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Abstract

Radner (Econometrica 47: 655-678, 1979) introduces a general equilibrium model

of asymmetric information where "agents have a ‘model’or ‘expectations’of how

equilibrium prices are determined". They would only infer private information of

other agents from comparing actual prices and price forecasts with their theoretical

values at a price revealing equilibrium. De Boisdeffre (Economic Theory Bulletin

4(1), 2016) shows that agents having private anticipations and no price model may

still update their beliefs from observing trade on financial markets, until all arbi-

trage is precluded. The informational refinement consists in successively eliminating

anticipations, which would grant an unlimited arbitrage, if realizable. Thus, agents

simply observe, respond and learn from arbitrage opportunities on portfolios, as they

would do on actual markets. This model is consistent with all kinds of assets and

uncountably many forecasts. We now study markets, which preclude arbitrage, and

show the information markets may convey depends on the span of asset payoffs in

agents’commonly expected states. We provide conditions, under which markets are

non informative, or, typically, partially or fully revealing.

Key words: anticipations, inferences, perfect foresight, rational expectations, fi-

nancial markets, asymmetric information, arbitrage.
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1 Introduction

Asymmetrically informed agents may infer information from observing prices or

trade volumes on markets. Thus, in the Radner (1979) rational expectation setting

“agents have a ‘model’or ‘expectations’of how equilibrium prices are determined”.

They may infer private information of other agents from comparing actual prices and

price expectations with their theoretical values at a price revealing equilibrium. Yet,

equilibrium may fail to exist. Existence in Radner’s model only holds generically.

Hereafter, we drop both Radner’s (1972, 1979) classical assumptions that agents

have rational expectations and a perfect foresight of future prices. Instead, we con-

sider a two-period model with uncountably many states, also called anticipations,

expectations or forecasts. The state space captures the exogenous uncertainty, stem-

ming from nature’s play over future events, and also, typically, an endogenous un-

certainty, resulting from the fact that agents’characteristics, forecasts and beliefs

may be private. Agents’forecasts form idiosyncratic subsets of the state space.

Assets of any kind may be exchanged at the first period, whose payoffs, at the

second, are state dependent. Starting from their idiosyncratic sets of anticipations,

agents may update their beliefs from observing prices or trade opportunities on

portfolios, as in De Boisdeffre (2016, [3]). Namely, they may narrow down their

expectation sets, in finitely many steps, by successively eliminating forecasts, that

would grant them an unlimited arbitrage opportunity, if correct.

The current paper studies the payoff structure of arbitrage-free markets, and

the information markets may reveal. It shows this information depends on the span

of asset payoffs in agents’commonly expected states. It provides conditions, un-

der which markets are non-revealing or, typically, partially or fully revealing. In
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particular, when agents have perfect foresight, dropping Radner’s (1979) rational

expectation assumption to deal with asymmetric information not only restores the

full existence property of equilibrium, along De Boisdeffre (2007), but provides

insights on the information agents reach at equilibrium.

The paper is organized as follows: Section 2 recalls the model and results of De

Boisdeffre (2016, [3]). Section 3 studies the information markets may reveal and

characterizes arbitrage-free financial structures, when agents’expectation sets are

all finite. Section 4 generalizes the results to the general model.

2 The model

2.1 The information and financial structures

We consider a pure-exchange economy with two periods (t ∈ {0, 1}) and finitely

many agents, i ∈ I := {1, ...,m}, having uncertainty at the first period about which

state, ω, will prevail tomorrow out of a state space, denoted by Ω. This set, Ω,

stands for any relatively open subset with cardinality of the continuum of a metric

space (e.g., Ω :=]0, 1[). States are also called forecasts, anticipations or expectations.

At t = 0, each agent, i ∈ I, receives a private information signal, in the form

of a compact sub-set, Ωi, of Ω, informing her that tomorrow’s state will be in Ωi.

She then elects a consistent probabilty distribution on (Ω,B(Ω)), called her belief,

where B(Ω) denotes the Borel sigma-algebra of Ω.

The information structure, (Ωi), is given throughout, and such that Ω := ∩i∈IΩi

is non-empty. It may be refined along the following Definition:
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Definition 1 A collection, (Pi) := (Pi)i∈I of compact subsets of Ω is said to be an

anticipation structure, or structure, if:

(a) ∩mi=1Pi 6= ∅.

Their set is denoted by AS. A structure, (P ′i ) ∈ AS, is said to refine, or to be a

refinement of (Pi) ∈ AS, and we denote it by (P ′i ) ≤ (Pi), if:

(b) P ′i ⊂ Pi, ∀i ∈ I.

A refinement, (P ′i ) ∈ AS, of (Pi) ∈ AS, is said to be self-attainable if:

(c) ∩mi=1P
′
i = ∩mi=1Pi.

For every ε > 0, every ω ∈ Ω and every probability distribution, π, on (Ω, B(Ω)), we let

B(ω, ε) := {ω ∈ Ω : |ω−ω| < ε}, and P (π) := {ω ∈ Ω : π(B(ω, ε)) > 0,∀ε > 0} be the support

of π. The m probabilities, (πi), on (Ω, B(Ω)), are said to be a structure of beliefs if

(P (πi)) is an anticipation structure. Then, (πi) is said to support (P (πi)) ∈ AS. Given

(Pi) ∈ AS, the set of stuctures of beliefs, which support (Pi), is denoted by Π[(Pi)].

The above specification of information embeds, in particular, De Boisdeffre’s

(2007 and 2016, [4]), where information sets are, respectively, finite sets, and com-

pact subsets of {1, ...,K} × RL++, for some integers K and L. In the latter, agents

face an exogenous uncertainty amongst finitely many events, combined with an en-

dogenous uncertainty on consumption prices in RL++, stemming from the fact that

individual characteristics, forecasts and beliefs are all private.

Agents exchange finitely many assets, j ∈ J := {1, ..., J}, at t = 0, whose cash

payoffs, vj(ω) ∈ R, are conditional on the occurence of a state ω ∈ Ω, at t = 1, and

define a row vector, V (ω) = (vj(ω)) ∈ RJ . The mapping ω ∈ Ω 7→ V (ω) is assumed to

be continuous. Agents’positions in assets define portfolios, z ∈ RJ . Given an asset

price, q ∈ RJ , a portofolio, z ∈ RJ , costs q · z units of account at t = 0, and promises

V (ω) · z units tomorrow, in each state, ω ∈ Ω, if ω obtains. We now present arbitrage.
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Definition 2 A price, q ∈ RJ , is said to be a common no-arbitrage price of a structure,

(Pi) ∈ AS, or the structure (Pi) to be q-arbitrage-free, if the following condition holds:

(a) @(i,z) ∈ I × RJ : −q · z > 0 and V (ω) · z > 0, ∀ω ∈ Pi, with one strict inequality;

A structure, which admits a common no-arbitrage price, is called arbitrage-free.

Claim 1 recalls a characterization of common no-arbitrage prices and structures.

Claim 1 Let (Pi) ∈ AS, (πi) ∈ Π[(Pi)] and q ∈ RJ be given, along Definition 1. For

each i ∈ I, we denote by L++
2 (πi) the set of mappings, f : Pi → R, in the Riesz space

L2(πi), such that f(ω) > 0 πi-almost surely. The following statements are equivalent:

(i) q ∈ Qc[(Pi)], that is, (Pi) is q-arbitrage free;

(ii) ∀i ∈ I, ∃fi ∈ L++
2 (πi), such that q =

∫
ω∈Pi V (ω)fi(ω)dπi(ω);

Besides, (Pi) is arbitrage-free if and only if it meets the following AFAO Condition:

(iii) @(zi) ∈ (RJ)m :
∑m

i=1 zi = 0, V (ωi) · zi > 0, ∀(i, ωi) ∈ I × Pi, with at least one strict.

Proof The proof is given under Claim 2 in De Boisdeffre (2016, [3]). �

2.2 Informational properties

As long as arbitrage opportunities remain, agents cannot agree on assessing

prices. Yet, they may exchange portfolios and learn from trade, along Claim 2. Let:

• A1
i = ∅ and Ω1

i := Ωi, for each i ∈ I;

• with Ani and Ωni defined at step n ∈ N, for each i ∈ I, we let, for each i′ ∈ I:

An+1
i′ := {ω ∈ Ωni′ : ∃(zi) ∈ (RJ)m,

∑m
i=1 zi=0, V (ω)·zi′>0, V (ωi)·zi>0, ∀(i, ωi) ∈ I×Ωni }

Ωn+1
i′ := Ωni′\An+1

i′ , i.e., agents rule out expectations, granting an arbitrage.

Claim 2 The sequence, {(Ωni )}n∈N, satisfies the following Assertions:

(i) there exists one coarsest arbitrage-free self-attainable refinement, (Ω∗i ), of (Ωi);

(ii) ∃N ∈ N : ∀n > N,∀i ∈ I, Ωni = Ω∗i .
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Proof The proof is given under Claim 4 in De Boisdeffre (2016, [3]). �

The above inferences, which require no price model, would be made on actual fi-

nancial markets, by agents having incomplete information and operating via private

trade houses, competing to make profits. When applied to the De Boisdeffre (2016,

[4]) model, agents having inferred (Ω∗i ) can always reach equilibrium - shown to exist

whatever the beliefs - if their common anticipations embed a so-called ‘minimum

uncertainty set’, which features an incompressible uncertainty on tomorrow’s com-

modity prices, stemming from agents’private beliefs. It is, therefore, useful to draw

informational implications of agents’inferences and financial strutures. Sections 3

and 4 address these issues, successively in the finite and the general cases.

3 Information markets may reveal with finite anticipations

To simplify exposition, anticipation sets, Ωi (for each i ∈ I), are, at first, finite.

We le (Ω∗i ) 6 (Ωi) be the coarse arbitrage-free refinement of Claim 2, S := ∪i∈I Ωi,

S∗:=∪i∈I Ω∗i and Ω = ∩i∈IΩi. Individual state prices replace mappings in Claim 1-(ii).

We define (for some J∗ 6 J, with a slight abuse in notations) the S×J and S∗×J∗ ma-

trixes, V := (V (ω)) := (vj(ω))j∈{1,...,J},ω∈S and V
∗:= (V

∗
(ω)) := (vj(ω))j∈{1,...,J∗},ω∈S∗ , from

the payoff mapping of Section 2, by costlessly eliminating redundant assets, and:

• Zω:= { z ∈ RJ : V (ω) · z = 0 }, for each ω ∈ S, and Z⊥ω its orthogonal;

• Z∗ω:= { z ∈ RJ
∗
: V ∗(ω) · z = 0 }, for each ω ∈ S∗, and Z∗⊥ω its orthogonal;

• Zi:= ∩ω∈Ωi
Zω, Z =

∑
i∈I Zi, for each i ∈ I, and their orthogonals, Z⊥i , Z⊥ = ∩i∈IZ

⊥
i ;

• Z = ∩ω∈ΩZω, Z∗ = ∩ω∈ΩZ
∗
ω, and their orthogonals, Z⊥ and Z∗⊥;

• Z∗i := ∩ω∈Ω∗i
Z∗ω, , Z∗ =

∑
i∈I Z

∗
i and their orthogonals, Z∗⊥i and Z∗⊥ = ∩ω∈Ω∗i

Z∗⊥i ;
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• Wω, the straight line of RJ , generated by wω := (vj(ω))j∈{1,...,J}, for each ω ∈ S;

• W :=
∑

ω∈ΩWω and their orthogonals, W⊥ω and W⊥.

• We similarly define W ∗ω, w∗ω, for each ω ∈ S∗, W ∗ and orthogonals.

Claim 3 The above vector spaces meet the following Assertions:

(i) Wω = Z⊥ω , ∀ω ∈ S, and W ∗ω = Z∗⊥ω , ∀ω ∈ S∗;

(ii) RJ =
∑

i∈I Z
⊥
i and RJ

∗
=
∑

i∈I Z
∗⊥
i ;

(iii) Z ⊂ Z = W⊥ and Z∗ ⊂ Z∗ = W ∗⊥;

(iv) (Ω∗i ) = (Ωi) if and only if the following condition holds:

(I) @(zi) ∈ (RJ)m :
∑m

i=1 zi = 0, V (ωi) · zi > 0, ∀(i, ωi) ∈ I ×Ωi, with at least one strict ;

(v) If Z = {0}, then, (Ω∗i ) = (Ωi), i.e., (Ωi) is non-revealing (or arbitrage-free);

(vi) If I 6= I ′ = {i ∈ I : Ωi 6= Ω}, (Ω∗i ) = (Ωi) if and only if the below condition holds:

(II): @(i, z) ∈ I ′ × Z : V (ω) · z > 0, ∀ω ∈ Ωi, with at least one strict inequality;

(vii) Assume that I 6= I ′, Z 6= {0} and, costlessly for some J1 6 J, that the first J th1

assets yield a Hamel basis of Z. If {vj(ω)}j∈{1,...,J1},ω∈S\Ω ⊂ R+, then, Z∗ = Z∗ = {0}

and, moreover, (Ωi) is fully-revealing if {0} 6= {vj(ω)}j∈{1,...,J1}, for each ω ∈ S\Ω.

Proof (i) Let ω ∈ S be given. If wω = 0, then Wω = Z⊥ω = {0}. If wω 6= 0, the spaces,

Wω and Z⊥ω , are 1-dimensional and contain wω, i.e., coincide. The rest is alike. �

(ii) The relations (
∑

i∈I Z
⊥
i )⊥ = ∩i∈IZi = {0} and (

∑
i∈I Z

∗⊥
i )⊥ = {0} hold, from the

elimination of redundant assets, hence, RJ =
∑

i∈I Z
⊥
i and RJ

∗
=
∑

i∈I Z
∗⊥
i hold. �

(iii) From the above definitions and Assertion (i), the relations Z⊥ = (
∑

i∈I Zi)
⊥ =

∩i∈I Z⊥i = ∩i∈I(
∑

ω∈Ωi
Z⊥ω ) = ∩i∈I(

∑
ω∈Ωi

Wω) ⊃W = Z⊥ hold. Assertion (iii) follows. �

(iv) Assertion (iv) states the AFAO characterization of Claim 1, above, in the

finite dimensional case, proved directly in Cornet-De Boisdeffre (2002, p. 401). �
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(v) Assume that Z = {0} and, by contraposition, that (Ωi) fails to be arbitrage-

free. From Assertion (iv), there exists (zi) ∈ (RJ)I\{0}, such that
∑m

i=1 zi = 0 and

V (ω) · zi > 0 for every pair (i, ω) ∈ I ×Ω. These joint relations imply V (ω) · zi = 0 for

every (i, ω) ∈ I ×Ω, that is, (zi) ∈ Zm\{0}, contradicting the fact that Z = {0}. This

contradiction proves that (Ωi) is arbitrage-free, i.e., from Claim 3, (Ω∗i ) = (Ωi). �

(vi) Assume, by contraposition, that I 6= I ′, (Ω∗i ) = (Ωi) and Condition (II) of

Assertion (vi) fails. Then, there exists (i, z) ∈ I ′×Z, such that V (ω) ·z > 0 for all ω ∈ Ωi

and
∑

ω∈Ωi
V (ω) · z > 0. One agent, say j ∈ I\I ′ is fully informed. Then, Condition

(I) of Assertion (iv) fails with (zi, zj) = (z,−z), that is, (Ωi) fails to be arbitrage-

free, which contradicts the above relation, (Ω∗i ) = (Ωi). This contradiction shows the

relation (Ω∗i ) = (Ωi) implies Condition (II) to hold. Assume, now, that (Ω∗i ) 6= (Ωi).

From Assertion (iv) and the proof of Assertion (v), there exists (zi) ∈ (Z)m, such that

V (ωi)·zi > 0 for each (i, ωi) ∈ I×Ωi, with one strict inequality, hence, Condition (II)

fails. This proves that Condition (II) implies the relation (Ω∗i ) = (Ωi) to hold. �

(vii) Assertion (vii) stems from Assertion (vi) and redundant asset elimination. �

Claim 3 shows that the information markets may reveal depends on the span of

assets’payoffs in commonly expected states. Thus, ifW = Z⊥ = RJ , financial markets

are non-revealing. In economies where real assets are exchanged and agents have

many common forecasts (including price forecasts), markets are, thus, typically

non-informative (with W = RJ). Contrarily, financial markets insuring primarily

idiosyncratic risks (with W 6= RJ), would typically be fully revealing, if one agent

has full information (along Claim 4-(vii)), or partially revealing otherwise.

We now generalize Claim 3 to the general setting.
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4 Information markets may reveal in the general model

Studying markets’informational properties is eased by the fact that all vector

spaces, define below, are finite, hence, have orthogonal supplements. As above, we

let S :=∪i∈IΩi, S∗:=∪i∈IΩ∗i and derive the mappings V : ω ∈ S 7→ V (ω) := (vj(ω))j∈{1,...,J},ω∈S

and V ∗: ω ∈ S∗ 7→ V (ω) := (vj(ω))j∈{1,...,J∗}, from the one in Section 2, where we obtain

J and J∗ 6 J by eliminating redundant assets, if any.

For each agent, i ∈ I, and every state state, ω, in S or S∗, we define, in the general

model, the vector spaces, Zω, Z∗ω, Wω, W ∗ω, Zi, Z∗i , Z, Z, Z∗, Z
∗ and their orthogonals,

in the same way as in Section 3 for the finite economy. We define the vector spaces,

W := { z ∈ RJ∗ : ∃f ∈ L2(π), along Claim 1, such that z =
∫
ω∈Ω

V (ω)f(ω)dπ(ω) } and,

similarly, W ∗, for any belief, π, with support Ω, and their orthogonals, W⊥ and W ∗⊥.

Claim 4 states the properties of Claim 3, above, for the general model.

Claim 4 The above vector spaces meet the following Assertions:

(i) Wω = Z⊥ω , ∀ω ∈ S, and W ∗ω = Z∗⊥ω , ∀ω ∈ S∗;

(ii) RJ =
∑

i∈I Z
⊥
i and RJ

∗
=
∑

i∈I Z
∗⊥
i ;

(iii) Z ⊂ Z = W⊥ and Z∗ ⊂ Z∗ = W ∗⊥;

(iv) (Ω∗i ) = (Ωi) if and only if the following condition holds:

(I) @(zi) ∈ (RJ)m :
∑m

i=1 zi = 0, V (ωi) · zi > 0, ∀(i, ωi) ∈ I ×Ωi, with at least one strict;

(vi) If I 6= I ′ = {i ∈ I : Ωi 6= Ω}, (Ω∗i ) = (Ωi) if and only if the below condition holds:

(II): @(i, z) ∈ I ′ × Z : V (ω) · z > 0, ∀ω ∈ Ωi, with at least one strict inequality;

(vii) Assume that I 6= I ′, Z 6= {0} and, costlessly for some J1 6 J, that the first J th1

assets yield a Hamel basis of Z. If {vj(ω)}j∈{1,...,J1},ω∈S\Ω ⊂ R+, then, Z∗ = Z∗ = {0}

and, moreover, (Ωi) is fully-revealing if {0} 6= {vj(ω)}j∈{1,...,J1}, for each ω ∈ S\Ω.
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Proof The proof of Claim 4 is similar to that of Claim 3 and left to the reader.

Similar arguments apply, due, in particular, to the fact that all above vector spaces

have a finite Hamel basis, in either sets {V (ω)}ω∈S or {V ∗(ω)}ω∈S∗ . �

Claims 3 and 4 state simple characterizations of arbitrage-free structures. In

economies where real assets may be traded and the state space embeds an endoge-

nous uncertainty on prices, such as De Boisdeffre’s (2016, [4]), markets would be

non-revealing (with W = RJ), because the set of common forecasts, Ω, and the span

of payoffs are typically large. In the latter economy, equilibrium exists if the set

Ω includes a so-called minimum incertainty set, ∆, which features the uncertainty

agents could face on prices, because their forecasts and beliefs are private. This set,

∆, embeds, in particular, all stantard perfect foresight equilibrium prices. Studying

its cardinality, would provide additional insights on the information markets convey.
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