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Abstract

Based on its good theoretical properties, the use of entropy variables is an

excellent choice for computing compressible flows at low Mach number. In

this paper, we discuss the use of entropy variables in a discontinuous Galerkin

discretization of the compressible Euler equations and generalize the numerical

flux proposed by Barth to physical and conservative variables. Next, we compare

the DG0 discretization based on the entropy variables with several other DG0

discretizations, and also with a standard finite volume method. Comparisons of

DG1 discretization with the different sets of variables give hope in an all-Mach

number solver.

Keywords: Discontinuous Galerkin finite elements method (DGFEM), Euler

equations, Entropy variables, Primitive variables, Incompressible limit, Low

Mach number.

1. Introduction

The discretization of the Euler equations [1] is generally based on conser-

vative variables, since they allow the equations to be written as a hyperbolic

system. However, several formulations have been proposed for various reasons.

In the context of finite element methods, Barth [2] used entropy variables

[3] in order to construct an entropy-stable discretization. The reason for this
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was that the discrete equations can be tested with these variables, whereas the

nonlinearity of the change of variables leads to additional interpolation errors,

unless the approximation is piecewise constant, which is the case for cell-centered

finite volumes and discontinuous Galerkin (DG) at the lowest order.

It is also well known that the system written in conservative variables degen-

erates in the incompressible limit and the change of variables becomes singular,

see Hauke & Hughes [4] and Pesch & van der Vegt [5]. In view of this difficulty,

the latter articles developed stable methods for continuous and discontinuous

finite element approximations, both based on a combination of entropy variables

and physical variables. We should, however, mention that the discretization of

the diffusion in the compressible Navier-Stokes equations is considerably easier

in physical variables than in entropy variables.

The purpose of this article is to present numerical experiments illustrating

different aspects of the choice of variables in the context of the discontinuous

Galerkin method. Our method is based on the entropy-stable flux [6] of in com-

bination with the change of variables developed in [5]. This leads to identical

discrete solutions in the lowest-order case DG0 and allows for fair comparisons

for higher-order discretizations DG1. Since this numerical flux is different from

standard approaches, our first concern is the comparison of the proposed method

with the HLLC flux [7] and the Roe-based [8] finite volume solver in FLUENT

[9]. Our second topic is the comparison of the different sets of variables: conser-

vative, entropy, and physical variables. Although the discrete solutions coincide

in the lower case (i.e. DG0), the nonlinearities are different and have an influ-

ence on the practical behavior of the methods.

Finally, our third topic is the behavior of the different methods at low Mach

numbers [10], [11]. Since the theory of numerical methods for the Euler equa-

tions in the incompressible limit [12] is not complete, computational experiments

are important.

The article is organized as follows. We close this section with some nota-

tion. Sections 2 and 3 describe the proposed DG discretization with different

sets of variables. The Jacobians required for the numerical fluxes are given
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in Appendix. Section 4 presents comparisons between the proposed numerical

flux and standard approaches based on the Roe-FVM and HLLC-DGFEM dis-

cretizations. For a fair comparison, we use the lowest order DG approximation

DG0, which is very close to cell-centered finite volumes. Then in Section 5

we compare the use of different variables in the DG method using well-known

test problems for low Mach number flows. We also consider the higher-order

approximations DG1, but restrict ourselves to cases without shocks, in order

to focus on the role of the choice of variables. Higher-order DG discretizations

for shock problems would require additional slope-limiters [13], obscuring the

comparison.

Finally, we draw some conclusions on the numerical experiments presented

in this article in section 6.

1.1. Notation

We denote by v · w the Euclidian scalar product for v, w ∈ Rn (which are

column vectors), and by |·| the associated norm. We frequently use the notation

vTw = v · w. We denote the transpose of a matrix A ∈ Rn×m by AT.

For a differentiable function f : A ⊂ Rn → Rm we denote by Df its Jacobian

matrix, (Df)ij = ∂fi
∂uj

. In the special case m = 1 we let ∇f = DfT. In

particular, we have for g(u) = f(T (u)) that ∇g = (DfDT )T = DTT∇f .

Let φ : Rn → R, f : Rn → Rn and φ(u) := u·f(u). Then Dφ = f(u)+uTDf ,

since

∂φ

∂ui
=

n∑
k=1

∂(ukfk(u))

∂ui
=

n∑
k=1

(
δikfk(u) + uk

∂fk(u)

∂ui

)
= fi(u) + (uTDf)i.

2. The Euler equations as a hyperbolic system

We consider the classical Euler equations for an ideal gas p/ρ = RT [14].

Let ρ, V , p, T and E be the density, velocity, pressure, temperature and total

energy respectively. The Euler equations expressed as a system of mass and
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momentum and energy conservation equations read:

∂ρ

∂t
+ div (ρV ) = 0,

∂ρV

∂t
+ div (ρV ⊗ V ) +∇p = 0,

∂ρE

∂t
+ div (ρV E) + div (pV ) = 0.

(1)

We write (1) as a system of hyperbolic equations in the conservative variables

u =


ρ

ρV

ρE

 (2)

with the help of smooth flux functions fi : A→ Rm, (A ⊆ Rm) 1 ≤ i ≤ d

∂u

∂t
+

d∑
i=1

∂fi(u)

∂xi
= 0 (3)

combined with the initial condition

u(0) = u0 (4)

and appropriate boundary conditions. The quasi-linear form of (3) uses the flux

Jacobians Ai(u) = Dfi(u) :

∂u

∂t
+

d∑
i=1

Ai(u)
∂u

∂xi
= 0 (5)

Equation (3) is understood in the weak sense, since the solutions are in general

not differentiable and even discontinuous (formation of shocks). From a mathe-

matical point of view, a weak formulation is therefore considered, where all the

derivatives are put on smooth test functions via integration by parts.

For the Cauchy problem (Ω = Rn), this reads for example: Find u ∈ L1([0; +∞[×Rn)

such that for all smooth compactly supported test functions φ∫ ∞
0

∫
Rn

(
u
∂φ

∂t
+

d∑
i=1

fi(u) · ∂φ
∂xi

)
=

∫
Rn

u0φ(0)

The mathematical theory of hyperbolic systems in several space dimensions is

still incomplete. The situation is much more satisfactory for scalar equations.
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In order to obtain uniqueness of the weak solution, they must satisfy an addi-

tional entropy condition.

If u is a piecewise smooth solution with a surface of discontinuity Γ, the weak for-

mulation implies the Rankine-Hugoniot condition, which determines the shock

speed s:

s[u] = [fn(u)] (6)

where [.] is the jump.

The system is hyperbolic if the Jacobian An = Dfn(u) =
∑d
i=1A

′
i(u)ni admits

a spectral decomposition

An(u) = Rn(u)Λn(u)Rn(u)−1 (7)

with a real diagonal matrix of eigenvalues Λ(u) and a regular matrix Rn(u)

composed of the eigenvectors of An for all vectors n ∈ Rd.

Since hyperbolicity is conserved under a smooth change of variables u = Φ(w),

the quasilinear system can be transformed into

DΦ(w)
∂w

∂t
+

d∑
i=1

Ai(u(w))DΦ(w)
∂w

∂xi
= 0. (8)

It is called symmetric if DΦ(w) is symmetric positive definite and matrices

Ai(u(w))DΦ(w) = g′i(w), gi(w) := fi(u(w)) are symmetric.

The system admits a mathematical entropy if there is a pair of smooth functions

(U,F ) U : A → R, Fi : A → R (1 ≤ i ≤ d, A ⊂ Rm) such that U is strictly

convex and for all i

DU(u)Dfi(u) = DFi(u). (9)

The existence of an entropy for the Euler equations is crucial and follows from

thermodynamics. It implies hyperbolicity and the possibility to symmetrize the

system.

We impose that the entropy is a decreasing function of time (the physical en-
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tropy, which is more or less its negative, is increasing):

∂U(u)

∂t
+

d∑
i=1

∂Fi(u)

∂xi
≤ 0 (10)

Since solutions develop shocks, (10) has again to be understood in a weak sense.

Similarly as before we get the Rankine-Hugoniot condition [15] for entropy:

s[U(u)] ≤ [Fn(u)] (11)

For a smooth solution we do have an equality in (10) thanks to (9):

∂U(u)

∂t
+

d∑
i=1

∂Fi(u)

∂xi
=DU(u)

∂u

∂t
+

d∑
i=1

DFi(u)
∂u

∂xi

=DU(u)T · ∂u
∂t

+

d∑
i=1

DU(u)Dfi(u)
∂u

∂xi

=DU(u)T ·

(
∂u

∂t
+

d∑
i=1

∂fi(u)

∂xi

)
= 0.

2.1. Entropy variables

The Legendre-Fenchel transform [16] of U(u), U∗(v), is defined by U∗(v) =

sup
u

(u · v − U(u)) = u(v)·v−U(u(v)) with DU(u(v)) = vT and is called entropy

potential. Then we have

DU∗(v) = u(v)T + vT
∂u

∂v
−DU ∂u

∂v
= u(v)T. (12)

Since the conjugate of a smooth convex function is a smooth convex function,

it follows that M := M(v) = ∂u
∂v = D2U∗(v) is symmetric positive-definite and

An is similar to

M−1/2AnM
1/2 = M−1/2 (AnM)M−1/2. (13)

which is symmetric, since AnM is symmetric as we will see below, and the

hyperbolicity of the system follows.

The mapping v → u(v) is a special change of variables and we call v = DUT the

entropy variables in contrast to the conservative variables u. Clearly V (u) =
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U(u(v)) is convex since D2V = I. Let gi(v) := fi(u(v)), and Gi(v) := Fi(u(v)).

Then

DGi(v) = DFi(u(v))M(v) = DU(u(v))Dfi(u(v))M(v) = DU(v)Dgi(v). (14)

This change of variables transforms the quasilinear form (5) into

M(v)
∂v

∂t
+

d∑
i=1

Ci(v)
∂v

∂xi
= 0 at Ω, (15)

with M(v) symmetric positive definite and Ci(v) := Dgi(v) = Dfi(u(v))M(v)

symmetric, as will be seen below. Therefore, the entropy variables symmetrize

the system. The equivalence between the existence of a generalized entropy and

symmetrizability of the equations has been shown in Mock [17] and Godunov

[18], [19].

The symmetry of the Jacobian in entropy variables remains to be seen. The

entropy potential F ∗i (v) is defined such that

Fi(u) + F ∗i (v) = fi(u) · v resp. Gi(v) + F ∗i (v) = gi(v) · v (16)

It follows from eq. (14) that

DF ∗i (v) = gi(v)T + vTCi(v)−DGi(v) = gi(v)T (17)

From this identity follows the symmetry of Ci(v) = Dgi(v) = D2F ∗i (v).

In addition to symmetrizing the system, the use of entropy variables avoids

problems of Jacobian definition when the Mach number tends to 0. Indeed,

Hauke and Hugues [4] showed that the Jacobian limit is not defined in conser-

vative variables when the Mach number tends to 0. For example, in 1D:

lim
M↘0

A1(u) =


0 1 0

+∞ ∓ 0
0 ± 0

0

±∞ − 0
0 ± 0

0

 , (18)

7



while we do not encounter this problem in entropy variables.

In the following, the entropy vector will correspond to the following vector:

v =


µ̃− 1

2 |V |
2

T

V
T

−1
T

 , (19)

with µ̃ = h − Ts the chemical potential of the fluid, V the velocity, T the

temperature, h the enthalpy and s the entropy. For a perfect gas, the entropy

variables can be written as:

v =


cpT (1−ln(T ))+RT (ln(p)−ln(R))− 1

2 |V |
2

T

V
T

−1
T

 (20)

with p the pressure, cP the specific heat at constant pressure and R the perfect

gas constant.

2.2. Primitive variables

Next to the entropy variables, the primitive variables [20] also have a well-

defined Jacobian when the Mach number tends to 0, but the primitive variables

do not symmetrize the system. The primitive variables are defined as:

y =


p

V

T

 . (21)

3. Approximation with discontinuous finite elements

In this section the written formalism is the one that the mathematical com-

munity used. Symbols and operators are described in the appendix.

Let H be a family of admissible regular meshes in the usual sense. A mesh

h consists of cells Kh. We denote by S int
h the set of interior faces and we put

Sh = S int
h ∪ S∂h . The measure of K (or S ∈ Sh) is denoted by |K| (|S| respec-

tively).
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For an interior face S, nS is a fixed unit vector normal to S. If the face S lies

on ∂Ω, we set nS = nΩ, the outward pointing unit normal vector.

We define the spaces of piecewise polynomial functions of degree k ∈ N on

elements:

Dk
h :=

{
vh ∈ L2(Ω) : vh|K ∈ P k(K) ∀K ∈ Kh

}
.

Let u ∈ Dk
h. We define for a given interior face S ∈ S int

h and x ∈ S

uin
S (x) := lim

ε↘0
u(x− εnS), uex

S (x) = lim
ε↘0

u(x+ εnS).

Next, we define the jump and mean for x ∈ S by

[u](x) := uin
S (x)− uex

S (x),

{u}(x) :=
1

2

(
uin
S (x) + uex

S (x)
)
,

such that nS is oriented from Kin towards Kex, the two triangles containing

the side S.

For the sake of brevity, we use the following notation for piecewise integration:∫
Kh

=
∑
K∈Kh

∫
K

and

∫
Sh

=
∑
S∈Sh

∫
S

.

We will first consider discretization of the Euler equations in conservative vari-

ables based on the approximation space (Dk
h)m, i.e., we are looking for a piece-

wise polynomial discontinuous vector of unknowns uh, the components of which

are approximations to ρ, ρV and ρE. Note that in the lowest-order case k = 0

this yields approximations ρh, Vh, Eh (and ph) to the physical quantities. For

k > 0 we generally do not have polynomial approximations to vh and Eh.

First, we define a form ah : (Dk
h)m × (Dk

h)m → R by

ah(uh)(φh) := −
∫
Kh

d∑
i=1

fi(uh) · ∂φh
∂xi

+

∫
Sint
h

fΣ
nS

(uin
h , u

ex
h ) · [φh] +

∫
S∂
h

f∂nS
(uin
h , u

D)φh,

(22)

with an interior flux fΣ
n and a boundary flux f∂n . Since the sign of the jump

term (and the definition of ·in and ·ex) depends on the orientation of nS , we
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require

fΣ
−n(uex

h , u
in
h ) = fΣ

n (uin
h , u

ex
h ), (23)

in order for ah to be independent of the choice of the normal.

In addition, the internal flux is supposed to verify the consistency condition

fΣ
nS

(u, u) = fn(u). (24)

We now consider the semi-discrete problem

〈∂uh
∂t

, φh〉+ ah(uh)(φh) = 0 ∀φh ∈ Dk
h. (25)

Complete discretization is achieved if we use an approximation of the time

derivative by one of the classical methods. In general, we will use the implicit

Euler method which amounts to

〈
unh − u

n−1
h

∆t
, φh〉+ ah(unh)(φh) = 0 ∀φh ∈ Dk

h, (26)

for the time steps n = 1, 2, . . . and an approximation u0
h of the initial data.

The definition of the internal fluxes is crucial for the entropy-stability of the

method (E-flux, see Tadmor [21]).

We consider upwind fluxes of the form

fΣ
n (uin, uex) = {fn(u)}+DΣ(uin, uex)[u], (27)

which trivially fulfill the conditions (23) and (24). The dissipation matrix DΣ

can be defined in many ways; the simplest choice is the diagonal matrix scaled by

the maximum absolute eigenvalues (Lax-Friedrich). Another classical example

is given by the Roe flux [8]. In the lowest-order case k = 0, the DG method is

closely related to cell-centered finite volumes, and any of the fluxes developed in

this context, such as approximate Riemann solvers (HLLC), can also be used.

In our implementation, we use an integral of the absolute value matrix function,

see below.

For the boundary fluxes, we follow a similar approach with one of the states

defined by the boundary conditions.
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3.1. Change of variables

Next we consider the discretization for a change of variables. Let w be an-

other set of variables, either the entropy variables v = DU(u)T or the primitive

variables y = (p, V, T ). In order to simplify notation, the change of variables to

the conservative variables is simply written as u(w).

The semi-discretization looks for wh ∈ Dk
h such that

〈∂u(wh)

∂t
, φh〉+ ah(wh)(φh) = 0 ∀φh ∈ Dk

h, (28)

with

ah(wh)(φh) := −
∫
Kh

d∑
i=1

fi(u(wh)) · ∂φh
∂xi

+

∫
Sint
h

fΣ
nS

(win
h , w

ex
h ) · [φh] +

∫
S∂
h

f∂nS
(win

h , w
D)φh

(29)

The first observation is that the contribution involving the time derivative is

nonlinear:

〈∂u(wh)

∂t
, φh〉 = 〈∂u(wh)

∂w

∂wh
∂t

, φh〉. (30)

In the following simulations, an implicit Euler method is used and the solution

for each time step will be calculated using a Newton method. The linear system

used in the Newton method is expressed in the dimensionless form as will be

explained in Section 3.2.

The second observation concerns the internal flux function

fΣ
n (win, wex) = {fn(u(w))}+DΣ(win, wex)[w], (31)

Different choices are possible for the dissipation matrix DΣ. The choices made

in this work are presented in Section 3.3

3.2. Non-dimensionalization of the Euler equation

The magnitudes of the physical quantities involved in the Euler equations

can be expressed in terms of the four fundamental magnitudes: mass [M ], length

[L], time [T ] and temperature [θ]. According to Buckingham’s Pi theorem [22],

the dimensionless form of the equations is obtained using a recurrent set of four
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reference values; we choose the set {ρ∞, a∞, T∞, L}, where a∞ is the free-stream

speed of sound defined as:

a∞ =

√
γp∞
ρ∞

(32)

and L is the characteristic length scale of the problem.

Table 1 gives the relation between the dimensional and dimensionless quantities

(denoted with a tilde), for example p = ρ∞(a∞)2p̃.

Quantity Symbol Magnitude Formula

mass m [M ] ρ∞L
3

length x [L] L

time t [T ] L/a∞

absolute temperature1 T [θ] T∞

density ρ [ML−3] ρ∞

velocity V [LT−1] a∞

total internal energy E [L2T 2] (a∞)2

pressure p [ML−1T−2] ρ∞(a∞)2

specific heats cv, cp [L2T−2θ−1] (a∞)2/T∞

Table 1: Physical quantities in the Euler equations, their symbol, magnitude and formula in

terms of the recurrent set {ρ∞, a∞, T∞, L}

Using these formulas, the dimensionless equations can be obtained by re-

placing the dimensional quantities by their expression in terms of the reference

values and the dimensionless quantities. Equation (33) is the dimensionless

equations for the 1D Euler equation with the conservative variables.


ρ∞a∞
L 0 0

0 ρ∞(a∞)2

L 0

0 0 ρ∞(a∞)3

L


 ∂

∂t̃


ρ̃

ρ̃Ṽ

ρ̃Ẽ

+
∂

∂x̃


ρ̃Ṽ

(ρ̃Ṽ 2 + p̃)

Ṽ (ρ̃Ẽ + p̃)


 = 0

(33)

1Do not confuse the symbol T for temperature with the magnitude time [T ]
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For inviscid aerodynamics applications, the following six parameters define the

flow problem [23]:

• the characteristic length scale L,

• the free-stream density ρ∞, velocity V∞ and temperature T∞,

• the gas constant R and the specific heat at constant pressure cp.

Since the equations contain four fundamental magnitudes, two dimensionless Pi

groups can be formed according to Buckingham’s Pi theorem. There are:

• the free-stream Mach number M∞ = V∞/a∞,

• the ratio of specific heats γ = cp/cv,

with the set of four reference values, these are the inputs for our computations.

The values of the other parameters required in the simulation are calculated

using:

V∞ = M∞a∞ (34)

p∞ =
ρ∞(a∞)2

γ
(35)

R =
p∞

ρ∞T∞
(36)

cp =
γ

γ − 1
R (37)

3.3. Numerical flux

In order to obtain entropy-stability, we wish to choose (for general variables)

the test function φh = v(wh). This form is particularly interesting for the choice

of entropy variables, since φh ∈ Dk
h. For other variables this is only possible for

k = 0. Next, choosing w = v, we immediately obtain the numerical dissipation

for the entropy, and a theoretical sound choice, see Barth [24, 25], is

DΣ(vin, vex) =

∫ 1

0

Rn(vs)|Λn(vs)|Rn(vs)
T ds, (38)

where vs := (1 − s)vin + svex. In practice, the integral is approximated by

numerical integration.
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In the case of primitive variables (and also conservative variables), we obtain

an entropy flux using the transformation to entropy variables

DΣ(win, wex) = DΣ(vin, vex)

∫ 1

0

∂v(ws)

∂w
ds. (39)

The numerical integration is performed with the Simpson method which uses

three integration points to calculate (38) and with a two-point integration

method to calculate
∫ 1

0
∂v(ws)
∂w ds.

If we compute the flow around a circular cylinder at the Mach number 3 on

a quadrilateral mesh with 1680 elements and k = 0 and do not use sufficiently

accurate quadrature rules, as indicated in the previous paragraph then an un-

physical Carbuncle solution is obtained.

With entropy variables and the Simpson method for each integral, the solution

obtained in fig. 1 shows the presence of this phenomenon. On the other hand,

using the proposed integration method, the solution in fig. 2 does not have any

Carbuncle.

Figure 1: Flow around a circular cylinder at Mach number 3 with DG0 and entropy variables

and Simpson method for each integral of the numerical flux.
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Figure 2: Flow around a circular cylinder at Mach number 3 with DG0 and entropy variables

and the proposed integration method for the numerical flux.
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4. Comparison of finite elements method DG0 and finite volume

method (FLUENT)

In order to compare the discontinuous Galerkin finite elements method and

the numerical flux presented in Section 3.3 with the existing method, two sta-

tionary test cases are considered: external Naca0012 airflow and Internal low

speed nozzle. These two test cases are fundamentally different. This is a real

challenge for the presented method to achieved accurate solutions whatever the

flow pattern. For a fair comparison, we use the lowest-order DG approximation

(i.e. DG0), which is very close to cell-centered finite volumes. These test cases

consider 2D inviscid flows without thermal diffusion. Because of the low Mach

number considered in these test cases, which ranges from 10−3 to 10−1, the

flow can be considered nearly incompressible. It is worth noting that the set

of equations used to make the computations is that of the compressible model.

This demonstrates the robustness and the accuracy of the presented method at

low mach number. A description of the test cases can be found in table 2.

These test cases allow a comparison between the finite volume method with a

Roe flux (without any low Mach number preconditioner) and two discontinuous

Galerkin finite element formulations, one with the HLLC flux and the other

with the new flux presented in Section 3.3. The finite volume method with a

Roe flux used here is implemented in the ANSYS-Fluent code.

Test case Mach number Compressibility State Analytical solution

Naca0012 airflow 10−3 and 10−1 Incompressible Steady No

Internal low speed nozzle 0.0036 and 0.036 Incompressible Steady Yes

Table 2: Summary of test cases.

4.1. Naca0012 airflow

In [10], Guillard and Viozat studied the flow around a NACA0012 airflow at

several low Mach numbers. They showed by a first-order accurate finite volume

method that with a Roe approximate Riemann flux, the pressure field shows
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fluctuation at low Mach numbers. They proposed a preconditioned dissipation

matrix to obtain acceptable results.

Here, we study the same test case with a finite volume method and discontinu-

ous Galerkin finite elements method.

All computations are done on a mesh with 7124 triangles. The dimensionless

inflow velocity and density are set equal to one. The inflow pressure is cho-

sen such that the Mach number is 10−1 and 10−3, respectively. A comparison

of the different solutions is shown for the contour of the normalized pressure

pnorm = (p − pmin)/(pmax − pmin). The pressure extrema for each simulation

are shown in Table 3.

Figures 6 and 10 show the residuals for each calculation. In each case we con-

verge as much as possible in order to reduce the residual to values below 10−12.

For both numerical fluxes, the discontinuous Galerkin method converges for the

Mach number 10−1 and the simulations converge in 50 iterations. The finite

volume method, however, converges only after 5000 iterations. For the Mach

number 10−3, convergence is better with the entropy variables-based flux than

with the HLLC flux. The finite volume method requires 10 times more itera-

tions to reach a converged solution. High order DG implicit methods are well

know to be efficient in computing iteration [26].

The solutions presented in Figs. 5 and 9 are with conservative variables and

DG0 and the flux presented. In both cases, the pressure contours are smooth

and correspond to the incompressible solution [10].

Similar to the results of Guillard and Viozat, the finite volume method (see

Figs. 3 and 7) and the discontinuous Galerkin finite element method with the

HLLC flux (see Figs. 4 and 8), the pressure contours are not accurate for very

low Mach numbers and the solution at Mach number 10−1 is the closest to the

incompressible solution.
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pmin pmax

Mach 10−1

Fluent 71.2294 Pa 71.7836 Pa

DG0 HLLC 71.2312 Pa 71.8171 Pa

DG0 CONS 71.4286 Pa 71.5148 Pa

Mach 10−3

Fluent 714285 Pa 714286 Pa

DG0 HLLC 714285 Pa 714286 Pa

DG0 CONS 714285 Pa 714286 Pa

Table 3: Pressure extrema for each simulation.

Figure 3: Pressure field NACA0012 airfoil at Mach 10−1, Fluent, pmin = 71.2294Pa, pmax =

71.7836Pa
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Figure 4: Pressure field NACA0012 airfoil at Mach 10−1, DG0 HLLC, pmin = 71.2312Pa,

pmax = 71.8171Pa

Figure 5: Pressure field NACA0012 airfoil at Mach 10−1, DG0 CONS, pmin = 71.4286Pa,

pmax = 71.5148Pa
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Figure 6: Normalized residuals for computation of flow around NACA0012 airfoil at Mach

10−1

Figure 7: Pressure field NACA0012 airfoil at Mach 10−3, Fluent, pmin = 714285Pa, pmax =

714286Pa
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Figure 8: Pressure field NACA0012 airfoil at Mach 10−3, DG0 HLLC, pmin = 714285Pa,

pmax = 714286Pa

Figure 9: Pressure field NACA0012 airfoil at Mach 10−3, DG0 CONS, pmin = 714285Pa,

pmax = 714286Pa
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Figure 10: Normalized residuals for computation of flow around NACA0012 airfoil at Mach

10−3
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4.2. Internal low speed nozzle (ILSN) at Mach 0.036 and 0.0036

Flows in nozzles are widely studied in the literature. This test case has the

advantage of having an analytical solution. We consider a flow in a weakly

convergent-divergent nozzle with an infinite upstream Mach number, respec-

tively, of 0.036 or 0.0036, and therefore small compared to 1. By neglecting

the viscous effects, it is possible to determine the analytical solution of this 1D

flow despite the 2D character of the nozzle [27]. The expected solution is the

steady-state solution of a very subsonic flow under atmospheric conditions. It

is therefore reasonable to think that the fluid behaves very similarly to an in-

compressible fluid.

The nozzle studied here (see fig. 11) is 1m long and 0.1m in diameter at the inlet

and outlet. The diameter at the neck is 0.09m. The mesh used for the compu-

tation is a structured mesh composed of 2352 triangular cells, symmetrical with

respect to the horizontal axis.

Figure 11: Computational domain for ILSN nozzle.

The results obtained for the infinite upstream Mach number 0.036 (see

figs. 12 and 13) are all in good agreement with the analytical solution. At a

lower infinite upstream Mach number 0.0036 figs. 15 and 16), the finite volumes

method does not catch the pressure variation but the other solutions correspond

to the analytical solution.

The residuals for these simulations are plotted in figs. 14 and 17. Like for the

Naca test case, we try to reach a normalized residual lower than 10−12. With

the finite elements methods, convergence is achieved in 20 iterations and the

finite volume method needs 100 times more iterations. However, the cost of an

iteration is not the same with the finite volumes and finite elements methods.

A more complete study should be conducted with the computational time to
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know the quickest method.

Figure 12: Evolution of the Mach on the central axis of the nozzle. Inlet Mach number : 0.036

Figure 13: Evolution of the pressure on the central axis of the nozzle minus the initial pressure

(101300 Pa). Inlet Mach number : 0.036
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Figure 14: Normalized residuals for computation of flow in ISLN nozzle at Mach 0.036

Figure 15: Evolution of the Mach on the central axis of the nozzle. Inlet Mach number :

0.0036
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Figure 16: Evolution of the pressure on the central axis of the nozzle minus the initial pressure

(101300 Pa). Inlet Mach number : 0.0036

Figure 17: Normalized residuals for computation of flow in ISLN nozzle at Mach 0.0036
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5. Comparison of different sets of variables at low Mach number

In order to evaluate the contribution of the use of primitive and entropy

variables compared with conservative variables, the new formulation is bench-

marked on previous test cases with higher-order DG discretization (i.e. DG1).

The test cases cover a range of low Mach number, from 10−4 to 10−1. All these

test cases are non-viscous flows, without thermal diffusion and stationary. There

is a description in table 4.

In order to compare the methods and see the differences between them, the

simulations are performed on a coarse mesh and without mesh convergence.

Test case Mach number Compressibility State Analytical solution

Naca0012 airflow 10−4 to 10−1 Incompressible Steady No

Internal low spedd nozzle 0.0036 and 0.036 Incompressible Steady Yes

Table 4: Summary of test cases.

5.1. Internal low speed nozzle (ILSN) at Mach 0.036 and 0.0036

The internal low-speed nozzle studied here is the one in section 4.2. The

results obtained for both infinite upstream Mach number 0.036 and 0.0036 are

all in good agreement with the analytical solution and superimposed. In each

case, we try to reduce the normalized residual to values below 10−12. They are

plotted in figs. 18 and 19.

A relative L2 norm of the errors with respect to the analytical solution is pre-

sented in tables 5 and 6.

27



Figure 18: Normalized residuals for computation of flow in ISLN nozzle at Mach 0.036

Figure 19: Normalized residuals for computation of flow in ISLN nozzle at Mach 0.0036
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Mach number Pressure

(% with respect to conservative variables)

Conservative 1.0357293e−3 1.85655e−2

Primitive 1.0357276e−3 (-0.0001%) 1.85658e−2 (0.002%)

Entropy 1.0357214e−3 (-0.0007%) 1.85669e−2 (0.007%)

Table 5: Relative L2 norms of the errors with respect to the analytical solution for ILSN.

Simulation of a flow in a nozzle at Mach number 0.036 with DG1 finite elements method and

different sets of variables.

Mach number Pressure

(% with respect to conservative variables)

Conservative 1.0361418e−3 9.90094082908e−1

Primitive 1.0361418e−3 (0%) 9.90094082908e−1 (0%)

Entropy 1.0361436e−3 (0.0002%) 9.90094082908e−1 (0%)

Table 6: Relative L2 norms of the errors with respect to the analytical solution for ILSN.

Simulation of a flow in a nozzle at Mach number 0.036 with DG1 finite elements method and

different sets of variables.
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5.2. Naca0012 airflow

Like in section 4.1, we studied a flow around a NACA0012 airflow at several

low Mach numbers. The dimensionless inflow velocity and density are set equal

to one. The inflow pressure is chosen such that the Mach number is between

10−1 and 10−4. Figures 20 to 23 show the residual of the simulations. In every

case we converge as much as possible in order to reduce the normalized residual

to values below 10−12. Here, the comparison of the solution is made on the

entropy. For this incompressible test case, the entropy must be constant in

the whole field. The relative L2 norms of the errors with respect to the infinite

upstream value are shown in table 7. Whatever the set of variables and whatever

the Mach number, results are the same. However, the lower the Mach number

the smaller the difference.

Figure 20: Normalized residuals for computation of flow around NACA0012 airfoil at Mach

10−1
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Figure 21: Normalized residuals for computation of flow around NACA0012 airfoil at Mach

10−2

Figure 22: Normalized residuals for computation of flow around NACA0012 airfoil at Mach

10−3
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Figure 23: Normalized residuals for computation of flow around NACA0012 airfoil at Mach

10−4

entropy (M=0.1) entropy (M=0.01) entropy (M=0.001) entropy (M=0.0001)

(% with respect to conservative variables)

Conservative 7.228e−5 7.304e−7 3.257e−8 4.200e−8

Primitive 7.720e−5 (6.81%) 7.770e−7 (6.38%) 3.256e−8 (-0.03%) 4.200e−8 (0%)

Entropy 7.519e−5 (4.03%) 7.473e−7 (2.31%) 3.257e−8 (0%) 4.200e−8 (0%)

Table 7: Relative L2 norms of the errors with respect to the infinite upstream value for

Naca0012 airflow.
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6. Conclusion

In this article we have generalized the numerical flux for the discontinuous

Galerkin method proposed by Barth to physical and conservative variables in

the case of the low Mach number limit. A new numerical flux consistent with

all the possible set of variables used in CFD has been performed. Comparisons

of different variables are carried out with entropy variables in particular and

results are satisfactory. The presented High DG method combined with a ded-

icated flux shows accurate results whatever the set of variables. Comparison

with the standard numerical HLLC flux in conservative variables shows satis-

factory behavior. Furthermore, we have shown that our approach outperforms

the standard finite volume methods in FLUENT at very low Mach numbers.

Whatever the set of variables with high order DG1 discretization, results are

the same at low Mach number for the compressible Euler equations. This leads

us to believe that we are on track to reach an all-Mach number solver.
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Appendix

Here we present the Jacobians of the Euler equations expressed in the dif-

ferent sets of variables. The expressions are given for the 2D case with ideal gas

law.

The following notations are used for physical quantity : ρ, V = (V1, V2)T, T and

p for respectively : the density, the velocity, the temperature and the pressure.

The total energy is noted E = e+ 1
2 |V |

2 with e the internal energy and enthalpy

H. cp, cV and R are respectively specific heat at constant pressure, specific heat

at constant volume and the ideal gas constant.
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The Jacobian with conservative variables.

The Jacobian of the change of variables:

A0(u) =
∂u

∂u
=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (40)

The Jacobian of the Euler flux:

A1(u) =
∂f1(u)

∂u
=


0 1 0 0

1
2
R
cV
|V |2 − V 2

1

(
2− R

cV

)
V1

−R
cV
V2

R
cV

−V1V2 V2 V1 0

V1

(
1
2
R
cV
|V |2 −H

)
H − R

cV
V 2

1
−R
cV
V1V2

cp
cV
V1


(41)

A2(u) =
∂f2(u)

∂u
=


0 0 1 0

−V1V2 V2 V1 0

1
2
R
cV
|V |2 − V 2

2
−R
cV
V1

(
2− R

cV

)
V2

R
cV

V2

(
1
2
R
cV
|V |2 −H

)
−R
cV
V1V2 H − R

cV
V 2

2
cp
cV
V2


(42)

The Jacobian with primitive variables.

The Jacobian of the change of variables:

A0(y) =
∂u(y)

∂y
=

1

RT


1 0 0 −p

T

V1 p 0 −pV1

T

V2 0 p −pV2

T

E pV1 pV2
−p|V |2

2T

 (43)

The Jacobian of the Euler flux:

A1(y) =
∂f1(y)

∂y
=

1

RT


V1 p 0 −pV1

T

V 2
1 +RT 2pV1 0

−pV 2
1

T

V1V2 pV2 pV1
−pV1V2

T

V1H p(H + V 2
1 ) pV1V2

−pV1|V |2
2T

 (44)
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A2(y) =
∂f2(y)

∂y
=

1

RT


V2 0 p −pV2

T

V1V2 pV2 pV1
−pV1V2

T

V 2
2 +RT 0 2pV2

−pV 2
2

T

V2H pV1V2 p(H + V 2
2 ) −pV2|V |2

2T

 (45)

The Jacobian with entropy variables.

Calculating the entropy Jacobian is easier after calculating that of the change

in variables from primitive ones to entropy.

We start with its inverse:

∂v(y)

∂y
=


R
p

−V1

T
−V2

T
−H+|V |2

T 2

0 1
T 0 −V1

T 2

0 0 1
T

−V2

T 2

0 0 0 1
T 2

 (46)

⇒ ∂y(v)

∂v
=


p
R

pV1

R
pV2

R
pH
R

0 T 0 V1T

0 0 T V2T

0 0 0 T 2

 (47)

The Jacobian of the change of variables:

A0(v) =
∂u(v)

∂v
=

p

R2T


1 V1 V2 E

V 2
1 +RT V1V2 V1H

V 2
2 +RT V2H

sym HE + 1
2 |V |

2RT


(48)

The Jacobian of the Euler flux:

A1(v) =
∂f1(v)

∂v
=

p

R2T


V1 V 2

1 +RT V1V2 V1H

V1(V 2
1 + 3RT ) V2(V 2

1 +RT ) V 2
1 (RT +H) +RTH

V1(V 2
2 +RT ) V1V2(RT +H)

sym V1H(RT +H)


(49)
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A2(v) =
∂f2(v)

∂v
=

p

R2T


V2 V1V2 V 2

2 +RT V2H

V2(V 2
1 +RT ) V1(V 2

2 +RT ) V1V2(RT +H)

V2(V 2
2 + 3RT ) V 2

2 (RT +H) +RTH

sym V2H(RT +H)


(50)

Description of symbols and operators

[.] the jump

{.} the mean

v · w = vTw the Euclidian scalar product for u, v ∈ Rn (which are column vectors)

|.| the norm of a column vector

AT the transpose of a matrix A ∈ Rn×m

Df the Jacobian matrix of a differentiable function f

H a family of admissible regular meshes in the usual sense

Kh cells of a mesh h

S int
h the set of interior faces of a mesh h

S∂h the set of boundary faces of a mesh h

|K| the measure of a cell K

|S| the measure of a face S

nS a fixed unit vector normal to a face S

fΣ
n an interior flux

f∂n a boundary flux

〈., .〉 scalar product

u(w) the change of variable from w to u
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