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Abstract

We consider a pure exchange financial economy, where rational agents, possi-

bly asymmetrically informed, forecast prices privately, with no model of how they

are determined. Therefore, agents face both ‘exogenous uncertainty’, on the future

state of nature, and ‘endogenous uncertainty’, on the future price. At a sequential

equilibrium, all consumers expect the ‘true’ price as a possible outcome and elect

optimal strategies at the first period, which clear on all markets, ex post. The pa-

per’s purpose is twofold. First, it defines no-arbitrage prices, which comprise all

equilibrium prices, and displays their revealing properties. Second, it shows, under

mild conditions, that a sequential equilibrium always exists in this model, whatever

agents’prior beliefs or the financial structure. This outcome suggests that standard

existence problems, which followed Hart (1975) and Radner (1979), stem from the

rational expectation and perfect foresight assumptions of the classical model.
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1 Introduction

The traditional approach to sequential financial equilibrium relies on Radner’s

(1972-1979) classical, but restrictive, assumptions that agents have the so-called

‘rational expectations’of private information signals, and ‘perfect foresight’of future

prices. Along the former assumption, agents are endowed, quoting Radner, with

‘a model’ of how equilibrium prices are determined and (possibly) infer private

information of other agents from comparing actual prices and price expectations

with theoretical values at a price revealing equilibrium. Along the latter assumption,

agents anticipate with certainty exactly one price for each commodity (or asset) in

each prospective state, which turns out to be the true price if that state prevails.

Both assumptions presume much of agents’inference and computational capacities.

Both assumptions lead to classical cases of inexistence of equilibrium, as shown by

Radner (1979), Hart (1975), Momi (2000), Busch-Govindan (2004), among others.

Under standard regularity conditions and with real assets, the perfect foresight

equilibrium is generically locally unique or determinate, as shown by Geanakoplos

and Polemarchakis (1986). Thus, with two periods, agents knowing all the primi-

tives of the economy and endowed with suffi cient computational capacities, could

typically identify prices contingent on each future state, from observing first pe-

riod prices (provided they be equilibrium prices), and select the corresponding

anticipations, as in the Radner classical model.

Making such inferences is yet highly hypothetical and builds on equilibrium be-

ing locally unique or determinate. With private beliefs, we argue in Section 4, this

outcome no longer holds. Circumventing these inferences, the temporary equilib-

rium literature, developed by Green (1973) or Grandmont (1977), among others,
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drops such anticipation assumptions, but at the cost of loosing agents’coordina-

tion across periods. In this literature, as time unfolds, agents would typically revise

their plans and beliefs, ex post, face bankruptcy, meet unanticipated prices or wel-

fare increasing retrade opportunities. These outcomes are ruled out by the classical

sequential equilibrium model, as though there were a tradeoff between making ex-

treme anticipation assumptions or loosing coordination across time. As Grandmont

(1982) noticed, the temporary and perfect foresight equilibrium literatures followed

separate paths, but stood for the two classical streams of general equilibrium theory.

Our belief is that coordination across periods can obtain under much weaker

anticipation assumptions than perfect foresight. Pursuing earlier work with Bernard

Cornet, we now propose a setting, where rational agents, possibly asymmetrically

informed, form their anticipations privately, with no price model, may update their

beliefs from observing market prices, and reach equilibrium with correct forecasts.

Dropping both assumptions of rational expectations and perfect foresight, this

setting proposes to bridge a link between the two classical concepts of equilibrium. It

also improves the existence properties of the standard sequential equilibrium model.

Whatever the financial structure or agents’prior beliefs, we show hereafter that a

sequential equilibrium exists in our model, as long as consumers take into account

the additional uncertainty stemming from their unawareness of other agents’beliefs.

The current model extends one with B. Cornet [4], which dropped rational expec-

tations only. The latter model provided the basic tools, concepts and properties for

an arbitrage theory, embedding jointly the symmetric and asymmetric information

cases. It turned out to solve the existence problems due to asymmetric information

pointed out by Radner (1979). Indeed, we proved in [6] that a financial equilibrium

with nominal assets existed in this model, not only generically - as in Radner’s
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(1979) rational expectations model - but under the very same no-arbitrage condi-

tion, with symmetric and asymmetric information, that is, under the generalized

no-arbitrage condition introduced in [4]. This result was consistent and extended

David Cass’(1984) standard existence theorem to asymmetric information.

Complementing this result in [5], we showed with Bernard Cornet how asymmet-

rically informed agents, endowed with no expectations a la Radner (1979), could

refine their information from observing prices. This former model, however, did not

explain how agents reached perfect forecasts of spot prices in realizable states, while

they had private anticipations in idiosyncratic states and no Radner price model.

In the current paper, we address this issue and extend our earlier model to all

financial structures. As anticipations are now private, agents would no longer be

certain which price might prevail tomorrow. Equilibrium prices would typically

depend on all agents’private forecasts today. Hence, they would face an additional

‘endogenous uncertainty’, referring to the endogenous price variables.

This double uncertainty is encaptured in a two-period pure exchange economy,

where agents, possibly asymmetrically informed, face exogenous uncertainty, rep-

resented by finitely many states of nature, exchange consumption goods on spot

markets, and - nominal or real - assets on financial markets, but also face endoge-

nous uncertainty on prices, in each state they expect. They have private sets of state

and price forecasts, distributed along idiosyncratic probability laws, called beliefs.

The current model’s equilibrium, or ‘correct foresight equilibrium’ (C.F.E.), is

reached when all agents, today, anticipate tomorrow’s ‘true’price as a possible out-

come, and elect optimal strategies, which clear on all markets at both time periods.

This equilibrium concept is, indeed, a sequential one. It differs from the traditional
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temporary equilibrium notion, introduced by Hicks (1939) and developed, later, by

Grandmont (1977, 1982), Green (1973), Hammond (1983), Balasko (2003), among

others. Such typical outcomes of the temporary equilibrium as bankruptcy or a

welfare increasing retrade opportunity, ex post, are inconsistent with our concept.

After presenting the model, we propose a notion of no-arbitrage prices, which

always exist, encompass equilibrium prices, and may reveal information to agents

having no clue of how market prices are determined. We show that any agent can

infer enough information from no-arbitrage prices to free markets from arbitrage.

Next, we study the existence issue, and suggest how the correct foresight equlib-

rium might solve the classical problems, which followed, not only Radner’s (1979)

rational expectations equilibrium (as we had already shown in [6]), but also Hart

(1975), Momi (2001), Busch-Govindan (2004), among others. Namely, we prove

that a C.F.E. exists whenever agents’anticipations embed a so-called ‘minimum

uncertainty set’, corresponding to the incompressible uncertainty which may re-

main in a private belief economy. Then, equilibrium prices always exist, and reveal

to rational agents, whenever required, their own sets of anticipations at equilibrium.

The paper is organized as follows: we present the model, in Section 2, the concept

of no-arbitrage prices and the information they reveal, in Section 3, the minimum

uncertainty set and the existence Theorem, in Section 4. We prove this theorem, in

Section 5, differing to an Appendix the proof of technical Lemmas.

2 The basic model

We consider a pure-exchange economy with two periods (t ∈ {0, 1}), a commodity

market and a financial market, where agents (at t = 0) may be asymmetrically
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informed and face an endogenous uncertainty on future prices. The sets of agents,

I := {1, ...,m}, commodities, L := {1, ..., L}, states of nature, S := {1, ..., T}, and assets,

J := {1, ..., J}, are all finite (i.e., (m,L, T, J) ∈ N4).

2.1 The model’s notations

Throughout, we denote by · the scalar product and ‖.‖ the Euclidean norm on

an Euclidean space and by B(K) the Borel sigma-algebra of a topological set, K.

We let s = 0 be the non-random state at t = 0 and S ′ := {0}∪S. For all set Σ ⊂ S ′

and tuple (s, l, x, x′, y, y′) ∈ Σ×L×RΣ×RΣ×RLΣ×RLΣ, we denote by:

• xs ∈ R, ys ∈ RL the scalar and vector, indexed by s ∈ Σ, of x, y, respectively;

• yls the l
th component of ys ∈ RL;

• x 6 x′ and y 6 y′ (respectively, x << x′ and y << y′) the relations xs 6 x′s
and yls 6 y′ls (resp., xs < x′s and yls < y′ls ) for each (l, s) ∈ {1, ..., L}×Σ;

• x < x′ (resp., y < y′) the joint relations x 6 x′, x 6= x′ (resp., y 6 y′, y 6= y′);

• RLΣ
+ = {x ∈ RLΣ : x > 0} and RΣ

+ := {x ∈ RΣ : x > 0},

RLΣ
++ := {x ∈ RLΣ : x >> 0} and RΣ

++ := {x ∈ RΣ : x >> 0};

• M0 := {(p0, q) ∈ RL+×RJ : ‖p0‖+ ‖q‖ = 1};

• Ms := {(s, p) ∈ S × RL+ : ‖p‖ = 1}, for every s ∈ S;

• M := ∪s∈SMs, a topological subset of the Euclidean space RL+1;

• B(ω, ε) := {ω′∈M: ‖ω′−ω‖ < ε}, for every pair (ω, ε) ∈M× R++;

• P (π) := {ω∈M : π(B(ω, ε))>0, ∀ε>0}, the support of a probability, π, on (M,B(M));

• π(P ), for any closed set, P ⊂ M, the set of probabilities on (M,B(M)), whose

support (as defined above) is P .
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2.2 The commodity and asset markets

The L consumption goods, l ∈ L, may be exchanged by consumers, on the spot

markets of both periods. In each state, s ∈ S, an expectation of a spot price, p ∈ RL+,

or the spot price, p, in state s itself, are denoted by the pair ωs := (s, p) ∈ S × RL+.

Since we are only concerned about relative prices on each spot market, we will take

admissible prices and price forecasts into the set M.

Each agent, i ∈ I, is granted an endowment, ei := (eis) ∈ RLS
′

+ , which secures her

the commodity bundle, ei0 ∈ RL+ at t = 0, and eis ∈ RL+, in each state s ∈ S, if this

state prevails at t = 1. To harmonize notations, for every triple (i, s, ω) ∈ I × S′ ×Ms,

we will also refer to eiω := eis. Ex post, the generic ith agent’s welfare is measured

by a continuous utility index, ui : R2L+ → R+, over her consumptions at both dates.

The financial market permits limited transfers across periods and states, via J

assets, or securities, j ∈ J := {1, ..., J}, which are exchanged at t = 0 and pay off at

t = 1. In any contingent state, assets pay off in a fixed amount of account units

and/or commodities. For any forecast ω ∈ M, the cash payoffs, vj(ω) ∈ R, of all

assets, j ∈ {1, ..., J}, conditional on the occurence of (state and) price ω, define a row

vector, V (ω) = (vj(ω)) ∈ RJ . For example, given ω := (s, p) ∈M, if asset j ∈ J promises

to pay exactly the commodity bundle vsj ∈ RL+ in a state s ∈ S, then, vj(ω) = p · vsj .

This specification makes the mapping ω 7→ V (ω) continuous. The market may be

incomplete, in the sense that the span of payoffs, {(V (ωs)·z)s∈S : z ∈ RJ} may have

lower rank (for any price collection (ωs) ∈ Πs∈S Ms) than the number of states, #S.

As we show later, equilibrium with private beliefs is consistent with agents having

uncountable sets of anticipations in any state. Insuring the price risk completely,

via contingent contracts, if possible, would not be far less demanding than setting
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the complete market of contingent goods in the Debreu model. In the end, it is

likely that the contingent contracts on goods would be issued and preferred by

agents to the contingent contracts on prices only. Why, indeed, would it be possible

to insure today the price of a desired quantity of one good on a particular spot

market tomorrow, and not be able to exchange the corresponding contingent good

directly today? Thus, we would resume the Debreu model, which is inconsistent

with incomplete markets. To simplify exposition, we have, therefore, assumed that

assets provided no insurance against endogenous uncertainty.

Agents can take unrestrained positions (positive, if purchased; negative, if sold),

in each security, which are the components of a portfolio, z ∈ RJ . Given an asset

price, q ∈ RJ , a portofolio, z ∈ RJ , is thus a contract, which costs q ·z units of account

at t = 0, and promises to pay V (ω) · z units tomorrow, for each expectation ω ∈ M,

if ω obtains. Similarly, we normalize first period prices, ω0 := (p0, q), to the set M0.

2.3 Information and beliefs

Ex ante, the generic agent, i ∈ I, is endowed with a private idiosyncratic set of

anticipations, Pi ⊂ M, according to which she believes tomorrow’s true state and

price (i.e., which will prevail at t = 1) will fall into Pi. Consistently with [4], this set,

Pi ⊂ S×RL, encompasses a private information signal, Si ⊂ S, that the true state will

be in Si (i.e., Pi ⊂ Si×RL). Agents are assumed to receive no wrong signal, that is,

no state will prevail tomorrow, out of the pooled information set, S := ∩iSi.

We believe that a typical rational agent would not forecast a single price in

each state she expects, since prices would now depend on all other agents’private

forecasts. Yet, from observing markets, she might update her beliefs. Using sub-

Section 2.1’s notations, these features are encaptured in the following definitions.
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Definition 1 A closed subset of (S × RL++) ∩M is called an anticipation set. Its ele-

ments are called anticipations, expectations or forecasts. We denote by A the set of

all anticipation sets. A collection (Pi) ∈ Am is called an anticipation structure if:

(a) ∩mi=1Pi 6= ∅.

We denote by AS the set of anticipation structures. A structure, (P ′i ) ∈ AS, is said

to refine, or to be a refinement of (Pi) ∈ AS, and we denote it by (P ′i ) ≤ (Pi), if:

(b) P ′i ⊂ Pi, ∀i ∈ I.

A refinement, (P ′i ) ∈ AS, of (Pi) ∈ AS, is said to be self-attainable if:

(c) ∩mi=1P ′i = ∩mi=1Pi.

A belief is a probability, π, on (M,B(M)), whose support is an anticipation set, i.e.,

P (π) ∈ A (as denoted in sub-Section 2.1). A structure of beliefs is a collection of

beliefs, (πi), whose supports define an anticipation structure (i.e., (P (πi)) ∈ AS).

We denote by B and SB, respectively, the sets of beliefs and structures of beliefs.

A structure, (π′i) ∈ SB, is said to refine (πi) ∈ BS, which we denote (π′i) ≤ (πi), if

(P (π′i)) ≤ (P (πi)). The refinement, (π′i), is self-attainable if ∩mi=1P (π′i) = ∩mi=1P (πi).

Remark 1 Along the above Definition, an anticipation set is a closed set of spot

prices (at t = 1), whose values are never zero. A belief is a probability distribution

on (M,B(M)), which cannot put a positive weight on arbitrarily low prices. Agents’

anticipations or beliefs form a structure when they have some forecasts in common.

The set of common forecasts is left unchanged at a self-attainable refinement.

2.4 Consumers’behavior and the notion of equilibrium

Agents implement their decisions at t = 0, after having reached their final beliefs,

(πi) ∈ SB, from observing market prices, ω0 := (p0, q) ∈M0, along a rational behavior

described in Section 3, below. Hereafter, the final prices and beliefs at t = 0 are
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given, and markets, consistently, are assumed to have eliminated useless deals, that

is, {(zi) ∈ RJm :
∑m
i=1 zi = 0, V (ωi)·zi = 0,∀(i, ωi) ∈ I×P (πi)} = {0}. The generic ith

agent’s consumption set is that of continuous mappings from {0} ∪ P (πi) to RL+:

X(πi) := C ({0} ∪ P (πi), RL+).

Thus, her consumptions, x ∈ X(πi), are mappings, relating s = 0 to a consump-

tion decision, x0 := xω0 ∈ RL+, at t = 0, and, continuously on P (πi), every expectation,

ω := (s, p) ∈ P (πi), to a consumption decision, xω ∈ RL+, at t = 1, which is conditional

on the joint observation of state s, and price p, on the spot market. The generic ith

agent elects a strategy, (x, z) ∈ X(πi)×RJ , she can always afford with her endowment.

This defines her budget set as follows:

Bi(ω0, πi) := {(x, z) ∈ X(πi)×RJ : p0·(x0−ei0)6 −q·z and ps·(xω−eiω)6V (ω)·z, ∀ω := (s, ps) ∈ P (πi)}.

Each agent i ∈ I has preferences represented by the V.N.M. utility function:

x ∈ X(πi) 7→ Ui(πi, x) :=
∫
ω∈P (πi) ui(x0, xω)dπi(ω).

The generic ith agent elects an optimal strategy in her buget set. The above econ-

omy is denoted by E . It retains the standard small consumer price-taker hypothesis,

along which no single agent’s belief, or strategy, may alone have a significant impact

on prices. It is said to be standard if, moreover, it meets the following Conditions:

• Assumption A1: for each i ∈ I, ei >> 0;

• Assumption A2: for each i ∈ I, ui is continuous and strictly concave;

• Assumption A3: for any (i, l, t) ∈ I×L×{0, 1}, the mapping (x0, x1) 7→ ∂ui(x0, x1)/∂x
l
t

is defined and continuous on {(x0, x1) ∈ R2L+ : xlt > 0}, and (inf A ∂ui(x0, x1)/∂x
l
t) > 0 ,

for every bounded subset A ⊂ {(x0, x1) ∈ R2L+ : xlt > 0}.
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Remark 2 Assumption A1 is the standard strong survival’s. Assumption A2

could be weakened on strict concavity, but is retained to alleviate a tedious proof in

Section 5. Assumption A3 is consistent with agents having positive price forecasts,

along Definition 1. It does not require, but allows for the standard Inada Conditions.

The economy’s concept of equilibrium is defined as follows:

Definition 2 A collection of prices, ωs ∈ Ms, defined for each s ∈ S′, beliefs, πi ∈ B,

and strategies, (xi, zi) ∈ Bi(ω0, πi), for each i ∈ I, is a sequential equilibrium of the

economy E, or correct foresight equilibrium (CFE), if the following Conditions hold:

(a) ∀s ∈ S, ωs ∈ ∩mi=1P (πi);

(b) ∀i ∈ I, (xi, zi) ∈ arg max(x,z)∈Bi(ω0,πi) Ui(πi, x);

(c) ∀s ∈ S′,
∑m
i=1(xiωs−eiωs) = 0;

(d)
∑m
i=1 zi = 0.

Under the above conditions, the beliefs, πi, for each i ∈ I, or the prices, ωs, for each

s ∈ S′, are said to support the equilibrium.

Remark 3 In the case where #P (πi) = #Si, for every i ∈ I, the above notion of

equilibrium coincides with that of [6], that is, with a perfect foresight equilibrium

with (a possible) asymmetric information.

3 No-arbitrage prices and the information they reveal

Extending our earlier papers with Bernard Cornet ([4], [5]), we now define and

characterize no-arbitrage prices and their revealing properties.

3.1 No-arbitrage prices

Recalling the notations of sub-Section 2.1, we first define no-arbitrage prices.
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Definition 3 Let an anticipation set, P ∈ A, and a price, q ∈ RJ , be given. Price q is

said to be a no-arbitrage price of P , or P to be q-arbitrage-free, if:

(a) @z ∈ RJ : −q · z > 0 and V (ω) · z > 0, ∀ω ∈ P , with one strict inequality;

We denote by Q(P ) the set of no-arbitrage prices of P .

Let a structure, (Pi) ∈ AS, and, for each i ∈ I, the above price set, Q(Pi), be given.

We refer to Qc[(Pi)] := ∩mi=1Q(Pi) as the set of common no-arbitrage prices of (Pi). The

structure, (Pi), is said to be arbitrage-free (respectively, q-arbitrage-free) if Qc[(Pi)]

is non-empty (resp., if q ∈ Qc[(Pi)]). We say that q is a no-arbitrage price of (Pi),

and denote it by q ∈ Q[(Pi)], if there exists a refinement, (P ∗i ), of (Pi), such that

q ∈ Qc[(P ∗i )]. Moreover, if (P ∗i ) is self-attainable, q ∈ Qc[(P ∗i )] is called self-attainable.

The above definitions and notations extend to any consistent beliefs, (πi) ∈ Πm
i=1π(Pi),

as denoted in sub-Section 2.1. We then refer to Q(πi) := Q(Pi), for each i ∈ I, and to

Qc[(πi)] := Qc[(Pi)] and Q[(πi)] := Q[(Pi)] as, respectively, the sets of no-arbitrage prices

of πi, and of common no-arbitrage prices, and no-arbitrage prices, of the beliefs (πi).

Remark 4 A symmetric refinement of any structure (Pi) ∈ AS, that is, (P ′i ) ≤ (Pi),

such that P ′i = P ′1, for every i ∈ I, is always arbitrage-free along Definition 3. Hence,

any structure, (Pi) ∈ AS, admits a self-attainable no-arbitrage price. Indeed, the

symmetric refinement, (P ∗i ) ≤ (Pi), such that P ∗1 = ∩mi=1Pi is arbitrage-free.

Claim 1 states a simple but useful property of arbitrage-free structures.

Claim 1 An arbitrage-free structure, (Pi) ∈ AS, satisfies the following Assertion:

(i) @(zi) ∈ RJm :
∑m
i=1 zi = 0 and V (ω) · z > 0, ∀ω ∈ ∪mi=1Pi, with one strict inequality.

Proof Let (Pi) be an arbitrage-free anticipation structure and q ∈ Qc[(Pi)] 6= ∅ be

given. Assume, by contraposition, that there exists (zi) ∈ (RJ)m, such that
∑m
i=1 zi = 0

and V (ω) · z > 0, for every ∀ω ∈ ∪mi=1Pi, with one strict inequality, say for ω ∈ P1. If
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q · z1 6 0, then, q /∈ Q(P1), which contradicts the fact that q ∈ Qc[(Pi)]. Hence, q · z1 > 0,

which implies, from the relation
∑m
i=1 zi = 0, that q · zi < 0, for some i ∈ I. Then, the

above inequalities yield q /∈ Q(Pi), contradicting the above relation, q ∈ Qc[(Pi)]. �

3.2 Individual anticipations revealed by prices

Claim 2 tackles the notion of information conveyed by prices to individual agents.

Claim 2 Let (Pi) ∈ AS, and q ∈ RJ , be given. Then, for each i ∈ I, there exists a

set, Pi(q) ∈ {∅} ∪ A, said to be revealed by price q to agent i, such that:

(i) if Pi(q) 6= ∅, then, Pi(q) ⊂ Pi and Pi(q) is q-arbitrage-free;

(ii) every q-arbitrage-free anticipation set included in Pi is a subset of Pi(q).

Proof Let i ∈ I, q ∈ RJ and (Pi) ∈ AS be given. Let R(Pi,q) be the set of q-arbitrage-

free anticipation sets included in Pi. If R(Pi,q) = ∅, then, the set Pi(q) = ∅ meets the

conditions of Claim 2. If R(Pi,q) 6= ∅, we let P ∗i := ∪ {P ′i : P ′i ∈ R(Pi,q)} be the closed

nonempty set including all elements of R(Pi,q). By construction, P ∗i is an anticipation

set included in Pi (a closed set), which meets Assertion (ii) of Claim 2.

Assume, by contraposition, that P ∗i does not meet Assertion (i), that is, there

exists z ∈ RJ and ω ∈ P ∗i , such that −q · z > 0, V (ω) · z > 0 for every ω ∈ P ∗i , and

(V (ω) · z − q · z) > 0. From the definition of P ∗i and the continuity of V , the relation

(V (ω) · z − q · z) > 0 implies that there exists P ′i ∈ R(Pi,q) and ω′ ∈ P ′i such that

(V (ω′) · z − q · z) > 0. Since P ′i ⊂ P ∗i is q-arbitrage-free, the above relations, −q · z > 0,

V (ω) ·z > 0 for every ω ∈ P ∗i , imply, from Definition 3, that −q ·z = 0 and V (ω) ·z = 0 for

every ω ∈ P ′i , which contradicts the fact that (V (ω′) · z − q · z) > 0. This contradiction

proves that P ∗i meets both conditions of Claim 2 and completes the proof. �
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3.3 Anticipation structures revealed by prices

The following Claim characterizes the no-arbitrage prices of Definition 3.

Claim 3 Let a price, q ∈ RJ , an anticipation structure, (Pi) ∈ AS, and the related set

collection, (Pi(q)), of Claim 2, be given. The following statements are equivalent:

(i) q is a no-arbitrage price of (Pi);

(ii) (Pi(q)) is the coarsest q-arbitrage-free refinement of (Pi);

(iii) (Pi(q)) is a refinement of (Pi);

(iv) (Pi(q)) is an anticipation structure.

If q ∈ Q[(Pi)] is self-attainable, the above refinement, (Pi(q)) ≤ (Pi), is self-attainable.

Proof Assertion (i)⇒ (ii) Let q ∈ Q[(Pi)] be given. From Definition 3, we set as

given an arbitrary q-arbitrage-free refinement, (P ∗i ), of (Pi). Then, for each i ∈ I, the

set, R(Pi,q), of q-arbitrage-free anticipation sets included in Pi is non-empty (for it

contains P ∗i ). From Claim 2, the set, R(Pi,q), admits Pi(q) 6= ∅ for maximal element,

hence, P ∗i ⊂ Pi(q) ⊂ Pi and q ∈ Q(Pi(q)). The latter relations imply: (P ∗i )≤(Pi(q))≤(Pi)

and q ∈ Qc[(Pi(q))]. Hence, (Pi(q)) is the coarsest q-arbitrage-free refinement of (Pi).

Assertion (ii)⇒ (iii)⇒ (iv) The relations are immediate from Definition 1.

Assertion (iv)⇒ (i) If (Pi(q)) ∈ AS, then, from Claim 2, (Pi(q)) refines (Pi) and is

q-arbitrage-free, that is, q ∈ Qc[(Pi(q))] ⊂ Q[(Pi)].

The end of Claim 3, left to readers, is immediate from Definition 1 and above. �

Definition 4 Let an anticipation structure, (Pi) ∈ AS, and a no-arbitrage price, q ∈

Q[(Pi)], be given. The refinement, (Pi(q)) ≤ (Pi), of Claim 3 is said to be revealed by

price q. A refinement, (P ′i ), of (Pi) is said to be price-revealable if it can be revealed

by some price, i.e., there exists q′ ∈ Q[(Pi)] such that (P ′i ) = (Pi(q
′)) along Claim 3.

Whenever q ∈ Qc[(Pi)], we say that (Pi) is revealed by price q, hence, price-revealable.
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Extending Cornet-de Boisdeffre (2009), we now examine how agents, endowed

with no price model, may update their anticipations from observing market prices.

3.4 Sequential refinement through prices

Throughout, we let an anticipation structure, (Pi) ∈ AS, a generic agent, i ∈ I,

and an asset price, q ∈ RJ , be given. We study how this ith agent, endowed with

the initial set of anticipations, Pi, may update her forecasts from observing price q.

In successive steps (denoted by n ∈ N)2 , she rules out her arbitrage anticipations,

namely, those anticipations which would grant her an arbitrage, if correct. She

would do so when she believes that price q reflects an information she misses. The

elimination of arbitrage anticipations in one step may result in new arbitrage antic-

ipations in the next step. After finitely many inference steps, however, no arbitrage

anticipation remains, that is, the agent’s (refined) anticipation set is final.

We thus define, by induction, two sequences, {Ani }n∈N and {Pni }n∈N as follows:

• for n = 1, we let A1i = ∅ and P 1i := Pi;

• for n ∈ N arbitrary, with Ani and Pni defined at step n, we let An+1i := Pn+1i := ∅,

if Pni = ∅, and, otherwise,

An+1i := {ω ∈ Pni : ∃z ∈ RJ , −q · z > 0, V (ω) · z > 0 and V (ω) · z > 0, ∀ω ∈ Pni };

Pn+1i := Pni \ An+1i , i.e., the agent rules out anticipations, granting an arbitrage.

Claim 4 Let an anticipation structure, (Pi) ∈ AS, an agent, i ∈ I, a price,

q ∈ RJ , and the information set, Pi(q), it reveals along Claim 2, be given. The

above set sequences, {Ani }n∈N and {Pni }n∈N, satisfy the following assertions:

(i) ∃N ∈ N : ∀n > N, Ani = ∅ and Pni = PNi ;

(ii) PNi = limn→∞ Pni = Pi(q).

2 We always define the set, N, of natural numbers as starting from 1 (and not 0).
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Proof Let (Pi) ∈ AS, i ∈ I, q ∈ RJ , Pi(q), {Ani }n∈N and {Pni }n∈N be defined or set

as given as in Claim 4, and let P ∗i := ∩n∈NPni = limn→∞ ↘ Pni .

With a non-restrictive convention that the empty set be included in any other

set, we show, first, that the inclusion Pi(q) ⊂ Pni holds for every n ∈ N. It holds, from

Claim 2, for n = 1 (since Pi(q) ⊂ P 1i := Pi). Assume, now, by contraposition, that,

for some n ∈ N, Pi(q) ⊂ Pni and Pi(q) * Pn+1i . Then, there exist ω ∈ Pi(q) ∩ An+1i and

z ∈ RJ , such that −q ·z > 0, V (ω) ·z > 0 and V (ω) ·z > 0, for every ω ∈ Pi(q) ⊂ Pni , which

contradicts Claim 2, along which Pi(q) is q-arbitrage-free, if non-empty. Hence, the

relation Pi(q) ⊂ Pni , holds for every n ∈ N.

Assume, first, that P ∗i := ∩n∈NPni = ∅. Since the sequence {Pni }n∈N is non-increasing

and made of compact or empty sets (this stems, by induction, from the fact that

P 1i is compact and An+1 is open in Pni or empty), there exists N ∈ N, such that

Pni = Ani = ∅, for all n > N . Then, from above, Claim 4-(i)-(ii) hold (with Pi(q) = ∅).

Assume, next, that P ∗i 6= ∅. Then, P ∗i , a non-empty intersection of compact sets,

is compact, and, from above, Pi(q) ⊂ P ∗i .

For every n ∈ N, let Zoni := {z ∈ RJ : V (ω) · z = 0, ∀ω ∈ Pni }. Since {Pni }n∈N is

non-increasing, the sequence of vector spaces, {Zoni }, is non-decreasing in RJ , hence,

stationary. We let N ∈ N be such that Zoni = ZoNi , for every n > N . Assume, by

contraposition, that assertion (i) of Claim 4 fails, that is:

∀n ∈ N, ∃(ωn, zn) ∈ Pni × RJ : −q · zn > 0, V (ωn) · zn > 0 and V (ω) · zn > 0, ∀ω ∈ Pni .

From the definition of the sets Pni and Pn+1i 6= ∅, the above potfolios satisfy,

for each n > N , jointly zn /∈ Zoni and zn ∈ Z
o(n+1)
i , which contradicts the fact that

Zon+1i = Zoni . This contradiction proves Claim 4-(i), and we let N ∈ N be such that
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AN+1i = ∅. Then, by construction, PNi = P ∗i , and P ∗i ⊂ Pi is q-arbitrage-free (since

AN+1i =∅), which yields, from Claim 2, P ∗i ⊂ Pi(q), and, from above, P ∗i = Pi(q). �

The above inference process is a rational behavior, whereby agents, having no

clue of how market prices are determined, update their beliefs from observing them

in finitely many inference steps. As long as markets have not reached a no-arbitrage

price, traders cannnot agree on prices and a sequential equilibrium may not exist.

Claims 3 and 4 show that agents have common updated forecasts - a necessary

condition for a sequential equilibrium to exist - if, and only if, the observed asset

price is a no-arbitrage price. We have seen such prices always exist. We will see below

that equilibrium prices are always no-arbitrage prices. Hence, agents may infer

their own anticipation sets from observing the current equilibrium price (whenever

it exists). We then speak of a price-revealed equilibrium.

We now introduce and discuss the notion of minimum price uncertainty, with

private beliefs, and state our Theorem.

4 Minimum uncertainty and existence of equilibrium

4.1 The existence Theorem

With private idiosyncratic beliefs, a nonempty set of minimum uncertainty exists,

any element of which can obtain as an equilibrium price for some beliefs today.

Definition 5 Let Ω be the set of sequential equilibria (CFE) of the economy, E. The

minimum uncertainty set, ∆, is the subset of prices at t = 1, which support a CFE,

namely: ∆ = {ω∗ = (s∗, p∗) ∈M : s∗ ∈ S, ∃((ωs), (πi), [(xi, zi)]) ∈ Ω, ω∗ = ωs∗}.
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The following Theorem states existence properties of a standard economy.

Theorem 1 Let a standard economy, E, its minimum uncertainty set, ∆, and an

anticipation structure, (Pi) ∈ AS, be given. Then, the following Assertions hold:

(i) ∃ε > 0 : ∀(s, p) ∈ ∆, ∀l ∈ L, pl > ε;

(ii) ∆ 6= ∅.

Consistently, if ∆ ⊂ Pi holds for each i ∈ I , then, the following Assertions also hold:

(iii) if (Pi) ∈ AS is arbitrage-free, then, any beliefs (πi) ∈ Πm
i=1 π(Pi) support a CFE;

(iv) if a self-attainable refinement, (P ∗i ) ≤ (Pi), is arbitrage-free (and that refinement

exists), any consistent beliefs, (π∗i ) ∈ Πm
i=1 π(P ∗i ), as denoted in 2.1, support a CFE;

(v) if (P ∗i ) ∈ AS is a self-attainable price-revealable refinement of (Pi) (which exists),

then, every refinement (π∗i ) ∈ Πm
i=1 π(P ∗i ) supports a price-revealed CFE.

Remark 5 Using the notations of Theorem 1, Assertion (iii) implies (iv), by replac-

ing the structure (Pi) by (P ∗i ) ≤ (Pi). Moreover, we let the reader check, as standard

from Assumption A3, that whenever a structure (π∗i ) ∈ SB and price ω0 := (p0, q) ∈M0

support a CFE, then, q ∈ Qc[(π∗i )]. Consequently, if a refinement, (π∗i ) ∈ SB, is price-

revealable and supports a CFE, that CFE is revealed by the equilibrium price.

Hence, Assertion (iv) implies (v) and only Assertions (i)-(ii)-(iii) need be proved.

Before discussing the Theorem’s Condition, ∆ ⊂ ∩mi=1Pi, we prove Assertion (i).

Proof of Assertion (i) Let Ω and ∆ be the sets of Definition 5. Let s∗ ∈ S,

ω∗ := (s∗, p∗) ∈ ∆, and an equilibrium, C := ((ωs), (πi), [(xi, zi)]) ∈ Ω, such that ω∗ = ωs∗ ,

be given. The relation p∗ >> 0 is standard from Assumption A3 and Definition 2-(b).

Let e := (min(i,s,l)∈I×S′×L elis) ∈ R++ and E := (max(s,l)∈S′×L
∑m
i=1 e

l
is) ∈ R++ be given.

Then, for each s ∈ S′, the relations (xiωs) > 0 and
∑m
i=1(xiωs−eis) = 0, which hold from

Definition 2-(c), yield xiωs ∈ [0, E]L, for each i ∈ I. For each l ∈ L, the above relations

17



imply that at least one agent, say i = 1, does not sell the lth good in state s, so that

xl1ωs ∈ [e, E]. From Assumption A3, the mapping, (x0, x1) 7→ ∂ui(x0, x1)/∂x
l
1, for each

i ∈ I, attains a maximum on the set X l := {(x0, x1) ∈ [0, E]2L : xl1 > e }, and we let:

α := inf ∂ui(x0, x1)/∂x
l
1, for (i, l, (x0, x1)) ∈ I×L×[0, E]2L, and β := max ∂ui(x0, x1)/∂x

l
1,

for (i, l, (x0, x1)) ∈ I×L×X l, be strictly postive numbers. Let γ = β/α and (l, l′) ∈ L2 be

given. Assume, by contraposition, that p∗l/p∗l′ > γ and let i ∈ I be an agent, unwilling

to sell good l ∈ L, under her consumption decision, xiω∗ . We let the reader check, as

tedious and standard, that agent i, starting from (xi, zi), could find a utility increas-

ing strategy, (x∗i , zi) ∈ Bi(ω0, πi), modifying her consumptions in state s∗ only, such

that x∗liω∗ < xliω∗ and x∗l
′

iω∗ > xl
′

iω∗ . Indeed, with p∗l/p∗l
′
> γ, she has an incentive to sell

a small amount of commodity l in exchange for commodity l′. Hence, (xi, zi) cannot

be an equilibrium strategy. This contradiction proves the relation p∗l/p∗l′ 6 γ. Then,

we let the reader check from the joint relations p∗ >> 0, ‖p∗‖ = 1 and p∗l/p∗l′ 6 γ, for

each pair (l, l′) ∈ L2, which hold from above, that p∗l > ε = 1/γ
√
L, for every l ∈ L. �

4.2 The Theorem’s Condition

In Geanakoplos and Polemarchakis (1986), the perfect foresight equilibrium is

generically locally unique or determinate. This outcome, it has been argued, would

enable rational agents knowing the primitives of the economy to identify prices

contingent on each future state, from observing first period equilibrium prices. Such

inferences preclude any defect in agents’computations.

It is also well known that perfect foresight equilibrium prices would only obtain,

in general, if all such ‘sophisticated’agents shared the same beliefs. This setting

rules out the possibility that some agents deviated or be uncertain of future prices.

Perfect price anticipations need be common and accepted by all consumers (amongst
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possibilities), despite contradictory buyer/seller interests. Thus, it is reasonable to

believe, although not formally required, that the perfect price forecasts are common

knowledge. If not, tomorrow’s prices might fail to have been anticipated correctly by

anyone, e.g., if some agents’beliefs suddenly and privately changed before trading.

Moreover, the theoretical inferences presented above build on equilibrium prices

being locally unique or determinate. This outcome is, by no means, guaranteed

under private beliefs. Along Theorem 1, equilibrium is consistent with agents having

uncountable sets of anticipations in any state, as well as uncountably many different

beliefs, given anticipations. Hence, it seems wise to believe (from Berge’s Theorem)

that, typically, the nonempty set ∆ is also uncountable. Then, local uniqueness fails.

As explained below, infering the set ∆, or a bigger set, would not require the

primitives of the economy be known, or a price model be used. However, that set

should be included in agents’anticipations. Indeed, with price-takers agents seeing

other consumers’beliefs as arbitrary, the set, ∆, of all possible equilibrium prices,

for some structure of beliefs today, may be seen as one of incompressible uncertainty

by agents. From Theorem 1, the Condition, ∆ ⊂ ∩mi=1Pi, is suffi cient to insure the

existence of a CFE. But it might also be a necessary one, especially if beliefs are

so unpredictable and erratic to let any price in ∆ be a possible outcome. We think

this situation might arise, in particular, in times of enhanced uncertainty, volatility

or erratic change in beliefs, letting no chance to agents to coordinate themselves.

If cautious agents should embed the minimum uncertainty set into their antici-

pations, the question arises why and how this might happen. As for the refinement

mechanism described in Section 3, we suggest this could be achieved, with no price

model, from observing markets. Since we are only interested in normalised prices, it

is generally possible to observe past prices and reckon their relative values on long
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time series and in a wide array of economic events, representing virtually all states

of nature. For example, the price of many assets are known daily (hence, in the

daily state), on several decades. Long statistics also exist for consumption prices.

Along time series, relative prices would vary between observable boundaries.

It seems reasonable to assume that they were sequential equilibrium prices along

Definition 2. If series are long enough and if we assume that future behaviors may

replicate some past ones, then, for instance, the intervals between the lower and up-

per bounds of the relative prices, observed in the various states, could be thought to

embed the set ∆. A method of the kind is empirical, based on statistical analysis, not

on rational expectations. It does not require a demanding price model or awareness

of the economy’s primitives. It needs not be implemented by agents individually,

but only by a public agent or tradehouse. This method, we think, could have many

useful applications in finance. It could also provide estimates for reasonable beliefs.

Thus, from observing markets, we think the set ∆, or a bigger set, might be

inferred by a public agent. In addition, individual agents may have idiosyncratic

uncertainty, given their personal information or feelings. So, neither beliefs, nor

their supports, need be symmetric or reduce to ∆.

We showed that agents, starting from an anticipation structure, (Pi) ∈ AS, such

that ∆ ⊂ ∩mi=1Pi, and observing a self-attainable equilibrium price (which exists),

reach a unique equilibrium refinement, (P ∗i ) ≤ (Pi), from making inferences as in

Section 3. With no price model, agents cannot infer more. From Theorem 1, once

they have reached the refinement (P ∗i ), all possible equilibrium prices at t = 0,

which are related to beliefs (π∗i ) ∈ Πm
i=1π(P ∗i ), along sub-Section 2.1, reveal the same

structure, (P ∗i ). This is another difference with the classical model: possibly different
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equilibrium prices at t = 0, related to all beliefs (π∗i ) ∈ Πm
i=1π(P ∗i ), reveal exactly the

same anticipation sets, (P ∗i ) ≤ (Pi), which are fixed and may differ across agents.

In all cases, agents’final beliefs, (π∗i ) ∈ Πm
i=1π(P ∗i ), remain private. This privacy,

agents’fixed expectations sets, (P ∗i ), and the Theorem’s Condition restore existence.

There can be no fall in rank problem a la Hart (1975). The generic ith agent’s budget

set and strategy are defined ex ante, with reference to ex ante conditions, and to a

fixed set of anticipations, P ∗i . So, only her ex ante span of payoffs matters, namely,

< V,P ∗i > := {ω ∈ P ∗i 7→ V (ω) · z : z ∈ RJ}. That span is fixed independently of any

equilibrium price, p ∈ ∆ ⊂ P ∗i , whose location in the set ∆ cannot be predicted at

t = 0 and will only be observed at t = 1. This setting is quite different from Hart’s.

5 The existence proof

Throughout, we set as given arbitrarily, in a standard economy, E , an arbitrage-

free anticipation structure, (Pi), and related beliefs, (πi) ∈ Πm
i=1 π(Pi), along sub-

Section 2.1’s notations. These structures are, henceforth, fixed and always referred

to. Along Remark 5, we will only prove assertions (ii) and (iii) of Theorem 1.

The proof’s principle is to construct a sequence of auxiliary economies, with finite

anticipation sets, refining and tending to the initial sets, (Pi). Each finite economy

admits an equilibrium, which we set as given along Theorem 1 of [6]. Then, the

sequence of finite dimensional equilibria yields an equilibrium of the economy E .

Each step of the proof uses simple mathematical arguments. Yet, it could not

avoid a tedious number of arguments and of subsequent notations, e.g., for specify-

ing the auxiliary economies, whose construction builds on the following Lemma.
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Lemma 1 For each i ∈ I and each n ∈ N, there exists a finite partition, Pni , and a

finite subset, Ωni , of Pi, such that the following Assertions hold:

(i) ∀P ∈ Pni , P ∈ B(M) and πi(P ) > 0, and (Ω1i ) ∈ AS;

(ii) Ωni ⊂ Ωn+1i , and, for every P ∈ Pni , P ∩ Ωni is a singleton;

(iii) ∀ω ∈ Pi, ∃ω′ ∈ Ωni : ‖ω′ − ω‖ 6 L#S / n, and, hence, Pi = ∪n∈NΩni ;

(iv) ∃N ∈ N, ∀(P ∗i ) ≤ (Pi), [(ΩNi ) ≤ (P ∗i ) and #P ∗i ∈ N, ∀i ∈ I]⇒ [Qc[(P
∗
i )] 6= ∅].

Proof see the Appendix. �

For every integer n > N along Lemma 1, and any element η ∈ ]0, 1], hereafter set

as given, we now consider the following auxiliary economies, Enη , and equilibria, Cnη .

5.2 Auxiliary economies, Enη

Henceforth, we set as given n > N , along Lemma 1, and, arbitrarily, a spot price,

ωNs := (s, pNs ) ∈ Ms, for each s ∈ S. Then, we define by induction the economy Enη ,

and an equilibrium price of this economy, ωns ∈Ms, for each s ∈ S, as follows.

From the previous induction prices, (ωn−1s ) ∈ Πs∈S Ms, the auxiliary economy,

Enη , is defined as one of the type described in [6]. Namely, it is a pure exchange

economy, with two period (t ∈ {0, 1}), m agents, having incomplete information, and

exchanging L goods and J nominal assets, under uncertainty (at t = 0) about which

state of a finite state space, Sn, will prevail at t = 1. Formally, referring to [6]:

• The information structure is the collection, (Sni ), of sets Sni := S ∪ S̃ni , defined,

from Lemma 1, by S̃ni := {i}×Ωni , for each i ∈ I. The set of realizable states is

S := ∩i∈ISi = ∩i∈ISni . For each agent i ∈ I, the set S̃ni consists of purely formal

states, none of which will prevail (but in the ith agent’s mind). The state space

of the economy is Sn = ∪i∈ISni . For notational purposes, we also let S′n := {0}∪Sn

and S′ni := {0} ∪ S′ni (for each i ∈ I) include the first period state, s = 0.
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• The Sn×J payoffmatrix, V n := (V n(sn)), is defined, with reference to the payoff

mapping, ω 7→ V (ω), by the row vectors V n(sn) := V (ω) ∈ RJ , for each sn := (i, ω) ∈

Sn\S, and V n(s) := V (ωn−1s ) ∈ RJ , for each s ∈ S. Hence, V n is purely nominal.

• In each formal state, sn := (i, (s, ps)) ∈ S̃ni , the generic agent i ∈ I is certain that

price ps ∈ RL++, and only that price, can prevail on the fictitious sn-spot market.

• In each realizable state, s ∈ S, the generic agent i ∈ I has perfect foresight, i.e.,

anticipates with certainty the true price, say pns ∈ RL++ (or ωns := (s, pns ) ∈Ms).

• The generic ith agent’s endowment, eni := (enisn) ∈ RLS
′n
i

++ , is defined by enisn := eis,

for each sn := s ∈ S′, and enisn := eis, for each sn := (i, (s, ps)) ∈ S̃ni .

• For all market prices, ωn0 := (pn0 , q
n) ∈ M0, at t = 0, and ωns := (s, pns ) ∈ Ms, for

each s ∈ S, the generic ith agent has for budget set and utility function:

Bni ([ωns ]) := { (x, z) ∈ RLS
′n
i

+ ×RJ : pn0 ·(x0−ei0) 6 −qn·z and pns ·(xs−eis) 6 V n(s)·z, ∀s ∈ S

and ps·(xsn−eis) 6 V n(sn)·z, ∀sn := (i, (s, ps)) ∈ S̃ni };

uni : x 7→
∑
sn∈Sni

πni (sn)ui(x0, xsn), where

(1 + #S η) πni (sn) :=


πi(P ) > 0 where P ∈ Pni satisfies P ∩ Ωni = {ω}, if sn = (i, ω) ∈ S̃ni

η > 0 if sn ∈ S

Along Theorem 1 of [6], each auxiliary economy admits an equilibrium, Cnη , with

the properties described in the following Lemma 2.

Lemma 2 For each n > N along Lemma 1, the economy Enη admits an equilibrium,

Cnη , namely, a collection of prices, ωn0 := (pn0 , q
n) ∈M0, at t = 0, and ωns := (s, pns ) ∈Ms,

in each state s ∈ S, and strategies, (xni , z
n
i ) ∈ Bni ([ωns ]), for each i ∈ I, such that :

(i) ∀i ∈ I, (xni , z
n
i ) ∈ arg max(x,z)∈Bni ([ωns ]) u

n
i (x);

(ii) ∀s ∈ S′,
∑m
i=1 (xnis − eis) = 0;
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(iii)
∑m
i=1 z

n
i = 0.

Moreover, the equilibrium, Cnη , satisfies the following Assertions:

(iv) ∀(n, i, s) ∈ N\{1, ..., N} × I × S′, xnis ∈ [0, E]L, where E := max(s,l)∈S′×L
∑m
i=1 e

l
is;

(v) ∃ε ∈]0, 1] : pnls > ε, ∀(n, s, l) ∈ N\{1, ..., N} × S× L.

Proof see the Appendix. �

Along Lemma 2, we set as given an equilibrium of the economy Enη , namely:

Cnη := (ωn0 := (pn0 , q
n), (ωns ), [(xni , z

n
i )]) ∈M0 ×Πs∈S Ms ×Πm

i=1 B
n
i ([ωns ]),

which is always referred to. The equilibrium prices, (ωns ) ∈ Πs∈SMs, permit to pursue

the induction and define the economy En+1
η in the same way as above, hence, the

auxiliary economies and equilibria at all ranks. These meet the following Lemma.

Lemma 3 For the above sequence, {Cnη }, of equilibria, it may be assumed to exist:

(i) ωηs = limn→∞ ωns ∈Ms, for each s ∈ S′;

(ii) (xηis) := limn→∞ (xnis)i∈I ∈ RLm, such that
∑
i∈I (xηis − eis) = 0, for each s ∈ S′;

(iii) (zηi ) = limn→∞(zni )i∈I ∈ RJm, such that
∑m
i=1 z

η
i = 0.

Moreover, we define, for each i ∈ I and each n ∈ N, the following sets and mappings:

* the mapping, ω ∈ Pi 7→ argni (ω) ∈ Ωni , such that one P ∈ Pni satisfies (ω, arg
n
i (ω) ∈ P 2;

* from Assertion (i) and Lemma 2-(v), the belief, πηi := 1
1+#Sη ( πi + η

∑
s∈S δs),

where δs is (for each s ∈ S) the Dirac’s measure of ωηs;

* P ηi = Pi ∪ {ωηs}s∈S, the support of π
η
i ∈ B;

* Bi(ω, z) := { x ∈ RL+ : ps·(x− eis) 6 V (ω)·z }, for every ω := (s, ps) ∈M, z ∈ RJ .

Then, the following Assertions hold, for each i ∈ I:

(iv) {argni (ω)}n∈N converges to ω uniformly on Pi;

(v) ∀s ∈ S, {xηis} = arg max ui(x
η
i0, x), for x ∈ Bi(ωηs , z

η
i ), along Assertions (i)-(ii)-(iii);

we denote by xη
iωηs

:= xηis ∈ RL+ a related consumption decision contingent on ωηs ∈Ms;
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(vi) the correspondence ω ∈ P ηi 7→ arg max ui(x
η
i0, x), for x ∈ Bi(ω, zηi ), is a continuous

mapping, denoted by ω 7→ xηiω. The mapping, x
η
i : ω ∈ {0} ∪ P ηi 7→ xηiω, defined from

Assertions (ii), (v) and above, is a consumption plan, that is, xηi ∈ X(πηi );

(vii) Ui(π
η
i , x

η
i ) = limn→∞ uni (xni ) ∈ R+.

Proof see the Appendix. �

5.3 An equilibrium of the initial economy

We now prove Assertion (ii) of Theorem 1, via the following Claim.

Claim 5 The collection of prices, (ωηs), beliefs, (πηi ), allocation, (xηi ), and portfolios,

(zηi ), of Lemma 3, defines a C.F.E. of the economy E .

Proof Let us define Cη := ((ωηs), (πηi ), [(xηi , z
η
i )]) as in Claim 5. From Lemma 3-(ii)-(iii)-

(v)-(vi), Cη meets Conditions (c)-(d) of the above Definition 2 of equilibrium. The

relation {ωηs}s∈S ⊂ ∩mi=1P (πηi ), that is, Condition (a) of Definition 2, also holds from

the definition of the structure (πηi ) ∈ SB. To prove that Cη is a C.F.E., it suffi ces to

show it meets the relation [(xηi , z
η
i )] ∈ Πm

i=1Bi(ω
η
0 , π

η
i ) and Condition (b) of Definition 2.

We show, first, that [(xηi , z
η
i )] ∈ Πm

i=1Bi(ω
η
0 , π

η
i ), denote ωη0 = (pη0 , q

η) ∈ M0, and let

i ∈ I be given. From Lemma 2, the relations pn0 ·(xni0 − ei0) 6 −qn·zni hold for each

n ∈ N\{1, ..., N}, and yield in the limit (from Lemma 3-(i)-(ii)-(iii) and the continuity

of the scalar product): pη0 ·(x
η
i0 − ei0) 6 −qη·zηi . From Lemma 3-(vi), the relations

ps·(xηiω − eis) 6 V (ω)·zηi hold, for every ω = (s, ps) ∈ P ηi . Then, Lemma 3-(vi) and all

above relations yield: (xηi , z
η
i ) ∈ Bi(ωη0 , π

η
i ). We have thus proved that Cη meets the

first of the two desired conditions, [(xηi , z
η
i )] ∈ Πm

i=1Bi(ω
η
0 , π

η
i ).

Next, we assume, by contraposition, that Cη fails to meet the second condition,

Definition 2-(b). Then, there exist i ∈ I, (x, z) ∈ Bi(ωη0 , π
η
i ) and ε ∈ R++, such that:
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(I) ε+ Ui(π
η
i , x

η
i ) < Ui(π

η
i , x).

We may assume that there exists δ ∈ R++, such that:

(II) xlω > δ, for every (ω, l) ∈ {0} ∪ P ηi × L.

If not, for every α ∈]0, 1], we let (xα, zα) := ((1 − α)x + αei, (1 − α)z) ∈ Bi(ω
η
0 , π

η
i )

meet relations (II), from Assumption A1. Then, from relation (I) and the uniform

continuity (on a compact set) of (α, ω) ∈ [0, 1] × P ηi 7→ ui(x
α
0 , x

α
ω), the strategy (xα, zα)

also meets relation (I) for α small enough. So, we may indeed assume relations (II).

Then, we let the reader check, as tedious but straightforward, from the relations

(x, z) ∈ Bi(ωη0 , π
η
i ), ωη0 = (pη0 , q

η) ∈ M0, and πηi ∈ B, from the definitions of M0 and B,

Lemma 2-(v) and Lemma 3-(i), the above relations (I)-(II), Assumptions A1-A2 and

continuity arguments, that we may also assume there exists γ ∈ R++, such that:

(III) pη0 ·(x0 − ei0) 6 −γ − qη·z and ps·(xω − eis) 6 −γ + V (ω)·z, ∀ω := (s, ps) ∈ P ηi .

From (III), the continuity of the scalar product and of ω 7→ V (ω), and from

Lemma 3-(i)-(iii)-(vi), there exists N1 ∈ N\{1, ..., N}, such that, for every n > N1:

(IV )


pn0 ·(x0 − ei0) 6 −qn·z

pns ·(xωηs − eis) 6 V n(s)·z, ∀s ∈ S

ps·(xω − eis) 6 V (ω)·z, ∀ω := (s, ps) ∈ Ωni

.

Along relations (IV ) and Lemma 3-(i)-(v)-(iv), for each n > N1, we define, in the

economy Enη , the strategy (xn, z) ∈ Bni ([ωns ]) by: xn0 := x0, xns := xωηs , for every s ∈ S,

and xnsn := xω, for every sn := (i, ω) ∈ S̃ni . We recall that:

• Ui(πηi , x) := 1
1+#Sη

∫
ω∈Pi ui(x0, xω)dπi(ω) + η

1+#Sη

∑
s∈S ui(x0, xωηs );

• uni (xn) :=
∑
sn∈S̃ni

ui(x0, x
n
sn)πni (sn) + η

1+#Sη

∑
s∈S ui(x0, x

n
s ).
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Then, from above, Lemma 3-(i)-(iv) and the uniform continuity of x ∈ X(πηi ) and

ui on compact sets, there exists N2 > N1 such that:

(V ) |Ui(πηi , x)-uni (xn)| <
∫
ω∈Pi |ui(x0, xω)-ui(x0, xargni (ω))|dπi(ω) < ε

2 , for every n > N2.

From equilibrium conditions and Lemma 3-(vii), there exists N3 > N2, such that:

(V I) uni (xn) 6 uni (xni ) < ε
2 + Ui(π

η
i , x

η
i ), for every n > N3.

Let n > N3 be given. The above Conditions (I)-(V )-(V I) yield, jointly:

Ui(π
η
i , x) < ε

2 + uni (xn) 6 ε
2 + uni (xni ) < ε+ Ui(π

η
i , x

η
i ) < Ui(π

η
i , x).

This contradiction proves that Cη is indeed a C.F.E. and Theorem 1-(ii) holds. �

Claim 6, below, completes the proof of Theorem 1 via the following Lemma.

Lemma 4 For each (i, k) ∈ I×N, we let ηk := 1
k and denote simply by U

k
i the mapping

x 7→ Ui(π
ηk
i , x), and by Ck = ((ωks), (πki ), [(xki , z

k
i )]) the related C.F.E., Cηk, of Claim 5.

For every (ω := (s, ps), z) ∈ Pi×RJ , we let Bi(ω, z) := {x ∈ RL+ : ps·(x−eis) 6 V (ω)·z} be a

given set. Then, whenever ∆ ⊂ ∩mi=1Pi, the following Assertions hold for each i ∈ I:

(i) for each s ∈ S′, it may be assumed to exist prices, ω∗s = limk→∞ ωks ∈Ms, such that

{ω∗s}s∈S ⊂ ∩mi=1Pi, and consumptions, x∗is = limk→∞ xkis, such that
∑
i∈I(x

∗
is−eis) = 0;

(ii) it may be assumed to exist portfolios, z∗i = limk→∞ zki , such that
∑m
i=1 z

∗
i = 0;

(iii) ∀s ∈ S, {x∗is} = arg maxx∈Bi(ω∗s ,z∗i ) ui(x
∗
i0, x) along Assertion (i)-(ii); we let x∗iω∗s := x∗is;

(iv) the correspondence ω ∈ Pi 7→ arg maxx∈Bi(ω,z∗i ) ui(x
∗
i0, x) is a continuous mapping,

denoted by ω 7→ x∗iω. Its embedding, x∗i : ω ∈ {0} ∪ Pi 7→ x∗iω, defined from Assertions

(i)-(ii)-(iii) and above, is a consumption plan, that is, x∗i ∈ X(πi);

(v) for all x ∈ X(πi), Ui(πi, x) = limk→∞ Uki (x) ∈ R+ and Ui(πi, x
∗
i ) = limk→∞ Uki (xki ) ∈ R+.

Proof see the Appendix. �
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Claim 6 Whenever ∆ ⊂ ∩mi=1Pi, the collection of prices, (ω∗s) = limk→∞(ωks), beliefs,

(πi), allocation, (x∗i ), and portfolios, (z∗i ) = limk→∞(zki ), of Lemma 4, is a C.F.E.

Proof The proof is similar to that of Claim 5. We assume that ∆ ⊂ ∩mi=1Pi and let

C∗ := ((ω∗s), (πi), [(x
∗
i , z
∗
i )]) be defined from Lemma 4. Given (i, k)∈I×N, the relations

{ωks}s∈S ⊂ ∆ ⊂ ∩mi=1Pi hold from Claim 5, and imply that P (πki ) = Pi, hence that,

Bi(ω
∗
0, πi) and Bi(ω

k
0 , π

k
i ) may only differ by one budget constraint at t = 0. From

Lemma 4, C∗ meets Conditions (a)-(c)-(d) of Definition 2. Let us denote ω∗0 = (p∗0, q
∗) ∈

M0 and ωk0 = (pk0 , q
k) ∈M0, for every k ∈ N. Then, for every (i, k) ∈ I×N, the relations

pk0 ·(xki0−ei0) 6 −qk·zki hold, from Claim 5, and yield, in the limit, p∗0·(x∗i0−ei0) 6 −q∗·z∗i ,

that is, from Lemma 4-(iv) and above: (x∗i , z
∗
i ) ∈ Bi(ω

∗
0, πi). Thus, Claim 6 will be

proved if we show that C∗ meets Definition 2-(b). By contraposition, assume this is

not the case, i.e., there exists (i, (x, z), ε) ∈ I×Bi(ω∗0, πi)×R++, such that:

(I) ε+ Ui(πi, x
∗
i ) < Ui(πi, x).

By the same token as for proving Claim 5, we may assume that the relation:

(II) p∗0·(x0-ei0) 6 −γ − q∗·z, holds for some γ ∈ R++.

From (II), Lemma 4-(i), continuity arguments and the identity of Bi(ω∗0, πi) and

Bi(ω
k
0 , π

k
i ) on all second period budget constraints, there exists K ∈ N, such that:

(III) (x, z) ∈ Bi(ωk0 , πi) = Bi(ω
k
0 , π

k
i ), for every k > K.

Relations (I)-(III), Lemma 4-(v) and the fact that Ck is a C.F.E., yield:

(IV ) Ui(πi, x) < ε
2+U

k
i (x) 6 ε

2+U
k
i (xki ) < ε+Ui(πi, x∗i ) < Ui(πi, x), for k > K big enough.

From this contradiction, C∗ is a CFE; the proof of Theorem 1 is now complete. �
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Appendix: proof of the Lemmas

Lemma 1 For each i ∈ I and each n ∈ N, there exists a finite partition, Pni , and a

finite subset, Ωni , of Pi, such that the following Assertions hold:

(i) ∀P ∈ Pni , P ∈ B(M) and πi(P ) > 0, and (Ω1i ) ∈ AS;

(ii) Ωni ⊂ Ωn+1i , and, for every P ∈ Pni , P ∩ Ωni is a singleton;

(iii) ∀ω ∈ Pi, ∃ω′ ∈ Ωni : ‖ω′ − ω‖ 6 L#S / n, and, hence, Pi = ∪n∈NΩni ;

(iv) ∃N ∈ N, ∀(P ∗i ) ≤ (Pi), [(ΩNi ) ≤ (P ∗i ) and #P ∗i ∈ N, ∀i ∈ I]⇒ [Qc[(P
∗
i )] 6= ∅].

Proof Let i ∈ I be given and, for each n ∈ N, let:

Kn := {kn := (k1n, ..., k
L
n ) ∈ (N ∩ [1, 2n])L};

P kns := Pi ∩ ({s}×Πl∈{1,...,L}]
kln−1
2n ,

kln
2n ]), for every (s, kn := (k1n, ..., k

L
n )) ∈ Si×Kn.

For each (s, n, kn) ∈ Si×N×Kn, such that P kns 6= ∅, we select a unique ωkns ∈ P kns ,

and define a set, Ωni := {ωkns ∈ P kns : s ∈ Si, kn ∈ Kn, P
kn
s 6= ∅}, as follows:

• for n = 1, we select one ωk1s ∈ Pi, for each s ∈ Si; we take ωk1s ∈ ∩mi=1Pi 6= ∅,

whenever possible, and let Ω1i := {ωk1s : s ∈ Si};

• for n > 1 arbitrary, given Ωn−1i := {ωkn−1s ∈ P kn−1s : s ∈ Si, kn−1 ∈ Kn−1, P
kn−1
s 6= ∅},

we let, for every (s, kn) ∈ Si ×Kn, such that P kns 6= ∅,3

ωkns


be equal to ω

kn−1
s , if there exists kn−1 ∈ Kn−1, such that ω

kn−1
s ∈ Ωn−1i ∩ P kns

be set fixed in P kns , if Ωn−1i ∩ P kns = ∅

This yields, for each n ∈ N, a subset, Ωni := {ωkns : s ∈ Si, kn ∈ Kn, P
kn
s 6= ∅}, and a

partition, Pni := {P kns : s ∈ Si, kn ∈ Kn, P
kn
s 6= ∅}, of Pi, satisfying Lemma 1-(i)-(ii)-(iii).

We now prove Lemma 1-(iv), after noticing, from Lemma 1-(i)-(ii), that (ΩNi ) ∈ AS.

3 Up to a shift in the upper boundary of Pkns , if required, we assume costlessly that πi(P
kn
s ) > 0 when Pkns 6= ∅.
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For each (i, n) ∈ I×N, we define the vector space Zni := {z ∈ RJ : V (ω)·z = 0,∀ω ∈ Ωni }

and its orthogonal, Zn⊥i , and, similarly, Z∗i := {z ∈ RJ : V (ω) · z = 0,∀ω ∈ Pi} and Z∗⊥i .

We show, first, that, for each i ∈ I, there exists Ni ∈ N, such that Zni = Z∗i , for

every n > Ni. Indeed, from Lemma 1-(ii), {Zni }n∈N is non increasing in RJ , hence,

stationary, i.e., there exists Ni ∈ N, such that Zni = ZNii , for all n > Ni. From the

definition, the relation Z∗i ⊂ ZNii holds. The converse inclusion, hence, Z∗i = ZNii , is

immediate from Lemma 1-(iii): for all n > Ni, take zn ∈ Z∗⊥i ∩ Zni , such that ‖zn‖ = 1

and derive a contradiction. Then, we define No = maxi∈I Ni and the compact set

Z := {(zi) ∈ Πm
i=1Z

∗⊥
i : ‖(zi)‖ = 1,

∑m
i=1 zi ∈

∑m
i=1 Z

∗
i }.

Assume, by contraposition, that Lemma 1-(vi) fails. Then, from above, Definition

3, and from [4] (Definition 2.2, p. 397, and Proposition 3.1, p.401), for every n > No,

there exist an integer, Nn > n, finite sets, PNni , defined for each i ∈ I, and portfolios,

(zni ) ∈ Z, such that: (ΩNni ) ≤ (PNni ) ≤ (Pi) and V (ωi) · zni > 0, for every (i, ωi) ∈ I × PNni ,

with one strict inequality. The sequence, {(zni )}n>No , may be assumed to converge in

a compact set, say to (z∗i ) ∈ Z. From the continuity of the scalar product and Lemma

1-(iii), the above relations on {(zni )}n>No , imply that V (ωi) · z∗i > 0 holds, for every

(i, ωi) ∈ I×Pi, with one strict inequality, since (z∗i ) ∈ Z implies ‖(z∗i )‖ = 1. We let the

reader check (on asset prices), this contradicts the fact that (Pi) is arbitrage-free. �

Lemma 2 For each n > N along Lemma 1, the economy Enη admits an equilibrium,

Cnη , namely, a collection of prices, ωn0 := (pn0 , q
n) ∈M0, at t = 0, and ωns := (s, pns ) ∈Ms,

in each state s ∈ S, and strategies, (xni , z
n
i ) ∈ Bni ([ωns ]), for each i ∈ I, such that :

(i) ∀i ∈ I, (xni , z
n
i ) ∈ arg max(x,z)∈Bni ([ωns ]) u

n
i (x);

(ii) ∀s ∈ S′,
∑m
i=1 (xnis − eis) = 0;

(iii)
∑m
i=1 z

n
i = 0.

Moreover, the equilibrium, Cnη , satisfies the following Assertions:
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(iv) ∀(n, i, s) ∈ N\{1, ..., N} × I × S′, xnis ∈ [0, E]L, where E := max(s,l)∈S′×L
∑m
i=1 e

l
is;

(v) ∃ε ∈]0, 1] : pnls > ε, ∀(n, s, l) ∈ N\{1, ..., N} × S× L.

Proof Let n > N be given along Lemma 1. From Lemma 1-(iv), the payoff and in-

formation structure of the economy Enη , [V n, (Sni )], is arbitrage-free, along [4]. Hence,

from ([6], Theorem 1 and proof) it admits an equilibrium, or (changing notations)

a collection of prices, ωn0 := (pn0 , q
n) ∈ M0, ωns := (s, pns ) ∈ Ms, for each s ∈ S, and

strategies, (xni , z
n
i ) ∈ Bni ([ωns ]), for each i ∈ I, which satisfy Lemma 2-(i)-(ii)-(iii). The

rest of the proof is similar to that of Theorem 1-(i) (simpler) and left to the reader. �

Lemma 3 For the above sequence, {Cnη }, of equilibria, it may be assumed to exist:

(i) ωηs = limn→∞ ωns ∈Ms, for each s ∈ S′;

(ii) (xηis) := limn→∞ (xnis)i∈I ∈ RLm, such that
∑
i∈I (xηis − eis) = 0, for each s ∈ S′;

(iii) (zηi ) = limn→∞(zni )i∈I ∈ RJm, such that
∑m
i=1 z

η
i = 0.

Moreover, we define, for each i ∈ I and each n ∈ N, the following sets and mappings:

* the mapping, ω ∈ Pi 7→ argni (ω) ∈ Ωni , such that one P ∈ Pni satisfies (ω, arg
n
i (ω) ∈ P 2;

* from Assertion (i) and Lemma 2-(v), the belief, πηi := 1
1+#Sη ( πi + η

∑
s∈S δs),

where δs is (for each s ∈ S) the Dirac’s measure of ωηs;

* P ηi = Pi ∪ {ωηs}s∈S, the support of π
η
i ∈ B;

* Bi(ω, z) := { x ∈ RL+ : ps·(x− eis) 6 V (ω)·z }, for every ω := (s, ps) ∈M, z ∈ RJ .

Then, the following Assertions hold, for each i ∈ I:

(iv) {argni (ω)}n∈N converges to ω uniformly on Pi;

(v) ∀s ∈ S, {xηis} = arg max ui(x
η
i0, x), for x ∈ Bi(ωηs , z

η
i ), along Assertions (i)-(ii)-(iii);

we denote by xη
iωηs

:= xηis ∈ RL+ a related consumption decision contingent on ωηs ∈Ms;

(vi) the correspondence ω ∈ P ηi 7→ arg max ui(x
η
i0, x), for x ∈ Bi(ω, zηi ), is a continuous

mapping, denoted by ω 7→ xηiω. The mapping, x
η
i : ω ∈ {0} ∪ P ηi 7→ xηiω, defined from

Assertions (ii), (v) and above, is a consumption plan, that is, xηi ∈ X(πηi );
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(vii) Ui(π
η
i , x

η
i ) = limn→∞ uni (xni ) ∈ R+.

Proof Assertions (i)-(ii) result from Lemma 2-(iv) and compactness arguments. �

Assertion (iii) For each i ∈ I, we let Z∗i := {z ∈ RJ : V (ω) · z = 0,∀ω ∈ Pi} and

recall, from Lemma 1’s proof, that Z∗i = {z ∈ RJ : V (ω) · z = 0,∀ω ∈ Ωni }, for all n>N

(assuming N>No). The sequence {(zni )i∈I}n>N is bounded. Indeed, let δ := maxi∈I ‖ei‖.

The definition of {Cn}n>N yields, from budget constraints and clearance conditions:

(I) [
∑m
i=1 zni = 0 and V (ωi)·zni > −δ, ∀(i, ωi) ∈ I × Ωni ], for every n > N .

Assume, by contradiction, {(zni )} is unbounded, i.e., there exists an extracted

sequence, {(zϕ(n)i )}, such that n < ‖(zϕ(n)i )‖ 6 n+1, for every n > N . From (I), the

portfolios (zni ) := 1
n (z

ϕ(n)
i ) meet the relations 1 < ‖(zni )‖ 6 1+ 1

n , for every n > N , and:

(II)
∑m
i=1 zni = 0 and V (ωi)·zni > − δ

n , ∀(i, ωi) ∈ I × Ωni .

From (II), Lemma 1-(ii), the continuity of the scalar product and above, the

sequence {(zni )} may be assumed to converge, say to (z∗i ), such that ‖(z∗i )‖ = 1 and:

(III)
∑m
i=1 z

∗
i = 0 and V (ωi)·z∗i > 0, ∀(i, ωi) ∈ I×ΩNi .

From relations (III), Lemma 1-(iv), ([4], Proposition 3.1) and above, the relation

(z∗i ) ∈ Πm
i=1Z

∗
i holds and implies (z∗i ) = 0, from the elimination of useless deals of sub-

Section 2.4, which contradicts the fact that ‖(z∗i )‖ = 1. Hence, the sequence {(zni )}

is bounded and may be assumed to converge, say to (zηi ) ∈ RJm. Then, the relation∑m
i=1 z

η
i = 0 results asymptotically from the clearance conditions of Lemma 2-(iv). �

Assertions (iv) is immediate from the definition and compactness arguments. �

Assertion (v) Let (i, s) ∈ I×S be given. For every tuple (n, ω := (s, ps), ω
′, z) ∈

N \{1, ..., N}×Ms×Ms×RJ , we consider the following (possibly empty) sets:
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Bi(ω, z) := {y ∈ RL+ : ps·(y−eis) 6 V (ω)·z} and B′i(ω, ω′, z) := {y ∈ RL+ : ps·(y−eis) 6 V (ω′)·z}.

For each n > N , the fact that Cnη is an equilibrium of Enη implies, from Lemma 2:

(I) (ωn−1s , ωns ) ∈M2
s and xnis ∈ arg maxy∈B′i(ωns ,ω

n−1
s ,zni )

ui(x
n
i0, y).

As a standard application of Berge’s Theorem (see, e.g., [8], p. 19), the corre-

spondence (x, ω, ω′, z) ∈ RL+×Ms×Ms×RJ 7→ arg maxy∈B′i(ω,ω′,z) ui(x, y), which is actually

a mapping (from Assumption A2 ), is continuous at (xηi0, ω
η
s , ω

η
s , z

η
i ), since ui and B′i

are continuous. Moreover, the relation (xηi0, x
η
is, ω

η
s , z

η
i ) = limn→∞(xni0, x

n
is, ω

n
s , z

n
i ) holds

from Lemma 2-(i)-(ii)-(iii). Hence, the relations (I) pass to that limit and yield:

{xη
iωηs
} := {xηis} = arg maxy∈Bi(ωηs ,zηi ) ui(x

η
i0, y). �

Assertion (vi) Let i ∈ I be given. For every (ω, n) ∈ Pi×N \ {1, ..., N}, the fact that

Cnη is an equilibrium of Enη and Assumption A2 yield:

(I) {xniargni (ω)} = arg max ui(x
n
i0, y) for y ∈ Bi(argni (ω), zni ).

From Lemma 2-(ii)-(iii)-(iv), the relation (ω, xηi0, z
η
i ) = limn→∞(argni (ω), xni0, z

n
i ) holds,

whereas, from Assumption A2 and ([8], p. 19), the correspondence (x, ω, z) ∈

RL+×Pi×RJ 7→ arg maxy∈Bi(ω,z) ui(x, y) is a continuous mapping, since ui and Bi are

continuous. Hence, passing to the limit into relations (I) yields a continuous map-

ping, ω ∈ Pi 7→ xηiω := arg maxy∈Bi(ω,zηi ) ui(x
η
i0, y), which, from Lemma 3-(v) and above,

is embedded into a continuous mapping, xηi : ω ∈ {0}∪P ηi 7→ xηiω, i.e., x
η
i ∈ X(πηi ). �

Assertion (vii) Let i ∈ I and xηi ∈ X(πηi ) be given, along Lemma 3-(vi). Let ϕi :

(x, ω, z) ∈ RL+×Pi×RJ 7→ arg maxy∈Bi(ω,z) ui(x, y) be defined on its domain. By the same

token as for proving Assertion (vi), ϕi and Ui : (x, ω, z) ∈ RL+×Pi×RJ 7→ ui(x, ϕi(x, ω, z))

are continuous mappings and, moreover, the relations ui(xηi0, x
η
iω) = Ui(x

η
i0, ω, z

η
i ) and
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ui(x
n
i0, x

n
i argni (ω)

) = Ui(x
n
i0, arg

n
i (ω), zni ) hold, for every (ω, n) ∈ Pi×N \ {1, ..., N}. Then, the

uniform continuity of ui and Ui on compact sets, and Lemma 3-(ii)-(iii)-(iv) yield:

(I) ∀ε > 0, ∃Nε > N : ∀n > Nε, ∀ω ∈ Pi,

| ui(xηi0, x
η
iω)− ui(xni0, xni argni (ω)) | +

∑
s∈S | ui(x

η
i0, x

η
is)− ui(xni0, xnis) | < ε.

Moreover, we recall the following definitions, for every n > N :

(II) Ui(π
η
i , x

η
i ) := 1

1+#Sη

∫
ω∈Pi ui(x

η
i0, x

η
iω)dπi(ω) + η 1

1+#Sη

∑
s∈S ui(x

η
i0, x

η
is);

(III) uni (xni ) := 1
1+#Sη

∫
ω∈Pi ui(x

n
i0, x

n
i argni (ω)

)dπi(ω) + η 1
1+#Sη

∑
s∈S ui(x

n
i0, x

n
is).

Then, Lemma 3-(vii) results immediately from relations (I)-(II)-(III) above. �

Proof of Lemma 4 It is similar to that of Lemma 3, hence, left to the reader. �
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