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Abstract9

The main objective is to present alternative algorithms to neural networks when im-10

proving sea state forecast by numerical models considering main spectral bulk param-11

eters at a specific location, namely significant wave height, peak wave period and peak12

wave direction. The two alternatives are random forest and gradient boosting trees. To13

our knowledge, they have never been used for error prediction method. Therefore, their14

performances are compared with the performances of the usual choice in the literature:15

neural networks. We showed that the RMSE of the variables updated with gradient16

boosting trees and random forest are respectively 20 and 10% lower than the RMSE17

obtained with neural networks. A secondary objective is to show how to tune the hy-18

perparameter values of machine learning algorithms with Bayesian Optimization. This19

step is essential when using machine learning algorithms and can improve the results20

significantly. Indeed, after a fine hyperparameter tuning with Bayesian optimization,21

gradient boosting trees yielded RMSE values in average 8% to 11% lower for the cor-22

rection of significant wave height and peak wave period. Lastly, the potential benefits23

of such corrections in real life application are investigated by computing the extreme24

wave run-up (R2%) at the study site (Biarritz, France) using the data corrected by the25

different algorithms. Here again, the corrections made by random forest and gradient26

boosting trees provide better results than the corrections made by neural networks.27
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1. Introduction30

Nowadays, numerical wave models are routinely used to forecast wind generated31

waves. Although they provide satisfactory predictions at a regional scale and during32

mean wave conditions, it has been shown that they are less accurate for forecasting at33

a specific location (Londhe et al., 2016) and have a tendency to underestimate wave34

height during energetic wave conditions. This underestimation has been observed in35

different state-of-the-art wave models: see the work of Arnoux et al. (2018) for Wind36

Wave Model II (WWMII) and WAVEWATCH–III (WW3) ; Rakha et al. (2007) for37

WAve Model (WAM) and Moeini et al. (2012) for the Simulating WAves Nearshore38

model (SWAN). The errors in wave predictions are mainly due to inaccuracies in the39

wind input that forces the model. The winds used as forcing are numerically simulated40

and are known to underestimate high wind speeds (Moeini et al., 2012). This results41

in the underestimation of wave parameters by numerical wave models. Simplifying42

assumptions, approximations employed in the modeling process, discretization of the43

domain and a potentially wrong parametrization of the model can also be sources of44

inaccuracies in wave model predictions (Babovic et al., 2001, 2005).45

When observation data are available, data assimilation can be used to improve the46

predictions made by numerical models. There are 4 main categories of data assimila-47

tion procedures (Refsgaard, 1997; Babovic et al., 2001): updating the input parameters,48

updating the state variables, updating the model parameters and finally updating the49

output parameters. The last procedure is called ”Error prediction” method and is the50

most suitable approach to improve model predictions of different output variables at51

a specific location (Babovic et al., 2005). This procedure presents several advantages52

comparing to the other data assimilation procedures. First, it covers inaccuracies com-53

ing from all sources because it improves directly output variables. In addition, it can54

use a combination of external variables such as meteorological or wind data to increase55

the accuracy of the predictions. Lastly, it is easy to implement because it consists in56

only three steps and does not require multiple runs of numerical wave model. First, the57

deviations between the modeled values and measured values are computed. Then, ma-58
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chine learning algorithms are used to forecast these deviations. Finally the deviations59

predicted by the algorithms are incorporated to the predictions of the numerical model60

for the next time steps, resulting in a more accurate wave forecast.61

This method has been successfully applied on hindcast data (Makarynskyy et al.,62

2005; Deshmukh et al., 2016) and has even been implemented in real time setting in63

the works of Babovic et al. (2001) and Londhe et al. (2016). To our knowledge, only64

artificial neural networks have been tested to forecast the errors in the data assimila-65

tion. However, according to the so-called “No Free Lunch” theorem, there is no single66

model that works best for all problems (Wolpert, 2002). It is therefore necessary to67

try multiple models and find the one that works best for our particular problem. The68

performance of artificial neural networks must be compared with other algorithms in69

the data assimilation task. Random forest and gradient boosting trees are strong candi-70

dates for this comparison. Indeed, these two methods are known for their performance71

and unlike neural networks, they also provide valuable information by computing the72

predictive power of each variable used as input. The predictive power or variable im-73

portance refers to how much a model relies on that variable to make accurate predic-74

tions. A variable with high predictive power means that its values have a significant75

impact on the prediction values. By contrast, a variable with low predictive power have76

a limited impact on the prediction values and it can be substracted from the model to77

make it simpler and faster.78

To explore the performance of random forest and gradient boosting trees, we use79

as a test case the Basque coast (South west of France). Every winter, the basque coast80

faces numerous coastal flooding events. To prevent and mitigate the risk of flooding,81

wave forecast are used to compute the extreme run-up values either by using parametric82

models such as the formula of Stockdon et al. (2006) or process based models such as83

Xbeach (Vousdoukas et al., 2012; de Santiago et al., 2017). In both cases, the accuracy84

of this forecast is of utmost importance as the issuing of the early warning depends on85

it, especially during energetic wave climate where coastal flooding risk is the highest.86

In this study, we employ the error prediction method with the different machine learn-87

ing algorithms and use local meteorological conditions and measured wave parameters88

from a local buoy to improve the wave forecast. Lastly, we investigate the potential89
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benefits of using such corrections in the computation of extreme run-up values.90

This study aims to present two alternatives (random forest and gradient boosting91

trees) to neural networks by comparing their performances when improving regional92

numerical models. A secondary objective is to show how to tune the hyperparameter93

values of machine learning algorithms with Bayesian Optimization. In machine learn-94

ing, a hyperparameter is a parameter whose value is specified by the user before the95

learning process begins, it will affect how well a model trains and therefore it will have96

a non negligible impact on the final results. Bayesian optimization is an efficient hy-97

perparameter optimization algorithm and it is widely used to optimize the results of98

any given machine learning method.99

Lastly, we investigate if the error prediction method makes a difference in a real100

application such as the computation of extreme run-up for the beach of Biarritz. Section101

2 will introduce the study area, the data and all the statistical methods used. Results will102

be presented and discussed in Section 3. Finally, Section 4 will cover the conclusion.103

2. Data and Methods104

2.1. Study site and Data105

The Basque coast is a 150 km long rocky coast facing the Bay of Biscay (Figure106

1). Every winter, it is battered by numerous storm events. This results in frequent107

and sometimes intense coastal flooding which can severely damage seafront infrastruc-108

tures. The city of Biarritz is particularly affected as the buildings and infrastructures109

are located right behind a sea wall that is located at the top of the beach. The damages110

associated with coastal flooding are costly for nearshore cities which try to prevent111

and mitigate the risks by developing early warning systems. Such systems rely on the112

knowledge of the sea state and its forecast.113
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Figure 1: Map showing the location of the study site. The red dots show of the locations of the directional

wave buoy (1), the meteorological station (2) and the beach called ”Grande Plage de Biarritz” (3).

This work focuses on the forecast improvement of three wave integrated parameters114

which describe the sea state in this area: the significant wave height (HS ), the peak115

period (Tp) and the peak wave direction (θp). Direct measurements of these parameters116

are obtained from the National Center for Archiving Swell Measurements (L’her et al.,117

1999). They were made by a directional wave rider buoy (DWR MKIII) operated by118

the Centre for Studies and Expertise on Risks, Environment, Mobility, and Urban and119

Country Planning (CEREMA) and the University of Pau and Pays de l’Adour (UPPA).120

The buoy is located a few miles off the Basque Coast (Figure 1) at 50 meters water121

depth. Since its deployment in 2009, this buoy have been recording the parameters122

of interest every 30 minutes. The measuring range of this buoy is [-20m; 20m] for123

heave motion, [1.6s; 30s] for wave period and [0◦; 360◦] for wave direction. It has a124

resolution of 1 cm in heave motion and a directional resolution of 1.5◦. To be consistent125

with the numerical wave data and meteorological data, a 1 hour time step was adopted126

for the buoy data.127

The three parameters simulated at the buoy coordinates by the Meteo-France WAM128
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model were provided by the Copernicus Marine Environment Monitoring Service. This129

reanalysis (”ibi reanalysis wav 005 006”) covers the period 2007-2019 with a hourly130

time-step. The MFWAM model is derived from the third generation wave model WAM131

(Group, 1988). It is forced by wind fields obtained from a regional numerical weather132

prediction model (AROME). A more complete description of the MFWAM model can133

be found in Lefèvre and Aouf (2012).134

Meteorological data, including average wind speed above 10 meters, wind direction135

and atmospheric pressure were furnished by the French national meteorological service136

MeteoFrance. The data were collected hourly by the meteorological station of the137

Biarritz airport, located only a few kilometers from the study site (Figure 1). It covers138

the period ranging from 2013-01-01 to 2018-12-31. By assembling the wave buoy139

data, the wind wave parameters and the meteorological data we obtain a dataset of140

41439 hourly observations ranging from 2013-01-01 to 2018-12-31.141

In this work, we are improving the wave forecast by correcting the systematic errors142

of the wind wave model. Therefore, we are not considering any temporal effects while143

improving HS , Tp and θp. The dataset was randomly divided into 2 parts: the training144

part containing 70% of the observations (n = 28797) and the testing part containing145

the remaining 30% (n = 12342).146

2.2. Error prediction method147

The error prediction method consists in three steps:148

• Step 1: Deviations between model predictions and measured values are com-

puted:

Emodel = Xmeasured − Xmodeled,

where Emodel is the error of the model, Xmeasured is the measured value of an149

output variable provided by the wave buoy and Xmodeled is the value of the same150

variable computed by the wave model.151

• Step 2: Emodel is predicted with an appropriate supervised machine learning al-152

gorithm.153
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• Step 3: The predicted error is added to the prediction of the wave model to obtain154

an updated numerical prediction:155

Xupdated = Xmodeled + Epredicted,

where Xupdated is the updated prediction of wave model and Epredicted is the pre-156

dicted error given by the supervised learning method.157

This method is repeated separately for each output variable to improve (Hs, Tp, θp).158

The performance of this data assimilation method relies on two things: the quantity of159

data and the machine learning algorithm used. Since the machine learning algorithm160

are generally more suited to interpolate rather than extrapolate, the available data for161

learning process should cover as much as possible the range of all the probable events162

in the study area. Concerning the learning method, only neural networks have been163

used for the step (2) of the error prediction method to our knowledge(Makarynskyy164

et al., 2005; Moeini et al., 2012; Londhe et al., 2016). Because we want to compare165

the performance between different machine learning algorithms, we use random forest166

and gradient boosting trees. All the tested algorithms use the same input variables167

to improve the model accuracy: the three wave parameters (HS , Tp, θp) given by the168

numerical model, the atmospheric pressure, the wind direction and speed.169

2.3. Neural networks170

Artificial neural networks have been extensively used in the domain of wave mod-171

elling (Deo et al., 2001; Makarynskyy et al., 2002; Makarynskyy, 2005; Mandal and172

Prabaharan, 2006) or wave parameters assimilation (Makarynskyy et al., 2005; Moeini173

et al., 2012; Londhe et al., 2016). It is why technical details will be avoided in this174

study and only the general concepts will be presented. The readers can find more de-175

tails and information on the working of neural networks in Liang and Bose (1996) or176

Friedman et al. (2001).177

The most common class of neural networks is the multilayer perceptron. The neu-178

rons in this network are organized in three layers: the input layer that receive the input179

variables, the output layer that performs the final predictions and between these two180
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layers there is the hidden layer. Neurons in the hidden layer transmit the signal to the181

output layer by transforming the weighted sum of the neurons present in the input layer182

with a non linear function called activation function. The weights between each neuron183

of the network are adjusted through the iterative process of backpropagation to mini-184

mize the error between the variable we want to predict and the variable predicted by185

the network (output layer).186

As other machine learning methods, hyperparameters need to be specified before187

the training of neural networks. Some hyperparameters control the network architec-188

ture (number of neurons, layers, activation function used, etc...) while others control189

the training process (learning rate, bacth size, number of epochs, etc...). Hyperparam-190

eters must be tuned carefully in order to achieve optimal results with neural networks.191

2.4. Tree based algorithms192

Unlike neural networks, random forest and gradient boosting have never been used193

in the error prediction method. They are state-of-the-art ensemble learning techniques194

for classification and regression tasks. An ensemble learning technique commonly195

refers to a method that combines the predictions from multiple machine learning algo-196

rithms, called base learners, to produce more accurate predictions.197

Random forest is an algorithm that builds many decision trees in parallel. These198

trees are the base learners for random forest and they have the following characteristics:199

• Each tree is built using a different bootstrap sample of the data-set. This mecha-200

nism is called bagging.201

• At each node, a given number (hereafter ”mtry”) of variables are randomly sam-202

pled as candidates at each split. The best split point is then selected within this203

random set of variables. This process is called feature sampling. The value204

”mtry” is fixed before growing the forest.205

• Unlike the classification and regression trees of Breiman et al. (1984), the trees206

in random forest are fully grown (no pruning step).207

Bagging and feature sampling are the core principles of random forest. They are208

two randomizing mechanisms which ensure that the trees are independent and are less209

8



correlated with each other. The final prediction of a random forest is obtained by210

averaging the results of all the independent trees in case of regression or using the211

majority rule in case of classification.212

The most important hyperparameters in random forest are the number of trees and213

”mtry”: the number of variables randomly sampled as candidates at each split when214

building the trees.215

Gradient boosting is an algorithm that trains many weak learners sequentially to216

provide a more accurate estimate of the response variable. A weak learner is a machine217

learning model that perform slightly better than chance. In case of gradient boosting218

trees, the weak learners are shallow decision trees. Each new tree added to the ensemble219

model (combination of all the previous trees) minimizes the loss function associated220

with the ensemble model. The loss function depends on the type of the task performed221

and can be chosen by the user. For regression, the standard choice is the squared loss.222

By adding sequentially trees that minimize the loss function (i.e. follow the gradient223

of the overall loss function), the overall prediction error decreases. Technical details224

about gradient boosting trees can be found in (Friedman, 2001).225

Many hyperparameters have to be tuned for gradient boosting trees, some of them226

control the gradient boosting process, such as the learning rate, the number of trees to227

be used whereas others regulate the construction process of the trees: minimal node228

size, sample of the dataset to be used, maximum depth.229

2.5. Hyperparameter tuning230

Hyperparameters influence significantly the training of the machine learning algo-231

rithms and therefore the quality of their predictions. The objective of hyperparameter232

tuning is to find the values of hyperparameters that yield the lowest error (RMSE in233

our case) for unseen data. Two types of methods exist to find the optimal values of234

hyperparameters: uninformed or informed.235

In uninformed methods, many combinations of hyperparameter values are tested236

one after the other and the best combination is the one that yields the lowest error237

on unseen data. The values of hyperparameters are either sampled randomly (random238

search) or sampled along a grid (grid search). In both cases, each combination tested239
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are independent from another. With grid and random search, it is not guaranteed to find240

the optimal set of hyperparameters and it usually requires a lot of iterations (combina-241

tions tested).242

In informed methods, the results obtained by the past combinations are used to243

choose the next combination to evaluate. Bayesian optimization algorithm is an in-244

formed method that aims to minimize an objective function, in our case the errors245

of the machine learning algorithms on unseen data. First, it builds a probability model246

(Gaussian process) of the objective function. Then it uses this surrogate model to select247

the most promising values of hyperparameters to evaluate. Once the promising com-248

bination of values have been evaluated, the probability model is updated and searched249

again for the most promising combination. This process is repeated several times. This250

method is employed in this article because it is very efficient for tuning hyperparameter251

values and it usually requires less iterations than uninformed methods (Bergstra et al.,252

2011). In-depth details of this method are given in the works of Snoek et al. (2012);253

Marchant and Ramos (2012) and Shahriari et al. (2015).254

2.6. Training the algorithms255

The machine learning algorithms described above are trained to predict the devia-256

tions of Hs, Tp or θp (one model for each variable), using 6 input variables: the three257

wave parameters (HS , Tp, θp) given by the numerical model, the atmospheric pressure,258

the wind direction and speed.259

The neural networks are built and trained with the R package keras. The input vari-260

ables are centered and scaled to improve the result of neural networks and the weights261

are updated with the adam optimization algorithm (Kingma and Ba, 2014). Random262

forest and gradient boosting model are fitted in R using respectively the ranger pack-263

age which provide fast implementation of Random Forests (suited for high dimensional264

data) and the xgboost package which is an efficient R implementation of the gradient265

boosting framework from Chen and Guestrin (2016). The input variables are not cen-266

tered or scaled before the training of random forest and gradient forest because it does267

not influence the training of these algorithms.268

The training is done twice: once with the default values of the hyperparameters in269
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the R packages and once with the optimal values found with the Bayesian optimization270

method.271

The best hyperparameter values are found by the means of Bayesian optimization272

method coupled with a 5-fold cross validation in the training dataset. That is, the273

training data are split into five equal-sized partitions and a machine learning model is274

recursively built on four partitions (80% of the training data) with a given hyperpa-275

rameter combination. A performance metric, in our case the root mean square error is276

assessed on the remaining partition (20% of the training data). The resulting five per-277

formance metrics are averaged to provide an estimated out-of-sample performance of278

the respective hyperparameter combination. The objective function to minimize for the279

Bayesian optimization method is the average out-of-sample performance value. The280

Bayesian optimization for our data is performed using the R package RBayesianOpti-281

mization. First, random combinations of hyperparameter values are evaluated to serve282

as search base for the informed method (5 in this study), then an acquisition function283

(upper confidence bound) is used to find the next combination values to evaluate (this284

step is repeated 25 times).285

3. Results and Discussion286

3.1. Model comparison287

To assess the accuracy of the numerical model and the proposed corrections, sev-288

eral metrics are computed including the root mean square error (RMSE), the correlation289

coefficient, the bias and the scatter index (SI). The bias represents the average error be-290

tween the observed and modeled data and allows one to detect under or over estimation291

of the value of one parameter. The scatter index is a measure of the error normalized292

by the observation values. It is a standard metric for wave model inter-comparison293

(Londhe et al., 2016). More details about the computation of these two metrics can be294

found in the work of Mentaschi et al. (2013). The metrics are computed twice: once295

with the whole test data and once with a subset of the test data where Hs > 3m because296

the underestimation of Hs is known to become larger above this height (Arnoux et al.,297

2018).298
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Table 1: Statistical metrics for the three variables of interest before the hyperparameter tuning. ”Ann” stands

for artificial neural networks, ”Rf” for random forest and ”Gb” for gradient boosting tree.

Hs Tp θp

Numerical

model

Ann

Corr.

Rf

Corr.

Gb

Corr.

Numerical

model

Ann

Corr.

Rf

Corr.

Gb

Corr.

Numerical

model

Ann

Corr.

Rf

Corr.

Gb

Corr.

Computed with all data

Biais -0.201 0.005 -0.002 -0.004 0.712 0.002 -0.026 0.005 -0.249 0.698 0.976 0.765

RMSE 0.399 0.306 0.248 0.267 1.839 1.603 1.282 1.388 13.803 12.391 9.749 10.645

SI 0.166 0.148 0.120 0.129 0.153 0.145 0.116 0.125 0.045 0.041 0.032 0.035

Cor 0.954 0.962 0.975 0.972 0.78 0.804 0.880 0.857 0.330 0.366 0.455 0.386

Computed with data where Hs > 3m

Biais -0.536 -0.156 -0.124 -0.126 0.683 -0.026 -0.090 -0.041 1.925 -0.561 0.052 0.046

RMSE 0.766 0.515 0.420 0.433 1.348 1.083 0.956 1.022 7.351 5.769 4.449 4.931

SI 0.133 0.120 0.098 0.101 0.089 0.083 0.073 0.078 0.024 0.019 0.015 0.016

Cor 0.818 0.857 0.902 0.898 0.832 0.850 0.886 0.869 0.589 0.604 0.790 0.726

Table 1 presents the metrics obtained with no assimilation (numerical model) and299

after a preliminary data assimilation with the three machine learning algorithms. The300

term ”preliminary” refers to the lack of hyperparameter tuning. The learning has been301

done using the default hyperparameter values given in table 2.302

For significant wave height, the numerical model shows a negative bias. This indi-303

cates that the MFWAM model has a tendency to underestimate Hs such as other wind304

wave models (Moeini et al., 2012; Arnoux et al., 2018). The negative bias increases as305

the value of Hs becomes larger (Hs > 3m), meaning that Hs is more likely to be under-306

estimated during energetic events. For the peak period, the numerical model shows a307

positive bias. When Hs > 3m, the bias and the RMSE for this parameter are smaller.308

The predictions of Tp are therefore better during energetic conditions. For wave di-309

rection, a small bias is observed in average and is greater when the waves are larger.310

The large difference in RMSE computed with data where Hs > 3m and with all data is311

explained by the distribution of the wave direction according to the wave height. When312

the significant wave height is below 2 meters, the wave direction at the buoy is more313

variable (Figure S1, supplementary material) and the spectral wave model has more314

difficulties to predict correctly the direction. This can be confirmed by looking at the315

θp errors of the numerical model: we see that they are larger and occur more often316
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when Hs < 2m (Figure S2, supplementary material). A potential explanation of this317

phenomenon could be that below 2 meters, the sea state is more likely to be influenced318

by local wind conditions which are difficult to reproduce by the spectral wave model319

(Rascle and Ardhuin, 2013). When the significant wave height is above 2 meters, the320

wave directions are a lot less variable and the predictions of the spectral wave model321

are more accurate.322

When we look at the metrics computed with all data, we see that the correction323

made by the three machine learning algorithms removes the bias and greatly reduces the324

RMSE and the scatter index for Hs and Tp. For θp, the mean bias is slightly larger after325

data assimilation for all algorithms. The correction of the machine learning algorithm326

could be less efficient for θp due to the high variability of the observed deviations327

they try to model (see the explanation in the paragraph above). However, lower value328

of RMSE and scatter index and larger correlation coefficients still indicate that the329

corrected data are closer to the observed values at the buoy.330

For the metrics computed with data where Hs > 3m, the correction does not remove331

the bias for Hs and Tp but reduces it greatly. For the wave direction, the updated332

parameters are closer to the reality. Indeed, bias and RMSE obtained by the corrections333

are smaller than the numerical model and the correlation coefficients are larger for334

corrected data.335

For this preliminary assimilation, random forest yields the best results for all the336

parameters. It reduces the RMSE values computed with all test data by 37.7%, 30%337

and 29% respectively for Hs, Tp and θp. Gradient boosting trees is close second and338

decreases the RMSE values by 33%, 24.5% and 22.8%. Finally, data assimilation with339

neural networks decreases the RMSE of Hs, Tp and θp by 23%, 12.8% and 10.2%.340

As stated earlier, the performance of machine learning algorithms might depend341

on the choice of the hyperparameter values. The Bayesian optimization was therefore342

performed and optimal values were selected (Table 2). The selected hyperparameter343

values are quite different from the default values. Indeed, for neural networks, the best344

results were obtained with more epochs and more neurons in the hidden layer. For345

random forest, only the number of trees seems to have some effect on the results and346

models with a large number of trees performs better. Finally, for gradient boosting347
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Table 2: Default values, ranges and selected value of hyperparameters for the machine learning algorithms

Machine learning

algorithms
Hyperparameters Default value Range searched

Selected value

for Hs

Selected value

for Tp

Selected value

for Dir

Neural networks
No. of units

in hidden layer
13 (2 × h + 1) {1-40} 26 20 40

Activation function sigmoid {relu,sigmoid,tanh} sigmoid sigmoid relu

Learning rate 0.001 {0.0001-0.1} 0.021 0.016 0.005

Epochs 30 {10,30,50,100,150} 50 100 150

Batch size 32 {16,32,64,128} 32 64 64

Gradient Boosting Number of trees 100 {100-2000} 560 1150 1990

trees Learning rate 0.3 {0.0001-0.3} 0.072 0.028 0.069

Max depth 6 {1-20} 14 20 20

Minimal node size 1 {1-15} 7 1 1

Subsample 1 {0.5-1} 0.57 0.82 0.79

Col sample 1 {0.5-1} 0.99 0.85 0.9

Random forest Number of trees 500 {100,200,500,800,1000} 1000 1000 1000

Mtry 2 (
√

h) {2-6} 2 2 2

Note: h corresponds to the number of input variables (6 in our case).

trees, models with a large number of trees and a small learning rate are preferred.348

Metrics calculated with data corrected by the tuned machine learning algorithms349

are presented in Table 3. Overall, tuning the hyperparameter values has improved the350

results of all the algorithms. However, the degree of improvement differs depending351

on the algorithm. We observe the smallest improvements for random forest where the352

RMSE of every parameters seems to decrease by less than 1% in average. For neural353

networks, tuning hyperparameter values has a more significant effect by reducing the354

RMSE by 2 to 3% in average. The largest effect of tuning the hyperparameters are ob-355

served with gradient boosting trees. The RMSE is 8 to 11% lower for every parameter.356

The only exception is θp computed with all data where we have a small increase (2%)357

of RMSE. In general, the mean bias for Hs, Tp and θp remains the same before and358

after hyperparameter tuning expect for the bias of Hs computed when Hs > 3m which359

is significantly lower after the tuning.360

For this dataset, gradient boosting algorithm shows the best performances for all361

parameters. Assimilation with this algorithm decreases the RMSE values computed362

with all test data by 39.8% for Hs, 33% for Tp and 31% for θp. For Hs and θp, the363

reduction are even lower for the RMSE values computed with Hs > 3m: 47% for364
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Table 3: Statistical metrics for the three variables of interest after the hyperparameter tuning.”Ann” stands

for artificial neural networks, ”Rf” for random forest and ”Gb” for gradient boosting tree.

Hs Tp θp

Numerical

model

Ann

Corr.

Rf

Corr.

Gb

Corr.

Numerical

model

Ann

Corr.

Rf

Corr.

Gb

Corr.

Numerical

model

Ann

Corr.

Rf

Corr.

Gb

Corr.

Computed with all data

Biais -0.201 0.026 -0.002 -0.001 0.712 0.007 -0.022 0.003 -0.249 0.790 0.979 0.714

RMSE 0.399 0.300 0.246 0.240 1.839 1.553 1.269 1.231 13.803 12.07 9.646 9.501

SI 0.166 0.144 0.118 0.116 0.153 0.140 0.114 0.111 0.045 0.04 0.032 0.031

Cor 0.954 0.964 0.976 0.977 0.78 .817 0.882 0.889 0.330 0.36 0.461 0.421

Computed with data where Hs > 3m

Biais -0.536 -0.117 -0.120 -0.099 0.683 0.032 -0.084 -0.051 1.925 -1.114 0.062 0.056

RMSE 0.766 0.495 0.417 0.404 1.348 1.064 0.950 0.943 7.351 5.820 4.412 4.365

SI 0.133 0.117 0.097 0.095 0.089 0.081 0.072 0.072 0.024 0.019 0.015 0.015

Cor 0.818 0.861 0.903 0.908 0.832 0.856 0.888 0.889 0.589 0.609 0.793 0.793

the significant wave height and 40% for wave direction. The performances of random365

forest for Hs, Tp and θp are slightly better than the results obtained before tuning the366

hyperparameters: respectively 38.3%, 30.9%, 30.1%. The performances are also bet-367

ter for neural networks after hyperparameter tuning: it decreases the RMSE values by368

24.8% for Hs, 15.5% for Tp and 12.5% for θp. The differences in efficiency between369

neural networks and ensemble learning techniques could be explained by the architec-370

ture chosen for the neural networks. Indeed, this work shows the results for multilayer371

perceptrons with only one hidden layer which is the typical choice in the literature372

(Londhe et al., 2016; Moeini et al., 2012). By choosing an architecture with more hid-373

den layers, the networks might be able to model more complex phenomena and bring374

a better improvement for the three wave parameters.375

The distribution of the errors after the different corrections are presented in the376

figure 2. For all wave parameters, the distributions of the errors after a correction377

have narrowed and are now more centered in zero. The differences in performance be-378

tween algorithms are confirmed with these violin plots. Indeed, when the correction is379

made with random forest or gradient boosting trees, the distributions of the errors are380

more narrow than the distributions of the errors obtained with neural networks. The381

difference in efficiency between random forest and gradient boosting trees is not dis-382
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tinguishable graphically. It is expected as the metrics of the two algorithms only differ383

by a few percents. For Hs and Tp, the corrections have also removed the bias observed384

for numerical model. The large errors of θp for the numerical model (Figure ??) are385

observed when Hs < 2m and are not corrected by the machine learning algorithms.386

Figures showing the observed values versus the corrected values are available in the387

supplementary material for the three wave parameters.388

3.2. Predictive power of the input variables389

In addition to their performance, random forest and gradient boosting algorithms390

can provide a measure of importance for each variable used as input. This importance391

indicates the predictive power of the variable. It can be used to sort variable from most392

to least predictive, allowing one to have more insight on the problem and to perform393

feature selection when there are too many input variables. The figure 3 shows the394

importance measure of each variable computed by the random forest depending on the395

parameter to improve. For Hs and Tp, the most important variables are the value of396

Hs and Tp modeled by the wind wave model. It is different for the direction where397

the most important variables are the value of θp and Hs given by the model. The398

predictive power of local meteorological variables is quite low, suggesting that local399

and instantaneous meteorological variables does not bring valuable information in the400

assimilation process. The wind wave formation process is not instantaneous and occurs401

in large regional scale, therefore using meteorological variables from the past (several402

days before) and from different locations (located in the ocean) could lead to a better403

predictive power which means better updated wave predictions.404

3.3. Example of application405

To investigate the potential effect of the different corrections in a real case scenario,406

the extreme wave run-up R2% at the Grande Plage de Biarritz has been computed for the407

test period with the Stockdon formula (Stockdon et al., 2006) which uses Hs and Tp and408

the beach slope as parameters. The beach slope is fixed to 8% according to the work of409

Morichon et al. (2018). Using the extreme wave run-up calculated with the buoy data410

as reference, the metrics presented previously have been computed for the numerical411
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Figure 2: Distribution of the errors computed between values observed at the buoy and values corrected or not

with the different machine learning algorithms. ”Num” stands for numerical model (no correction), ”Ann”

for artificial neural networks, ”Rf” for random forest and ”Gb” for gradient boosting trees. The horizontal

lines in the red boxplots represent from top to bottom: the third quartile, the median and the first quartile.
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Figure 3: Variable importance for the correction of the three wave integrated parameters.

model and the different corrections (Table 4). From this table, it is evident that the data412

corrected with machine learning algorithms provide wave run up values that are closer413

to the ”real” values with lower RMSE, Scatter index and greater correlation coefficient.414

Although the bias remains, the correction made by the gradient boosting tree algorithm415

decreases the RMSE of the extreme wave run-up by 22% (for all data and data where416

Hs > 3m). Random forest shows almost the same reduction of RMSE values: 21.5%417

for all data and 20.7% for data where Hs > 3m. The correction obtained by neural418

networks is less efficient: it reduces the RMSE computed with all data and data where419

Hs > 3m by 6.2 and 9.9% respectively.420

4. Conclusion421

In this work, random forest and gradient boosting trees were employed for the first422

time in the error prediction method. These ensemble learning techniques based on423

decision trees performed better than neural networks for improving the wave forecast424

of the Basque Coast. The correction made by gradient boosting trees yielded the best425
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Table 4: Statistical metrics of the R2% calculated with Stockdon’s formula. These results are obtained by

taking the R2% computed with buoy data as reference. ”Ann” stands for artificial neural networks, ”Rf” for

random forest and ”Gb” for gradient boosting tree.

Numerical

model

Ann

Corrected

Rf

Corrected

Gb

Corrected

Computed with all data

Biais 0.003 0.019 0.002 0.003

RMSE 0.223 0.209 0.175 0.172

SI 0.145 0.136 0.114 0.112

Cor 0.943 0.950 0.965 0.966

Computed with data where Hs > 3m

Biais -0.042 -0.030 -0.054 -0.042

RMSE 0.313 0.282 0.248 0.242

SI 0.119 0.108 0.093 0.092

Cor 0.854 0.862 0.897 0.901
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results for all the wave parameters: it reduced the RMSE values by nearly 40% for426

Hs, 33% for Tp and 31% for θp. The reduction of RMSE values for random forest427

was only a few percents lower than gradient boosting trees. The corrections made by428

neural networks were significant but yielded reductions in RMSE not as high as the429

two ensemble learning techniques: 24.8% for Hs, 15.5% for Tp and 12.5% for θp.430

As expected, tuning the hyperparameters of the machine learning algorithms had a431

positive effect on the final results. However, the effect of the tuning differed depending432

on the algorithms. Indeed, random forest was less affected as it only reduced the RMSE433

values by 1% in average. The tuning had more effect on neural networks reducing the434

RMSE values by 2 to 3%. Gradient boosting tree algorithm was the most affected by435

hyperparameter tuning as the results were improved by 8 to 11% in average. One of436

the main advantage of random forest over gradient boosting trees is that it doesn’t need437

this tuning step in order to yield great results. This is not negligible as hyperparameter438

tuning step can be time consuming and computationally demanding depending on the439

complexity of the search (number of hyperparameters).440

Contrary to neural networks, Random forest and Gradient boosting trees provided441

valuable insights by giving the predictive power of each input variable. The predictive442

power of variable brings interpretability to the model and can give a better understand-443

ing of the variable we try to predict. For example, we know that the significant wave444

height modelled by the numerical wave model was the most important variable in the445

correction of the three parameters. In cases where there are a lot of input variables,446

knowing their associated predictive power helps developing more parsimonious mod-447

els by keeping the pertinent variables and subtracting the less informative ones from448

the model.449

The error prediction method has proven to be useful in improving wave forecast.450

This had an impact in a real life application by improving the accuracy of the extreme451

run-up computed at the Grande Plage de Biarritz. Here again the corrections brought by452

random forest and gradient boosting tree were better than the correction made by neural453

networks. The decrease in RMSE values was around 22% for the two ensemble tech-454

niques and 6.2% for the neural networks. Even though the differences in performance455

might not appear significant, it can make a difference when using these corrections in456
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an early warning system. It is especially true when dealing with storm events where Hs457

and Tp are large.458

The differences between machine learning algorithms observed in this article are459

specific to Biarritz site. The results might differ for another study site. Therefore, we460

can only advise to test and compare several machine learning algorithms to find the461

optimal one associated with the site of interest.462

Finally, the assimilation made in this study did not account for the temporal aspect463

in the errors of the numerical model, it only corrected systematic errors of the wave464

model. In the future, this work could be extended by adding input variables containing465

temporal aspect. This could be the values of a modeled parameter at previous time steps466

such as the work of Londhe et al. (2016). In this framework, neural networks could467

perform better as they are known to handle efficiently time series. Other input variables468

could be also used to improve the wave forecast such as the meteorological data from469

the past or at different locations. Because the success of the error prediction method470

depends on the quantity of data, it would be also interesting to perform a sensitivity471

analysis on the quantity of data used in the training process. This could give us some472

insights on the minimal quantity of data required to obtain a desirable assimilation473

procedure.474
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Lefèvre, J.M., Aouf, L., 2012. Latest developments in wave data assimilation, in:516

ECMWF Workshop on Ocean Waves, pp. 25–27.517

L’her, J., Goasguen, G., Rogard, M., 1999. CANDHIS database of in situ sea states518

measurements on the French coastal zone, in: The Ninth International Offshore and519

Polar Engineering Conference, International Society of Offshore and Polar Engi-520

neers.521

Liang, P., Bose, N.K., 1996. Neural network fundamentals with graphs, algorithms and522

applications. Mac Graw-Hill .523

Londhe, S.N., Shah, S., Dixit, P.R., Nair, T.M.B., Sirisha, P., Jain, R., 2016. A Cou-524

pled Numerical and Artificial Neural Network Model for Improving Location Spe-525

cific Wave Forecast. Applied Ocean Research 59, 483–491. doi:10.1016/j.apor.526

2016.07.004.527

Makarynskyy, O., 2005. Neural pattern recognition and prediction for wind wave data528

assimilation. Pac Oceanogr 3, 76–85.529

Makarynskyy, O., Pires-Silva, A.A., Makarynska, D., Ventura-Soares, C., 2002. Ar-530

tificial neural networks in the forecasting of wave parameters, in: 7th International531

Workshop on Wave Hindcasting and Forecasting. Banff, Alberta, Canada, pp. 514–532

522.533

Makarynskyy, O., Pires-Silva, A.A., Makarynska, D., Ventura-Soares, C., 2005. Arti-534

ficial neural networks in wave predictions at the west coast of Portugal. Computers535

& Geosciences 31, 415–424.536

23



Mandal, S., Prabaharan, N., 2006. Ocean wave forecasting using recurrent neural537

networks. Ocean engineering 33, 1401–1410.538

Marchant, R., Ramos, F., 2012. Bayesian optimisation for intelligent environmental539

monitoring, in: 2012 IEEE/RSJ International Conference on Intelligent Robots and540

Systems, IEEE. pp. 2242–2249.541

Mentaschi, L., Besio, G., Cassola, F., Mazzino, A., 2013. Problems in RMSE-based542

wave model validations. Ocean Modelling 72, 53–58.543

Moeini, M.H., Etemad-Shahidi, A., Chegini, V., Rahmani, I., 2012. Wave data assimi-544

lation using a hybrid approach in the Persian Gulf. Ocean Dynamics 62, 785–797.545

Morichon, D., de Santiago, I., Delpey, M., Somdecoste, T., Callens, A., Liquet, B.,546

Liria, P., Arnould, P., 2018. Assessment of flooding hazards at an engineered beach547

during extreme events: Biarritz, SW France. Journal of Coastal Research 85, 801–548

805.549

Rakha, K.A., Al-Salem, K., Neelamani, S., 2007. Hydrodynamic atlas for Kuwaiti550

territorial waters. Kuwait Journal of Science and Engineering 34, 143.551

Rascle, N., Ardhuin, F., 2013. A global wave parameter database for geophysical552

applications. part 2: Model validation with improved source term parameterization.553

Ocean Modelling 70, 174–188.554

Refsgaard, J.C., 1997. Validation and intercomparison of different updating procedures555

for real-time forecasting. Hydrology Research 28, 65–84.556

Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N., 2015. Taking the557

human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE558

104, 148–175.559

Snoek, J., Larochelle, H., Adams, R.P., 2012. Practical bayesian optimization of ma-560

chine learning algorithms, in: Advances in Neural Information Processing Systems,561

pp. 2951–2959.562

24



Stockdon, H.F., Holman, R.A., Howd, P.A., Sallenger Jr, A.H., 2006. Empirical pa-563

rameterization of setup, swash, and runup. Coastal engineering 53, 573–588.564
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