

Simultaneous determination of 42 pharmaceuticals in seafood samples by solvent extraction coupled to liquid chromatography–tandem mass spectrometry

Carole Miossec, Tiphaine Mille, Laurent Lanceleur, Mathilde Monperrus

To cite this version:

Carole Miossec, Tiphaine Mille, Laurent Lanceleur, Mathilde Monperrus. Simultaneous determination of 42 pharmaceuticals in seafood samples by solvent extraction coupled to liquid chromatography– tandem mass spectrometry. Food Chemistry, 2020, 322, pp.126765. $10.1016/j.$ foodchem.2020.126765. hal-02555273

HAL Id: hal-02555273 <https://univ-pau.hal.science/hal-02555273>

Submitted on 22 Aug 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

[Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License](http://creativecommons.org/licenses/by-nc/4.0/)

- **Simultaneous determination of 42 pharmaceuticals in seafood samples by solvent**
- **extraction coupled to liquid chromatography tandem mass spectrometry**
- 3 Carole Miossec^a, Tiphaine Mille^a, Laurent Lanceleur^a and Mathilde Monperrus^{a*}
- *^aCNRS/ UNIV PAU & PAYS ADOUR/ E2S UPPA, INSTITUT DES SCIENCES ANALYTIQUES ET DE*
- *PHYSICOCHIMIE POUR L'ENVIRONNEMENT ET LES MATERIAUX MIRA, UMR5254, 64600,*
- *ANGLET, France*
- Mathilde Monperrus
- University of Pau and Pays de l'Adour
- 1 Allée Montaury
- 64600 Anglet
- mathilde.monperrus@univ-pau.fr
- +33(0)5 59 57 44 16
- carole.miossec@univ-pau.fr
- tiphaine.mille@univ-pau.fr
- laurent.lanceleur@univ-pau.fr
- **Keywords:** pharmaceuticals / emerging pollutants / seafood / fish tissue / multi-residue
- method / liquid chromatography / tandem mass spectrometry

18 **Highlights**

Abstract

An efficient and sensitive analytical method based on liquid chromatography - tandem mass spectrometry (LC-MS/MS) has been developed and validated for the simultaneous determination of 42 pharmaceuticals belonging to different therapeutic classes (i.e. antibiotics, analgesics, anti-inflammatories, cardiovascular agents, anxiolytics and human 29 indicators) in seafood samples. The very simple sample preparation included analytes extraction with acidified methanol, concentration by evaporation and filtration of the final extract prior to LC-MS/MS analysis. Analytical performances were evaluated in muscles of four commercial species (hake, red mullet, sole and shrimp) and showed good recoveries at two spiked concentration levels, with relative standard deviations below 45%. Limits of quantification ranged from 0.1 to 40.2 ng/g. This procedure has been successfully applied to the determination of the target analytes in seafood collected from the Bay of Biscay (Southern France) and 4 of these 42 pharmaceuticals were detected at low ng/g levels, suggesting a very limited contamination.

Pharmaceuticals are a large group of chemicals that are daily used for human and veterinary medicine. This group of anthropogenic chemicals is among the ones with the largest input into the environment (Petrovic, Perez, & Barcelo, 2013). As pharmaceuticals consumption is continuously increasing (Nikolaou, Meric, & Fatta, 2007), it raises concerns about their impact on the environment and undesired physiological effects they can cause to aquatic organisms (Althakafy, Kulsing, Grace, & Marriott, 2018; Besse & Garric, 2008; Fent, Weston, & Caminada, 2006; Länge & Dietrich, 2002; Ramirez et al., 2009; Zeilinger et al., 2009). Residues of several pharmaceuticals have been found in surface and ground waters, soils and animal tissues across the world at concentrations depending upon the pharmaceutical and the nature and proximity of sources (Álvarez-Muñoz et al., 2015; Gaw, Thomas, & Hutchinson, 2014). Certain painkillers, antimicrobials, antidepressants, contraceptives and antiparasitics are commonly found (European Commission, 2019). Some antibiotic residues detected in food can have negative effects on consumer health and safety (Chiesa et al., 2018). In addition, several pharmaceuticals, such as diclofenac (anti-inflammatory), have been identified as priority substances for regulation at EU level via the Water Framework Directive (Official Journal of the European Union, 2013).

Consequently, there is a growing need to develop reliable analytical methods that enable rapid, robust, sensitive and selective determination of these emerging pollutants at trace levels in seafood.

In recent decades, pressurized liquid extraction (PLE) (Huerta, Jakimska, Gros, Rodríguez-Mozaz, & Barceló, 2013), ultrasonic-assisted extraction (UAE) (Liu, Hu, Bao, & Yin, 2018), solvent-based extraction (SLE) (Bayen, Estrada, Juhel, & Kelly, 2015), microwave-assisted

extraction (MAE) (Guedes-Alonso, Sosa-Ferrera, & Santana-Rodríguez, 2017), matrix solid-phase dispersion (MSPD) (Hertzog, Soares, Caldas, & Primel, 2015) or QuEChERS (Lopes, Reyes, Romero-González, Vidal, & Frenich, 2012) have been used for the extraction of organic pollutants from solid complex samples. After extraction, pharmaceuticals are commonly analysed by liquid chromatography - tandem mass spectrometry (LC-MS/MS) methods using an electrospray ionization source (ESI) for the simultaneous determination of a wide-range of polar compounds.

Previous studies used protocols which allowed to characterize pharmaceuticals with method detection limits (MDL) reaching the low ng/g range (Guidi et al., 2018; Luo et al., 2018). However, most of the published methods only focused on a short range of compounds, antibiotics being the most frequent class reported. So, there is still a need to develop universal methods applicable to different matrices and able to cover a large range of compounds with different physicochemical properties, which is challenging as it generally requires a compromise in the selection of experimental conditions (Petrovic et al., 2010).

The presence of undesirable sample components that co-elute with the analytes, altering the ionization process and thus the signal is the main drawback associated to LC-MS/MS methods (Gracia-Lor, Sancho, & Hernández, 2011). Matrix effects may lead to a suppression or an enhancement of the signal, which can result in a wrong analytes quantification. Matrix effects depend on each analyte/matrix combination, but also on the sample preparation, the chromatographic separation, mass spectrometry instrumentation and the ionization conditions (Gosetti, Mazzucco, Zampieri, & Gennaro, 2010). The evaluation of matrix effects 82 should be included in the validation process of the method considering the different matrices studied. Several strategies were proposed to solve matrix effects, including modifications of 84 sample pre-treatment, chromatographic or MS conditions and calibration techniques (Gosetti et al., 2010). The use of deuterated internal standards is, by far, the most used in the pharmaceutical residues analysis field (Gracia-Lor et al., 2011; Gros, Petrović, & Barceló, 2006).

The objective of the present study was to develop a multi-residue analytical methodology based on a simple solvent extraction protocol followed by LC-MS/MS detection for the simultaneous analysis of 42 pharmaceuticals commonly used for human and veterinary 91 purposes (including antibiotics, analgesics, anti-inflammatories, cardiovascular agents, anxiolytics and human indicators) in seafood, in order to provide a routine method for the monitoring of these emerging contaminants. The sample preparation was optimized by testing different extraction solvent and studying target compounds retrieval after several evaporation 95 techniques and filtration of the final extract with different kinds of filters. Matrix effects and analytical performances of the optimal procedure were evaluated. Finally, the developed method was successfully applied to investigate occurrence of target pharmaceuticals in 98 muscles of four seafood species with commercial interest collected from the Bay of Biscay (Southern France). Since several compounds were detected in the water leaving the local wastewater treatment plant (Miossec, Lanceleur, & Monperrus, 2019), the present study allowed to investigate the potential bioaccumulation of these pharmaceuticals in the marine biota.

2. Materials and Methods

2.1 Reagents and materials

Reference standards of pharmaceuticals were purchased from Sigma Aldrich (Saint-Louis, USA). All standard references were of analytical grade (>98%). 42 compounds were studied: acetaminophen, acetazolamide, acetylsalicylic acid, amiodarone, amoxicillin, ampicillin, atenolol, azithromycin, caffeine, carbamazepine, ciprofloxacin, clarithromycin, cyclophosphamide, diclofenac, erythromycin A, flumequine, gemfibrozil, hydrochlorothiazide, ibuprofen, josamycin, ketoprofen, lorazepam, losartan, metoprolol, metronidazole, niflumic acid, nordiazepam, 19-norethindrone, norfloxacin, ofloxacin, oxazepam, oxolinic acid, phenazone, piperacillin, roxithromycin, spiramycin, sulfadiazine, sulfamethazine, sulfamethoxazole, tetracycline, trimethoprim and tylosine. Isotopically labelled Atenolol-d7, carbamazepine-d10, ibuprofen-d3, nordiazepam-d5 and ofloxacin-d3 were used as internal 115 standards and purchased from Sigma Aldrich. These five internal standards have been chosen 116 because they were deuterated analog of compounds of interest. They were very chemically similar as a majority of compounds as they had the same functional groups.

MeOH, acetonitrile (ACN) (LC-MS grade) and acetone (laboratory reagent, 99.5%) were supplied by Fisher (Hampton, USA). Formic acid (98-100%) and acetic acid (99.8-100.5%) were purchased from Sigma Aldrich. Ultrapure water was obtained with a PURELAB Classic water purification system from Veolia (Paris, France).

Standards stock solutions were prepared at 1,000 mg/L for each compounds in methanol (MeOH) and stored in the dark at -20°C. A multicomponent solution containing the 42 compounds was prepared monthly at 10 mg/L in MeOH and stored in the dark at -20°C. A solution containing internal standards (atenolol-d7, carbamazepine-d10, ibuprofen-d3, nordiazepam-d5 and ofloxacin-d3) at 2, 2, 50, 2 and 10 mg/L respectively was prepared by 127 diluting the stock solutions in MeOH, stored in the dark at -20°C and prepared monthly.

2.2 Samples collection and pre-treatment

Three fish species hake (*Merluccius merluccius*), red mullet (*Mullus surmuletu*s) and sole (*Solea solea*) and one crustacean species shrimp (*Palaemon serratus*) were collected from the coastal area of the Bay of Biscay (Southern France). For fish, the white dorsal muscle was separated (skin and bone excluded) and for shrimp, the abdomen muscle was separated. Muscles were then freeze-dried with a VaCo2 lyophilizer (Zirbus, Bad Grund, Germany), 134 grinded to a homogeneous powder using a glass mortar and stored at -80 °C prior to extraction and analysis.

2.3 Sample preparation

An aliquot of 0.2 g of freeze-dried sample was weighed into a 50 mL polypropylene tube. Internal standards atenolol-d7, carbamazepine-d10, ibuprofen-d3, nordiazepam-d5 and ofloxacin-d3 were added at concentrations of 400, 400, 10,000, 400, and 2000 ng/g, 140 respectively, to each sample, by adding 40 µL of the multicomponent solution. After addition 141 of 10 mL of extraction solvent (MeOH +1% acetic acid), the tube was shaken by vortex for 1 min. The tube was then centrifuged for 5 min at 4,500 rpm and the supernatant was transferred into 10 mL glass tubes, evaporated to dryness under a gentle air stream using a TurboVap LV Evaporator system (Zymark, Hopkinton, USA), and dissolved in 1mL MeOH/water (5/95 v/v). Finally, extracts were vortexed a few seconds, filtered through 0.2 µm polytetrafluoroethylene (PTFE) syringe filters, transferred into vials and kept at -20°C until analysis (Fig. S1).

2.4 LC-MS/MS analysis

149 Analysis were performed by LC-MS/MS using an Acquity UPLC system (Waters) connected to a Xevo TQ MS triple quadrupole with an electrospray source (ESI) interface (Waters). A C18 151 Acquity UPLC HSS T3 (1.8µm particle size, 50mm x 2.1mm i.d.,) column (Waters) preceded by a guard column (1.8µm particle size, 5mm x 2.1mm i.d.,) of the same packing material was used at a flow rate of the mobile phase 0.4 mL/min. The column temperature was fixed at 40°C and sample manager was maintained at 15°C. Sample injection volume was 5 µL. Two injections were used for the quantification of all compounds both in positive and negative ionization mode. The analysis in positive mode was performed using ultrapure water with 0.1% formic acid as eluent (A) and ACN as eluent (B). In negative mode, eluent (A) was ultrapure water with 0.01% formic acid and eluent (B) was ACN. For both modes, the initial composition was 2% (B) during 2 min and increased linearly to reach 60% at 4 min and 100% at 6 min. It held 1 min before returning to the initial composition (2% B) at 7.1 min and held 161 for 3 min. The total analysis run time was then 10 min (See example of chromatograms in Supporting Information Fig. S2).

163 For the mass spectrometer, cone gas and desolvation gas flows were set at 10 and 600 L/h, respectively. Drying gas, as well as nebulizing gas were nitrogen, generated by pressurized air 165 in a Nitrocraft nitrogen generator (Air Liquide). Source temperature was set to 150°C and desolvation temperature to 600°C. Capillary voltages of 0.5 kV (positive ionization mode) and -1.0 kV (negative ionization mode) were applied. Collision gas was Argon with a purity > 99.999% (Linde). Waters MassLynx software was used for the instrument control, data acquisition and data treatment. Quantification was carried out in Multiple Reaction Monitoring (MRM) mode, selecting two characteristics transitions for each compound. Table

1 presents MRM transitions, retention times, ion ratios and internal standards for each compound.

2.5 Quantification and quality control

Matrix-matched calibrations with deuterated analogs of the target analytes were used to quantify target compounds. Six-point calibration curves were performed with 0.2 g of different seafood species spiked with increasing pollutants concentration levels ranging from 177 0 to 500 ng/g as well as internal standards at various concentration (described in 2.3), and the optimized procedure was carried out.

Analytical performances and quality control were evaluated for each run by solvent blanks (MeOH/water 5/95 v/v) and procedural blanks to evaluate contamination and detection limits. Accuracy was also evaluated using matrix spikes at 2 levels (20 and 200 ng/g) to determine compound recoveries.

3. Results and discussion

3.1 Sample preparation optimization

3.1.1 Extraction solvent

The choice of the appropriate solvent is a crucial step in the sample pretreatment procedure to extract the desired analytes with minimum coextraction of matrix interferences (Kung, Tsai, Ku, & Wang, 2015). To date, various extraction solvents have been used for the extraction of pharmaceuticals: MeOH (Hertzog et al., 2015), ACN (Freitas et al., 2014; Saxena et al., 2018), MeOH/ACN mixture (Bayen et al., 2015; Kim, Lee, & Oh, 2017; Ondarza, Haddad, Avigliano, Miglioranza, & Brooks, 2019) and same organic solvents with acetic acid acidification (Mu et al., 2016; Yao et al., 2016). The present approach aims to develop a method for the extraction of a maximum of target compounds (which includes weakly basic and weakly acidic molecules) in one single step.

Effects of several extraction solvents such as ACN, MeOH and MeOH + 1% acetic acid on extraction efficiencies were evaluated. A lyophilized hake muscle was spiked with 200 ng/g of 197 all target compounds (by adding 40 µL of a 1 mg/L multicomponent solution) prior to the extraction step. Comparison of peak areas indicated that extraction with ACN led to poor recoveries for some compounds, and especially for the least polar, in accordance with the fact that ACN is more polar than MeOH (Fig. 1). Recoveries of target molecules were higher for 34 201 compounds out of 42 when extracted with MeOH compared to extraction with ACN. Among MeOH and acidified MeOH, even if extraction rates were globally similar, acidification provided slightly higher responses. This result was expected, as the extraction of polar compounds is pH dependent, and compounds which are carrying a carboxylic group (i.e. ampicillin, norfloxacin, ofloxacin, ciprofloxacin…) are expected to present best recoveries in 206 acidic conditions. Consequently, MeOH + 1% acetic acid was selected as the optimal solvent to extract all target analytes in one single step.

3.1.2 Evaporation and filtration

The evaporation stage could be a critical step, especially for the most volatile compounds, which may be lost. Retrievals of our target compounds after evaporation under different conditions has previously been investigated (Miossec et al., 2019), and evaporation to dryness under air stream at room temperature was chosen as a gentle evaporation method in order to concentrate while preserving molecules as much as possible. The quantification with a matrix-matched calibration using internal standards allows to correct for losses observed for some analytes.

When injecting tissues extracts into an HPLC column, suspended particles may affect chromatographic performances, by creating interferences with target compounds, or by fouling even clogging the column. Therefore, the filtration of the final extract is an essential step. To date, different filtration materials have been indifferently used : PTFE (Bayen et al., 2015; Rodrigues et al., 2019; Saxena et al., 2018), polyvinylidene difluoride (PVDF) (Carmona, Andreu, & Picó, 2017; Freitas et al., 2014) and nylon (Lopes et al., 2012; Zhao et al., 2017). 222 Various types of syringe filters were tested in order to study the potential loss by adsorption 223 of target compounds, which may occur during the filtration step (and eventually leading to an 224 underestimation of final results). A solution containing all the target compounds at 100 µg/L 225 in MeOH/water (5/95 v/v) was filtered through 0.2 µm PTFE, PVDF and nylon syringe filters and then analysed following the above described LC-MS/MS method. Responses obtained for 227 pharmaceutical compounds were compared with those obtained from the analysis of the same spiked non-filtered solution (Fig. 2).

It appeared that six compounds (losartan, ketoprofen, amiodarone, niflumic acid, ibuprofen and gemfibrozil) were completely retained by the nylon syringe filter, and that three compounds (spiramycin, azithromycin and amiodarone) were totally retained by the PVDF syringe filter, meanwhile none of them was fully retained when using the PTFE filter. Antibiotics presented global low recoveries after PVDF filtration (ofloxacin, clarithromycin, roxithromycin and josamycin below 20%). In summary, PTFE (0.2 µm) syringe filters seems to be the best choice for the filtration of these final extracts intended for the analysis of this kind of pharmaceuticals, showing satisfactory results for 30 out of the 42 tested compounds (recovery >50%).

3.2 Method validation

3.2.1 Matrix effects evaluation

Matrix effects causing signal suppression or enhancement are mainly due to matrix 241 compounds eluted with the same retention time as the target compounds (Rogatsky & Stein, 2005; Stüber & Reemtsma, 2004). They also depend on the matrix nature, the efficiency of the sample preparation step, the detection response and the chromatographic behaviour. 244 Therefore, interfering compounds should be eliminated during the sample preparation while 245 the analytes should be conserved. In this work, in order to evaluate the matrix effects, 246 different seafood matrices (hake, red mullet, sole and shrimp) were spiked by adding 200 ng/g 247 of the target compounds and subjected to the optimized procedure.

Matrix effects (ME, %) were calculated according to:

$$
MEx (\%) = \left(\frac{Ax(matrix) - Ax(blank)}{Ax(solvent)} - 1\right) x100
$$

Where Ax*(matrix)* is the area of the compound x in the spiked matrix, Ax*(blank)* is the area of the compound x in the non-spiked matrix and Ax*(solvent)* is the area of the compound x in the spiked procedural blank.

Table 2 gives the results for all the target analytes. An enhancement of the signal leading to a positive value indicates a positive matrix effect. A signal suppression leading to a negative value corresponds to a negative matrix effect.

Matrix effects were different within the evaluated compounds and also within the different 257 types of seafood. ME ranged from -83%, the highest signal suppression (acetaminophen and 258 acetylsalicylic acid in shrimp), to $+2,191\%$, the highest signal enhancement (amiodarone in hake). As expected, signal suppression has been observed to be higher in red mullet muscle than in the three other matrices, probably because of higher fat content level. As the 5 261 selected internal standards didn't cover the behaviour of the 42 molecules, both the addition of deuterated internal standards and the realization of matrix-matched calibrations are 263 therefore mandatory to balance matrix effects and correctly quantify all the molecules.

3.2.2 Method performances

Analytical performances of the optimized method are reported in Table 3. Concerning 266 linearity, equations and R^2 were calculated in the range 0-500 ng/g. Limits of quantification (LOQ) were determined as lowest injected compound concentrations in matrix that yielded a signal-to-noise (S/N) ratio of 10.

Recoveries (R, %) were also determined at two concentration levels according to:

$$
R(\%) = \frac{C(spike d) - C(blank)}{C(ref)} \times 100
$$

271 Where C(spiked) is the concentration in the spiked matrix, C(blank) is the concentration in the 272 non-spiked matrix and C(ref) is the theoretical added concentration. Precision was expressed as the relative standard deviation (RSD) of 3 replicates.

Coefficients of determination were higher than 0.99 for all compounds except amoxicillin in red mullet, acetylsalicylic acid and ibuprofen in sole, amoxicillin and acetylsalicylic acid in shrimp, demonstrating that the method is linear in the range assayed.

Limits of quantification ranged from 0.1 to 40.2 ng/g with most of the molecules between 0.1

and 5.0 ng/g. Amoxicillin, acetylsalicylic acid and ibuprofen exhibited lower sensitivities in the

four biologic matrices related to their lower MS detection sensitivities.

Recoveries achieved for all target compounds at spiking level 20 ng/g ranged from 29% to 164% in hake muscle, from 33% to 128% in red mullet muscle, from 28% to 188% in sole muscle and from 26% to 132% in shrimp muscle. Recoveries achieved for all target compounds at spiking level 200 ng/g ranged from 69% to 131% in hake muscle, from 51% to 114% in red mullet muscle, from 45% to 119% in sole muscle and from 64% to 117% in shrimp muscle.

RSDs at spiking level 20 ng/g ranged from 1.4% (atenolol) to 62.9% (piperacillin) in hake, from 1.2% (sulfamethazine) to 25.5% (ibuprofen) in red mullet, from 0.1% (erythromycin A) to 52.7% (amoxicillin) in sole and from 2.8% (cyclophosphamide) to 87.4% (acetylsalicylic acid) in shrimp with mean RSDs at 17.7, 11.2, 15.6, and 17.1 respectively. RSDs at spiking level 200 ng/g ranged from 1.3% (nordiazepam) to 39.4% (ibuprofen) in hake, from 0.6% (losartan) to 38.2% (piperacillin) in red mullet, from 1.2% (sulfamethoxazole) to 43.1% (erythromycin A) in sole and from 3.4% (metronidazole) to 26.8% (acetylsalicylic acid) in shrimp with mean RSDs at 10.7, 10.6, 13.7, and 11.2 respectively. High variability was observed for the precision between compounds and between matrices. In a general way, RSD were found lower at spiking level 200 ng/g compared to 20 ng/g. No trend was observed according to compounds family. Compounds exhibiting the highest RSDs were generally the compounds which had the lower sensitivity.

As a result, a sensitive, reliable and repeatable analytical method for the quantitative determination of pharmaceutical residues in seafood samples was established and validated.

3.3 Application to real seafood samples

The optimized and validated methodology was applied to analyse seafood muscles (hake, red mullet, sole and shrimp) collected from the coastal area of the Bay of Biscay (Southern France). Four of the 42 molecules (azithromycin, clarithromycin, acetaminophen and caffeine) were detected at concentrations above the LOQ at least once (Table 4). Caffeine (human indicator)

was found in all samples, which is in accordance with literature (Álvarez-Muñoz et al., 2015). Concentrations ranged from the LOQ to 11.4 ng/g (caffeine in shrimp muscle). The two antibiotics (azithromycin and clarithromycin) were only measured in red mullet and sole at concentrations below 1.0 ng/g. The analgesic (acetaminophen) was measured once in hake with a very low concentration (1.4 ng/g).

As seafood species considered in this study were caught in the open sea, these low occurrences and concentrations (low ng/g range) were expected and are in agreement with previous studies (Chiesa et al., 2018; Hertzog et al., 2015; Wang & Gardinali, 2012; Zhao et al., 2017). In addition, several pharmaceuticals such as diclofenac and ibuprofen undergo an efficient biotransformation into glucuronide metabolites in the fish bile before being excreted. Therefore, muscle is not the target organ for bioconcentration and metabolism of these contaminants (Lahti, Brozinski, Jylhä, Kronberg, & Oikari, 2011) that coupled with the high dilution effect in the open sea, could explain these obtained results.

4. Conclusions

An efficient and sensitive LC-MS/MS method was successfully developed for the simultaneous quantification of 42 pharmaceutical compounds in seafood. Sample preparation is easy and fast, making it a perfect routine method for the monitoring of those emerging contaminants in seafood samples.

Matrix effects were calculated for hake, red mullet, sole and shrimp muscles and resulted in a higher signal suppression in red mullet, the matrix with the highest fat content. Matrix-matched calibrations using deuterated internal standards were used for quantification, which allowed to correct for the matrix effects and obtain acceptable recoveries. Analysis by LC-

MS/MS in positive and negative ionization modes provided good sensitivity and selectivity, with limits of quantification ranging from 0.1 to 40.2 ng/g.

This method was successfully applied to the determination of target compounds in seafood samples collected from the Bay of Biscay (Southern France). We also suggest that this analytical method could be used as routine method for future environmental and safety monitoring.

Acknowledgments

This work was financially supported by ERDF (European Regional Development Fund) and

AEAG (Agence de l'Eau Adour-Garonne) grants in the framework of the MICROPOLIT project.

Authors are grateful to people who helped in seafood samples collection and preparation.

Conflict of interest statement

Authors have declared no conflict of interest.

338 **References**

339 Althakafy, J. T., Kulsing, C., Grace, M. R., & Marriott, P. J. (2018). Determination of selected emerging 340 contaminants in freshwater invertebrates using a universal extraction technique and liquid 341 chromatography accurate mass spectrometry. *Journal of Separation Science*, *41*(19), 3706– 342 3715. https://doi.org/10.1002/jssc.201800507 343 Álvarez-Muñoz, D., Rodríguez-Mozaz, S., Maulvault, A. L., Tediosi, A., Fernández-Tejedor, M., Van den 344 Heuvel, F., … Barceló, D. (2015). Occurrence of pharmaceuticals and endocrine disrupting 345 compounds in macroalgaes, bivalves, and fish from coastal areas in Europe. *Environmental* 346 *Research*, *143*(Pt B), 56–64. https://doi.org/10.1016/j.envres.2015.09.018 347 Bayen, S., Estrada, E. S., Juhel, G., & Kelly, B. C. (2015). Direct injection of tissue extracts in liquid 348 chromatography/tandem mass spectrometry for the determination of pharmaceuticals and 349 other contaminants of emerging concern in mollusks. *Analytical and Bioanalytical Chemistry*, 350 *407*(19), 5553–5558. https://doi.org/10.1007/s00216-015-8760-9 351 Besse, J.-P., & Garric, J. (2008). Human pharmaceuticals in surface waters. Implementation of a 352 prioritization methodology and application to the French situation. *Toxicology Letters*, 353 *176*(2), 104–123. https://doi.org/10.1016/j.toxlet.2007.10.012 354 Carmona, E., Andreu, V., & Picó, Y. (2017). Multi-residue determination of 47 organic compounds in 355 water, soil, sediment and fish-Turia River as case study. *Journal of Pharmaceutical and* 356 *Biomedical Analysis*, *146*, 117–125. https://doi.org/10.1016/j.jpba.2017.08.014 357 Chiesa, L., Panseri, S., Pasquale, E., Malandra, R., Pavlovic, R., & Arioli, F. (2018). Validated multiclass 358 targeted determination of antibiotics in fish with high performance liquid chromatography-359 benchtop quadrupole orbitrap hybrid mass spectrometry. *Food Chemistry*, *258*, 222–230. 360 https://doi.org/10.1016/j.foodchem.2018.03.072 361 European Commission. (2019). *Communication from the commission to the european parliament, the* 362 *council and the european economic and social committee*. *Brussels, 11.3.2019*.

- 363 Fent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. *Aquatic* 364 *Toxicology (Amsterdam, Netherlands)*, *76*(2), 122–159. 365 https://doi.org/10.1016/j.aquatox.2005.09.009 366 Freitas, A., Leston, S., Rosa, J., Castilho, M. da C., Barbosa, J., Rema, P., … Ramos, F. (2014). Multi-367 residue and multi-class determination of antibiotics in gilthead sea bream (Sparus aurata) by
- 368 ultra high-performance liquid chromatography-tandem mass spectrometry. *Food Additives &*
- 369 *Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment*, *31*(5), 817–
- 370 826. https://doi.org/10.1080/19440049.2014.891764
- 371 Gaw, S., Thomas, K. V., & Hutchinson, T. H. (2014). Sources, impacts and trends of pharmaceuticals in
- 372 the marine and coastal environment. *Philosophical Transactions of the Royal Society B:*
- 373 *Biological Sciences*, *369*(1656). https://doi.org/10.1098/rstb.2013.0572
- 374 Gosetti, F., Mazzucco, E., Zampieri, D., & Gennaro, M. C. (2010). Signal suppression/enhancement in 375 high-performance liquid chromatography tandem mass spectrometry. *Journal of*
- 376 *Chromatography. A*, *1217*(25), 3929–3937. https://doi.org/10.1016/j.chroma.2009.11.060
- 377 Gracia-Lor, E., Sancho, J. V., & Hernández, F. (2011). Multi-class determination of around 50
- 378 pharmaceuticals, including 26 antibiotics, in environmental and wastewater samples by ultra-
- 379 high performance liquid chromatography–tandem mass spectrometry. *Journal of*
- 380 *Chromatography A*, *1218*(16), 2264–2275. https://doi.org/10.1016/j.chroma.2011.02.026
- 381 Gros, M., Petrović, M., & Barceló, D. (2006). Development of a multi-residue analytical methodology
- 382 based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) for screening and
- 383 trace level determination of pharmaceuticals in surface and wastewaters. *Talanta*, *70*(4),
- 384 678–690. https://doi.org/10.1016/j.talanta.2006.05.024
- 385 Guedes-Alonso, R., Sosa-Ferrera, Z., & Santana-Rodríguez, J. J. (2017). Determination of steroid
- 386 hormones in fish tissues by microwave-assisted extraction coupled to ultra-high performance
- 387 liquid chromatography tandem mass spectrometry. *Food Chemistry*, *237*, 1012–1020.
- 388 https://doi.org/10.1016/j.foodchem.2017.06.065

- 409 *Toxicology and Chemistry*, *30*(6), 1403–1411. https://doi.org/10.1002/etc.501
- 410 Länge, R., & Dietrich, D. (2002). Environmental risk assessment of pharmaceutical drug substances—
- 411 conceptual considerations. *Toxicology Letters*, *131*(1–2), 97–104.
- 412 https://doi.org/10.1016/S0378-4274(02)00071-1
- 413 Liu, Y.-Y., Hu, X.-L., Bao, Y.-F., & Yin, D.-Q. (2018). Simultaneous determination of 29 pharmaceuticals
- 414 in fish muscle and plasma by ultrasonic extraction followed by SPE-UHPLC-MS/MS. *Journal of* 415 *Separation Science*, *41*(10), 2139–2150. https://doi.org/10.1002/jssc.201701360
- 416 Lopes, R. P., Reyes, R. C., Romero-González, R., Vidal, J. L. M., & Frenich, A. G. (2012). Multiresidue
- 417 determination of veterinary drugs in aquaculture fish samples by ultra high performance
- 418 liquid chromatography coupled to tandem mass spectrometry. *Journal of Chromatography.*
- 419 *B, Analytical Technologies in the Biomedical and Life Sciences*, *895–896*, 39–47.
- 420 https://doi.org/10.1016/j.jchromb.2012.03.011
- 421 Luo, Z., Lu, J., Li, H., Tu, Y., Wan, Y., & Yang, Z. (2018). Air-assisted liquid-liquid microextraction
- 422 integrated with QuEChERS for determining endocrine-disrupting compounds in fish by high-
- 423 performance liquid chromatography–tandem mass spectrometry. *Food Chemistry*, *260*, 174–
- 424 182. https://doi.org/10.1016/j.foodchem.2018.04.007
- 425 Miossec, C., Lanceleur, L., & Monperrus, M. (2019). Multi-residue analysis of 44 pharmaceutical
- 426 compounds in environmental water samples by solid phase extraction coupled to liquid
- 427 chromatography tandem mass spectrometry. *Journal of Separation Science*.
- 428 https://doi.org/10.1002/jssc.201801214
- 429 Mu, P., Xu, N., Chai, T., Jia, Q., Yin, Z., Yang, S., … Qiu, J. (2016). Simultaneous determination of 14
- 430 antiviral drugs and relevant metabolites in chicken muscle by UPLC–MS/MS after QuEChERS
- 431 preparation. *Journal of Chromatography B*, *1023–1024*, 17–23.
- 432 https://doi.org/10.1016/j.jchromb.2016.04.036
- 433 Nikolaou, A., Meric, S., & Fatta, D. (2007). Occurrence patterns of pharmaceuticals in water and
- 434 wastewater environments. *Analytical and Bioanalytical Chemistry*, *387*(4), 1225–1234.
- 435 https://doi.org/10.1007/s00216-006-1035-8
- 436 Official Journal of the European Union. (2013). *DIRECTIVE 2013/39/EU OF THE EUROPEAN*
- 437 *PARLIAMENT AND OF THE COUNCIL of 12 August 2013*.

- 439 Pharmaceuticals, illicit drugs and their metabolites in fish from Argentina: Implications for
- 440 protected areas influenced by urbanization. *The Science of the Total Environment*, *649*, 1029–
- 441 1037. https://doi.org/10.1016/j.scitotenv.2018.08.383
- 442 Petrovic, M., Farré, M., de Alda, M. L., Perez, S., Postigo, C., Köck, M., … Barcelo, D. (2010). Recent
- 443 trends in the liquid chromatography-mass spectrometry analysis of organic contaminants in
- 444 environmental samples. *Journal of Chromatography. A*, *1217*(25), 4004–4017.
- 445 https://doi.org/10.1016/j.chroma.2010.02.059
- 446 Petrovic, M., Perez, S., & Barcelo, D. (2013). *Analysis, Removal, Effects and Risk of Pharmaceuticals in*
- 447 *the Water Cycle* (Vol. 62). Retrieved from https://www.elsevier.com/books/analysis-removal-
- 448 effects-and-risk-of-pharmaceuticals-in-the-water-cycle/petrovic/978-0-444-62657-8
- 449 Ramirez, A. J., Brain, R. A., Usenko, S., Mottaleb, M. A., O'Donnell, J. G., Stahl, L. L., … Chambliss, C. K.
- 450 (2009). Occurrence of pharmaceuticals and personal care products in fish: results of a
- 451 national pilot study in the United States. *Environmental Toxicology and Chemistry*, *28*(12),
- 452 2587–2597. https://doi.org/10.1897/08-561.1
- 453 Rodrigues, J., Albino, S., Silva, S., Cravo, A., Cardoso, V. V., Benoliel, M. J., & Almeida, C. M. M. (2019).
- 454 Development of a Multiresidue Method for the Determination of 24 Pharmaceuticals in
- 455 Clams by QuEChERS and Liquid Chromatography-Triple Quadrupole Tandem Mass
- 456 Spectrometry. *Food Analytical Methods*, *12*(4), 838–851. https://doi.org/10.1007/s12161-
- 457 018-01418-y
- 458 Rogatsky, E., & Stein, D. (2005). Evaluation of matrix effect and chromatography efficiency: new
- 459 parameters for validation of method development. *Journal of the American Society for Mass* 460 *Spectrometry*, *16*(11), 1757–1759. https://doi.org/10.1016/j.jasms.2005.07.012
- 461 Saxena, S. K., Rangasamy, R., Krishnan, A. A., Singh, D. P., Uke, S. P., Malekadi, P. K., … Gupta, A.
- 462 (2018). Simultaneous determination of multi-residue and multi-class antibiotics in
- 463 aquaculture shrimps by UPLC-MS/MS. *Food Chemistry*, *260*, 336–343.
- 464 https://doi.org/10.1016/j.foodchem.2018.04.018
- 465 Stüber, M., & Reemtsma, T. (2004). Evaluation of three calibration methods to compensate matrix
- 466 effects in environmental analysis with LC-ESI-MS. *Analytical and Bioanalytical Chemistry*,
- 467 *378*(4), 910–916. https://doi.org/10.1007/s00216-003-2442-8
- 468 Wang, J., & Gardinali, P. R. (2012). Analysis of selected pharmaceuticals in fish and the fresh water
- 469 bodies directly affected by reclaimed water using liquid chromatography-tandem mass
- 470 spectrometry. *Analytical and Bioanalytical Chemistry*, *404*(9), 2711–2720.
- 471 https://doi.org/10.1007/s00216-012-6139-8
- 472 Yao, L., Zhao, J.-L., Liu, Y.-S., Yang, Y.-Y., Liu, W.-R., & Ying, G.-G. (2016). Simultaneous determination
- 473 of 24 personal care products in fish muscle and liver tissues using QuEChERS extraction
- 474 coupled with ultra pressure liquid chromatography-tandem mass spectrometry and gas
- 475 chromatography-mass spectrometer analyses. *Analytical and Bioanalytical Chemistry*,
- 476 *408*(28), 8177–8193. https://doi.org/10.1007/s00216-016-9924-y
- 477 Zeilinger, J., Steger-Hartmann, T., Maser, E., Goller, S., Vonk, R., & Länge, R. (2009). Effects of
- 478 synthetic gestagens on fish reproduction. *Environmental Toxicology and Chemistry*, *28*(12),
- 479 2663–2670. https://doi.org/10.1897/08-485.1
- 480 Zhao, F., Gao, X., Tang, Z., Luo, X., Wu, M., Xu, J., & Fu, X. (2017). Development of a simple multi-
- 481 residue determination method of 80 veterinary drugs in Oplegnathus punctatus by liquid
- 482 chromatography coupled to quadrupole Orbitrap mass spectrometry. *Journal of*
- 483 *Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences*, *1065–1066*,
- 484 20–28. https://doi.org/10.1016/j.jchromb.2017.09.013

Figure captions

- Fig. 1: Influence of extraction solvent (ACN, MeOH, MeOH + 1% acetic acid) on measured areas
- (matrix: hake muscle, spiking level 200 ng/g, n=3).
- Fig. 2: Recovery (n=3) of the target compounds after filtration of a spiked solution of
- MeOH/water (5/95) at 100 µg/L.

Table 1: MS/MS parameters for the analysis of target analytes by MRM in negative and positive ionization modes.

MRM 1: transition used for quantification

MRM 2: transition used for confirmation

Table 2: Matrix effects (%) calculated for all target analytes in different seafood matrices.

If there is an intense signal suppression due to the presence of the matrix, ME (%) is close to -100

If there is an intense signal enhancement due to the presence of the matrix, ME (%) is close to 100

Table 3: Analytical performances of the analytical procedure: linearity (equations and R² coefficient of determination), limits of quantifications (LOQ), recoveries (n=3) and precisions (RSD%, n=3).

N/A : Not applicable

Table 4: Pharmaceutical concentrations (expressed in ng/g dw) detected in the Bay of Biscay seafood samples.

