
HAL Id: hal-03111182
https://univ-pau.hal.science/hal-03111182

Submitted on 15 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mobile Proxemic Application Development for Smart
Environments

Paulo Perez, Philippe Roose, Yudith Cardinale, Marc Dalmau, Nadine
Couture, Dominique Masson

To cite this version:
Paulo Perez, Philippe Roose, Yudith Cardinale, Marc Dalmau, Nadine Couture, et al.. Mobile Prox-
emic Application Development for Smart Environments. 18th International Conference on Advances
in Mobile Computing & Multimedia, Pari Delir Haghighi,; Ivan Luiz Salvadori, Nov 2020, Chiang
Mai, Thailand. pp.94, �10.1145/3428690.3429879�. �hal-03111182�

https://univ-pau.hal.science/hal-03111182
https://hal.archives-ouvertes.fr

Mobile Proxemic Application Development for Smart
Environments

Paulo Pérez
University of Pau /ESTIA Institute of

Technology
LIUPPA – F-64210, Bidart, France
paulo.perez-daza@univ-pau.fr

Philippe Roose
E2S / University of Pau

LIUPPA – T2I64600, Anglet, France
philippe.roose@iutbayonne.univ-

pau.fr

Yudith Cardinale
Universidad Simón Bolívar

Caracas, Venezuela, Universidad
Católica San Pablo, Arequipa Perú

ycardinale@usb.ve

Mark Dalmau
E2S / University of Pau

LIUPPA – T2I64600, Anglet, France
dalmau@iutbayonne.univ-pau.fr

Dominique Masson
Technopole Izarbel Dev1-0

Bidart, France
d.masson@dev1-0.com

Nadine Couture
University of Bordeaux

ESTIA Institute of Technology, Bidart,
France

n.couture@estia.fr

Abstract
Currently, mobile technologies are present in our daily day
in different activities and their use keeps increasing. In this
context, proxemic interaction, derived from proxemic theory,
is becoming an influential approach to implement Mobile
Human-Computer Interaction (MobileHCI) in smart environ-
ments, based on five proxemic dimensions: Distance, Identity,
Location, Movement, and Orientation (DILMO). The exist-
ing tools for implementing proxemic applications require
fixed devices that make it difficult to built mobile proxemic
apps. This work aims to propose a framework for the devel-
opment of proxemic applications for smart environments
comprised by entities, whose interactions are supported by
MobileHCI defined in terms of DILMO dimensions. Our pro-
posed framework allows defining and managing all com-
ponents in a smart proxemic environment. The framework
also provides an API, that allows developers to simplify the
process of proxemic information sensing (i.e., detection of
DILMO dimensions) from mobile phones and wearable sen-
sors. We demonstrate and evaluate the effectiveness and
suitability of our framework, through the proof-of-concept
which describes the implementation of two proxemic mobile
applications built in a context-based infrastructure for smart
proxemic environments based on mobile devices.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MoMM2020, 30 November - 2 December, 2020, Chiang Mai, Thailand
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

CCS Concepts • Human-centered computing → User
models; User interface programming; Human computer inter-
action (HCI).

Keywords Proxemic interaction, proxemic zone, mobile
devices, wearable technologies, MobileHCI.

ACM Reference Format:
Paulo Pérez, Philippe Roose, Yudith Cardinale, Mark Dalmau, Do-
minique Masson, and Nadine Couture. 2020. Mobile Proxemic
Application Development for Smart Environments . In MoMM2020:
International Conference on Advances in Mobile Computing & Mul-
timedia, 30 November - 2 December, 2020, Chiang Mai, Thailand.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/1122445.
1122456

1 Introduction
Nowadays, the use of mobile technologies in our daily life
is very common. People can interact with different contexts
through electronic devices (e.g., personal mobile phones,
tablets, wearable technologies, and smart-watches) to ac-
complish their daily tasks. Many of these tasks require a
specific Human-Computer Interaction (HCI). Researchers
are therefore seeking to develop new useful and enjoyable
interfaces. Proxemic interaction arises as a novel concept
to improve HCI [5, 16]. Proxemic interaction describes how
people use interpersonal distances to interact with digital
devices [3, 14, 15], using the so called five physical prox-
emic dimensions: Distance, Identity, Location, Movement,
and Orientation (DILMO).

Proxemic interaction is derived from the social proxemic
theory proposed in 1966 by the anthropologist Edward T.
Hall [18]. Hall describes how individuals perceive their per-
sonal space relative to the distance between themselves and
others. According to Hall’s proxemic theory, interaction
zones have been classified into four zones: (i) intimate zone,
comprised between 0 and 50 cm of distance; (ii) personal
zone, defined by a distance of 50 cm to 1 m; (iii) social zone,
when the distance is between 1 m and 4 m; and (iv) public

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

MoMM2020, 30 November - 2 December, 2020, Chiang Mai, Thailand P. Pérez, P. Roose, Y. Cardinale, M. Dalmau, D. Masson, N. Couture

zone, for distances of more than 4 m. He underlines the role
of proxemic relationships as a method of communication
based on the distance among people. This theory has been
applied to define relation and communication among people
and digital devices [14].
In this context, solutions such as Toolkit [23] and Prox-

imiThings [6] (for proxemic interaction in the Internet of
Things) have been proposed to support the development
of proxemic interaction. However, existing tools and frame-
works present limitations for implementing proxemic inter-
action in mobile technologies because they require special
hardware devices connected to the system (e.g., a Kinect
Depth sensor, which must be installed on a PC for sensing
proxemic information).
Nowadays, the vast majority of smartphones and mobile

devices are equipped with powerful hardware capabilities.
These capabilities allow devices to process and obtain prox-
emic information; for example by using sensors and cam-
eras embedded in a smartphone. In turn, it is possible to
implement proxemic based mobile applications that facili-
tate users’ contact and interaction with other people and
devices in indoor and outdoor spaces, which we call smart
proxemic environments. This fact, combined with the cur-
rent trend of using proxemic interaction to improve HCI,
has raised the need for frameworks and tools to support the
development of such as mobile proxemic applications.
This work aims to propose a concrete solution, a frame-

work, for developing mobile proxemic applications com-
prised by entities, whose interactions are defined according
to DILMO dimensions Our proposed framework represents
a threefold contribution: (i) it proposes a process to define
and manage all components in a proxemic environment: the
interaction objects, the DILMO dimensions that govern the
HCI, and the proxemic mobile applications; (ii) an API inte-
grated into the framework, that allows developers to simplify
the process of proxemic information sensing (i.e., measure of
DILMO dimensions) by mobile phones and wearable sensors;
and (iii) the proof-of-concept to demonstrate and evaluate
the effectiveness and suitability of our framework by describ-
ing the implementation of two mobile proxemic applications;
these two mobile apps are based on HCI defined as a func-
tion of different DILMO combinations that specify different
context-based infrastructures for proxemic environments
based on mobile devices.

2 Related work
Proxemic concepts are based on physical, social, and cul-
tural factors that influence and regulate interpersonal inter-
actions [23]. In order to know how the factors should be
applied to proxemic interactions for ubiquitous computing
applications, Greenberg et al. [14] identified five dimensions:
Distance, Identity, Location, Movement, and Orientation (we
call them DILMO as an abbreviation), which are associated
with people, digital devices, and non digital things. In this

section, we review prior works on proxemic interaction and
how they have been implemented. Afterward, we analyze the
existing technical methods for the development of proxemic
applications and compare them with our framework.

2.1 Applications based on Proxemic Interactions
There exist a variety of works that implement interactive
ubiquitous applications. The common aspect to all these ap-
plications is the use of all or a subset of proxemic dimensions
(i.e., DILMO). These dimensions allow applications to know
absolute and relative positions of people and objects in the
physical space. In this section, we describe the concept of
each proxemic dimension and how they have been used by
prior works.

Distance is a physical measure of separation between
two entities, according to how they interact [24]. Typically,
short distances allow high interactions, while long distances
allow little to no interaction. For example, in [9, 10, 13, 16,
21, 23, 27, 34], the distance is used as a parameter to assign
a proxemic zone that allows the users to interact with the
display or devices in different proximities. The interaction
zones are also used for adapting visualizations on displays
based on the users’ distance relative to the screen, such as
the studies presented in [4, 19, 32].
Distance can be obtained by using different techniques

based on a variety of sensors to capture their values. Blue-
tooth Low Energy (BLE) technologies allow the device to
estimate the proximity among entities by Received Signal
Strength Indicator (RSSI) and Broadcasting Power value (TX
power), as in [35, 36]. The work presented in [7] uses a smart-
phone with BLE technology in order to obtain proximity be-
tween blind persons and fixed objects. The work presented
in [21], proposes the use of the body-tracking capabilities
of Kinect Sensors to obtain the distance. Authors demon-
strate the suitability of their proposal in an application that
measures the distance between blind people and paintings,
according to which it provides different background music
experiences. In [4, 25], computer vision is used for measuring
the distance from the device hosting the program to the user.

Identity is a term that mainly describes the individuality
or role of a person or a particular object in a space [3, 23].
SpiderEyes [10] is a collaborative proxemic system that helps
designers to create applications by tracking multiple people
interacting in front of a display in run-time. In this particu-
lar regard, it is indispensable to have the user identification.
User’s interaction is based on their identity and distances
with the display. The system is able to detect when users
leave the field of view of the display and if they later rejoin
the field of view at a different distance. With SpiderEyes,
authors demonstrate the effectivity of the identification sys-
tem with up to four users at the same time. This work uses a
visual monitoring tool (called Microsoft Kinect Depth Cam-
era), that allows developers to classify which entities are
being tracked and how the details of information are stored

Mobile Proxemic Application Development for Smart Environments MoMM2020, 30 November - 2 December, 2020, Chiang Mai, Thailand

in the application for creating identities. FAMA (First Aid
Mobile Application) [29] is a mobile app based on proxemic
interactions that offers rescuers to obtain emergency identifi-
cation (identity) of an unconscious person, as the rescuers are
moving toward the injured person’s proxemic zones. FAMA
uses Beacon BLE technology for the identification of enti-
ties (injured people). Proxemic-Aware Controls system [22]
uses identity for controlling spatial interactions between a
person’s handheld device and all contiguous appliances to
generate an effective appliance control interface. These ap-
plications have demonstrated that identity can be used to
know individuality of a person or an object.

Location describes qualitative aspects of the space, where
there is interaction among fixed entities (e.g., room layout,
doors) or semi-fixed entities (e.g., furniture positions) [13, 22].
Researchers have also considered the location for obtaining
the user’s current positions. Multi-Room Music System [31]
is based on proxemic interactions that allow the user to hear
the same songs playlist, while he changes his location around
the house through the speakers that have been installed in
the rooms. In the work presented in [21], location is used to
detect events related to hands’ tracking. For example, when
a blind user explores a painting with his hands, the applica-
tion uses the 3D coordinate system of the Microsoft Kinect
Camera [26], to know the user’s hand position in a specific
region of the painting. In [16, 23], entities are associated with
three-dimensional positions related to a fixed point that can
be used for initial setting of smart environments. In such
a way, it is possible to obtain the relative position among
people and devices.

Movement is defined as changes of position and orien-
tation of an entity over the time [3]. This is the case when
a user walks in front of a screen or approaches it, and the
content of the screen is adjusted according to the user’s
movements. This kind of motion can be captured by motion
technology [16, 33]. Velocity changes are calculated in or-
der to respond to the user’s behavior. The movement also
allow gesture recognition through smartphones or wearable
technologies by employing motion sensors [2]. FAMA, a first
aid mobile app, identifies potential rescuers as they move
towards the injured person’s proxemic zones [29].

Orientation provides the information related to the direc-
tion in which an entity is facing. It can identify the front of an
entity (e.g., person’s eyes, screen front). Previous work have
demonstrated how a person’s orientation related to a display
can be used for improving user interaction [3, 16, 24, 28].
The study presented in [17], describes the use of built-in
compass in mobile devices to support the process of pairing
them based on the orientation. Another remarkable work is
Multi-View Proxemic system [11], which considers distinct
views from a single display related to the angle of orientation
of two viewers. This work uses gaze detection technology
that allows the active user to be identified.

We have briefly described studies that have implemented
multiple proxemic applications based on DILMO. From this
review, we want to highlight that the majority of these
proposals manage only partial proxemic dimensions; few
of them have used the five DILMO proxemic dimensions
[6, 13, 14, 20, 22, 23]. In all of these applications, the in-
teraction objects (i.e., people and devices) are considered
as entities; when the Identity dimension is implemented,
these entities are explicitly identified in a particular role. For
example, FAMA [29] uses a combination of Distance and
Movement of people with respect to an identifiable person.
In other studies, entities have been implicitly managed. For
example in [9], Distance, Movement, and Location dimen-
sions have been used to implement interaction between a
user and a screen; the user and the screen are (non identifiable)
entities. The work presented in [11] detects the Distance and
Orientation of a user with respect to a single display to gen-
erate multiple views of the information displayed. Similarly,
the applications described in [13, 21] help visually impaired
people to explore paintings based on Distance, Movement,
and Location. Thus, we conclude that depending on the appli-
cation, all DILMO dimensions are not required and specific
combination of them can determine different proxemic envi-
ronments.
In next section, we present some works that have pro-

posed tools and frameworks to support the development of
applications based on proxemic interactions. We highlight
their limitations and how we overcome them.

2.2 Tools to Develop Proxemic-based Applications
Some previous works have proposed tools to support the
development of proxemic applications considering proxemic
interactions. The work presented in [6], illustrates how the
proxemic dimensions can support interaction among entities
(people or objects), with a proposed context-aware frame-
work. This framework provides capabilities that help devel-
opers build a front-end application. However, the framework
requires a cloud computing architecture or an active connec-
tion to the server for processing proxemic information. There
are applications in the medical field (neurosurgery) [25],
based on proxemic interactions, where the offline state al-
lows users to interact with the application without Internet
access or an active connection to the local server. There-
fore, we propose a framework that allows mobile devices to
process all proxemic dimensions independent from server
connections.
In [23], a framework, called Proximity Toolkit, used to

discover novel proxemic-aware interaction techniques is pro-
posed. The framework is a guide on how to apply proxemic
interaction design for domestic ubiquitous computing envi-
ronments. It is a collection of libraries developed in C and an
architecture of components that make use of spatial informa-
tion and relations among objects and space. This framework
allows the rapid building of proxemic-aware systems and it

MoMM2020, 30 November - 2 December, 2020, Chiang Mai, Thailand P. Pérez, P. Roose, Y. Cardinale, M. Dalmau, D. Masson, N. Couture

offers a flexible architecture for sensing proxemic data from
different types of sensors. However, the implementation of
this framework requires a hardware architecture based on
fixed devices (e.g., a Kinect Depth sensor and a client-server
architecture) for allowing the server to process the proxemic
information from appliances. This solution does not offer the
mobility and portability required for implementing proxemic
interactions on mobile devices or wearable technologies [2].
With the current Proximity Toolkit version, it is not possible
to obtain proxemic information from the new smartphone’s
sensors capabilities and ensuring that users can use proxemic
mobile applications on their smartphones in any place.
All these works demonstrate the current interest for re-

searchers to develop tools that support the design and imple-
mentation of proxemic applications. Proxemic interaction is
a remarkable interaction technique that allows the user to
control the digital devices in a flexible way [3, 22, 23]. Nowa-
days, smartphones and mobile technologies are powerful
and offer a wide range of possibilities to improve user inter-
action. There are about 2 billion people with smartphones,
which represents one-quarter of the global population in the
world, and this trend is on the rise [12]. It is therefore of great
importance to provide tools for developing mobile apps and
improve HCI on mobile devices. However, proxemic inter-
action on mobile devices has not been implemented in full.
There are some mobile applications based on proxemic inter-
action [4, 29, 30] that have been recently developed without
the use of proxemic frameworks. Accordingly, to overcome
those limitations and offer a solution for defining and manag-
ing smart proxemic environments, we propose a framework,
which defines a systematic development process supported
on an API, focused on creating proxemic applications using
the smart-mobile sensors to obtain DILMO dimensions.

3 Proxemic Definitions
In this section, we present the definitions of proxemic envi-
ronment and its components (i.e., entities, DILMO dimen-
sions, and proxemic zones) that we have adapted from the
proxemic studies.
The first term that we need to state is related to the ob-

jects that can interact in a proxemic environment. Def. 3.1
describes what we consider as interaction objects.

Definition 3.1. Entity (𝐸). An entity, denoted as 𝐸, repre-
sents an interaction object (e.g., a person, an object, a device),
that can be univocally identified or not in a physical space.

We keep the same significance of DILMO dimensions.
Def. 3.2, Def. 3.3, Def. 3.4, Def. 3.5, and Def. 3.6 show our
adapted definitions forDistance, Identity,Location,Move-
ment, and Orientation, respectively.

Definition 3.2. Distance (𝐷). The distance, denoted as 𝐷 ,
is the physical measure of proximity among mobile or fixed
entities (𝐸) in a physical space.

Definition 3.3. Identity (𝐼). The Identity, denoted as 𝐼 , repre-
sents an entity (𝐸) that has a unique identification or a specific
role in a physical space.

Definition 3.4. Location (𝐿). The location, denoted as 𝐿, is
a relative position or an absolute position of an entity (𝐸) in a
physical space.

Definition 3.5. Movement (𝑀). The movement, denoted as
𝑀 , represents the change in measures of distance or position of
an entity (𝐸), over an interval of time in a physical space.

Definition 3.6. Orientation (𝑂). The orientation, denoted
as𝑂 , represents the face to face alignment between two entities
in a physical space.

The physical space in which entities can interact according
to DILMO variables is called a proxemic environment (see
Def. 3.7).

Definition 3.7. Proxemic Environment (𝑃_𝐸). A prox-
emic environment, denoted as 𝑃_𝐸, represents a set of sensors
and devices attached to entities (𝐸) that can in turn interact
according to 𝐷 , 𝐼 , 𝐿,𝑀 , and 𝑂 .

In the context of a proxemic environment (𝑃_𝐸), entities
delimit proxemic zones, according to the distance𝐷 , between
them. Def. 3.8 presents the formal meaning of a proxemic
zone.

Definition 3.8. Proxemic Zone (𝑃_𝑍). A proxemic zone,
denoted as 𝑃_𝑍 , defines the proximity between two entities
(𝐸1, 𝐸2), according to a distance 𝐷 , provided as a parameter.
There are four 𝑃_𝑍 : 𝑃_𝑍𝑖𝑛𝑡𝑖𝑚𝑎𝑡𝑒 , 𝑃_𝑍𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 𝑃_𝑍𝑠𝑜𝑐𝑖𝑎𝑙 , and
𝑃_𝑍𝑝𝑢𝑏𝑙𝑖𝑐

In this work, we have defined four proxemic zones in
which interactions among entities can be different. The dis-
tance that defines each 𝑃_𝑍 is defined by developers accord-
ing to user requirements.
These definitions conform the basis of our approach, im-

plemented as a development framework. This framework is
described in the next section.

4 Framework to Develop Proxemic Mobile
Apps

We propose a framework, along with a simple systematic de-
velopment approach, for supporting the construction of mo-
bile proxemic apps for smart proxemic environments (𝑃_𝐸),
based on mobile technology and smart wearable technology.
The systematic development process provides a guidance
on how to choose DILMO combinations for developing mo-
bile apps, with particular MobileHCI for specific proxemic
environments.
4.1 Framework Architecture
The framework architecture is designed to allow the devel-
oper to focus on how to obtain the sensing data from the

Mobile Proxemic Application Development for Smart Environments MoMM2020, 30 November - 2 December, 2020, Chiang Mai, Thailand

smart environment (i.e., smartphone, wearable device sen-
sors. The contribution provided by the framework is to take
advantage of current mobile technology trends related to the
capabilities of gathering and processing different types of
data that can be used to create proxemic applications. Our
approach helps the developer with the development process
and with the management of proxemic information to estab-
lish the appropriate combination of DILMO dimensions.

In order to create a mobile proxemic app and define a 𝑃_𝐸,
we propose a sequential process comprised by three single
steps:

1. Define the proxemic zones (𝑃_𝑍) according to which
entities will interact.

2. Define the appropriate DILMO combination to define
the MobileHCI for the target mobile app to be devel-
oped.

3. Implement the mobile app, considering the technology
supported by the entities in the 𝑃_𝐸.

To support this process, the framework is composed by
mainly three components aligned with each step (see Fig-
ure 1): (i) Proxemic Zones module; (ii) DILMO module; and
(iii) an API that supports the instantiation of the two previ-
ous mentioned components. In the following, we describe
each module in detail.

Figure 1. Framework architecture.

The Proxemic Zones module allows the definition of
proxemic zones sizes (𝑃_𝑍), according to user needs. The
interaction between two entities changes in accordance of
the 𝑃_𝑍 in which they are located. These values of distances
that delimit the proxemic zones are configured through the
API.

Figure 2 is a guide that allows the developer to knowwhich
methods must be implemented on the API or which objects
must be created from the API according to DILMO dimen-
sions for processing proxemic information. For example, a
DIL proxemic environment (row 10 in Figure 2) means that
Distance (𝐷) and Location (𝐿) are considered for Identities
(𝐼).

Combination of proxemic dimensions are also valid, al-
though the entities have not unique identification; e.g., a

person, a device beacon, instead of the smartphone’s owner,
my device beacon. Hence, proxemic environments denoted in
rows 10 to 20 in Figure 2, can become DL, DM, DO, LM, LO,
MO, DLM, DLO, DMO, LMO, and DLMO, respectively, when
all interaction objects are not identifiable entities.

The API facilitates developers processing proxemic infor-
mation and values. The API provides classes and methods to
define the 𝑃_𝑍 , as well as to manage the different combina-
tions of DILMO dimensions. For example, for a DIL proxemic
environment, methods to identify entities (𝐼) and to process
𝐷 and 𝐿 are available in DILMO class. Thus, the API be-
haves as a bridge between the Proxemic Zones and DILMO
modules.

In the current version of our framework, the API considers
the extraction of DILMO values from smartphones or mobile
devices based on the Android native libraries (APKs). The
API provides methods that the developers can implement for
processing proxemic information using motion sensors and
mobile computer vision cameras. The majority of current
smartphones have a wide range of sensors in their hard-
ware configuration [8], which allow the application to run
proxemic apps. For example, through the BLE beacons mech-
anisms [1], it is possible to know the distance (𝐷) between
two mobile devices. Another way to estimate the distance be-
tween two entities is to use computer vision (face detection).

4.2 API Implementation
In this section, we describe the API structure and some of the
most important available methods. The API lets developers
build 𝑃_𝑍 and process proxemic information from Android
sensors, that are required for implementing a 𝑃_𝐸. It was
developed in Java, hence the jar files are provided to be
added to the Android Studio platform. Figure 3 describes
the structure of the API, represented by a UML Class dia-
gram. The main classes are described as follows. The API1 is
available for free downloading.

1. The ProxZone class allows to define proxemic zones
(𝑃_𝑍) according to user requirements (i.e., user/developer
decides the measures that delimit each 𝑃_𝑍), when this
class is instantiated (i.e., by its constructor method).
The constructor method of this class receives as param-
eters the respective maximum measures of distance
𝐷 , which define each 𝑃_𝑍 . A 𝑃_𝑍 can be associated to
one or more entities.
Figure 4 shows an example of the ProxZone construc-
tor method, in which the maximum distance, in meters,
for each 𝑃_𝑍 are specified (see Def. 3.8): 𝑃_𝑍𝑖𝑛𝑡𝑖𝑚𝑎𝑡𝑒 is
delimited from 0 to 0.25 meter, 𝑃_𝑍𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 is defined
from 0.26 meter to 0.45 meter, 𝑃_𝑍𝑠𝑜𝑐𝑖𝑎𝑙 is from 0.46
meter to 1 meter, and 𝑃_𝑍𝑝𝑢𝑏𝑙𝑖𝑐 is depicted from 1.1

1The API is available in https://www.iutbayonne.univ-pau.fr/~ppdaza/

https://www.iutbayonne.univ-pau.fr/~ppdaza/

MoMM2020, 30 November - 2 December, 2020, Chiang Mai, Thailand P. Pérez, P. Roose, Y. Cardinale, M. Dalmau, D. Masson, N. Couture

Figure 2. DILMO proxemic dimensions and nomenclature to describe each combination that is available through the API
methods for processing proxemic information.

meters to 2 meters. Inappropriate arguments are vali-
dated in order to have valid measurements (e.g., not
overlapped zones, right order of measures).

Figure 3. UML Class Diagram of the API.

2. The DILMO class is useful for developing 𝑃_𝐸. It of-
fers the possibility of identifying the 𝑃_𝑍 of all entities
𝐸 (or identities 𝐼) which will interact in the 𝑃_𝐸. This

Figure 4. Example of ProxZone Class Constructor invoca-
tion.

class allows to define relations among proxemic di-
mensions, according to our proposed combinations of
DILMO (see Figure 2). Its main methods are:
a. The setProxemicDI(String 𝐼, double D)method

allows assigning a 𝑃_𝑍 to an identity (𝐼), based on
the distance (𝐷).

b. The getProxemicDI(String 𝐼) method allows ob-
taining the 𝑃_𝑍 of an identity (𝐼).

c. The setProxemicDIL(String 𝐼,double 𝐷, float
𝐿) allows assigning a 𝑃_𝑍 to an identity (𝐼) based
on the distance (𝐷) and processing the location (𝐿).

d. The getProxemicDIL(String 𝐼)method allows ob-
taining the 𝑃_𝑍 and relative location of the identity
(𝐼).

e. The setProxemicDistance(double D) method al-
lows assigning the 𝑃_𝑍 to an entity, according to
the distance (𝐷).

f. The getProxemicZoneByDistance()method returns
the 𝑃_𝑍 of an entity, based on the distance.

3. The Distance class allows the developer to estimate
the distance among identities (𝐼). Distance (𝐷) can
be calculated by using any available method. In the
current version of our API, we have integrated some
methods to calculate𝐷 , based on the Android platform,
such as:

Mobile Proxemic Application Development for Smart Environments MoMM2020, 30 November - 2 December, 2020, Chiang Mai, Thailand

a. The setBluetoothDistance(double rssi, double
txtPower) that allows estimating distance based on
BLE.

b. The setFaceHeight(float faceHeight), which
allows estimating the distance from camera using
visual computing; distance is proportional to the
height of the detected face.

c. The getDistance() method, that allows obtaining
𝐷 in meters.

4. The Entity class represents the interaction objects
in a 𝑃_𝐸, whose behavior is determined orwill be deter-
mined according to their DILMO proxemic dimensions.
This class allows the discovering of the entities on a
𝑃_𝐸.

5. The Location class provides methods to manage
location (𝐿) of interaction objects (𝐸 and 𝐼). As in the
Distance class, location (𝐿) of entities can be cal-
culated by any available method. Currently, we have
integrated in our API some methods to calculate 𝐿,
such as:
a. The setRelativeLocationScreen(float 𝐿)method,

which sets the relative position on the screen of an
entity 𝐸, based on the coordinates of 𝐸 on the display.

b. The getRelativeLocationOnScreen()method, which
returns the relative position of an entity 𝐸.

6. The Movement class has methods that allow mo-
tion processing from the coordinate system of smart-
mobile sensors (e.g., Azimuth, Pitch, Roll), such as:
a. The setAzimuthWithRange(float MAX, float MIN,

float value) method which allows processing the
azimuth angle of an entity 𝐸, that has been estab-
lished by the developer.

b. The isAzimuthInRange() method returns true if
the azimuth angle of an interaction object (𝐸) is
within a range of reference.

7. The Orientation class provides methods to validate
the face orientation (𝑂) of interaction objects on a 𝑃_𝐸.
Some of them are:
a. The setDetectedFaces(String[][] detectedFa

ces,ProxZone p)method, that receives a collection
of faces to be defined as interaction objects (𝐸 or 𝐼)
in the 𝑃_𝐸.

b. The isFaceDetected(String 𝐼,String 𝑃_𝑍)method,
which returns true if a specific face (𝐼) is detected in
the 𝑃_𝑍 .

5 Proof-Of-concept Of our Framework
Our goal is to create proxemic environments based on mo-
bile devices or wearable technology and demonstrate that
our framework allows developers to build proxemic mobile
applications effectively. For this purpose, we show the im-
plementation of two mobile applications, called IntelliPlayer
and Tonic, based on proxemic interactions. These apps were
implemented using Android Studio platform version 3.3;

however a higher Android studio version can be used. The
apps2 are available for free downloading
Both apps have been developed by undergraduate stu-

dents, as part of their final project in computer science. The
developing team was integrated by four students whose av-
erage age was 21 years-old, who have developer experience
using Java object-oriented programming. This project was
the first challenge for them implementing Android applica-
tions and MobileHCI based on proxemic interactions.
Two training sessions of two hours each were organised

for the student. The training process allows students to un-
derstand the systematic process for building proxemicmobile
applications with our framework. They learned: (i) how to
define each 𝑃_𝑍 ; (ii) how to select each combination of prox-
emic dimension for recreating a 𝑃_𝐸; and (iii) how to use
methods and classes in the API. The development time of
both applications was 64 hours by two developers over a
period of 4 weeks. IntelliPlayer took 44 hours of work, while
Tonic was finished in 20 hours, in the same four weeks.

IntelliPlayer is a mobile application that plays a video in
a smartphone and reacts according to four proxemic zones
and DILO proxemic dimensions. In the first step of the ap-
proach, the four 𝑃_𝑍 were created: 𝑃_𝑍𝑖𝑛𝑡𝑖𝑚𝑒 (0mts to 0.25mts),
𝑃_𝑍𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 (0.26mts to 0.45mts), 𝑃_𝑍𝑠𝑜𝑐𝑖𝑎𝑙 (0.46mts to 1mts),
and 𝑃_𝑍𝑝𝑢𝑏𝑙𝑖𝑐 (1.1 mts to 2 mts). Then, in the second step, the
MobileHCI was designed according to 𝐷 , 𝐼 , 𝐿, and 𝑂 , thus a
DILO 𝑃_𝐸 was defined. Figure 5 shows the proxemic zones
that have been defined by the developer through the API, as
shown in Figure 4.

Figure 5. IntelliPlayer proxemic zones.

With this application, we illustrate a proxemic environ-
ment using a mobile player app that reacts to the distance (𝐷)
and location (𝐿) of a person (𝐸1) and his face orientation (𝑂),
with respect to the smartphone (𝐼1) displaying a video. The
computer vision technique has been used for this purpose,
based on the properties of an Android camera and through
the API methods setFaceHeight(float faceHeight) and
getDistance() described respectively in items 3.(b) and
3.(c) in Section 4.2. Figure 6 shows a block code of this case.

With the distance (𝐷) between the user (𝐸1) and the smart-
phone (𝐼1), IntelliPlayer determines the proxemic zone (𝑃_𝑍)

2The APPS are available in https://https://github.com/llagar910e/

MoMM2020, 30 November - 2 December, 2020, Chiang Mai, Thailand P. Pérez, P. Roose, Y. Cardinale, M. Dalmau, D. Masson, N. Couture

Figure 6. Block code of IntelliPlayer.

of 𝐸1 (a user), with respect to the smartphone (𝐼1). To do
so, it invokes the method getProxemicZoneByDistance()
described in item 2.(f) in Section 4.2.

IntelliPlayer automatically adjusts the volume of the video
according to the 𝑃_𝑍 in which 𝐸1 (the user) is with respect
to the smartphone (𝐼1): when 𝐸1 is in 𝑃_𝑍𝑖𝑛𝑡𝑖𝑚𝑒 , it decreases
to 25% volume of speaker; for 𝑃_𝑍𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 , it increases to 50%
volume; for 𝑃_𝑍𝑠𝑜𝑐𝑖𝑎𝑙 , it increases to 75% volume; and for
𝑃_𝑍𝑝𝑢𝑏𝑙𝑖𝑐 , it increases to 100% volume) (see Figure 5).

Figure 7. Play pause video using users faces orientation.

When a second person (𝐸2) is in front of the smartphone
camera (𝐼1), the application verifies if both users are look-
ing at the screen at the same time, as shown in Figure 7(a)
(method setDetectedFaces (String[][]detectedFaces,
ProxZone p), item 7.(a) in Section 4.2). In the case one user
(𝐸1 or 𝐸2) turns his face, the video will be paused automati-
cally by the mobile application (see Figure 7(b)).
Another useful function of IntelliPlayer is to provide a

video description that users can read on the screen accord-
ing to user location (𝐿) (see Figure 8). When a user (𝐸1
or 𝐸2) is in the 𝑃_𝑍𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 and his orientation (𝑂) is in
front of the screen, the application can obtain the face loca-
tion (𝐿) (see setRelativeLocationScreen(float L) and
getRelativeLocationOnScreen() in item 5.(a) and 5.(b) in
Section 4.2) to split the screen, with the video (running) and
information about the video on the right or on the left, ac-
cording to the detected 𝐿. The correct use and instance of
methods and classes of the API conforms the third step of
the proposed approach.

Figure 8. The split view provides video description.

Tonic is an educational mobile app for learning musical
notes, developed for illustrative purposes. In the first step
of the approach, the students have defined four proxemic
zones: 𝑃_𝑍𝑖𝑛𝑡𝑖𝑚𝑒 (0 mts to 0.5mts), 𝑃_𝑍𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 (0.51 mts to 1
mts), 𝑃_𝑍𝑠𝑜𝑐𝑖𝑎𝑙 (1.1 mts to 2 mts), and 𝑃_𝑍𝑝𝑢𝑏𝑙𝑖𝑐 (2.1 mts to 4
mts). In the second step, a DIMO combination was stated for
the proxemic environment, 𝑃_𝐸.

Figure 9. Tonic Proxemic Zones based on Bluetooth Low
Energy.

Tonic allows a user to play a note and modify it from
her/his smartphome on another smart mobile. The user’s
smartphone is identified (i.e., it is an 𝐼1) by the mobile device
which plays the sound (i.e., it is an 𝐼2). Thus, 𝐼2 plays and
modifies a sound, by using proxemic interactions based on
the 𝑃_𝑍 , and on 𝐷 , 𝐼 , 𝑀 , and 𝑂 dimensions (i.e., a DIMO
proxemic environment). In Tonic, the distance (𝐷) between
the two devices is obtained by using BLE technology. 𝐼1
broadcasts its identifier to nearby portable electronic de-
vices, thus it is caught by 𝐼2. The volume of the sound is
adjusted according to the 𝑃_𝑍 in which 𝐼2 is, with respect
to 𝐼1 (see Figure 9). The musical notes are changed accord-
ing to the movement (𝑀) and orientation (𝑂) of 𝐼2, with
respect to 𝐼1. According to𝑀 a tone is increased/decreased,
while according to 𝑂 a semi-tone is increased/decreased.𝑀
and 𝑂 are calculated based on the capabilities of the smart-
phone, such as accelerometer, gyroscope, compass, and mag-
netometer. These sensors provide proxemic information that
is mainly used in the API. Movement𝑀 was determined by
using methods setAzimuthWithRange(float MAX, float
MIN, float value) and isAzimuthInRange() described

Mobile Proxemic Application Development for Smart Environments MoMM2020, 30 November - 2 December, 2020, Chiang Mai, Thailand

in items 6.(a) and 6.(b) in Section 4.2; while 𝑂 was managed
by methods based on the smartphone’s technical capacities.
To manage 𝑃_𝑍 and 𝐷 , the methods used from the API, in
the third step of the approach, were those described in items
2.(b), 2.(c), and 3.(a) in Section 4.2: ProxemicDI(String I),
setProxemicDIL(String I ,double D, float L), and
setBluetoothDistance(double rssi, double txtPower).

In order to evaluate the usability of the API, we applied a
survey composed of nine questions to the group of students
who developed the applications described. Results of the
survey are shown in Figure 10. These results indicate that
100% of surveyed students have strongly agreed with Q1: "It
was easy to implement the API with Android Studio" and Q9:
"The API is useful for the development of proxemic applications
with Android?". While 95% of students endorsed Q5: "The
API allowed you to process information of a combination of
DILMO dimensions", Q7: "The API’s method for estimating
distance based on face detection was accurate", and Q8: "The
API allows you to obtain the proxemic zone when it is using
Bluetooth proximity sensing". For Q4: "The API allows you to
improve your productivity for developing proxemic applica-
tions by hiding complexity" and Q6 "The API allows you to
create the proxemic zones quickly", 78% of students expressed
acceptation. Finally, Q2: "The documentation provides enough
information to interact with the API" and Q3: "The API pro-
vides enough examples for creating proxemic applications",
were accepted only by 53% and 61% of students, respectively.

The the proof-of-concept and survey allow corroborating
that the API supports development of proxemic applications
and creation of proxemic environments, based on the ex-
clusive use of mobile devices, while reducing complexity
of the development process. These apps offer portable im-
plementations that facilitate using the proxemic interaction
in comparison to previous works that have used fixed plat-
forms for similar purposes. Moreover, the survey results
allow knowing aspects to develop, such as the quality of
documentation and the basic examples provided.

6 Conclusion
Proxemic interaction provides different options for HCI and
mobile interaction while offering several advantages and
better experiences for users. Through this work, we have
explored the use of proxemic interaction based on the com-
bination of proxemic dimensions, called DILMO (Distance,
Identity, Location, Movement, and Orientation) to offer a
new context-oriented interaction for mobile applications.
We have presented a systematic process to guide developers
on creating realistic proxemic environments supported by
an API and a framework, in which the end-users only need
to use mobile or wearable devices. We are currently work-
ing on a definition of a domain-specific language (DSL) to
design proxemic environments, as well as the continuing
implementation testing of the API with students. With this

Figure 10. Results of students feedback.

framework, we hope to inspire other researchers to build
more proxemic mobile applications using social distancing.

Acknowledgments
This research was partially supported by Nouvelle Aquitaine,
Communaute d’Agglomeration Pays Basque. We thank our
students who contributed to the implementations of the
mobile proxemic apps.

References
[1] AltBeacon. 2018. The Open and Interoperable Proximity Beacon Spec-

ification. https://altbeacon.org/.
[2] Mihai Bâce, Sander Staal, Gábor Sörös, and Giorgio Corbellini. 2017.

CollocatedMulti-user Gestural Interactions with UnmodifiedWearable
Devices. Augmented Human Research 2, 1 (2017), 6. http://doi.org/10.
1007/s41133-017-0009-z

[3] Till Ballendat, Nicolai Marquardt, and Greenberg Saul. 2010. Proxemic
interaction: designing for a proximity and orientation-aware environ-
ment. In Proceedings of International Conference on Interactive Tabletops
and Surfaces (ITS’ 10). ACM, 121–130. http://doi.org/10.1145/1936652.
1936676

[4] Michael Brock, Aaron Quigley, and Per Ola Kristensson. 2018. Change
blindness in proximity-aware mobile interfaces. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems (CHI ’18).
ACM, 43. https://doi.org/10.1145/3173574.3173617

[5] Frederik Brudy, Christian Holz, Roman Rädle, Chi-Jui Wu, Steven
Houben, Clemens Nylandsted Klokmose, and Nicolai Marquardt. 2019.
Cross-Device Taxonomy: Survey, Opportunities and Challenges of
Interactions Spanning Across Multiple Devices. In Proceedings of the
CHI Conference on Human Factors in Computing Systems (CHI ’19).
ACM, 562. https://doi.org/10.1145/3290605.3300792

[6] Carlos Cardenas and J Antonio Garcia-Macias. 2017. ProximiThings:
Implementing Proxemic Interactions in the Internet of Things. Procedia
Computer Science 113 (2017), 49–56. https://doi.org/10.1016/j.procs.
2017.08.286

[7] Seyed Ali Cheraghi, Vinod Namboodiri, and LauraWalker. 2017. Guide-
Beacon: Beacon-based indoor wayfinding for the blind, visually im-
paired, and disoriented. In Proceedings of International Conference on
Pervasive Computing and Communications (PerCom ’17). IEEE, 121–130.
https://doi.org/10.1109/PERCOM.2017.7917858

https://altbeacon.org/
http://doi.org/10.1007/s41133-017-0009-z
http://doi.org/10.1007/s41133-017-0009-z
http://doi.org/10.1145/1936652.1936676
http://doi.org/10.1145/1936652.1936676
https://doi.org/10.1145/3173574.3173617
https://doi.org/10.1145/3290605.3300792
https://doi.org/10.1016/j.procs.2017.08.286
https://doi.org/10.1016/j.procs.2017.08.286
https://doi.org/10.1109/PERCOM.2017.7917858

MoMM2020, 30 November - 2 December, 2020, Chiang Mai, Thailand P. Pérez, P. Roose, Y. Cardinale, M. Dalmau, D. Masson, N. Couture

[8] Google Developers. 2109. Sensors Overview. https://developer.android.
com/guide/topics/sensors/sensors_overview#java.

[9] Tilman Dingler, Markus Funk, and Florian Alt. 2015. Interaction prox-
emics: Combining physical spaces for seamless gesture interaction. In
Proceedings of the 4th International Symposium on Pervasive Displays
(PerDis ’15). ACM, 107–114. https://doi.org/10.1145/2757710.2757722

[10] Jakub Dostal, Uta Hinrichs, Per Ola Kristensson, and Aaron Quigley.
2014. SpiderEyes: designing attention-and proximity-aware collab-
orative interfaces for wall-sized displays. In Proceedings of the 19th
international conference on Intelligent User Interfaces (IUI ’14). ACM,
143–152. https://doi.org/10.1145/2557500.2557541

[11] JakubDostal, Per Ola Kristensson, andAaronQuigley. 2013. Multi-view
proxemics: distance and position sensitive interaction. In Proceedings
of the 2nd ACM International Symposium on Pervasive Displays (PerDis
’13). ACM, 1–6. https://doi.org/10.1145/2491568.2491570

[12] Lingling Gao, Kerem Aksel Waechter, and Xuesong Bai. 2015. Under-
standing consumers’ continuance intention towards mobile purchase:
A theoretical framework and empirical study–A case of China. Com-
puters in Human Behavior 53 (2015), 249–262. https://doi.org/10.1080/
0144929X.2013.789081

[13] J Antonio Garcia-Macias, Alberto G Ramos, Rogelio Hasimoto-Beltran,
and Saul E Pomares Hernandez. 2019. Uasisi: a modular and adaptable
wearable system to assist the visually impaired. Procedia Computer
Science 151 (2019), 425–430. https://doi.org/10.1016/j.procs.2019.04.058

[14] Saul Greenberg, Nicolai Marquardt, Till Ballendat, Rob Diaz-Marino,
and MiaosenWang. 2011. Proxemic interactions: the new ubicomp? In-
teractions 18, 1 (2011), 42–50. https://doi.org/10.1145/1897239.1897250

[15] Jens Emil Grønbæk,Mille Skovhus Knudsen, Kenton O’Hara, Peter Gall
Krogh, Jo Vermeulen, and Marianne Graves Petersen. 2020. Proxemics
Beyond Proximity: Designing for Flexible Social Interaction Through
Cross-Device Interaction. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. 1–14.

[16] Jens Emil Grønbæk, Christine Linding, Anders Kromann, Thomas
Fly Hylddal Jensen, and Marianne Graves Petersen. 2019. Proxemics
Play: Exploring the Interplay between Mobile Devices and Interiors.
In Proceedings of Companion Publication of the Conference on Designing
Interactive Systems (DIS ’19). ACM, 177–181. https://https://doi.org/10.
1145/3301019.3323886

[17] Jens Emil Grønbæk and Kenton O’Hara. 2016. Built-in device orienta-
tion sensors for ad-hoc pairing and spatial awareness. In Proceedings of
Cross-Surface Workshop. https://doi.org/10.13140/RG.2.2.16304.20488

[18] Edward T Hall. 1966. The Hidden Dimension: An anthropologist exam-
ines man’s use of space in private and public. New York: Anchor Books;
Doubleday & Company, Inc.

[19] Mikkel R Jakobsen, Yonas Sahlemariam Haile, Søren Knudsen, and
Kasper Hornbæk. 2013. Information visualization and proxemics:
design opportunities and empirical findings. IEEE transactions on
visualization and computer graphics 19, 12 (2013), 2386–2395. https:
//doi.org/10.1109/TVCG.2013.166

[20] Han-Jong Kim, Ju-Whan Kim, and Tek-Jin Nam. 2016. miniStudio:
Designers’ Tool for Prototyping Ubicomp Space with Interactive Minia-
ture. In Proceedings of the CHI Conference on Human Factors in Comput-
ing Systems (CHI ’16). ACM, 213–224. https://doi.org/10.1145/2858036.
2858180

[21] Kyle Kyle, Keith Salmon, Dan Thornton, Neel Joshi, and Mered-
ith Ringel Morris. 2017. Eyes-Free Art: Exploring Proxemic Audio
Interfaces For Blind and Low Vision Art Engagement. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
1, 3 (2017), 93. https://doi.org/10.1145/3130958

[22] David Ledo, Saul Greenberg, Nicolai Marquardt, and Sebastian Boring.
2015. Proxemic-aware controls: Designing remote controls for ubiq-
uitous computing ecologies. In Proceedings of the 17th International
Conference on Human-Computer Interaction with Mobile Devices and
Services (MobileHCI’2015). ACM, 187–198.

[23] Nicolai Marquardt, Robert Diaz-Marino, Sebastian Boring, and Saul
Greenberg. 2011. The proximity toolkit: prototyping proxemic in-
teractions in ubiquitous computing ecologies. In Proceedings of the
24th annual ACM symposium on User interface software and technology
(UIST ’11). ACM, 315–326. https://doi.org/10.1145/2047196.2047238

[24] Nicolai Marquardt, Ken Hinckley, and Saul Greenberg. 2012. Cross-
device interaction via micro-mobility and f-formations. In Proceedings
of the 25th annual ACM symposium on User interface software and
technology (UIST ’12). ACM, 13–22. https://doi.org/10.1145/2380116.
2380121

[25] Helena M Mentis, Kenton O’Hara, Abigail Sellen, and Rikin Trivedi.
2012. Interaction proxemics and image use in neurosurgery. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI’2012). ACM, 927–936.

[26] Microsoft. 2109. CameraSpacePoint Structure. Microsoft
Docs https://docs.microsoft.com/en-us/previous-versions/windows/
kinect/dn758354(v%3Dieb.10).

[27] Ghare Mojgan, Pafla Marvin, Caroline Wong, James R Wallace, and
Stacey D Scott. 2018. Increasing Passersby Engagement with Public
Large Interactive Displays: A Study of Proxemics and Conation. In
Proceedings of the International Conference on Interactive Surfaces and
Spaces (ISS’18). ACM, 19–32. https://doi.org/10.1145/3279778.3279789

[28] Ahmed E Mostafa, Saul Greenberg, Emilio Vital Brazil, Ehud Sharlin,
and Mario C Sousa. 2013. Interacting with microseismic visualizations.
In Proceedings of CHI Extended Abstracts on Human Factors in Comput-
ing Systems (HRI’13). ACM, 1749–1754. http://doi.org/10.1145/2468356.
2468670

[29] Paulo Pérez, Philippe Roose, Dalmau Marc, Nadine Couture, Yudith
Cardinale, and Dominique Masson. 2018. Proxemics for First Aid to
unconscious injured person. In Proceedings of the 30th Conference on
l’Interaction Homme-Machine (IHM’18). 156–162. https://doi.org/10.
1145/3286689.3286712

[30] Henrik Sørensen and Jesper Kjeldskov. 2012. The interaction space
of a multi-device, multi-user music experience. In Proceedings of the
7th Nordic Conference on Human-Computer Interaction: Making Sense
Through Design (NordiCHI ’12). ACM, 504–513. https://doi.org/10.
1145/2399016.2399094

[31] Henrik Sørensen, Mathies G Kristensen, Jesper Kjeldskov, andMikael B
Skov. 2013. Proxemic interaction in a multi-room music system. In
Proceedings of the 25th Australian Computer-Human Interaction Con-
ference: Augmentation, Application, Innovation, Collaboration (OzCHI
’13). ACM, 153–162. https://doi.org/10.1145/2541016.2541046

[32] Jo Vermeulen, Kris Luyten, Karin Coninx, Nicolai Marquardt, and Jon
Bird. 2015. Proxemic flow: Dynamic peripheral floor visualizations
for revealing and mediating large surface interactions. In Proceedings
of IFIP Conference on Human-Computer Interaction (INTERACT’15).
Springer, 264–281. https://doi.org/10.1007/978-3-319-22723-8_22

[33] Vicon. 2108. About Vicon Motion Systems. https://www.vicon.com/
vicon/about.

[34] Daniel Vogel and Ravin Balakrishnan. 2004. Interactive public ambient
displays: transitioning from implicit to explicit, public to personal,
interaction with multiple users. In Proceedings of the 17th annual ACM
symposium on User interface software and technology (UIST ’04). ACM,
137–146. https://doi.org/10.1145/1029632.1029656

[35] Yapeng Wang, Xu Yang, Yutian Zhao, Yue Liu, and Laurie Cuthbert.
2013. Bluetooth positioning using RSSI and triangulation methods.
In Proceedings of the 10th Consumer Communications and Networking
Conference (CCNC’13). IEEE, 837–842. https://doi.org/10.1109/CCNC.
2013.6488558

[36] Augustin Zidek, Shyam Tailor, and Robert Harle. 2018. Bellrock:
Anonymous Proximity Beacons From Personal Devices. In Proceedings
of International Conference on Pervasive Computing and Communica-
tions (PerCom’18). IEEE, 1–10. https://doi.org/10.1109/PERCOM.2018.
8444603

https://developer.android.com/guide/topics/sensors/sensors_overview#java
https://developer.android.com/guide/topics/sensors/sensors_overview#java
https://doi.org/10.1145/2757710.2757722
https://doi.org/10.1145/2557500.2557541
https://doi.org/10.1145/2491568.2491570
https://doi.org/10.1080/0144929X.2013.789081
https://doi.org/10.1080/0144929X.2013.789081
https://doi.org/10.1016/j.procs.2019.04.058
https://doi.org/10.1145/1897239.1897250
https://https://doi.org/10.1145/3301019.3323886
https://https://doi.org/10.1145/3301019.3323886
https://doi.org/10.13140/RG.2.2.16304.20488
https://doi.org/10.1109/TVCG.2013.166
https://doi.org/10.1109/TVCG.2013.166
https://doi.org/10.1145/2858036.2858180
https://doi.org/10.1145/2858036.2858180
https://doi.org/10.1145/3130958
https://doi.org/10.1145/2047196.2047238
https://doi.org/10.1145/2380116.2380121
https://doi.org/10.1145/2380116.2380121
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn758354(v%3Dieb.10)
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn758354(v%3Dieb.10)
https://doi.org/10.1145/3279778.3279789
http://doi.org/10.1145/2468356.2468670
http://doi.org/10.1145/2468356.2468670
https://doi.org/10.1145/3286689.3286712
https://doi.org/10.1145/3286689.3286712
https://doi.org/10.1145/2399016.2399094
https://doi.org/10.1145/2399016.2399094
https://doi.org/10.1145/2541016.2541046
https://doi.org/10.1007/978-3-319-22723-8_22
https://www.vicon.com/vicon/about
https://www.vicon.com/vicon/about
https://doi.org/10.1145/1029632.1029656
https://doi.org/10.1109/CCNC.2013.6488558
https://doi.org/10.1109/CCNC.2013.6488558
https://doi.org/10.1109/PERCOM.2018.8444603
https://doi.org/10.1109/PERCOM.2018.8444603

	Abstract
	1 Introduction
	2 Related work
	2.1 Applications based on Proxemic Interactions
	2.2 Tools to Develop Proxemic-based Applications

	3 Proxemic Definitions
	4 Framework to Develop Proxemic Mobile Apps
	4.1 Framework Architecture
	4.2 API Implementation

	5 Proof-Of-concept Of our Framework
	6 Conclusion
	Acknowledgments
	References

