
HAL Id: hal-03111199
https://univ-pau.hal.science/hal-03111199

Submitted on 15 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DRACeo: A smart simulator to deploy energy saving
methods in microservices based networks

Hernán H Álvarez Valera, Marc Dalmau, Philippe Roose, Christina Herzog,
Jorge Larracoechea

To cite this version:
Hernán H Álvarez Valera, Marc Dalmau, Philippe Roose, Christina Herzog, Jorge Larracoechea.
DRACeo: A smart simulator to deploy energy saving methods in microservices based networks. WET-
ICE, Jun 2020, Bayonne, France. �hal-03111199�

https://univ-pau.hal.science/hal-03111199
https://hal.archives-ouvertes.fr


DRACeo: A smart simulator to deploy energy
saving methods in microservices based networks

Hernan Humberto Alvarez Valera∗, Marc Dalmau†, Philippe Roose‡,¶Jorge Larracoechea and §Christina Herzog
∗†‡ ¶ E2S UPPA, University of Pau

64600 Anglet / FRANCE
Email: ∗hhavalera@univ-pau.fr, †Marc.Dalmau@iutbayonne.univ-pau.fr, ‡Philippe.Roose@iutbayonne.univ-pau.fr,

¶jorge-andres.larracoechea@etud.univ-pau.fr, §herzog@efficit.com
§EFFICIT SAS - Mauzac, France

Abstract—Nowadays, many researchers work to identify
microservices-based application deployments and scheduling so-
lutions to save energy without decreasing functional QoS. In this
work, we present DRACeo: A simulator that allows facing this
challenge in a simple and efficient way, enabling its users to focus
uniquely on microservices deployment/scheduling algorithms and
its hardware/software repercussions (load vs. energy consump-
tion) without worrying about low-level network configurations or
operating system issues. DRACeo is able to deploy and schedule
(move, duplicate, start/stop) microservices and their dependencies
on various devices with software and hardware heterogeneity
(CPU, bandwidth, RAM, Battery, etc.), taking into account
various scheduling heuristics algorithms: centralized vs non-
centralized. To do this, DRACeo allows deploying custom network
topologies based on client-server schemes or p2p distributions,
where devices can (dis)appear, turn on/off obeying random
circumstances or user strategies. Finally, the simulator performs
relevant operations such as QoS definition, resource monitoring,
calculation of energy saved and consumption tracking (at device
and network level). We tested some ideas based on our previous
work ”Kaligreen” to demonstrate the effectiveness of DRACeo.

Index Terms—microservices, middleware, energy, consump-
tion, CPU, network, hard disk, prototype, simulator

I. INTRODUCTION

Currently, many companies and scientists use microser-
vices because they allow architectural advantages such as
acceleration of deployment cycles, modularity, improvement
of maintainability, high availability, scalability, etc [1]. For
example, Docker and Kubernetes [2] manage microservices
on the cloud or even on grid environments, while Kalimucho
[3] does the same on user device level.

Then, to manage them correctly and to achieve a desired
QoS (i.e. performance and response time), it is necessary to
face several issues such as, load balancing, scalability, etc.
Some centralized approaches, such as the Netflix Conduc-
tor [4] , help addressing them by managing microservices’
connection aspects; whereas decentralized approaches like
Kalimucho [3], address these issues by allowing the devel-
opment of in-device algorithms for each node to perform mi-
croservices movement or duplication operations. Then, know-
ing that both (and also hybrid) approaches have advantages
and disadvantages; we find it useful to have a tool that allows
working with these two approaches. Kalimucho middleware
[3] enables each device to manage microservices and their

connections, allowing to deploy both types of approaches. It
deploys and operates (start, stop, move and duplicate) software
components from one device to another, regardless of whether
the device belongs to cloud entities or user terminals. Then,
as Kalimucho is able to measure on each device CPU activity,
current bandwidth and RAM availability, it is a good middle-
ware candidate for energy savings purposes. For this reason, in
some of our previous works [5] [6] we proposed a middleware
called “Kaligreen” strongly inspired by Kalimucho. Kaligreen
proposes that each device in the network has a supervisory
entity which: (1) constantly monitors the device energy situa-
tion (i.e. battery, energy consumption, etc.) and the load of its
hardware components; (2) classifies microservices according
to their type and features [6] and (3) executes its own schedul-
ing algorithm based on smart negotiations [5]. Then, while we
did a POC to prove that moving/duplicating services in a dis-
tributed architecture can save energy, we did not study enough
the heterogeneity of devices or the capabilities that each
hardware component offers. Nor did we consistently consider
the QoS of applications when microservices are scheduled at
different types and levels of network topologies. For these
reasons, we propose DRACeo: A tool that allows evaluating
different heuristics of microservice deployment/scheduling and
its repercussions taking into account: (1) the capabilities and
particular characteristics of each hardware component, (2) the
simple configuration, through a GUI or an API, of a centralized
(i.e. client server), decentralized (i.e. p2p architectures [7]) or
hybrid network configuration and (3) the definition and evalua-
tion of QoS, energy metrics and quantity of operations quantity
(movements, duplications, deployments and deletions) when a
scheduling algorithm is executed. Thereby, DRACeo is able
to virtualize an environment controlled by any middleware
that deploys and schedules microservices, allowing researchers
to create any type of scheduling algorithm and measure its
consequences in terms of energy and application efficiency.

This article presents related works in section II, the policies
and the architecture of the simulator in Section III and finally,
in section IV, some examples and results are shown.

II. RELATED WORKS

In order to understand and formally express the set of
consequences in terms of application efficiency and energy



consumption in any distributed environment, it is necessary
to have a tool that allows modeling multiple scenarios and
implementing various deployment and scheduling algorithms.
Packet oriented simulators [8] [9] [10] [11] [12], for example,
allow to evaluate network traffic as well as the result of
using certain transmission protocols. They also allow modeling
scenarios to evaluate data streaming techniques and features,
latency, cases of data loss and data duplication and even
modeling a specialized Information Centric Networking (ICN)
[13] architecture, among others. However, we consider that
these tools cannot replicate the behavior (i.e. use of resources,
application QoS and energy consumption) of a service-based
architecture, where a higher level of abstraction is needed.
On the other hand, services architecture based simulators [14]
[15] [16] [17] [18] [19] enable performing a different set
of operations such as: services management, monitoring the
exchange of information [18], adding virtualization policies
[14] and observing energy and QoS repercussions. They also
provide other metrics such as: latency, requests [16], resources
availability and power consumption. Then, even though these
simulators are competent in analyzing services-based scenar-
ios, we consider they do not offer a simple and transparent way
for deploying high-level distributed/centralized scheduling al-
gorithms among heterogeneous devices belonging to different
network topologies in which, for example, the relation between
energy consumption analysis and a defined QoS is important.

For all these reasons, DRACeo is strongly focused on the
application of both centralized and distributed scheduling algo-
rithms, allowing to analyze at deployment/execution time: (1)
the definition, measurement and modelization of applications
QoS, (2) the load of each node’s hardware components and
(3) the energy consumption of a particular device as well as
of the entire modeled network. Furthermore, DRACeo allows
microservices orchestration and choreography by reconfigur-
ing microservice’s connections and hosting devices.

III. DRACEO SIMULATOR

DRACeo is a desktop and portable simulator, able to
manage (deploy/schedule) any microservice based application
in any network architecture (non-centralized, centralized and
hybrid). Then, in our simulator context, an application is
defined as a directed graph whose nodes are microservices
and edges the connections between them. Furthermore, every
application is deployed on a graph of connected devices, where
the nodes could be devices with heterogeneous characteristics
or abstract entities such as clusters or cloudlets. Device graph
edges are the network connections that exist between each
node (ethernet, wireless, 4g, or bluetooth), which allow to find
the transfer rate at which the microservices can send or receive
data to each other. Then, to understand the interaction of both
graphs, it is necessary to describe their nodes and edges in
detail, which are the entities of our simulator:

A. Simulator entities

1) Device: Processing entity identifiable by a unique ID.
The simulator by default supports desktop computers, laptops

and smartphones; however, users are also able to configure
their own type of device. Each one of these has different
components capabilities in terms of CPU frequency (presence
or absence of PCPG and DVFS are also included), RAM
size, hard drive speed, network transfer rate and battery
(optional), depending on which type they are or what cus-
tom configuration was performed. Each device is capable
of executing microservices, providing them a quantity of
resources according to their own needs and those of other
competitors microservices (like proportional share scheduling;
however we are currently implementing other philosophies
as round robin or a simplified version of CFS [20], which
uses a red and black tree to organize processes). In addition,
each device has a supervisor service running on it [5]. It
allows (1) tracking the status of each of its components in
terms of load/capacity/energy consumption and (2) executing
a distributed scheduling algorithm (i.e. move or duplicate a mi-
croservice to another known or reachable device, considering
negotiation criteria, load balancing, number of hops, etc.)

2) Microservice: Functional entity identifiable by a unique
ID, which has a defined and precise function (i.e. a code
that represents a function and that allows to be duplicated
by the simulator as explained in the next section III-B). When
deployed on a device, the microservice claims for a certain
amount of resources in terms of CPU, network, RAM and disk.
DRACeo supports by default 3 types of microservices: graphi-
cal user interface microservices, calculation microservices and
data management microservices. The only differences between
them are their default resources consumption, the amount of
data they send/receive, their size and the restriction of being
moved or not from one device to another. For example, a UI
microservice may not be moved (since the user experience
would be affected); while a computing microservice may
be duplicated or moved to another nearby device. A data
management microservice can be moved, but may have a
strong impact on bandwidth consumption. As with devices,
a user has the ability to create its own type of microservices.

3) Connection: DRACeo defines and manages two kinds of
connections: physical connections that exist between devices
and logical/functional connections between microservices. A
physical connection logically supports many microservices
connections and enables to track the current and maximum
possible transfer rate (i.e. between 2 devices: the maximum
transmission capacity of the device with the network interface
with less transmission capacity). Then, this allows understand-
ing: (1) the general state (i.e. at energy and load level) of a
given device network interface, even if it belongs to abstract
entities such as clusters, cloudlets, etc. and (2) the set of
microservice connections status (i.e. expected transmission
rate vs. real) that use a physical connection. Furthermore,
connections between microservices logically store the set of
physical connections they use to communicate. That is, it is
possible to know, through the supervisor microservice, the path
of devices a microservice connection uses to work, as well as
the current and expected transfer rate.



4) Application: A directed graph of microservices identifi-
able by an ID. Each microservice (node) can have connections
(edges) as dependencies relations with several other microser-
vices which run on different devices on the network.

5) Operations center: Centralized entity which stores all
references to connections and existing devices of a deployed
scenario. In this way, any type of middleware can be config-
ured and any centralized scheduling algorithm can be applied.

6) Abstract entities: Resources providers such as cloudlets
and clusters. Both can be deployed and connected in the same
way as devices, establishing the amount of resources to offer
and manage. Therefore, our simulator is compatible with both,
small networks of user devices and cloud networking.

B. Simulator Operations

DRACeo is able to apply different types of heuristics for mi-
croservices (re)deployment and scheduling through a network.
For this, the following operations have been implemented:

1) Device deployment: As previously mentioned, a user can
deploy/declare default DRACeo devices (i.e. desktop com-
puter, laptop and smartphone); however, he can also deploy
”custom” devices, specifying their capabilities in terms of (1)
CPU frequency in Ghz, (2)RAM capacity in MB, (3) network
capacity in Mb/s, (4) hard drive in MB/s and (5) battery speci-
fication. Furthermore, each time a device is deployed, the user
must specify an x, y position on a Cartesian plane of metric
units. This possibility allows studying deployment techniques
based on distance heuristics or techniques to improve routes.

2) Device suppression: DRACeo allows the suppression of
devices (1) Manually, by the user’s decision and (2) automat-
ically, according to the deployed scenario. A user can activate
a ”disappear” option for each device, causing the simulator to
delete the device after a random, established or battery related
time; simulating unexpected connection loss.

3) Microservice deployment: DRACeo allows simulating
the execution of microservices on devices. This means that
once deployed, a microservice uses a quantity of resources
for a determined time or indefinitely [6]. This time can be set
by: (1) the DRACeo UI or (2) automatically by an operation
center function. Furthermore, the user must also specify the
microservice size in terms of disk usage and serialization (i.e.
the amount of data that would be sent over the network if the
microservice is moved or duplicated). This attribute allows
analyzing the cost of operations in terms of efficiency and
energy. For example, a user can configure the deployment of
a microservice (setting up resources consumption: CPU (ghz),
RAM (MB), network (MB/s), HDD (MB/s) and size(MB)) to
start running after X minute after simulation start.

4) Microservices suppression: Similar to deployment, a
microservice can be terminated/killed by using a simulator UI
button, or according to a defined amount of time (also set using
the UI). The microservice will simply stop using the device’s
resources and will no longer be available for any item.

5) Microservices migration: DRACeo can move microser-
vices between devices. This can be done from the operations

center or from a specific device, which knows its connected
peers and is able to execute decentralized algorithms.

When a microservice is moved, firstly it releases the re-
sources of its current device. Then, DRACeo simulates the
moving process by using the involved network connection
for a period of time based on the microservice size. Finally,
it starts to compete for the resources of the new device. If
a microservice is moved and becomes unreachable for one
of its dependencies, the user will be able to specify search
mechanisms for a duplicate instance or establish special search
and path optimization mechanisms to solve the problem.

6) Microservices duplication: DRACeo knows each mi-
croservice’s function. Thus, it is also capable of duplicating
microservices when, for example, the scheduling algorithm
decides that a microservice is very requested and its overload
produces excessive energy consumption. Thus, a user or an
algorithm can specify where to duplicate this microservice:
(1) on the same device as the original microservice, or (2) on
another connected or reachable device.

7) Microservices and devices Start/Stop: DRACeo allows
in a scheduled or manual way to (re)start/stop devices or mi-
croservices. Both also operate as deployment and suppression
of devices and microservices. The only difference is that both
elements do not disappear permanently. This allows generating
scenarios based on energy saving techniques such as putting
into sleep mode unused devices [21].

8) QoS definition: DRACeo allows defining any QoS
heuristics, either at microservice or application level. How-
ever, the simulator offers two default heuristics: (1) “non-
dependent” and (2) ”dependent” approach. For the first one,
DRACeo, calculates the QoS value of the microservices in
proportion to the hardware resources needed-obtained; while
the QoS of the application is also obtained proportionally to
the QoS of each microservice that composes it. Thereby:
• For a microservice M being executed in a device D,

a DRACeo user can define the ideal quality of (service
QoS=100%) by specifying: (1)the resources that M re-
quires to run in terms of CPU frequency in GHz, RAM
consumption in MB, network transfer rate in MB/s and
hard disk transfer rate in MB/s and (2) an impact value
that each of these needs has. These last value must be
considered from 0-1 and its sum must be 1.

• Then, there might be some differences between the re-
sources M required to run and what it gets from D. Those
differences are expressed in percentage (from 0-100) for
each difference: (1) DC CPU frequency, (2)DR for RAM,
(3)DN for network transfer rate and (4) DH for hard disk
transfer rate. Thus, a microservice QoS is defined by:

QoSM = I1DC + I2DR + I3DN + I4DH where
4∑

i=0

Ii = 1 (1)

Similarly, the QoS of an application QoSapp is defined by
the QoS of each of the N microservices QoSi that compose
it, based on the impact value Ii that the user defines.

n∑
i=0

QoSi ∗ Ii where
n∑

i=0

Ii = 1 (2)



On the other hand, DRACeo also offers a ”dependent”
heuristic, in which the QoS of a microservice M is limited
by the least satisfied demanded resource, taking into account
the impact parameter I specified by the user:

QoSM=Min(ICDC ,IRDR,INDN ,IHDH) (3)

Then, the QoS of an application APP composed by a set of
microservices M = [M0...Mn] is limited by the microservice
Mi ∈ M with the lowest QoS value:

QoSAPP = Min(QoSMi
) ∀Mi ∈ M (4)

9) QoS analysis: Our simulator can evaluate the QoS of
applications and microservices at a specific rate defined by
the user when a scheduling algorithm is being executed.
Operations such as graphical PLOT, data storage and lin-
ear/polynomial regression are supported.

10) Energy consumption parameters definition: For
DRACeo, power consumption is based on the usage level of
each component of each device. Then, the user can specify
the formula of his choice for each device to relate the CPU
frequency used, and the current transfer rates of the hard disk
and the network (RAM consumption is independent of its
load), with the power consumption expressed in Watts. This
dynamism allows the user to display specific parameters of
each component model, normally specified in the datasheets.
However, by default, DRACeo specifies the following models,
both to measure the energy of devices and microservices:
• CPU energy measurement: CPU [22] power consumption

can be understood in terms of its capacitance C, voltage
V and frequency F .

P = CV 2F (5)

Then, the user must specify C, V and F to measure the
current CPU energy consumption. Note that to measure
the CPU consumption of a microservice M , F must be
equal to M ′s frequency, assuming that M is the only
current process in the device.

• NIC and HDD energy measurement: From several works
which study energy consumption [23] [24] [25] [26]
[27] [28] [29], we have observed that: (1) there is a
direct relation between the transfer rates and energy
consumption and (2) both HDDs and NICs have different
consumption rates when they send/receive data and when
they are in idle state. For this reason, we have modeled the
energy consumption E of both components in the same
way. We established a Wu and a Wi value for each device
which represent the consumption in watts when its NIC
or HDD is in active state and the consumption in watts
when it is in idle state, respectively. For a microservice M
with a transfer rate Li, Wu will multiply Li relative to the
maximum transfer rate capacity LMAX . Then, this result
will be added to the idle state consumption. For this, Wi

will multiply the complement of the current component
load L (i.e. LMAX −L) relative to LMAX . We consider
that the idle state that M generates in the component, is
proportional in the same way that Li is for L.

E = Wu
Li

LMAX
+Wi

LMAX − L

LMAX
∗
Li

L
(6)

Note that to find the component’s power consumption,
instead of for a microservice, Li = L

11) Energy consumption analysis: DRACeo also allows
measuring the energy consumption in a time range. This
analysis can be done for each device or for the entire scenario
(all devices). Operations such as graphical PLOT, data storage
and linear/polynomial regression are supported.

12) Centralized/non-centralized scheduling algorithm
Start/Stop: When DRACeo executes a scheduling
algorithm, it automatically displays metrics necessary for
performance analysis: (1) Run time, (2) number of operations
performed, (3) data transmitted by movements/duplications
on device or across the network, (4) energy used for
movements/duplications on device or across the network and
(5) load per device and global load.

13) Save/Load: Deployments and execution stages.

IV. RESULTS

In order to test the effectiveness of DRACeo, we im-
plemented two “naive” approaches (centralized and non-
centralized) for energy savings. The objective here, is to vali-
date that we can deploy any type of energy saving scheduling
approach and then, perform its analysis in terms of QoS.

A. Approach 1 : Decentralized

Fig. 1. Sample decentralized-mixed network

The network of figure 1, is managed by DRACeo according
to equations described in section III-B for energy manage-
ment/evaluation and for QoS calculation. We deployed 5
connected devices with capacities shown in the outline of each
one in terms of used/available network (left: MB/s), RAM(top:
MB), CPU(right: Ghz) and hard drive rate(down:MB/s). Ini-
tially (Top right of figure 1) D 5 is running an application
composed of 4 differents (i.e. GUI and “control” CPU inten-
sive for this example) microservices which have requirements
in terms of [CPU-Ghz,RAM-MB,network-MB/s,HDD-MB/s,
size-MB]: (1) GUI: MS 1 [1.2,200,0,0.1,50], (2)Control MS 2
[1.8,100,0,50,50], (3)Control MS 3 [0.8,150,0,50,50], (4)Con-
trol MS 4 [1.8,100,0,50,50]. Then, every 1 to 5 seconds each
supervisor checks energy consumption of its device against an
arbitrarily threshold. If exceeded, the device will try to move
the heaviest microservice to the freest neighbor.



At runtime, since this approach has no end and is quite
naive, it makes the microservices MS 2, MS 3 and MS 4
oscillate between devices D 1, D 2, D 3 and D 4. However
DRACeo is able to store the best iteration. It found that the
best deployment is the one represented in figure 1, where
the microservices that saturated the CPU of the smartphone
D 5 are running now on the laptop D 1 and the PC D 2.
Moreover in figure 2, we note an initial low power con-
sumption since only D 5 resources are used. Then, it has
increased considerably, because now the network cards of
D 1, D 2 and D 5 are saturated and the D 1 and D 2 CPU,
RAM and transfer rate have increased their load as well (note
that: (1)microservices now use the network to communicate
to each other and (2) in this particular case, since no direct
connections between D 5 and D 1 exist, microservices 1
and 2 use D 2 as a connection path, saturating its network
card). The prototype interprets this deployment as an ideal
one, because it obtains highest QoS (i.e. 100 %) and lowest
possible consumption (i.e. 97,8 watts). Furthermore, to obtain
this solution, DRACeo ran the algorithm for 43.8 seconds,
performing 148 microservices movements between all devices,
which means 7400MB transmitted and 0.0036 kWh consumed.

Fig. 2. Results of non-centralized algorithm evaluation

DRACeo is also capable of showing metrics for each device.
For instance, D 4 was the device least involved in the exe-
cution of the algorithm, performing only 16 operations which
means 800MB transmitted and an energy use of 0.000016kWh.

We can conclude for example that, if we apply naive
distributed scheduling algorithms like this, we can get some
interesting deployment proposals in which there is an inverse
relation between QoS and energy consumption. However, it
lacks efficiency and predictability in terms of the amount of
time and resources invested to reach a solution.

B. Approach 2 : Centralized

The network of figure 3 has the same settings as the previous
example for energy management/evaluation, QoS calculation
and resource view. In this second approach, a single device
(in fact, a server) executes the scheduling algorithm. Every 5
seconds, it monitors the load of the rest of devices and checks
that they do not exceed an arbitrary threshold. If this happens,
it will try to move the most expensive microservice from the
affected device to the freest one. Initially, (bottom left of figure
3) D 2 is running an application composed of 4 microservices

with requirements in terms of [CPU-Ghz,RAM-MB,
network-MB/s, HDD-MB/s, size]: GUI MS 1 [1.2, 200,
0,0.1, 50], Control: MS 2 [1.8,100,0,0.1,50], Control: MS 3
[0.8,150,0,100,50] and Control: MS 4 [1.8,100,0,0.1,50].

Fig. 3. Sample mixed-centralized network

At runtime, D1 tries to move the heaviest microservice to
the node with least load (except MS 1 because it manages
a GUI process). Similar to the previous example, it makes
the microservices MS 2, MS 3 and MS 4 oscillate between
the other peers. However, unlike the previous algorithm, this
algorithm finds a solution and stabilizes in a single deployment
shown in figure 3, where the microservices that saturated
the resources of D 2 are running now on D 4 and D 3.
In addition, in figure 4, we can see that the overall power
consumption at the beginning was low since only the resources
of device D 2 are used. Then, it has increased because now,
the resources of D 3 and D 4 are being used.

Fig. 4. Results of centralized algorithm evaluation

The simulator interprets that this is the best deployment
since it obtains the highest QoS (i.e. 100 %) and the lowest
possible energy use (159,8 watts). Furthermore, to obtain this
solution, DRACeo ran the algorithm for 64.3 seconds, per-
forming 70 microservices movements, which means 3500MB
transmitted and an energy use of 0,00018207kWh.

It is interesting to see that both approaches, which managed
similar applications, have different advantages and disadvan-
tages. For example, the first one reaches a solution 20.5



seconds before the second one; but the second one performs
fewer operations, which means 3900 MB in operations trans-
missions and 0, 00341793kWh saved. On the other hand, the
first one is more unstable than the second (which is linear
from the second 64); but it offers more variety of deployment
options by time interval. These two observations, for example,
allow us to understand some characteristics of centralized
and decentralized distributed approaches like those, where
either with a greater number of nodes and microservices, the
former will offer more stable computational behavior and a
controlled number of operations; while the latter will offer
greater diversity of solutions in less time.

As we see, DRACeo can deploy both approaches (or more
complex ones [7]), allowing the analysis of several variables
that describe the defined QoS, whole or per device energy
consumption, whole or per device amount of data transmitted
and the time to get interesting results.

V. CONCLUSIONS AND FUTURE WORKS

In this work, we have presented our simulator called
DRACeo. It is capable of deploying and managing any type
of network and heterogeneous devices to run distributed
applications based on services or microservices. DRACeo
implements functions of (un)deploying dynamically devices
and deploying, deleting, moving and duplicating microservices
to allow performing centralized and non-centralized planning
algorithms. At run time, the simulator is capable of monitoring
several variables that allow understanding the efficiency of the
technique deployed: Execution time, amount of energy spent,
current quality of service and amount of data transmitted are
some good examples. It is important to say that in order to find
the value of QoS and energy consumption, the simulator allows
users (defaults approaches are provided) to define their own
heuristics or formulas. The objective of DRACeo is to allow
testing dynamic deployment scheduling algorithms that re-
deploy microservices in order to save energy while conserving
a certain QoS. Thereby, DRACeo will help developers and
researchers find the best deployment and best distribution
behavior in any network of heterogeneous devices.

Actually, we are improving the scalability of DRACeo,
taking into account discrete and deterministic approaches as
well as real deployments of microservices and devices. On
the other hand, we are updating the heuristics to determine
the power consumption in some hardware components with
special features(CPU turbo boost, DVFS, etc).

REFERENCES

[1] A. W. Services, “Implementing microservices on aws,” vol. 2019, 2019.
[2] DOCKER, “Debug your app, not your environment,”

https://www.docker.com/, 2020.
[3] K. Da, M. Dalmau, and P. Roose, “Kalimucho: Middleware for mobile

applications,” in Proceedings of the 29th Annual ACM Symposium on
Applied Computing, ser. SAC ’14, 2014.

[4] NETFLIX, “Netflix conductor: A microservices orchestrator,”
https://netflixtechblog.com/netflix-conductor-a-microservices-
orchestrator-2e8d4771bf40, 2016.

[5] H. H. lvarez Valera, P. Roose, M. Dalmau, C. Herzog, and K. Respi-
cio, “Kaligreen: A distributed scheduler for energy saving,” Procedia
Computer Science, 2018.

[6] H. H. lvarez Valera, M. Dalmau, P. Roose, and C. Herzog, “The archi-
tecture of kaligreen v2: A middleware aware of hardware opportunities
to save energy,” in 2019 Sixth International Conference on Internet of
Things: Systems, Management and Security (IOTSMS), 2019.

[7] E. Bongers and J. Pouwelse, “A survey of p2p multidimensional indexing
structures,” 2015.

[8] packetstorm, “Network simulation,” https://packetstorm.com/network-
simulation/, 2018.

[9] G. C. Inc., “Ip wan emulator,” https://www.gl.com/wan-link-emulation-
ipnetsim.html, 2020.

[10] CISCO, “Cisco packet tracer,” https://www.netacad.com/courses/packet-
tracer, 2020.

[11] Greencloud, “Greencloud - the green cloud simulator,”
https://greencloud.gforge.uni.lu/, 2017.

[12] S. Sundresh, Wooyoung Kim, and G. Agha, “Sens: a sensor, environment
and network simulator,” in 37th Annual Simulation Symposium, 2004.
Proceedings., 2004, pp. 221–228.

[13] S. Agrawal, S. Shailendra, B. Panigrahi, H. K. Rath, and A. Simha, “O-
icn simulator (oicnsim): An ns-3 based simulator for overlay information
centric networking (o-icn),” in Proceedings of the 1st Workshop on
Complex Networked Systems for Smart Infrastructure, 2018.

[14] cloudbus, “Containercloudsim: An environment for modeling
and simulation of containers in cloud data centers,”
http://www.cloudbus.org/cloudsim/container.html, 2016.

[15] Z. Nikdel, B. Gao, and S. W. Neville, “Dockersim: Full-stack simulation
of container-based software-as-a-service (saas) cloud deployments and
environments,” in 2017 IEEE Pacific Rim Conference on Communica-
tions, Computers and Signal Processing (PACRIM), 2017.

[16] Y. Zhang, Y. Gan, and C. Delimitrou, “µqsim: Enabling accurate and
scalable simulation for interactive microservices,” IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2019.

[17] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management techniques
in the internet of things, edge and fog computing environments,”
Software: Practice and Experience, 2017.

[18] P. Novotny and A. Wolf, “Simulating services-based systems hosted in
networks with dynamic topology,” 2016.

[19] A. D. M. D. Esposte, E. F. Santana, L. Kanashiro, F. M. Costa,
K. R. Braghetto, N. Lago, and F. Kon, “Design and evaluation of
a scalable smart city software platform with large-scale simulations,”
Future Generation Computer Systems, 2019.

[20] IBM, “Inside the linux 2.6 completely fair scheduler,”
https://developer.ibm.com/technologies/linux/tutorials/l-completely-
fair-scheduler/, 2018.

[21] N. M. Azmy, I. A. El-Maddah, and H. K. Mohamed, “Adaptive power
panel of cloud computing controlling cloud power consumption,” in
Proceedings of the 2Nd Africa and Middle East Conference on Software
Engineering, 2016.

[22] Intel, “Enhanced intel speedstep technology for the intel pentium m
processor,” 2004.

[23] S. Kiertscher and B. Schnor, “Scalability evaluation of an energy-
aware resource management system for clusters of web servers,” in
Proceedings of the International Symposium on Performance Evaluation
of Computer and Telecommunication Systems, ser. Spects ’15, 2015.

[24] K. Zhan, C.-H. Lung, and P. Srivastava, “A green analysis of mobile
cloud computing applications,” in Proceedings of the 29th Annual ACM
Symposium on Applied Computing, 2014.

[25] A. Orgerie, L. Lefèvre, I. Guérin-Lassous, and D. M. Lopez Pacheco,
“Ecofen: An end-to-end energy cost model and simulator for evaluating
power consumption in large-scale networks,” in IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks,
2011.

[26] B. F. Cornea, A. Orgerie, and L. Lefèvre, “Studying the energy consump-
tion of data transfers in clouds: the ecofen approach,” in 2014 IEEE 3rd
International Conference on Cloud Networking (CloudNet), 2014.

[27] S. Chiaravalloti, F. Idzikowski, and L. Budzisz, “Power consumption of
wlan network elements,” 2011.

[28] Segate, “Desktop hdd product manual,” https://www.seagate.com/www-
content/product-content/barracuda-fam/desktop-hdd/barracuda-7200-
14/en-us/docs/100686584v.pdf, sep 2016.

[29] Samsung, “Samsung v-nand ssd 860 evo,” dec 2017.


