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1 INTRODUCTION 2

Abstract

To detect abnormal states in stock market returns, this study considers seven indices,
over an 21-year period, the Dow Jones, S&P500, Nasdaq, Nikkei225, the FTSE100,
DAX, and CAC40. Three states are possible, namely a state of high rate of return, a
state of low rate of return, both with high volatility and an intermediate state with
low volatility. To determine the state of the market at each date, we study the returns
using Markov Chain Monte Carlo method (Metropolis-Hastings algorithm). Then
at a second time, using a Cramer’s coefficient, we deduce association coefficients or
“correlations” among the different states of the major stock exchange markets around
the world. First, the associations were globally stronger during the subprime crisis than
during the dot-com bubble period. Second, among European markets the Cramer’s V
is higher regardless of the period. Third, the associations between the Nikkei and the
other markets indices are systematically lower, indicating the relative disconnection of
the Japanese market.

1 Introduction

The availability of high frequency data for financial series and the development of
mathematical and computer tools in recent decades support renewed research into
the behavior of financial asset prices. The study of the statistical properties of asset
returns, which are essential for managing portfolios of assets, is a vital component of
the domain [1]. Several research areas thus have been explored including the prob-
lems of measuring volatility /risk assets, the phenomena of bubbles and financial crisis,
the measures of abnormal returns, correlations or dependencies between assets and /or
markets and contagion effects.

A particularly important question in financial analysis is how the volatility and the
trend of stock prices behave. Such forecasts are essential to determinate options prices,
portfolio optimization among others.

Some authors mainly focused on the mean return, we call also drift among a period.
Since publications by Brown and Warner |2|, |3], many articles sought to the measure
security price performance, and particularly assess abnormal returns. Generally, the
return of a security/stock is abnormal if it differs from a “normal” return, that is,
from a particular benchmark. This benchmark may be a simple mean return, a return
deduced from a CAPM model or a multi-factor model (e.g. the three-factor Fama
and French model [17], [25]). However, these approaches face limitations, in that they
require a risk-free return to estimate the normal return. In reality though, situations
such as the actual debt crisis in Europe complicate the choice of a risk-free return.
In addition, these methods essentially determine the abnormal returns of a securi-
ty/stock. Tt also may be interesting to estimate abnormal returns of a market. We
therefore propose another method to estimate abnormal returns that can be applied
to both the return on a security and at the return on a market portfolio.

Many other authors focused on the behavior of the volatility. The first models are
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based on autoregressive conditional heteroscedastic processes (ARCH), which should
provide better measures of the dispersion and volatility of assets prices than a simple
standard deviation [10], [1]. Some authors also are interested in modeling the tails
of the distribution of returns (extreme values), such that they isolate the effects of
shocks to the natural tendency of markets [8]. By extension, other studies focus on
correlations/dependencies among stock returns, seeking possible crossmarket spillover
effects in financial markets. Such work has taken several forms, from the analysis of
contagion effects |20], [19], to the study of copulas [11].

However a simple observation shows that there are sequences of high and low volatil-
ities. To take into account these facts, some authors introduce markov-switching
parameters to ARCH models [15], [4|, while Dueker [9] extended their approach to
GARCH models to describe two stylized facts: conditional volatility can increase
substantially (jumps) in a short time; “the stock-market volatility does not remain
persistently two to three times above its normal level the same way it can persist at
30-40 percent above normal” ([9] p. 26). The standard approach considers that the
parameters (one or several) in conditional volatility are subject to markov-switching,
which permits to distinguish several states. Most of works retain three states, even if
4-states or 5-states models can be estimated. In [18] (p. 442),using a 4-states model,
the authors conclude that the last state represents “only one observation that pertains
to this regime ... the 1987 October crash of the stock market”. In the standard case of
three states, we generally distinguish: a state of high volatility, a state of low volatility
and a medium state. If the first works use Maximum-Likelihood (ML) estimation, [18|
adopt a MCMC method to estimate a time series model with autoregressive condi-
tional heteroscedasticity and changes in regime.

The present study advances in the line of [13] [14], with the objective of revealing
“abnormal” situations. Our main issue in modeling is how we define an "abnormal"
return and according to which features we classify them. We highlight distinct regimes
in the stock market returns based on the volatility but also on the drift.

Consequently, our research differs from the previous works as we seek to reveal switch-
ing not only in stock returns volatility but in drifts and volatility together. We focus
on detecting the abnormal returns following |22] and [13]. We assume three states are
possible. State 1 and 3 are considered to reflect periods of high volatility and respec-
tively high and low drift while state 2 refers to periods with standard drift and low
volatility. For instance the market is in state 1 during a bubble period and similarly
in state 3 during a crisis period. However the controversy is not true. In a risk-on risk
off approach, the transition itself to level 1 or 3 from the intermediate level is useful
information since it characterizes a period of high uncertainty.

Meanwhile, following work by Black, Scholes and Merton in the 1970s, widespread uses
of diffusion models for pricing options have been observed [12]. The use of variants
of these models, assuming that the asset price is driven by an Ito process, involving a
Brownian part, is also generalized for the study of returns.

In our study we consider that the return follows a diffusion process with a drift and a
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volatility (covariance in multidimensional case) parameters. Moreover given the state
of the market we assume those parameters are constants. Obviously they change from
one state to another. Following this purpose we present a Bayesian approach based
on a MCMC method /algorithm to estimate the parameters of the Markov switching
model in each case together with the estimation of the state for each period.

We make the general assumption that the current price contains all the information
such that the future price depends on the past only through the current observation.
This assumption is necessary in finance for computing, for example, the option price.
The other assumption we make pertains to the independence of returns, which is re-
quired to estimate the parameters of the model applying the Central Limit Theorem.
Thus we model prices using a classical Black & Scholes diffusion for each state, an
approach that is very convenient, because we can identify for each state its determin-
istic drift part and its random component, according to the volatility of the returns.
Moreover the changing states from one date to another represent a transition matrix.
The estimation relies on a Bayesian approach. In turn with this method, we can assess
the value of the parameters while there is still liberty in them through observations
made on the market.

We study the stock market returns of several developed countries. To do so, we being
by detailing our model in Section 2, followed by MCMC method and the algorithms
used in Section 3. Section 4 presents an application to weekly data for the Dow Jones,
Nasdaq, S&P 500, Nikkei, FTSE, CAC 40, and Dax market indexes, over the period
1991-2011. Section 5 concludes.

2 The market model

We assume d assets that generate d risk sources. Let T > 0 be a time-finite horizon.
We consider the d-dimensional Brownian motion (W}).cpo,r) and (€2, F,P) the filtered
probability space at stake, with € the set of events, 7 = (7)), the natural
Brownian filtration defined by F; = o(Wj;s < t). F; contains all the information of
the market up to date t. Originally the Black and Scholes model for the asset prices
process denoted (S;)icpo,r), with drift b € R, standard deviation ¢ > 0 and d = 1 has
been defined by

2

dS; = Si(b+ %)dt + S,0dW;, (1)

with Sy > 0. Then for a given s € [0,77], the return process between dates s and ¢,
denoted (7(s,t))e[s, 7], and defined by r(s,t) = ln(g—z) satisfies

dr(s,t) = bdt + odW, (2)

with r(s,s) = 0. Since b and o are fixed constants we have, for ¢ > s,
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r(s,t) = bt —s) + o(W, — Wy). (3)

One may notice that W, — W, follows the normal distribution with mean 0 and variance
t—s. Moreover it is independent from the sigma algebra F;, that is all the information
contained in the market up to the date s. Now we present our model which is a variant
from this model. This variant is multidimensional and b and o depend on the time.
Moreover the couple (b, o) takes its values in a set that contains three elements.

The model

We denote (S)ico,r € (R*Jr)d as the d-dimensional, strictly positive, underlying assets
process. We consider that S has the following form,

d d
vie{l,d} dSi=Si(b+ D (of))dt+ 5> ol dWy, (4)

j=1 j=1

with b € R, o, € R¥¢ F,-measurable. We define the log return as :

. gi
VO<s<t<T,ie{l,-d}, ’r’(s,t):ln(S—Z)ER (5)
For a given s > 0, the Ito formula implies,
Vi, dr'(s,t) =bjdt+ Y o dWY (6)

j=1

We notice that for all t < ¢/ < ", then r(t,t") = r(t,t') + r(¢',t"). Now we specify
the form of the process (b, Ut)te[o,T]- We assume this couple can take three different
constant values that is (b;,0,) € {(b1,01), (b2, 02), (b3, 03)}. We denote the discrete
random Markov process (Y:)icjor] € {1,2,3} that specifies the state of the market.
We define

be =by,, o1 =o0vs. (7)
In that case (4) and (5) are well defined and have a unique solution.

Our purpose is to distinguish two states with low information inflow and low or high re-
turns, labeled 1 and 3, and an intermediate regime, the second one, with lower variance
and standard return. Following this idea we assume : Vj € {1,--- . d},b] < b} < b}
and for the matrix norm ||.|| we have, ||o1]], ||os]| > ||o2]|-

We define (Y})cj0,r) as a piecewise constant process that can jump only on the time
grid {tg, -+ ,t,—1} with ¢, = % We have then Y; =Y}, for all ¢t € [ty, tp1]. In that
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case we denote by P €]0, 1[3%3, its transition matrix. P gives the probability of being
in a state at the next date, conditional on the current state, that is,

Vke{l,..,n—1}, P, =j|Y, =i)=P". (8)

We notice that the diagonal of P gives the probability to stay in the current state.
We denote w; €]0,1[> the law of the random variable Y; such that P(Y; = i) = w!. We
have then

Vk e {1,...,n}, w;, =weP" 9)

Its stable law is given by the solution of w = w’P. This law gives the probability of
each state once equilibrium is reached. In such case w! +w? is the probability that the
market is in a period of high volatility while w? is the one of being in the intermediate
regime. Heuristically we want w? to be the highest probability.

The return process

Since (Y})te[oﬂ is a piecewise constant process, then b, and oy are constant for t € [ty tx11]
and we can write the exact decomposition of the diffusion of the return process on
time grid {to,---tn} as:

d
r(tes ti) = 0y (B — t) +ZU Wi, = W) (10)
7=1
Summing over k, we obtain,
Vi, <y € {1, ,n},
la—1 lh—1 d
tll, tlg Z bYt tk+1 — tk + Z Z 0' tk+1 W] ) (11)
k= ll k= llj 1

We notice that the Brownian increments (VVlthrl Wtj;c)(k,j)e{07.7n_1}x{1,.7d} form a se-
quence of independent and identically distributed random variable following a centered

normal distribution with variance %

Remark 2.1. From the independence of Brownian increments and properties on
(Yy)iepp,r) we can deduce that S, by, and oy are Markov processes. We also notice
that for all s, t, s, t' on time grid {to, - ,t,}, with s <t < s < ', then r(s,t) is
independent from r(s',t').

3 Estimation of the parameters

3.1 Bayesian approach

We define by 6 = ((b1,01), (b2, 02), (b3, 03), P, Yo, (Yy, Jkefo, n—1}) the set of parameters
to estimate regarding the observations. We denote by &,, the set of observations until
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t,. To do so, we use a Bayesian approach. This method consists of establishing
a distribution prior law, denoted v, to 6. We then compute the most likely law,
or posterior law, conditional to the observations : vs, = P(0|S,). Thus, we grant
a liberty to the values to be selected for the parameter, though we still guide the
calibration with respect to the law, v, we choose for #, and the parameters we apply
to this law. Once we know the posterior law we estimate 6 applying a Monte Carlo
algorithm and the estimator is given by

. 1 X

with N the number of Monte Carlo steps and (6;);c(1,.,n} a sequence of independent
and identically distributed random variables with law vs, .

We expose the prior distribution chosen for the different processes followed by the
parameters of the equation (11). First of all we assume that b; and o; are independent
random variable. We rely on the following notations:

(o07)7! ~ Wp(ai) ‘ |

(P)i = (P, P, P?) ~ Dir(Gi, G2, Cis) (13)
Yo ~ U{1,2,3}

Vi € {0,--- ,n—1},i € {1,2,3},P(Y,,,, = i|V;,, P) = P¥u!

where Dir refers to a Dirichlet distribution with three liberty degrees; W,(c;) is the

Wishart distribution with mean «; and p degrees of freedom, and U refers to the
discrete uniform distribution.

Choice of the parameters for the prior law

The parameters u, o, and ( will determine the likely range of values that can take 6.
For example, higher |u;| and |pu3| imply a lower probability of their state. Indeed,

Pl = E[PY] = —Zfi’fg . (14)
k=1 Stk

We denote @ the stable law of P. We have,

3 3
=1 i=1
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The same way we have E[o;, 0} | = SO a;'@; . Let us denote b and & the Maximum

Likelihood estimators of b and o. A reasonable choice of parameters could be to impose
1, a and ¢ such that

3 ~i T
> et (16)

Once we have selected these parameters, it remains to simulate the posterior law that
is the prior law given the observations, and then to calculate the estimator using the
formula 12. To achieve, we use a Markov Chain Monte Carlo method, and more
precisely the Metropolis-Hasting algorithm.

3.2 Markov Switching and MCMC methodology

We recall we assume that the global asset process can switch states with respect to
the evolution of the Markov chain (Y}):cpo,77-

Heuristically, we try to find the best realization of this prior law that maximizes the
likelihood of occurrence of the observations, and we estimate the parameters with
Monte Carlo method. To obtain the posterior law, we use Metropolis-Hasting algo-
rithm.

We do not go further in describing theoretical parametrization steps but rather refer
the reader to [13]. Our purpose here is to identify different states in miscellaneous
markets and their underlying common features. For example, we observe the Cramer’s
V between states identified in different markets around various periods. For this study
we provide the Metropolis-Hasting algorithm applied to estimate the parameters of
equation (11).

3.3 The Metropolis-Hasting algorithm

We do not describe this algorithm in detail because it has been well developed in
prior literature. We recall simply that the retained approach relies on the use of a
multiple-block Metropolis-Hastings algorithm , such that “the parameters are grouped
into several distinct blocks, and then each block of parameters is updated in sequence
by a Metropolis-Hastings step, conditioned on the most current value of the param-
eters in the remaining blocks” [6]. In other words, we have 6 = (6y,---,6;) and the
posterior law of 6; is the prior law of ; knowing S,, but also 6\{6;}.

The idea of the algorithm remains the same as when [ = 1, and relies on the Bayes
formula. The methodology consists in defining a Markovian transition function f,
a sequence of independent random variables (Z™),,cn with density probability law
x — f(6™, x), and a sequence of acceptance random variables (a),en € {0, 1} in
order to define a Markov chain (0™),,en as follow

ol = qmZm 4 (1 — a™ygm, (17)
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It means that 6™+ = Z™ ~ f(0™,.) with probability P(a™ = 1) and ™" = 6™ with
probability P(a = 0). If we choose

_ BZMIS) (27 0m)
B(57[S,) (0", 27)

P(a™ =1) (18)
it implies that 6™, with law Vs, » converges to a random variable with law v|5,. We then

compute the estimator with the formula (12) with 6; = 6™%* when m is large enough
to consider that we have reached the convergence field. The acceptance probability
P(a™ = 1) is calculated using the Bayes formula. Indeed

P(O)P(Sn|0)

POIS) = ~ s )

(19)

Hence,

_ B(ZMB(S,|Z7) (27, 6
PO™B(S,[0m) 1 (67, Z7)

(20)
We give now the algorithm in our framework. First of all we give some necessary
properties to ensure convergence in the Metropolis Hasting algorithm.

Definition 3.1. Let (M™)en be a Markov chain. Then,

1. M is reversible iof : Vx,y € R",m € N,

P(M™! = y|M™ = 2)P(M™ = 2) = (M = 2| M™ = y)P(M™ = y). (21)

2. M is irreducible if : dmg € N, mg > m,

P(M™™ = y|M™ = z) > 0. (22)

3. M is aperiodic if : Yo,y € R, m > N,

ged{my € N*, P(M"™"™0 = y|M™ =1x) >0} = 1. (23)

Irreducibility means we can reach all states of the Markov chain with strictly positive
probability. Aperiodicity signifies we cannot return to a state with regular time. It
thereby avoids seasonality phenomena.

Now we expose the Metropolis-Hasting algorithm by block which is used in our study.

Proposition 3.1 (Metropolis-Hasting algorithm). Let S,, denotes the sample of n
observations, Ny be the number of steps before we run Monte Carlo, N be the number
of Monte Carlo observations, and a prior law given by v = (vy, -+ ,1;). For z,y € R?,
j=1,..,1, weintroduce f; : (RIxR?) — R, s.a. Jan fi(@,y)dy = 1, which constitutes
the Markovian transition probability density function candidate for the parameters 7,
knowing 0\{6;}.
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Algorithm 1 Bayes-Metropolis-Hasting

m =20
Initialize 0
while m < N + Ny do
for j=1,...,1 do
05 + X ~ f;(0;,.)
_ P(0))P(Snl07) f;(05,07)
— P(0;)P(Snl0;)£;(05,6;5)
U ~ U0, 1]
if U < o then
0]‘ < 92
end if
if m > Ny then
éj = éj + Hj/N
end if
end for
m=m+1
end while
return {6, ...,0;} the set of estimated parameters

where P(0) = v;(0}) and P(0;) = v;(0;).

Then, the Markov chain 6 thus defined is reversible, irreducible, and aperiodic, and
it converges to a random variable with law vs,. Hence, {01,...,0,} is the Bayesian
estimator of the parameters of (11) with prior law v and observations S,,.

Remark 3.1. 1. Since the state process takes discrete values, we adapt its Monte
Carlo estimator at time t; and define:

Y, = argmaz{y;,y; = Card{(Yy,)m>n,}}
je{1,2,3}

2. We estimate each block, one at a time. Furthermore, the law of a block can
depend on the value of another block. The proof of the convergence for this case
is given in [5].

3. If the transition density function candidate is symmetric, then
_ P(0))P(S,]65)
P(0;)P(Snl0;)’

which offers a likelihood fraction. Heuristically, we choose the more likely real-
ization under the law v;.

3.4 Choice of the transition density functions

We show some possible choices for the transition density candidate similar to random
walks or more generally to symmetric density functions. We give a possible choice
of density functions candidate for the miscellaneous parameters and recall also their
prior distribution which were given in the beginning of this section.
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1. We have b; ~ N(u;, %), (0;07)7 ~ W,(a;). We define the transition Markov
chain as follow.

((bi)m+17 (01)m+1) :(<bg)m+17< fj)erl)kjE{L.’d}
=((B)™ + 1 (G )™, (o)™

with

Uk

(0 = (o) e
(o I

m+1 kk( kk) |

0'1 gj

with the N + N, independent random variables (gg’i, g)m ~ N(0, I3). Then

fbg'(x?y) - IP)(Ti(fgz)m =Y—- I) - fbg(yvx)7

is symmetric, and f,,,,. also as a combination of Normal and Wishart distribu-
tions.

2. (77)@ ~ DiT(Ci,1> Ci,2, Ci,3)7 where Ci,j can depend on (Y%)te{to ..... tn}s Yo ~ U{L 2, 3};
Y, € {1,2,3},P(Ys,,, = jlYu,P) = (Y, P);. We simulate the new (P);,Y)
and Yy, from their prior density distributions; again, the transition density is
symmetric.

4 Application

4.1 'Weekly stock index data

The data in this study consist of weekly returns ', collected between January 1991

(first week) and December 2011 (third week) for seven stock indexes from devel-
oped economies: Germany (DAX), France (CAC40), the United Kingdom (FTSE100),
Japan (Nikkei 225), and the United States (S&P500, Nasdaq, and Dow Jones). De-
note as the price index at time t (t = 1. . . 1095). For the sake of simplicity and to
obtain percentage values, we define :

St

t—1

ry = 100 In( ) (24)
as the compounded return for different stock indexes at time t.

Figures 1 to 7 display time-series plots for the levels and returns of markets indices.
Except for the Nikkei and Nasdaq, we observe similar trends. A first rise phase of
indices can be seen from early 1990s to the dot-com bubble burst in 2000. Thereafter,
we have a decrease phase followed by a turn upward in 2003, which persists until the
subprime crisis. This crisis reached its nadir in October 2008 with Lehman Brothers’
bankruptcy. The behavior of the Nikkei index is relatively different though, in that
during this period, we observe a downward trend in the stock market index. During

'E xtracted from http://finance.yahoo.com
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1990s, or lost decade, Japanese growth rates were very weak, with an average annual
growth of per capita gross domestic product (GDP) of 0.5% [16]. This contraction
followed the bursting of the stock market and real estate bubbles at the end of the
1980s.

In addition, the stock returns reveal higher volatility during the financial crisis, be-
tween 2000 and 2003 and mainly in 2007/2008. Finally, the Jarque-Bera statistic
(Table 1) calculated for the stock return confirms the rejection of the null hypothesis
of normality.

(INSERT fig. 1-7) (INSERT table 1)

4.2 Estimating the states

In Figure 8, we present the states for the stock market returns. Because we denote
three possible states for the returns, we denote values of 1, 2 and 3 as low, interme-
diate, and high states. To derive the normalized variables, we subtract the mean and
divide by the standard deviation. Several observations may be done:

1. The abnormal returns for US and European markets that is in low and high
states do not appear throughout the whole period. For example, for US markets,
we obtain abnormal returns during two periods: the dot-com bubble and the
subprime crisis. There are few abnormal returns during the 1990s or between
2002 and 2007. It is during the subprime and euro crisis that we observe many
abnormal returns for the French index; for the Dax and the CAC40, the abnor-
mal states are fewer during the dot-com crisis.

2. The behavior of the Japanese market is very different. There are many abnor-
mal returns during the 1990s, unlike in the other countries, and fewer abnormal
returns between 2000 and 2007. We find more abnormal returns during the sub-
prime crisis, whereas the Japanese stock market does not appear disturbed by
the euro crisis.

3. In Table 2, we complete these estimations with the transition matrices for three
states. In all cases, the probability of remaining in the intermediate state is
very high, around 0.90 for the state and 0.97 for the states. The transition
probabilities of abnormal states are lower for the Japanese market (0.22-0.23)
than for other stock markets (from 0.30 to 0.45).

Finally, these observations can be completed by calculating of correlations across
states.

(INSERT fig. 8) (INSERT table 2)
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4.3 Measure of association between states

An important issue for financial markets is the correlation between returns, particu-
larly abnormal returns. Generally, cross-asset correlations may be analyzed using the
covariance of returns. Covariance between two assets/market indices is the product of
three terms: the volatilities of the two market indices and their correlation. Insofar as
the “covariance may vary, not because the correlation between the two assets change,
but simply because their individual change” [7]|, economists and statisticians tend to
choose to estimate correlation matrices. But here, we are interested in different states
of markets, represented by qualitative variables that can take the three values we have
noted. Therefore, a correlation coefficient is not relevant, and we instead retain a
contingency table analysis.

First, we characterize the significance of the association between states of returns us-
ing a chi-square statistic. However, a test of the null hypothesis of no association
between two variables is not sufficient to quantify the strength of association. Several
measures of association, analogous to correlation coefficients, appear in prior litera-
ture. We adopt the more general measure that is the Cramer’s V. This coefficient
is bounded between 0 and 1, such as it equals 0 when there is no association and
1 if the association is perfect. We use I and J to denote the number of rows and
columns, and N is the total number of events, such as the formula for Cramer’s V
is: V. = /x2/Nmin(I —1,J — 1).In Table 3, we present the association measures
for states and for three periods: the global period, the dot-com bubble period (May
1994-September 2002) and the subprime and euro crisis period (July 2007-December
2011). For the whole period, we find higher coefficients, around 0.40, among European
markets, i.e. FTSE, DAX and CAC indices, and lower coefficients, around 0.10-0.20,
between the Nasdaq and these three European markets. When we consider the Nikkei,
the null hypothesis of no association cannot be rejected in three cases, that is, in con-
nection with the Nasdaq, FTSE, and S&P500. But this global period covers both a
period of strong market increases, that is, the dot-com bubble, and a crisis period as
sparked by the subprime episode. Therefore, we calculate statistics for the two sub
periods, 1994-2002 and 2007-2011.

During the former dot-com bubble period, we find higher coefficients/associations
between European markets, with coefficients between 0.36 and 0.46, whereas the co-
efficients between US markets and European markets are lower, between 0.14 for the
DJ/DAX and 0.37 for the CAC/S&P500. In addition, we note that the association is
not different from 0 between the Nikkei and all other markets except the Dow Jones
(0.14).

In contrast, the subprime crisis period presents several different features. First, the
tests suggest rejecting the null hypothesis of no association. Second, the “correlations”
among European markets are very high, including 0.56 between DAX and CAC, and
0.50 among theses two markets indices and FTSE. Third, the association coefficients
between the Nikkei and other indices are no longer null with values between 0.20 and
0.32 with the DAX, CAC, FTSE, and DJ, and around 0.14 with the Nasdaq and
S&P500.

(INSERT table 3)
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5 Conclusion

We propose a method to detect the abnormal states in stock market returns. We
study seven indices, over the period January 1991 (first week) — December 2011 (third
week). We estimate three possible states: a high rate of return and a low return, both
to which constitute abnormal returns with high volatility, and an intermediate state.
To determine the state of the markets at each date, we have estimated the parameters
of the return process using MCMC method (Metropolis-Hastings algorithm). With
Cramer’s V coefficient, we deduce the association coefficients or “correlations” among
the different states of the major stock exchange markets around the world. First, we
show that the associations are globally stronger during the subprime crisis than during
the dot-com bubble period. Second, among Furopean markets, we obtain higher
Cramer’s V, regardless of the period. Third, the association between the Nikkei and
the other markets indices is systematically lower, confirming a relative disconnection
of the Japanese market from other developed economy markets.
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Figure 1: DAX quotes (top) and weekly returns (bt 12/31/1991-12/19/2011
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Figure 2: CAC40 quotes (top) and weekly returndt@mo) 12/31/1991-12/19/2011
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Figure 3: FTSE quotes (top) and weekly returnst@mo} 12/31/1990-12/19/2011
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Figure 4: NIKKEI quotes (top) and weekly returnstfbm) 12/31/1990-12/19/2011
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Figure 5: S&P500 quotes (top) and weekly returmagt@on) 12/31/1990-12/19/2011
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Figure 6: Dow Jones quotes (top) and weekly ret(lsagom) 12/31/1990-12/19/2011
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Tablel : Summary statistics of stock returns (X100
Period 12/31/1990-12/25/2011

Stafistic  pax  CAC40  FTSE  NIKKEI S&P500 2%V Nasdag

Jones

Mean 0.1275 0.0617 0.0662 -0.0464 0.1231 0.1374 0.2219
Min 0.4510 0.2917 0.2075 -0.0382 0.2308 0.2717 0.3813
Max 15.7056  13.6505  11.2940  11.1067  11.3559  10.7449 1400.
Median -25.6135  -26.3169  -24.0127  -27.4312  -20.0837  -B286 -29.1008
Std. Dev. 3.3519 3.1616 2.5966 3.1897 2.4125 2.3299 3.7327
Skewness  -0.6078  -0.7030  -0.8640  -0.5456  -0.7305  -0.6648 614B
Kurtosis 8.1653 8.7015  11.35396  8.2784 9.6639 9.0267 8.3408
Jarque-Bera 128473+ 1573.35* 3320.35* 1325.54* 212355¢ 1737.85¢ 1371.41*
Test (a) (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)
Obs. 1095 1095 1095 1095 1095 1095 1095

(@) p-values are in parentheses. * indicates jbeti@n of the null hypothesis of a normal disttibn



Table 2: Transition Matrices of States

Dow Jones S1

SP 500

Nasdaq

FTSE

NIKKEI

CAC

DAX

S2
S3

S1
S2
S3

S1
S2
S3

S1
S2
S3

S1
S2
S3

S1
S2
S3

S1
S2
S3

Low State 1 Int. State 2 High State 3
0.3600328 0.3922399 0.2477273
0.0543472 0.9078343 0.0378185
0.3500569 0.3266098 0.3233333
0.4117325 0.3760589 0.2122086
0.0501945 0.9069498 0.0428557
0.2844652 0.3443377 0.3711971
0.4286232 0.3271078 0.2442690
0.0723289 0.9067297 0.0209414
0.3091477 0.4306618 0.2601905
0.3097893 0.3901177 0.3000930
0.0529152 0.9053966 0.0416882
0.2548288 0.3616358 0.3835354
0.2244978 0.5685314 0.2069708
0.0269065 0.9149763 0.0581172
0.2109083 0.2309196 0.5581721
0.3184206 0.4178978 0.2636816
0.0780773 0.8912417 0.0306810
0.3374663 0.4571611 0.2053726
0.4191528 0.3240655 0.2567818
0.0564527 0.9119077 0.0316397
0.2829299 0.3923040 0.3247660

Note: S1, Low State; S2, Intermediate State; Sghidtate.



Table 3: Measure of association between statesadfets: Cramer’'s V
Global period: 12/31/1990-12/25/2011
Index DJ S&P500 NASDAQ FTSE NIKKEI DAX CAC

DJ
S&P500 0.2311
NASDAQ 0.2193 0.1750

FTSE 0.2492 0.2380 0.1622

NIKKEI 0.1395 0.0782* 0.0760* 0.0851*

DAX 0.2567 0.2506 0.1344 0.4020 0.1884

CAC 0.2393 0.2070 0.1917 0.3951 0.1260 0.4269

Dot-com bubble period: 05/12/1994 — 09/30/2002

Index DJ S&P500 NASDAQ FTSE NIKKEI DAX CAC

DJ

S&P500 0.2442

NASDAQ 0.2275 0.2515

FTSE 0.1715 0.2500 0.1269

NIKKEI 0.1431 0.0836* 0.1010* 0.0379*

DAX 0.1435 0.3202 0.1041* 0.3633 0.1572

CAC 0.1873 0.3755 0.2020 0.4151 0.0827* 0.4641
Subprime and euro crisis period: 07/09/2007 — 1J2(2BL

Index DJ S&P500 NASDAQ FTSE NIKKEI DAX CAC

DJ

S&P500 0.2279

NASDAQ 0.2756 0.1548

FTSE 0.3747 0.2573 0.3137

NIKKEI 0.2020 0.1448 0.1413 0.2278

DAX 0.4038 0.2943 0.2903 0.4941 0.3231

CAC 0.2922 0.1903 0.3050 0.4943 0.2382 0.5625

Note: * indicates that the null hypothesis, i.ed&pendence between the variables/states, is ruted]

(,\/2 statistic) at the 5% level.



