity (degradation 368 

and/or sorption) above 60%. Such diversity in PAH-removal capacity represents a functional 369 

potential for ecosystem recovery exploitable for bioremediation treatments (Harms et al., 2011). 370 

However, the mechanism underlying the PAH-removal capacity (degradation and/or sorption) is 371 

unclear because it is probably not related to the presence of extracellular peroxidase genes (LiP, 372 
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MnP and Lac) and it is strain specific. The comparison of two isolated strains exhibiting contrasted 373 

removal capacities showed different PAH-uptake behaviour suggesting that the mechanisms by 374 

which fungi perform PAH-uptake might determine the efficiency of PAH-removal. Alternaria 375 

destruens F10.81, the most efficient PAH-remover (above 80%) was able to internalize pyrene 376 

homogenously into the hyphae that contrasted with the behaviour of Fusarium pseudoygamai 377 

F5.76 in which PAH-vacuoles were observed but exhibiting a PAH-removal capacity below 20%. It 378 

is likely that Alternaria destruens F10.81 owns features well adapted to PAH-contaminated coastal 379 

sediments, which represent potential for the development of a bioremediation process. However, 380 

further studies are required to understand the PAH-removal mechanism in order to manage fungal 381 

resources to mitigate the effects of PAH contamination.  382 
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Figure captions 786 

Fig. 1: Phylogenetic tree, based on ITS sequences, showing the positions of fungal strains 787 

isolated from oil contaminated coastal marine sediments. The Neighbour joining phylogenetic 788 

tree was rooted with the ITS sequence of Rhizopus orzyzae CBS 112.07T (NR 103595.1). The scale 789 

bar corresponds to 0.05 substitutions per nucleotide position. Percentages of 1,000 bootstrap re-790 

sampling that supported the branching orders in each analysis are shown above or near the 791 

relevant nodes. For the isolates, the number of isolated strains is indicated in parenthesis. For the 792 

type strains, the accession number is indicated in parenthesis. 793 

Fig. 2: Phylogenetic tree, based on ITS sequences, showing the positions of fungal strains 794 

isolated from oil contaminated coastal marine sediments within the Cladosporium genus. The 795 

Neighbour joining phylogenetic tree was rooted with the ITS sequence of Trametes versicolor 796 

CFMR FP-135156-SpT (NR 154494.1). The scale bar corresponds to 0.05 substitutions per 797 

nucleotide position. Percentages of 1,000 bootstrap re-sampling that supported the branching 798 

orders in each analysis are shown above or near the relevant nodes. For the isolates, the number 799 

of isolated strains is indicated in parenthesis. For the type strains, the accession number is 800 

indicated in parenthesis. 801 

Fig. 3: PAHs tolerance and removal capacities of isolated fungal strains. PAHs tolerance 802 

corresponds to the capacity of the fungal strains to grow (green) or not (red) on solid seawater 803 

minimal medium in the presence of different PAHs and PAHs mixture. PAHs removal capacity, 804 

determined in liquid cultures containing a mixture of PAHs, corresponds to the percentage of PAHs 805 

eliminated after 20 days of fungal growth. The color gradient follows to the removal capacity from 806 

low (red) to high (green). Phe, phenanthrene; Flu, fluoranthene; Pyr, pyrene; BaP, benzo[a]pyrene; 807 

Mix, mixture of the 4 PAHs. 808 

Fig. 4: Comparison of PAHs removal capacity of the isolated fungal strains and their genetic 809 

potential. The heatmap is based on similarity index calculated from removal capacity data shown 810 

in Fig 3. Phe, phenanthrene; Flu, fluoranthene; Pyr, pyrene; BaP, benzo[a]pyrene. The genetic 811 

potential corresponds to the presence (dark blue) of peroxidase genes assessed by PCR targeting 812 

manganese peroxidase (MnP1-3), lignin peroxidase (LiP1-6) and laccase (Lac). The absence of the 813 

genes is indicated in pale blue. The fungal strains selected for further analysis, corresponding to 814 

the highest and lowest removal capacities, are highlighted in red.  815 
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Fig. 5: PAHs removal capacities of Alternaria destruens F10.81 and Fusarium pseudonygamai 816 

F5.76 compared to that of the reference strain Phanerochaete chrysosporium. Means of tree 817 

replicates are presented. The bar indicates SD. In each hydrocarbon removal test, mean followed 818 

by the same letter do not differ statistically by the Turkey test at 5%. 819 

Fig. 6: PAHs internalization in the hyphae of Alternaria destruens F10.81 and Fusarium 820 

pseudonygamai F5.76. (a) Experimental schema for the detection of internal transport of PAHs 821 

along the mycelia. Fungi were inoculated in a 1 cm3 cube of solid seawater minimal media with 822 

10% LB and 20 mg/L of pyrene. The red arrow indicates the direction of the hyphae growth. (b) 823 

Macroscopic observation showing the colonization of Fusarium pseudonygamai F5.76 of a piece of 824 

media from the other. The red arrow indicates the hyphae forming bridges between the two 825 

pieces of media. Observation of Fusarium pseudonygamai F5. 76 hyphae after colonization by (c) 826 

light microscopy and by (d) fluorescence after exposing to DAPI light. The red arrows show the 827 

storage of PAHs into conidia. Observation of Alternaria destruens F10.81 hyphae after colonization 828 

by (e) light microscopy and by (f) fluorescence after exposing to DAPI light. The red arrows show 829 

the homogeneous distribution of PAHs into the hyphae. The microscopic observations were 830 

performed at a magnification of 160X.  831 
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Table 1. Primers used for the amplification of fungal peroxidases genes  833 

Gene* Sequence (5'-3')** 
Tm 
(°C) 

Size 
(nt) Reference 

LiP1 

LIG1u (F): 
GCCGCAATTTCTCTTGCTCTTTCCA 

57 179/126 
Broda et al., 
1995 LIG1d (R): 

TACATCGAACCACGCGCACGAGATT 

LiP2 

LIG2u (F): 
CATCGCAATTTCGCCCGCCATGGAGGA 

57 222/179 
Broda et al., 
1995 LIG2d (R):  

ACCTTCTGAACGAATGGCTTCTGGAGC 

LiP3 

LIG3u (F):  
TATTGCCATCTCTCCTGCTATGGAGGCC 

57 179/126 
Broda et al., 
1995 LIG3d (R): 

ATGTTAGGGTGGAAGTTGGGCTCGATG 

LiP4 

LIG4u (F): 
GTGCGCCTGGTTCCCCATTCTGCAG 

57 350/222 
Broda et al., 
1995 LIG4d (R): 

AATTGGTCTCGATAGTATCGAAGAC 

LiP5 

LIG5u (F): 
GGTCTCGATCGAGGAGAAGGTAATGATC 

57 350/222 
Broda et al., 
1995 LIG5d (R): 

TTGCCCCGACGGCGTGCACAC 

LiP6 

LIG6u (F): 
GACCTGCTCGAACGGCAAGGTCGTCC 

57 350/222 
Broda et al., 
1995 LIG6d (R): 

CATGATAGAACCATCGGCGCCTCGC 

MnP1 

mnp1-f (F): 
CAGACGGTACCCGCGTCACC 

60 246/123 
Bogan et al., 
1996 mnp1-r (R):  

AGTGGGAGCGGCGACATCAC 

MnP2 

mnp2-f (F): 
CCGACGGCACCCGCGTCAGC 

60 ≈900 
Bogan et al., 
1996 mnp2-r (R): 

CGAGCGGGAGCGGCGACGCC 

MnP3 

mnp3-f (F): 
CCGACGGTACCAAGGTCAAC 

60 ≈900 
Bogan et al., 
1996 mnp3-r (R): 

AGCGGCAGCGGCGACGCGAC 

Lac 

Lac (F): 
CACTGGCACGGNTTCTTCCA 

52 246/123 
D'Souza et al., 
1996 Lac (R): 

GTGACTATGATACCAGAANGT 

*LiP, lignine peroxidase; MnP, manganese peroxidase; Lac, laccase. **(F), forward; (R), reverse. 834 
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Fig. 2  842 
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Fig. 3  849 
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Fig. 4  851 
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Fig. 5  854 
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Fig. 6 858 
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Cultivable diversity of PAH-removing fungi




