
HAL Id: hal-02614070
https://univ-pau.hal.science/hal-02614070

Submitted on 20 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fuzzy multi-objective optimization for Ride-sharing
Autonomous Mobility-on-Demand Systems

Rihab Khemiri, Ernesto Expósito

To cite this version:
Rihab Khemiri, Ernesto Expósito. Fuzzy multi-objective optimization for Ride-sharing Autonomous
Mobility-on-Demand Systems. 15 th International Conference on Software and Data Technologies,
Jul 2020, Paris, France. �hal-02614070�

https://univ-pau.hal.science/hal-02614070
https://hal.archives-ouvertes.fr


Fuzzy multi-objective optimization for Ride-sharing Autonomous 

Mobility-on-Demand Systems 

Rihab Khemiri1, Ernesto Exposito 1  
1Univ Pau & Pays Adour, E2S UPPA, LIUPPA, EA3000, Anglet, 64600, France  

{rihab.khemiri, ernesto.exposito}@univ-pau.fr 

Keywords: Ride-sharing Autonomous Mobility-on-Demand systems, multi-objective possibilistic linear programming, 

Fuzzy logic, Goal Programming, dispatching, rebalancing. 

Abstract: In this paper, we propose a novel three-phase fuzzy approach to optimize dispatching and rebalancing for 

Ride-sharing Autonomous Mobility-on-Demand (RAMoD) systems, consisting of self-driving vehicles, 

which provide on-demand transportation service, and allowing several customers to share the same vehicle at 

the same time. We first introduce a new multi-objective possibilistic linear programming (MOPLP) model for 

the problem of dispatching and rebalancing in RAMoD systems considering the imprecise nature of the 

customer requests as well as two conflicting objectives simultaneously, namely, improving customer 

satisfaction and minimizing transportation costs.  Then, after transforming this possibilistic programming 

model into an equivalent crisp multi-objective linear programming (MOLP) model, the Goal Programming 

(GP) approach is used to provide an efficient compromise solution. Finally, computational results show the 

practicality and tractability of the proposed model as well as the solution methodology.

1 INTRODUCTION  

Nowadays, urban systems are characterised by the 

expansion of cities and by the growth of their 

population. This affects the current mobility trends 

marked by the continued growth of demand for 

personal mobility as well as the increasing of 

privately owned automobile.  

This trend leads to many social and environmental 

severe problems including traffic congestion, 

increased travel times, air pollution as well as the 

growth of the greenhouse gas emissions, especially in 

the densely populated areas with limited space for 

parking and road infrastructure. 

To deal with these problems, an efficient 

transportation system that responds to the mobility 

demands of people and that is more sustainable, 

reliable and efficient becomes essential. 

In this context, Autonomous Mobility-on-

Demand (AMoD) systems represent a very promising 

solution in meeting these needs. This emerging 

system is a fleet of self-driving electric vehicles 

designed to provide personal on-demand 

transportation service for passengers. AMoD systems 

offer many potential benefits such as minimizing 

pollution, avoiding the need for further routes and 

parking spaces. Moreover, autonomous vehicles may 

be safer than traditional vehicles as they can avoid 

accidents due to human errors, well known to be the 

main reason of traffic accidents. 

These several advantages have led recently a 

number of works to investigate the potential of 

AMoD systems. A key challenge in this context is the 

design of dispatching strategies that entail to 

optimally assign the customers to vehicles, thus 

satisfying the customer's request at each given station 

and at each time period. To do this, the number of 

vehicles available at each station and each period 

must satisfy customer requests.  

Nevertheless, when some stations are more in 

demand than others, at the end of the trip, vehicles 

will tend to be accumulated at these stations and 

become exhausted at others. This can lead to a spatial-

temporal distribution of vehicles, which will probably 

not be in line with the distribution of the customer 

requests in the following periods. 

Therefore, it becomes inevitable to devise 

efficient policies to deal with this problem of 

imbalance. Such rebalancing policies entail 

redistributing empty vehicles from overload stations 

to underloaded stations. However, AMoD systems 

might aggravate the congestion problem given the 

presence of these empty vehicles (Tsao et al., 2019). 



This has prompted some AMoD systems to integrate 

the emerging transportation paradigm of ride-sharing 

to improve traffic flow. 

Another important challenge is to deal well with 

rapidly varying customer requests, given several real-

world constraints. Accordingly, it becomes 

mandatory to forecast customer requests to compute 

efficient strategies, having the robustness to 

inaccuracies and uncertainties due to several external 

factors such as traffic and weathers. 

These various challenges have recently led to a 

considerable amount of studies to address the 

potential of AMoD systems. However, the majority 

of these researches do not allow easy to account for 

real-world phenomena such as the uncertain futures 

of customer demand, which limits their practical 

applications.  

Although a few recent studies have been 

developed to cope with demand uncertainty, the latter 

are usually based on probability distributions, which 

requires knowledge of historical data. When such 

information was lacking, the Fuzzy Set Theory 

(Zadeh, 1978) and the Possibility Theory (Dubois and 

Prade, 1988; Zadeh, 1965) can help to handle 

epistemic uncertainty. 

To the best of our knowledge, fuzzy logic has 

never been used to model the uncertainty in the 

context of AMoD systems. 

The aim of this paper is to present a novel fuzzy 

approach for dispatching and rebalancing RAMoD 

systems. Specifically, the paper has three important 

contributions. First, it introduces a MOPLP model 

which contemplates the uncertainty affecting future 

demand. Two primary goals are considered 

simultaneously in the MOPLP model, namely, 

improving customer satisfaction and minimizing 

transportation costs. Second, in order to find an 

efficient compromise solution to the proposed 

MOPLP model, we suggest the exploitation of the 

well-known goal programming approach (Charnes 

and Cooper, 1961), which integrates the desire of the 

decision-maker with the logic of optimization to 

satisfy various goals (Pati et al., 2008). Third, we 

demonstrate the applicability of our proposed 

approach through numerical computations. 

The remainder of this article is organized as 

follows. In the next section, we briefly review 

existing works and present their limitations. Section 

3 illustrates some fundamental concepts used in this 

work. In section 4, we present the considered 

dispatching and rebalancing problem in RAMoD 

systems. In section 5, the proposed multi-objective 

possibilistic linear programming model for RAMoD 

systems is developed. In section 6, we exploit 

appropriate strategies for converting the proposed 

fuzzy model into an equivalent crisp one. Section 7 

aims at finding an efficient compromise solution for 

the problem, thus exploiting the goal programming 

approach. We validate the proposed three-phase 

approach through numerical tests being exploited in 

Section 8. Finally, section 9 concludes the paper and 

provide future directions. 

 

2 RELATED WORK 

The problem of dispatching and rebalancing has 

received great attention over the last few years. The 

proposed studies can be classified into three main 

approaches, namely, simulation-based models; 

queuing-theoretical models and model predictive 

control (MPC) algorithms. 

Simulation-based models (Hörl et al., 2018; Levin 

et al., 2017; Maciejewski et al., 2017; Javanshour et 

al., 2019) can accurately describe AMoD systems, but 

being unable to provide optimal solutions.  

Queuing-theoretical models (Zhang and Pavone, 

2015; Zhang and Pavone, 2016; Iglesias et al., 2019; 

Belakaria et al., 2019) have the advantage of 

capturing the uncertainty of the customer requests. 

These models are based on the Jackson network 

concept (Serfozo, 2012), in which all arrivals at each 

queuing station should follow a Poisson process 

(Moran, 1952). This concept assumes constant rates 

of occurrence of each random variable. That is, if the 

random variable is customer’s arrival times, it 

assumes customers arrive at stations at a constant rate 

(Javanshour et al., 2019). However, in reality, the 

customer arrival process for the various origin–

destination pairs is time-variant nature. Therefore, we 

can deduce that the Queuing-theoretical models 

prevent the AMoD system modelers from capturing a 

realistic vision into these systems.  

In contrast, Model predictive control (MPC) 

algorithms (Zhang et al., 2016; Alonso-Mora et al., 

2017 ; Iglesias et al., 2018 ; Tsao et al., 2018 ; Tsao 

et al., 2019) can efficiently accommodate time-

varying future demand. However, the majority of 

existing MPC algorithms assume that future customer 

demand is deterministic and the rare studies that 

accommodate uncertainty mainly suggest the use of 

stochastic programming. The probabilistic reasoning 

approaches are usually based on evidence/data 

recorded in the past. However, in many practical 

situations, this evidence/data is unavailable or 

subjectively specified, and the standard probabilistic 

approach would not be appropriate to deal with them. 

Thus, Fuzzy set theory and possibility theory provide 

an appropriate framework to handle uncertainty in 



such situations. Accordingly, it has been successfully 

used  to model and treat uncertainties in many fields 

such as  supply chain planning (Khemiri et al., 2017; 

Nemati and Alavidoost, 2019; Lima-Junior and 

Carpinetti, 2020), Business Process modelling 

(Yahya et al., 2017; Sarno et al., 2020), web services 

(Rhimi et al., 2016; Bagga et al., 2019), image 

processing (Ali and Lun, 2019; Nagi and Tripathy, 

2020), etc.  

Despite all this progress, the fuzzy logic and the 

possibility theory have never been exploited to handle 

uncertainties in AMoD systems.  

To the best of our knowledge, this paper is the first 

one to leverage the strengths of such techniques and 

introduce a novel strategy for solving the dispatching 

and rebalancing decisions problem with imprecise 

travel demand in RAMoD systems. 

In the next section, the basic concepts of the fuzzy 

logic are provided. 

 

3 THEORETICAL 

BACKGROUND 

This section briefly outlines the fuzzy set theory, the 

triangular fuzzy numbers and the goal programming 

method used in this paper. 

3.1 Fuzzy set theory  

Fuzzy set theory was originally introduced by Zadeh 
(Zadeh, 1965) to deal with the imprecision, 
uncertainty, and vagueness of subjective information. 

From a mathematical point of view, a fuzzy set is 

characterized by a membership function. Such a 

function attributes to each object in the fuzzy set a 

specific grade of membership ranging from zero to 

one. 

In this study, triangular fuzzy numbers are used to 

represent the imprecise data. As shown in Figure 1, a 

triangular fuzzy number 𝑍
~

 can be represented by the 

triplet (a, b, c) where a, b, c are the most pessimistic, 

the most possible and the most optimistic value of 𝑍
~

. 

The triangular fuzzy number 𝑍
~

 can be represented 

by the following membership function: 

 

μZ̃(x) =

{
 
 
 
 

 
 
 
 

  
  0,    x ≤ a                  

 
x−a

b−a
  ,      a < x ≤ b

 

 
c−x

c−b
   ,      b < x ≤ c

 
  0      ,          x > c      

            

                               (1) 

 

Figure 1: The triangular possibility distribution of 𝑍
~

 

3.2    Goal programming 

There are several methods in the scientific literature 

for dealing with multi-objective models. Among 

them, the goal programming (GP) method which is 

originally developed by Charnes et al. (Charnes and 

Cooper, 1961) and successfully used in several 

problems (Lee and Kim, 2000; Amin et al., 2019; 

Colapinto et al., 2020). 

The popularity of this method is based on its 

mathematical flexibility, its robustness, and its 

accuracy. 

The goal programming method consists in 

introducing for each criterion a goal to be achieved 

and to identify the solution that minimizes the sum of 

the deviations from these goals. 

Several variants of the GP have been proposed in 

the literature. Here we use the Weighted Goal 

Programming (WGP) method. The WGP can be 

represented as follows: 

   Min
x∈A

∑( wi
+ δi

+ + wi
−δi

−)

n

i=1

 

 
Subject to: 
 
Cl(x) ≤ 0 ,    l = 1,2, . . , L 
 

  Fi(x) - δi
++ δi

−  = gi , i = 1,2, . . , n 
 

 δi
+, δi

− ≥ 0 
 

 

(2) 

Where: 

 Cl(x) is the set of constraints. 

  δi
+  and  δi

−  are respectively the positive and 

negative deviation from the target value gi. 
 wi

+  and wi
−  are respectively the weight 

attached to the positive and negative deviation. 

 Fi(x) is the evaluation of the solution x against 

the criterion i. 

 𝐠𝐢  is the aspiration level of the objective 

function i. 



4 PROBLEM FORMULATION 

Despite the major progress that has occurred in recent 

years, these various initiatives do not take into 

account the specificities of the low-density areas. In 

the Tornado Mobility research project (Tornado, 

2020), that we are working on, the objective is to 

study the interaction between autonomous vehicles 

and connected intelligent infrastructures for serving 

mobility in low population density areas. 

For this purpose, we consider an urban area 

discretized into multiple stations and served by 

several on-demand vehicles. Each vehicle can serve 

one or more passengers without exceeding their 

capacity. The considered fleet of vehicles is 

characterized by a high level of heterogeneity: 

transportation costs, speeds, and capacities of each 

vehicle can be different.  

In the context of Tornado project, customers first 

request transportation from a pickup to a drop off 

location in the predefined urban area via a mobile 

application. 

If there are available vehicles, one of them will be 

dispatched to drive this passenger towards its 

destination.  Instead, if there are no available vehicles, 

the user instantly leaves the system (i.e. without any 

waiting time). Therefore, as in (Zhang and Pavone, 

2016; Iglesias et al., 2019), our RAMoD system 

operate according to the passenger loss model. Such 

a model is well suited for systems where a high degree 

of service is desired (Iglesias et al., 2019). 

At the end of the trip, the vehicle could be 

dispatched to accomplish other mobility demands.  It 

could also rebalance itself or even park in the drop-

off station for a certain period of time.  

For simplicity, it is assumed that each station has 

sufficient space so that vehicles can immediately be 

parked and recharged at all times. 

Unlike traditional approaches, the proposed 

model does not assume complete knowledge about 

future customer demand; instead, it assumes that such 

critical parameters are estimated by the decision-

maker using Triangular fuzzy numbers.  

Finally, it is assumed that the time is discretized 

into an ordered set of time periods. 

To deal with this challenging problem, we devise 

a three-phase approach, where the main steps are 

presented in Figure 2 and detailed in the following 

sections. 

 

 

 

 

 

Figure 2: Framework of the proposed approach 

5 PHASE I: PROPOSED MULTI 

OBJECTIVE POSSIBILISTIC 

LINEAR PROGRAMMING 

MODEL 

5.1 Notation  

 The set of indices 

₋ S: Number of stations (s = 1, 2, …, S). 

₋ V: Number of vehicles (v = 1, 2… V). 

₋ T: Number of time periods (t = 1, 2…, T). 

 Decision variables 

₋ Missv,t : Binary variable indicating if vehicle 

v is on mission during period t. 

₋ Parkv,t,s: Binary variable indicating if 

vehicle v is parked in station s during period 

t. 

₋ Miss_Tv,s1,s2,t1,t2: Binary variable indicating 

if vehicle v is on customer transport mission 

traveling from station s1 to station s2 

beginning at period t1 and arriving at period 

t2. 

₋ Miss_Rv,s1,s2,t1,t2: Binary variable indicating 

if vehicle v is on a rebalancing mission 

traveling from station s1 to station s2 

beginning at period t1 and arriving at period 

t2. 

₋ S_Crt,s1,s2: The number of satisfied customer 

requests traveling from station s1 to station 

s2 departing at time period t. 

 



 Certain parameters: 

₋ Dists1, s2: distance between stations s1 and s2 
(considering the shortest way). 

₋  Capv: Transport capacity of the vehicle v. 
₋ SPv: speed of the vehicle v. 

₋ Tr_costv: transportation cost of the vehicle v. 

₋ Local_initv,s: represents the initial 

availability of vehicle v at station s. If 

vehicle v is available at station s in the first 

periode, Local_initv,s =1 and 0 otherwise. 

 Fuzzy parameters: 

₋ 𝑪𝒓
~

t,s1,s2: number of customer requests who 

wish to travel from station s1 to station s2 

departing at time period t. 

5.2  Objective functions 

 Objective 1: Improving customer satisfaction, 

which is to minimize the number of lost 

customer requests. 

 

Minimize LCr
~

 = ∑ ∑ 𝐶S
s1,s2=1

T
t=1 r

~
t,s1,s2  - S_Crt,s1,s2 (3)  

 

 Objective 2: Minimizing the overall 

transportation cost. 

 

Minimize TC= ∑  ∑ ∑ TrV
v=1

S
s1,s2=1

T
t1,t2=1 _costv 

*(Miss_Tv,s1,s2,t1,t2 + Miss_Rv,s1,s2,t1,t2 )* Dists1, s2 

  (4) 

5.3 Model constraints 

S_Crt, s1, s2  ≥ 0 and integer ∀t , ∀s1, s2 ϵ [1, S] 

 

(5) 

Missv,t , Parkv,t,s , Miss_Tv,s1,s2,t1,t2 , 

Miss_R v,s1,s2, t1, t2   ϵ [0,1]  ∀t, v, s, s1, s2, t1, t2 

 

(6) 

Equations (5) and (6) guarantees the non-
negativity of the various decision variables: S_Crt,s1,s2   

is an integer, while other variables are binary. 
 

∑ PS
s=1 arkv,t, s   + Miss v, t = 1    ∀v, t 

 

 

(7) 

Equation (7) models the two possible states each 
autonomous vehicle can take namely parked at a 
station and be on a mission from one station to 
another. On the other hand, this constraint ensures 
that a vehicle can have only one state at any one time. 

 

Missv,t = ∑ ∑ Mt1,t2≤t
S
s1,s2=1 iss_Tv,s1,s2,t1,t2 

+ Miss_Rv,s1,s2,t1,t2      ∀v, t 

 

(8) 

When a vehicle is on a mission, two possible 
actions can be achieved i) transport one or more 
customers from one station to another, and ii) travel 
without customers for rebalancing the system. These 
actions are modeled using equation (8), which also 
guarantees that the vehicle can only perform one 
action at a time. 

  

Miss_Rv,s1,s2,t1,t2 ≤ Parkv,t1-1,s1+∑ Ms3≠s1 iss_Rv,s3,s1,t3,t1-1 

                                            +∑ Ms4≠s1 iss_Tv,s4,s1,t4,t1-1 

∀ v, s1, s2, t1>1, t2 = t1 + (Dists1,s2/ SPv),  

t3= t-(Dists3,s1/SPv ) -1, t4 = t1-(Dists4,s1/SPv)-1       (9) 

 

Miss_Tv,s1,s2,t1,t2 ≤ Parkv,t1-1,s1+∑ Ms3≠s1 iss_Rv,s3,s1,t3,t1-1 

+∑ Ms4≠s1 iss_Tv,s4,s1,t4,t1-1 

∀ v, s1, s2, t1>1, t2 = t1 + (Dists1,s2/ SPv), 

t3=t1-(Dists3,s1/SPv )-1, t4 = t1-(Dists4,s1/SPv)-1     (10) 

 
When vehicle v is on a mission traveling from 

station s1 to station s2 beginning at period t1, it is 
necessary that v is physically located in station s1 at 
the beginning of period t1. In other words, either the 
vehicle v i) arrived at a station during the last period 
(i.e. Miss_Rv,s3,s1,t3,t1-1=1  Or Miss_Tv,s4,s1,t4,t1-1 =1 ) , or 
 ii) parked at a station during the last period (i.e. 
Parkv,t-1,s1 =1 ). The equations (9) and (10) ensure that 
this constraint is respected respectively for 
rebalancing missions and customer transport 
missions. 
 

Parkv,t,s ≤ Parkv, t-1,s + ∑ Ms1≠s iss_Rv,s1,s,t1,t-1 

+∑ Ms2≠s iss_Tv,s2,s,t2,t-1 

∀v, s, t >1, t1=t-(Dists1,s / SPv )-1, 

t2=t+(Dists2,s /SPv)-1 

 

 

(11) 

Equation (11) guarantees that if a vehicle v is 
parked at a station s during a time period t (i.e. Parkv,t,s 
=1), it is necessary that it be physically located in s at 
the beginning of t (i.e. Parkv,t-1,s + Miss_Rv,s1,s,t1,t-1 + 
Miss_Tv,s2,s,t2,t1-1 =1). 

 
Parkv,t,s + Miss_Tv,s,s1,t,t1 + Miss_Rv,s,s2,t,t2 ≤ Local initv,s 

∀v, s, t=1, s1, s2, , t1=t+(Dists,s1 / SPv ), 

t2=t+(Dists,s2 / SPv ) 

 

(12) 

Equation (12) indicates that a vehicle may only be 
parked in a station s during the first period (i.e. 
Parkv,1,s =1) if it is initially available at this station (i.e. 
Local_init v,s =1). Besides, a vehicle v may only travel 
on a rebalancing mission (i.e. Miss_Rv,s,s1,1,t1=1) or a 
customer(s) transport mission (i.e. Miss_Tv,s,s1,1,t1=1) 
if it is initially available at this station 
(Local_initv,s=1).  



S_Crt1,s1,s2  ≤   ∑ MV
v=1 iss_Tv, s1, s2, t1, t2  *  Cap v 

∀s1, s2, t1, t2= t1 + (Dists1,s2 /SPv) 

 

(13) 

Equation (13) ensures that the number of satisfied 
customer requests traveling from station s1 to station 
s2 departing at time period t1 can not exceed the total 
capacity of the vehicles transporting customers from 
station s1 to station s2 beginning at period t1. 

 

S_Crt, s1, s2     ≤ Cr
~

t, s1, s2    ∀t, s1, s2 

 

(14) 

Finally, equation (14) guarantees that vehicles 
transporting customer(s) from station s1 to station s2 
beginning at time period t cannot transport more 
customers than it has been requested. 

In this study, it is assumed that the imprecise 
customer demand in the first objective function and 
constraint (14) is modeled using a triangular-shaped 
possibility distribution. As explained in section 3, 
triangular possibility distribution 𝐶𝑟̃ can be 
represented by the triplet (Crp, Crm, Cro) where Crp, 
Crm and Cro are the most pessimistic, the most 
possible and the most optimistic value of 𝐶𝑟̃. 

6 PHASE II: STRATEGY FOR 

PROCESSING THE FUZZINESS 

CUSTOMER REQUESTS 

6.1 Treating the imprecise objective 
function 

Given the imprecise customer’s request coefficients 

in the first objective function, it is generally not 

possible to determine an ideal solution to the problem 

constrained by (3)-(14). 

In the scientific literature, several approaches for 

identifying compromise solutions are proposed 

(Luhandjula, 1989; Sakawa and Yano, 1989; Tanaka 

and Asai, 1984; Tanaka et al., 1984; Lai and Hwang, 

1992). As mentioned by Hsu and Wang in (Hsu and 

Wang, 2001), the first four approaches (Luhandjula, 

1989; Sakawa and Yano, 1989; Tanaka and Asai, 

1984; Tanaka et al., 1984) are based on restrictive 

assumptions and are generally difficult to implement 

in practice, we then use Lai and Hwang's approach 

(Lai and Hwang, 1992; Liang, 2006).  

Since the imprecise customer demand has 

triangular possibility distributions, the 𝐿𝐶𝑟
~

 objective 

function would also have a triangular possibility 

distribution. This imprecise objective is represented 

by the three important points (LCrp, 0), (LCrm, 1) and 

(LCro, 0), geometrically. Therefore, minimizing the 

fuzzy objective can be achieved by pushing these 

critical points in the direction of the left-hand side. 

According to Lai and Hwang’s approach solving 

this problem becomes the process of minimizing 

LCrm, maximizing (LCrm - LCrp) and minimizing 

(LCro - LCrm). In this way, our first objective function 

can be transformed into a multiple crisp objective as 

follows: 

 

Minimize Z1=LCrm 

 

LCrm = ∑ ∑  S
s1,s2=1

T
t=1 Crt,s1,s2

m
 - S_Crt,s1,s2 

 

(15) 

Maximize Z2 = LCrm - LCrp 

 

LCrm - LCrp =∑ ∑  S
s1,s2=1

T
t=1 (Crt,s1,s2

m - Crt,s1,s2
p

) 

- S_Crt,s1,s2            (16)             

 

Maximize Z3 = LCro - LCrm 

 

LCro - LCrm =∑ ∑  S
s1,s2=1

T
t=1 (Crt,s1,s2

o - Crt,s1,s2
m ) 

                                                - S_Crt,s1,s2             (17) 

  

6.2    Treating the fuzzy constraint 

Recalling that equation (14) considers the situation 

in which the crisp left-hand side is compared to the 

fuzzy right-hand side. In this study, we implement the 

well-known weighted average method for dealing 

with this situation and approximating the 𝐶𝑟
~

 

parameter by crisp number. This method is originally 

introduced by (Lai and Hwang, 1992) and has been 

successfully used in several research studies (Wang 

and Liang, 2005; Liang, 2006; Torabi and Hassini, 

2009; Khemiri et al., 2017a) due to its simplicity and 

efficiency in defuzzification.  

To do so, we first need to determine a minimal 

acceptable possibility degree of occurrence for the 

fuzzy/imprecise parameter, α. Then the original fuzzy 

constraint (14) can be represented by a novel crisp 

constraint as follows: 

 

S_Crt,s1,s2  ≤ w1 Crt,s1,s2,α
p

 +w2 Crt,s1,s2,α
m  +w3 Crt,s1,s2,α

o  

∀t, s1, s2 (18) 

Where w1 + w2 + w3 = 1, and w3, w2 and w1 denote 

respectively the weights of the most optimistic, the 

weights of the most  possible and the weights of the 



most pessimistic of the fuzzy demand. In practice, the 

values of these weights, as well as the minimal 

acceptable possibility degree α, can be defined 

subjectively based on the knowledge and experience 

of the decision-maker. 

 In our work, we adopt the concept of most likely 

values, which is widely used in the literature (Lai and 

Hwang, 1992). According to this concept, the most 

pessimistic and optimistic values required a lower 

weight than the one assigned to the most possible 

value. Thus, as in (Lai and Hwang, 1992) we set these 

parameters to: w1 = w3 = 1/6 ; w2 = 4/6 and α = 0.5. 

7 PHASE III: GOAL 

PROGRAMMING-BASED 

SOLUTION APPROACH 

In the previous section, the original fuzzy MOLP 

model was converted into an equivalent auxiliary 

crisp multi-objective linear programming model. To 

deal with this multi-objective model, we use the 

Weighted Goal Programming (WGP) method, 

introducing specific weights for each criterion. 

Accordingly, we can reformulate our problem as 

follows: 

Minimize FGP  

 
FGP =WZ1* δ1

++WZ2* δ2
−+WZ3*δ3

− +WZ4*δ4
+ 

 

 
(19) 

Subject to: 

(5) - (13), (18) 

        𝑍1- 𝛿1
+ = 𝑍1

∗ 
 

(20) 

𝑍2+ 𝛿2
− = 𝑍2

∗ 
 

(21) 

𝑍3+ 𝛿3
− = 𝑍3

∗ 
 

(22) 

TC - 𝛿𝑇𝐶
+  =𝑇𝐶∗ (23) 

Where: 

 𝑍1
∗  is the goal calculated using the 

mathematical model with objective function 

(15) subject to constraints (5) - (13), (18) and 

𝛿1
+ is the positive deviation from this goal. 

 𝑍2
∗  is the goal calculated using the 

mathematical model with objective function 

(16) subject to constraints (5) - (13), (18) and 

𝛿2
− is the negative deviation from this goal. 

 𝑍3
∗  is the goal calculated using the 

mathematical model with objective function 

(17) subject to constraints (5) - (13), (18) and 

𝛿3
− is the negative deviation from this goal. 

 𝑇𝐶∗  is the goal calculated using the 

mathematical model with objective function 

(4) subject to constraints (5) - (13), (18) and 

𝛿𝑇𝐶
+  is the positive deviation from this goal. 

 WZ1, WZ2, WZ3 and WZ4 are the importance 

weights of the various goals, usually 

determined by the decision makers such that 

WZ1 + WZ2+WZ3 +WZ4=1. 

8 SIMULATION RESULTS 

In this section, we display two sets of simulation 

results to illustrate the validity and applicability of the 

proposed approach. First, we demonstrate that the 

dispatching and rebalancing problem in RAMoD 

systems can indeed be resolved using the proposed 

three-phase approach, especially in the presence of 

imprecise customer requests. Then, we compare the 

performance of our methodology with other dispatch 

strategies by varying customer demand over time. 

For all experiments, we consider a fleet size of 15 

autonomous vehicles and 5 stations. The planning 

horizon is decomposed into 10 periods. These periods 

correspond to 10 different predicted request demands 

with triangular distributions, synthesized in Table 1. 

Initially, the vehicles were distributed equally among 

the various stations, i.e. 3 vehicles for each station. 

 For reason of simplification, we consider that the 

travel time between two stations is one time step. The 

capacity of the vehicles is characterized by a high 

degree of heterogeneity which varies from a 

maximum capacity of a single passenger to a 

maximum capacity of 8 passengers. Additionally, we 

consider for simplicity that the weights of the various 

criteria are the same (i.e. WZ1 = WZ2=WZ3 =WZ4=1/4). 

For all simulations, the proposed approach has 

been implemented using the LINGO optimization 

package. 

8.1 Detailed results for the proposed 
approach 

Figure 3 summarizes the results provided by the 

proposed approach by detailing vehicle statuses 

according to the planning horizon. We remind that the 

vehicle can be parked at one station, be on a 

customer(s) transport mission and be on a rebalancing 

mission. For the last two states, the departure and 

arrival stations were also mentioned. These decisions 

are guided by the criteria of the customer satisfaction 

maximization and the transportation cost 

minimization at each period of the planning horizon. 



Table 1: Fuzzy demand for each period 

SiSj T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

S1 

 

S2 (0,1,2) (0,1,2) (0,1,2) (4,5,6) (1,2,3) (3,4,5) (6,8,10) (4,5,6) (4,5,6) (1,3,5) 

S3 (1,2,3) (0,1,2) (0,1,2) (2,3,4) (1,3,5) (1,2,3) (4,5,6) (2,4,6) (3,5,7) (4,5,6) 

S4 (0,1,2) 0 (2,3,5) (2,4,6) (2,3,4) (4,5,6) (4,5,6) (2,4,6) (3,6,9) (2,3,4) 

S5 0 0 (1,2,3) 0 (2,4,6) (2,4,6) (2,4,6) (10,12,14) (6,8,10) (2,3,4) 

S2 

S1 (0,1,2) (0,1,2) (1,2,3) 0 (1,2,3) (6,7,8) (1,2,3) (1,2,3) (6,8,10) (2,5,8) 

S3 (0,1,2) (0,1,2) (3,4,5) 0 (0,1,2) (1,2,3) (3,4,5) (1,2,3) (1,2,3) (2,4,6) 

S4 (0,1,2) 0 (0,1,2) (0,1,2) (3,4,5) 0 (1,3,5) (1,2,3) (3,5,7) (4,5,6) 

S5 0 0 (0,1,2) (3,4,5) 0 0 0 (1,2,3) (3,5,7) (4,5,6) 

S3 

S1 (1,2,3) (0,1,2) (2,4,6) (1,4,7) (1,2,3) (2,5,8) 0 (3,4,5) (3,5,7) (10,13,16) 

S2 (0,1,2) (0,1,2) (1,2,3) (2,4,6) (1,2,3) (0,2,4) (1,2,3) (0,1,2) (0,1,2) (2,3,4) 

S4 0 (0,1,2) (1,2,3) (2,4,6) (1,2,3) 0 (3,4,5) (1,2,3) (1,3,5) (2,5,8) 

S5 0 0 (1,2,3) 0 0 0 0 (2,3,4) 0 0 

S4 

S1 (0,1,2) (0,1,2) 0 (0,1,2) 0 0 0 0 0 0 

S2 (0,1,2) (0,1,2) 0 0 0 0 0 0 0 0 

S3 (0,1,2) (0,1,2) (0,1,2) (5,7,9) 0 0 0 0 0 0 

S5 0 (0,1,2) (0,1,2) (1,2,3) 0 0 0 0 0 (2,5,8) 

S5 

S1 0 (0,1,2) (1,3,5) (0,1,2) (1,2,3) 0 0 0 (1,2,3) (1,2,3) 

S2 0 (0,1,2) 0 (0,2,4) (1,2,3) (1,4,7) 0 0 0 0 

S3 0 (0,1,2) 0 (3,4,5) 0 0 0 0 0 0 

S4 0 0 0 (1,3,5) 0 0 (3,5,7) 0 0 0 

 

 

Indeed, we find that the increase in the cost of 

transporting a vehicle leads to not using it (i.e. staying 

parked in the station) if customer demand can  be 

satisfied by vehicles with a lower transport cost. For 

example, for the first period, customer demands were 

satisfied with the various stations. In particular for 

station S3, this fuzzy demand has been satisfied by 

using V7 and V8  with the use of ride-sharing, while 

the V9 remains parked in S3 because it has much 

higher transport cost. Also during the second period, 

the vehicle V12 remains parked in the station S4 since 

customer demand has been satisfied by vehicles with 

a lower transport cost.  

With the increase in customer demands during the 

third and fourth periods and guided by the criterion of 

maximizing customer demands satisfaction, all 

vehicles in the fleet were launched on missions, even 

the most costly ones. 

However, beyond the fifth period, the 

mobilization of all vehicles remains insufficient to 

satisfy customer demand, especially when some 

stations are more in demand than others, at the end of 

the trip, vehicles are accumulating in these stations 

and depleting in the others. This justifies the use of 

rebalancing decisions from overloaded stations to 

under loaded stations.  

The rebalancing decisions are also subject to the 

cost minimization criterion. Indeed, the least 

expensive vehicles will be assigned first to 

rebalancing missions 

8.2 Performance of the proposed 
approach 

To evaluate the performance of the proposed 

approach (D-R-RAMoD-Fuzzy), we conducted a 

simulation study comparing it to other dispatch 

strategies. These latter are concretely three versions 

of our proposed approach: 

 D-R-RAMoD-Perfect: The dispatching and 

rebalancing approach proposed in previous 

sections based on an exact customer request as 

it appears in the data set as a "forecast" for the 

next 10 time periods. This is an efficient 

strategy to find the optimal dispatching and 

rebalancing policies for the case when the 

customer request is known in advance. Thus, it 

can be used for providing performance upper 

bounds of the system. 

 D-R-AMoD-Fuzzy: This version uses the 

same model described in section 5 for single 

capacity vehicles (without the use of ride 

sharing).  

 D-RAMoD-Fuzzy: This version is exclusively 

concerned with the “Dispatching” problem and 

vehicles do not rebalance in any situation. 

The summary results of this comparison are 

presented in Figure 4, illustrating the number of lost 

customer requests for each dispatch strategies as a 

function of time.  

 



 

Figure 4: Vehicle scheduling as a function of time 

 

As expected, the strategy with exact customer 

requests  has the best performance, with a minimum 

number of lost requests and a reduced transport cost.  

The "D-R-AMoD-Fuzzy" strategy has the worst 

performance, with mean lost requests sixfold than 

that of "D-R-RAMoD-Perfect" strategy and 

multiplied by four compared to that of our proposed 

approach (i.e. "D-R-RAMoD-Fuzzy" strategy). This 

is not surprising, given that the single capacity 

strategy is here compared to the ride-sharing policies 

where the maximum capacity of vehicles is extended 

to eight. 

We can also see the marked difference in 

performance between the "D-RAMoD-Fuzzy" 

strategy and the "D-R-RAMoD-Perfect" strategy 

from Figure 4 showing the number of lost customer 

requests at any given period. Notably, the "D-

RAMoD-Fuzzy" strategy has significantly more lost 

customer requests at any given time period, with 

mean lost requests multiplied by four compared to the  

optimal strategy and multiplied by three compared to 

that of our proposed approach. This is also not 

unexpected, since we can gain much of performance 

by incorporating rebalancing trips ensuring a balance 

between the number of vehicles available in each 

station and customer requests. 

A significant performance gain is attributed by 

incorporating rebalancing trips and the fact that 

several customers can share the same vehicle. Indeed, 

we can notice that out of 10 experiments, the 

proposed approach generates an optimal solution for 

six experiments. It also offers solutions that are very 

close to the optimal solution for the other periods with 

a deviation of 35%. This highlights the robustness of 

the proposed approach for operating the fleet and 

satisfying customers, even when forecasts of 

customer requests are uncertain. 

9 CONCLUSION 

Despite the significant advances in AMoD and 

RAMoD systems, the existing studies still display a 

lack of approaches dealing with the uncertainty 

affecting travel demand forecasts. The rare studies 

dealing with this drawback mainly suggest the use of 

stochastic programming that is usually based on the 

statistical data. However, in practice, historical data 

may not be reliable or even unavailable. Accordingly, 

these traditional programming models may not be the 

best tool to deal with uncertainty. 
Thus, this work provides a new point of view on 

the problem of dispatching and rebalancing in the 
RAMoD systems by using a new alternative approach 
for managing uncertainty. Specifically, we first 
formulated the problem as a multi-objective 

Figure 3: The number of lost customer requests for each 

dispatch strategies as a function of time 



possibilistic linear programming model in which 
customer requests are evaluated in an imprecise way 
using triangular possibility distribution. The proposed 
fuzzy formulation is then transformed to an 
equivalent crisp multi-objective linear programming 
model by combining appropriate strategies. In the 
third phase, the well known goal programming 
approach is being exploited to obtain a compromise 
solution. Through experiments, we show that the 
proposed approach has the capability to deal with 
realistic situations in an uncertain environment and 
provides an efficient decision tool for the dispatching 
and rebalancing decisions in RAMoD systems.  

This work leaves opens for considerable 
extensions for future research.  

First, the proposed approach can be extended in 
situations when RAMoD systems are faced with 
fluctuations of several parameters. This research area 
will require introducing forecasting models that are 
able to model not only the uncertain customer 
requests but also other critical parameters such as 
vehicle availability, costs, the states of charge of 
vehicles, etc.  

Second, we plan to explore the integration of 
routing policies within a capacitated road network. 
This, in turn, can be subject to important uncertainties 
due to several external factors such as traffic 
congestion. Thus, the goal of this research axis is to 
devise a robust dispatching-rebalancing and routing 
policy that leverages forecasting parameters while 
considering the uncertainty that can arise in the road 
network.  

Finally, further research can study the couplings 
that could occur between public transit and the 
AMoD systems. 
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