
HAL Id: hal-02525324
https://univ-pau.hal.science/hal-02525324

Submitted on 30 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalizing and simulating cross-layer elasticity
strategies in Cloud systems

Khaled Khebbeb, Nabil Hameurlain, Faiza Belala

To cite this version:
Khaled Khebbeb, Nabil Hameurlain, Faiza Belala. Formalizing and simulating cross-layer elasticity
strategies in Cloud systems. Cluster Computing, 2020, �10.1007/s10586-020-03080-8�. �hal-02525324�

https://univ-pau.hal.science/hal-02525324
https://hal.archives-ouvertes.fr

This document shows the post-print version of an article in Cluster Computing journal (Springer)
The final article is available online since 27 March 2020.
DOI: https://doi.org/10.1007/s10586-020-03080-8

Formalizing and simulating cross-layer elasticity strategies in
Cloud systems

Khaled Khebbeb · Nabil Hameurlain · Faiza Belala

Received: 30 April 2019 / Revised: 15 January 2020 / Accepted: 29 February 2020 / Published: 27 March 2020

Abstract Clouds are complex systems that provide

computing resources in an elastic way. Elasticity allows

their adaptation to input workloads by (de)provisioning

resources as the demand rises and drops. Given the nu-

merous overlapping factors that impact their elasticity

and the unpredictable nature of the workload, provid-

ing accurate action plans to manage Cloud elasticity is a

particularly challenging task. In this paper, we propose

a formal approach based on Bigraphical Reactive Sys-

tems (BRS) to model Cloud structures and their elas-

tic behavior. We design cross-layer elasticity strategies

which operate at application and infrastructure Cloud

layers to manage the elastic adaptations. We encode

the elastic behaviors in Rewriting logic, through the

Maude framework, to enable their generic executabil-

ity. We provide a qualitative verification of the designed
behaviors’ correctness with a model-checking technique

supported by the Linear Temporal Logic (LTL). Fi-

nally, we provide a tooled simulation-based methodol-

ogy, through the Queuing theory, to conduct a quanti-

tative analysis of the designed elasticity strategies.

Keywords Self-adaptation · Cloud computing ·
Cross-layer elasticity strategies · Formal methods ·
Bigraphical Reactive Systems · Rewriting logic ·
Maude · Linear Temporal Logic · Queuing theory

Khaled Khebbeb (�)
LIUPPA Laboratory - University of Pau, France
E-mail: khaled.khebbeb@univ-pau.fr

Nabil Hameurlain
LIUPPA Laboratory - University of Pau, France
E-mail: nabil.hameurlain@univ-pau.fr

Faiza Belala
LIRE Laboratory - Constantine 2 University, Algeria
E-mail: faiza.belala@univ-constantine2.dz

1 Introduction

Cloud computing [32] is a recent paradigm that has

known a great interest in both industrial and academic

sectors. It consists of providing a pool of virtualized re-

sources (servers, virtual machines, etc.) as on-demand

services. These resources are offered by Cloud providers

according to three fundamental service models: infras-

tructure as a service (IaaS), platform as a service (PaaS),

and software as a service (SaaS). The most appealing

feature that distinguishes the Cloud from other mod-

els is the elasticity property [22, 2, 18, 23]. Elasticity

allows to efficiently control resources provisioning ac-

cording to workload fluctuation in a way to maintain an

adequate quality of service (QoS) while minimizing op-

erating cost [15]. Such a behavior is implemented by an

elasticity controller: an entity usually based on a closed

control loop which decides of the elasticity actions to be

triggered to adapt to the demand [25]. In fact, managing

a Cloud system’s elasticity can be particularly challeng-

ing. Elastic behaviors rely on many overlapping factors

such as the available resources, current workload, the

system’s state of provisioning, etc. Managing these de-

pendencies significantly increases the difficulty of mod-

eling Cloud systems’ elasticity controller. To address

this challenge, formal methods characterized by their

efficiency, reliability and precision, present an effective

solution to deal with these numerous factors.

In this paper, we contribute to the design of elastic

behaviors in the context of Cloud systems. We present

a complete approach for formal modeling, qualitative

verification and quantitative analysis of Cloud elastic-

ity basing on formal models and mathematical theo-

ries. Figure 1 gives a global view of our solution. In

terms of modeling, we adopt Bigraphical Reactive Sys-

tems (BRS) [34] as a meta-model for specifying struc-

https://doi.org/10.1007/s10586-020-03080-8

2 Khaled Khebbeb et al.

Fig. 1 A top view of our solution for formal modeling, qualitative verification and quantitative analysis of Cloud elasticity

tural and behavioral aspects of elastic Cloud systems.

Bigraphs are used to model the structure of Cloud sys-

tems and the elasticity controller. Bigraphical reaction

rules describe the elastic behavior of a Cloud system.

As we aim at providing a generic solution, we focus on

the infrastructure (IaaS) and application (SaaS) levels

to define reactive elasticity strategies for provisioning

and deprovisioning Cloud resources in a cross-layered

way. A strategy provides a logic that governs resources

provisioning. It enables the elasticity controller to man-

age the Cloud system’s elastic behavior. It consists of a

set of actions (bigraphical reaction rules) that are trig-

gered according to the specified conditions. We design

reactive strategies taht take the form: IF Condition(s)

THEN Action(s). To describe the system’s desirable

states and evolution over time, we use a Kripke struc-

ture to define the desired behaviors as linear temporal

logic (LTL) formulas.

Furthermore, we turn to Maude [11] as a semantic

framework to encode the BRS modeling approach and

to provide a generic executable solution of Cloud elas-

tic behavior. Maude is a formal tool environment based

on rewriting logic. It can be used as a declarative and

executable formal specification language, and as a for-

mal verification system. It provides good representation

and verification capabilities for a wide range of systems

including models for concurrency. Maude enables us to

easily map the BRS specifications into Maude modules

and to manage the non-determinism that characterizes

a Cloud system’s elastic behavior. In addition, Maude

allows encoding the defined Kripke structure and LTL

formulas. This enables conducting a LTL state-based

model-checking technique to verify the introduced be-

haviors’ qualitative correctness.

In order to illustrate the designed cross-layer strate-

gies, it is important to analyze their induced behav-

iors in a quantitative point of view, i.e., in terms of

cost, performance and efficiency [42]. This task is not

trivial as it requires monitoring the system during its

runtime to watch and control its adaptation [1]. Con-

sidering the fluctuating and unpredictable nature of its

input workload, we propose a tooled queuing-based ap-

proach as an analytic support for simulating, monitor-

ing and analyzing a Cloud system’s elastic behavior.

Precisely, we conduct an experimental case study on

an existing Cloud-based service, through multiple exe-

cution scenarios, to provide a quantitative analysis of

the introduced cross-layer elasticity strategies. By this

simulation-based evaluation, our goal is to illustrate our

main approach’s capabilities in terms of elastic behav-

iors together with their hypothetical use in real envi-

ronments.

As part of our contributions, in this paper we ex-

tend [26] by defining vertical scale elasticity strategies

(i.e., adding/removing computer resources to resize vir-

tual machines). This implies extending the bigraphical

specifications to consider computational resource pools

(CPU, memory) for Cloud servers and VMs. We also

extend the bigraphical reaction rules to consider the

vertical scale elasticity. Note that these extensions im-

ply extending the Maude-based definitions as well as

the LTL formulas for qualitative verification. Further-

more, we detail our tool for monitoring and simulating

elasticity. With this tool, we conduct a deeper quanti-

tative analysis of all the defined strategies. We provide

a deeper comparative study of their induced behaviors

and high-level policies resulting from the different cross-

layer elasticity strategies at infrastructure (IaaS) and

application (SaaS) layers. Note that we omit the Plat-

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

Formalizing and simulating cross-layer elasticity strategies in Cloud systems 3

Fig. 2 High level view of Cloud systems’ elastic behavior

form as a Service (PaaS) Cloud layer’s elasticity [37]

as it considers very specific and technology-dependent

requirements including virtualization constraints (hy-

pervisors types) for horizontal scaling, components up-

grading and software aging. The solution we present in

this paper tends to be more conceptual as it relies on

formal methods and aims at reducing the design com-

plexity and operating analysis.

The remainder of the paper is structured as follows.

In Section 2, we present our vision of Cloud systems

and explain how their elastic behavior is managed by

the elasticity controller. In Section 3, we introduce and

use BRS formalism to provide a modeling approach for

Cloud systems. We model the elasticity controller, de-

fine elasticity strategies and describe the desirable be-

haviors with LTL. In Section 4, we encode the bigraph-

ical specifications of elastic Cloud systems into Maude.

In Section 5, we introduce our tooled queuing-based

methodology and an experimental case study for the

simulation and analysis of the defined elastic behav-

iors. In Section 6, we discuss some related works about

formal specification of elasticity and about autonomic

management and monitoring of elasticity. Finally, Sec-

tion 7 summarizes and concludes the paper.

2 Cloud systems and elasticity

At a high level of abstraction, an elastic Cloud sys-

tem can be divided in three parts: a front-end part, a

back-end part and an elasticity controller. The front-

end represents the client interface that is used to access

the Cloud system and to interact with it. The back-end

part refers to the Cloud system’s hosting environment,

i.e., the set of computing resources (servers, VMs: vir-

tual machines, service instances, computing resources

etc.) that are deployed in the system and that are pro-

vided to satisfy its incoming workload. Cloud systems

offer their computing resources in an elastic way. Elas-

ticity is a property that was defined as

“the degree in which a system is able to adapt to

workload changes by provisioning and deprovisioning

resources in an autonomic manner, such that, at each

point in time, the available resources match the current

demand as closely as possible.” [22].

The main goal of elasticity is to avoid the system’s

over-provisioning and under-provisioning states, respec-

tively categorized by too much or not enough provi-

sioned resources to cope with the current demand. Elas-

tic Cloud systems usually work according to a closed-

loop architecture as shown in Figure 2, where the elastic

Cloud system receives end-users’ requests through its

client interface. The amount of received requests (i.e.,

the input workload) can oscillate in an unpredictable

manner. The growing workload, thus the system’s load

can cause users Quality of Experience (QoE) degrada-

tion (e.g. performance drop). A Cloud infrastructure

provider hosts the controlled system (i.e., Cloud host-

ing environment). It provides costs to the Cloud service

provider according to the provisioned resources (that

are allocated to the service provider’s running applica-

tions). When input workload drops, the eventually un-

necessarily allocated resources are still billed. Elastic-

ity controller monitors the controlled system and deter-

mines its adaptation (i.e., its elastic behavior). Adap-

tation actions (i.e., (de)provision Cloud resources) are

triggered to satisfy high-level policies that are set by

the service provider such as minimize costs, maximize

performance, etc.

According to [18], we distinguish three methods of

elasticity: horizontal scaling, vertical scaling and migra-

tion. Horizontal scaling consists of adding (scale-out) or

removing (scale-in) Cloud resources (VMs, services) in

order to adapt to the current demand, whereas verti-

cal scaling consists of resizing VMs to allocate them

with more (scale-up) or less (scale-down) computing

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

4 Khaled Khebbeb et al.

resources (CPU, RAM). Figure 3 illustrates horizon-

tal and vertical scaling. Horizontal scaling is closely

linked to the notion of load balancing which consists

of redirecting requests across services in order to bal-

ance the system’s load and optimize the use of the de-

ployed resources. Migration consists of relocating Cloud

resources (VMs, services) to different hosts (servers,

VMs) in order to optimize Cloud hosting environment’s

resources consumption.

The behavior of an elastic system can be intuitively

described as follows. During its runtime, the system’s

load can increase, which might lead to overload the pro-

visioned resources (the system is then under-provisioned).

To avoid the saturation, an elastic system stretches,

i.e., it scales by provisioning more computing resources.

Conversely, when the system load decreases, some re-

sources might become underused (leading the system to

be over-provisioned). To reduce costs, the elastic sys-

tem contracts, i.e., it scales by deprovisioning the un-

necessarily allocated resources [8]. A system’s elastic

behavior is generally specified by elasticity strategies.

Strategies gives the elasticity controller a logic that gov-

erns its decision making in order to satisfy the high-level

policies, by triggering the suitable adaptation actions

(according to the introduced elasticity methods), in an

autonomic way.

Due to the complexity of Cloud systems and the

multiplicity of the overlapping factors that impact their

elasticity (i.e., input workload, available resources, logic

that governs elasticity controller’s behavior, etc.), spec-

ifying and implementing an elastic behavior is a partic-

ularly tedious task. In this paper, we address this chal-

lenge by relying on formal methods. We provide a BRS

based modeling of Cloud systems’ structure and the

elasticity controller’s behavior. We encode the proposed

specification into Maude language to provide an exe-

cutable solution of the elastic behaviors together with

the verification of their correctness.

3 BRS-based specification of elastic Cloud

systems

Bigraphical reactive systems (BRS) are a recent for-

malism introduced by Milner [34, 35], for modeling the

temporal and spatial evolution of computation. It pro-

vides an algebraic model (and a graphical representa-

tion) which emphasizes both connectivity and locality

via a link graph and a place graph respectively. A BRS

consists of a set of bigraphs and a set of reaction rules,

which define the dynamic evolution of a system by spec-

ifying how the set of bigraphs can be reconfigured.

Fig. 3 Horizontal and vertical scaling at infrastructure level

3.1 Bigraphical modeling of Cloud systems

We model a Cloud system with a bigraph CS includ-

ing all Cloud structural elements. We define a sorting

logic to specify mapping rules and expresses all the

constraints and construction rules, that CS needs to

satisfy, to ensure proper and accurate encoding of the

Cloud semantics into BRS concepts. Formal definitions

are given in what follows.

Definition 1. Formally, a Cloud system is defined by

a bigraph CS, where:

CS =
(
VCS , ECS , ctrlCS , CS

P , CSL
)

: ICS → JCS

– VCS and ECS are sets of nodes and edges of the

bigraph CS.

– ctrlCS : VCS → KCS is a control map that assigns

each node v ∈ VCS with a control k ∈ KCS .

– CSP = (VCS , ctrlCS , prntCS) : mCS → nCS is a

parent map. mCS and nCS are the numbers of sites

and regions of the bigraph CS.

– CSL = (VCS , ECS , ctrlCS , linkCS) : XCS → YCS

represents the link graph of CS, where linkCS :

XCS] PCS → ECS] YCS is a link map, XCS and

YCS are respectively inned and outer names, and

PCS is the set of ports of CS.

– ICS =< mCS , XCS > and JCS =< nCS , YCS > are

the inner and outer interfaces of the Cloud system

bigraph CS.

Nodes VCS represent the physical (servers, CPU and

RAM units) or logical (VMs and service instances) el-

ements of the Cloud system. Edges ECS represent the

links (e.g. communication canals) that connect the nodes

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

Formalizing and simulating cross-layer elasticity strategies in Cloud systems 5

Fig. 4 The bigraph anatomy

via their ports PCS . The control map ctrlCS associates

semantics to the nodes. The place graph CSP gives the

hierarchical construction of the system basing on the

parent map prntCS for nodes and regions (e.g. a server

node is a parent for a VM node, or hosts is). Regions

represent the different parts of the system (e.g. the host-

ing environment). Sites are used to neglect parts of the

system that are not included in the model. The link

graph CSL gives the link map linkCS which shows all

the connections between ports and names. Inner and

outer interfaces ICS and JCS give the openness of the

system to its external environment (other bigraphs). In-

ner and outer names XCS and YCS give labels to differ-

ent parts of the system for interfacing purposes. Figure

4 gives the bigraph anatomy and identifies graphically

all the above-mentioned elements.

Definition 2. The sorting discipline associated to CS

is a triple ΣCS = {ΘCS ,KCS , ΦCS}. Where ΘCS is a

non-empty set of sorts. KCS is its signature, and ΦCS

is a set of formation rules associated to the bigraph CS.

Table 1 gives for each Cloud concept the mapping

rules for BRS equivalence. It consists of the control as-

sociated to the entity, its arity (number of ports) and its

associated sort. Sorts are used to distinguish node types

for structural constraints while controls identify states

and parameters a node can have. For instance, a server

noted SE has control SEL when it is overloaded and

SEU when unused but all nodes representing servers

are of sort e. Similarly, pools of computing resources

have the same structure and are of sort r. However, we

distinguish two types of resource pools: those indicating

available resources at server level (through control RA)

and those allocated to a VM (through control RV).

Table 2 gives the construction rules that define con-

struction constraints over the bigraphical model. Rule

Φ0 specifies that servers are at the top of the hierar-

chical order of the deployed entities in the bigraph.

Rules Φ1−4 give the structural disposition of the Cloud

hosting environment where a server hosts VMs, a VM

Table 1 The sorting discipline of the bigraph CS

Cloud element Control Arity Sort

Physical machine layer

Server SE

3 eOverloaded server SEL

Unused server SEU

Pool of available resources RA 1 r

Virtual machine layer

Virtual machine VM

3 v
Overloaded VM VML

Overprovisioned VM VMP

Unused VM VMU

Pool of allocated resources RV 1 r

Application layer

Service instance S

1 sOverloaded service SL

Unused service SU

Request q 0 r

Computing resources layer

CPU unit CU 0 c

RAM unit M 0 m

Table 2 Construction rules ΦCS of the bigraph CS

Rule description

Φ0 All children of a 0-region (hosting environement)
have sort e

Φ1 All children of a e-node have sort v̂r

Φ2 All children of a v-node have sort ŝr

Φ3 All children of a s-node have sort q

Φ4 All children of a r-node have sort ĉm

Φ5 All q̂cm-nodes are atomic

Φ6 All ̂evsqcm-nodes are active are r-nodes are passive

Φ7 In a e-node, one port is always linked to a w-name,
one port is always linked to the child r-node, and
the other may be linked to children v-nodes

Φ8 In a v-node, one port is always linked to a parent
e-node, one port is always linked to a child r-node,
and the other may be linked to children s-nodes

runs service instances and a service instance handles

requests. In addition, rules specify that resource pools

are hosted by servers or VMs, and host CPU and RAM

units. All connections are port-to-port links to illus-

trate possible links between the different Cloud entities.

In Φ7 − 8, we use the name w (for workload) to illus-

trate the connection the Cloud system has with its ab-

stracted front-end part. A server is linked to its hosted

VMs and available resource pool, and a VM is linked

to the service instances it is running and its allocated

resource pool [27]. Rule Φ4 gives the active and passive

elements, i.e., that may take part in reactions or not,

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

6 Khaled Khebbeb et al.

Fig. 5 Example of a bigraph CS modeling a Cloud system

respectively. Finally, rule Φ5 gives the atomic entities,

i.e., that do not host other nodes. We use a disjunc-

tive notation to indicate that a node can be of different

sorts. For example, a âb-node can be of sort a or sort b.

Example. Let’s consider an arbitrary Cloud system

where a physical server (SE node) is online and one

VM (VM node) is deployed. Two service instances (S

nodes) are running inside the VM and each service is

handling one request (q nodes). The physical server has

two CPU (CU nodes) and two RAM (M nodes) units

in its available resource pool (RA node). The VM is

allocated one unit of CPU and one unit of RAM into

its allocated resource pool (RV node). Such a system

can be modeled with a bigraph CS, according to the

introduced bigraphical semantics, as shown in Figure

5. The shown bigraph CS has an interface < 0, ∅ >→<
1, w > indicating that is contains 0 sites and 1 region,

and that it has an outer name w and no inner names.

3.2 The elasticity controller as a behavioral entity

The elasticity controller determines the adaptations of

the Cloud system’s hosting environment. In our mod-

eling approach, we consider this entity as (1) the set of

adaptation actions that describe the system’s behavior

and (2) the logic that governs the rules’ triggering. The

adaptation actions are expressed as bigraphical reaction

rules and the triggering logic is expressed as strategies

that describe how different adaptations of a Cloud sys-

tem are achieved in a cross-layered manner (i.e., at in-

frastructure and application Cloud levels).

3.2.1 Bigraphical reaction rules to model Cloud

adaptation actions

In this section, we show how different Cloud elastic-

ity adaptations can be expressed as bigraph structural

Fig. 6 Graphical notation of rules R2 and R3

rewriting. A bigraphical reaction ruleRi is a pair (B,B′),

where redex B and reactum B′ are bigraphs that re-

spect the same sorting discipline and construction rules.

The evolution of a given Cloud bigraph CS is derived

by checking if B is a match (or occurs) in CS and by

substituting it with B′ to obtain a new system configu-

ration CS′. This is made by triggering the correspond-

ing reaction rule Ri. The evolution is noted CS
Ri→ CS′.

In other words, when a rule Ri is triggered, a Cloud bi-

graph CS, on the left-hand side of the rule is rewritten

to the right-hand side of the rule as a bigraph CS′. Note

that a reaction rule produces a bigraph which is correct

by definition, with respect to the specified structural

constraints.

Table 3 gives the algebraic description of the differ-

ent reaction rules that implement the adaptation ac-
tions of the elasticity controller. Sites (expressed as d)

are used to neglect the elements that are not included

in the reaction. The specified rules define horizontal

and vertical scale elasticity actions together with load-

balancing and migration actions at different Cloud lev-

els. Reaction rules are applied for provisioning (adding)

and deprovisioning (removing) resources by scaling-out/

up (R1 − R2/R5 − R6) and scaling-in/down (R3 −
R4/R7−R8) the hosting environment at infrastructure,

application and resources levels. Rules (R9−R10) spec-

ify migration and load-balancing actions at application

and infrastructure levels, and are used to balance the

system’s load.

Reaction rules graphical notation. To illustrate

the defined bigraphical reaction rules’ semantics. We

give some example of the key features they provide us-

ing their graphical notations. Figure 6 illustrates the

rule R2 (adding a new VM instance) and the rule R3

(removing a service instance) where a VM is deployed

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

Formalizing and simulating cross-layer elasticity strategies in Cloud systems 7

Table 3 Reaction rules describing adaptation actions

Adaptation action Reaction rule algebraic form

Scale-Out

Deploy service instance R1
def
= SE.(VM.d2 | d1) | id→ SE.((VM.(S.d3) | d2) | d1) | id

Deploy VM instance R2
def
= SE.d1 | id→ SE.((VM.d2) | d1) | id

Scale-In

Consolidate service in-
stance

R3
def
= SE.((VM.(S.d3) | d2) | d1) | id→ SE.(VM.d2 | d1) | id

Consolidate VM instance R4
def
= SE.((VM.d1) | d1) | id→ SE.d1 | id

Scale-Up

Add CPU unit to a VM R5
def
= SE.((RA.CU | d4) | (VM.(RV.d3) | d2) | d1) | id → SE.((RA.d4) | (VM.(RV.CU |

d3) | d2) | d1) | id
Add RAM unit to a VM R6

def
= SE.((RA.M | d4) | (VM.(RV.d3) | d2) | d1) | id → SE.((RA.d4) | (VM.(RV.M | d3) |

d2) | d1) | id
Scale-Down

Free CPU unit from a
VM

R7
def
= SE.((RA.d4) | (VM.(RV.CU | d3) | d2) | d1) | id → SE.((RA.CU | d4) |

(VM.(RV.d3) | d2) | d1) | id
Free RAM unit from a
VM

R8
def
= SE.((RA.d4) | (VM.(RV.M | d3) | d2) | d1) | id → SE.((RA.M | d4) | (VM.(RV.d3) |

d2) | d1) | id
Migration

Migrate service instance R9
def
= SE.(((VM.(S.d4) | d3) | (VM.d2)) | d1) | id→ SE.((VM.d3) | (VM.(S.d4) | d2) | d1) |

id

Load Balancing

Transfer request R10
def
= SE.((VM.(S.q | d4) | (S.d3) | d2) | d1) | id→ SE.((VM.(S.d4) | (S.q | d3) | d2) | d1) |

id

Fig. 7 Graphical notation of rules R5 and R8

on a physical server and a service instance is removed

from a VM respectively. Figure 7 illustrates the rule R5

(adding a CPU unit to a VM) and the rule R8 (remov-

ing a RAM unit from a VM) where a CPU unit, respec-

tively a RAM unit is allocated/freed to/from a VM in-

stance. Figure 8 illustrates the rule R9 (migrating a ser-

vice instance to another VM) and the rule R10 (trans-

Fig. 8 Graphical notation of rules R9 and R10

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

8 Khaled Khebbeb et al.

ferring a request to another service instance) where a

service instance, respectively a request, is moved from

a VM, respectively a service instance to another one.

Notice that these all the expressed entities (physical

server, virtual machine, service instance, resource pools,

CPU and RAM units) are expressed as nodes of the cor-

responding control, as defined by the sorting discipline

in Table 1. In addition, the displayed (re)configurations

obey to the construction rules (e.g., VM nodes are in-

side server nodes, service nodes are inside VM nodes,

how all nodes are linked, etc.) as defined in defined in

Table 2. In the presented examples, sites are used to

abstract away elements that do not take part in the

modeling.

Now that all the possible adaptation actions (i.e.,

reaction rules) are identified, we introduce elasticity

strategies to define a logic expressing conditions about

when, how and where adaptations are triggered.

3.2.2 Cross-layer elasticity strategies

As explained before, the specified strategies define a

logic that governs the elastic behavior of the controlled

Cloud system. We use reactive strategies to make de-

cisions about the elastic adaptations of the deployed

entities by reasoning on their states. A reactive strat-

egy takes the form: IF Condition(s) THEN Action(s).

Table 4 gathers and formally defines our proposed elas-

ticity strategies for horizontal scaling, vertical scaling,

migration and load balancing. For each strategy, the ta-

ble gives its Cloud levels of action, its triggering condi-

tion and its triggered action. Conditions are expressed

in first-order logic and actions are reaction rules. We
informally explain the strategies in the following.

Horizontal scale strategies. In order to control the

triggering of the different horizontal scale actions (re-

action rules R1−R4), we define the strategies H Out1,

H Out2 and H In for (de)provisioning a Cloud’s host-

ing environment resources at application and infras-

tructure levels.

H Out1 (Scale-Out: High availability). This strategy en-

sures high Cloud resources availability. It triggers reac-

tion rules to provision Cloud resources as follows.

– Application level: a new instance of service is pro-

visioned by executing rule R1, when at least one

available instance is overloaded (i.e., when it has

control SL) and no other service instance is unused

(control SU).

– Infrastructure level: a new VM instance is provi-

sioned by executing rule R2, when at least one VM

is overloaded (i.e., when it has control VMO) and

no other VM is unused (control VMU).

H Out2 (Scale-Out: Limited availability). Constraints

Cloud resources to a limited availability as follows.

– Application level: a new instance of service is pro-

visioned by executing rule R1, when all available

service instances are overloaded.

– Infrastructure level: a new VM instance is provi-

sioned by executing rule R2, when all available VMs

are overloaded.

H in (Scale-in). Describes how the Cloud hosting en-

vironment deprovisions resources as follows.

– Application level: the system deprovisions an empty

service instance (which has control SU) by executing

rule R3, when one is detected, and no overloaded

instance is available.

– Infrastructure level: an empty VM instance (of con-

trol VMU) is deprovisioned by executing rule R4,

if one is detected and no overloaded VM is available.

Note that the choice of deprovisioning an empty in-

stance (VM/service) only when no overloaded one is

detected is made to avoid loops in the elastic behavior

(i.e., deleting an instance then provision another one

right after).

Vertical scale strategies. Vertical scale elasticity con-

sists of adapting a VM offering in terms of adding/remo-

ving processing (CPU) and memory (RAM) resources

(reaction rules R5−R8). Adapting a VM’s offering de-

pends on the amount of available resources at the host-

ing physical server. We introduce two functions cpu(x)

and ram(x) which give the amount of available CPU

and RAM units for a given Server or VM as a pa-

rameter x. We introduce two vertical scale strategies

V Up and V Down for adding (Scale-Up) and reducing

(Scale-Down) resources as follows.

V Up (Scale-Up). This strategy describes how a VM

that is at an overloaded state (i.e., which has a con-

trol VMO) adapts its offering by provisioning more

CPU/RAM as follows.

– CPU: an additional unit of CPU is allocated to the

VM if its hosting server has more free CPU units

than RAM.

– RAM: an additional unit of RAM is allocated to the

VM if its hosting server has more free RAM units

than CPU.

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

Formalizing and simulating cross-layer elasticity strategies in Cloud systems 9

Table 4 Elasticity strategies at application and infrastructure levels

Level Condition Action

Horizontal scale strategies

H Out1 (Scale-Out: High availability)

Application ∀s ∈ VCS ∃s′ ∈ VCS ctrlCS(s′) = SO ∧ ctrl(s) 6= SU R1

Infrastructure ∀v ∈ VCS ∃v′ ∈ VCS ctrlCS(v′) = VMO ∧ ctrl(e) 6= VMU R2

H Out2 (Scale-Out: Limited availability)

Application ∀s ∈ VCS ctrlCS(s) = SO R1

Infrastructure ∀v ∈ VCS ctrlCS(v) = VMO R2

H In (Scale-In)

Application ∀s ∈ VCS∃s′ ∈ VCSctrlCS(s) 6= SL ∧ ctrlCS(s′) = SU R3

Infrastructure ∀v ∈ VCS ∃v′ ∈ VCS ctrlCS(v) 6= VML ∧ ctrlCS(v′) = VMU R4

Vertical scale strategies

V Up (Scale-Up)

CPU ∃v, e ∈ VCS ctrl(v) = VMO ∧ prnt(v) = e ∧ cpu(e) ≥ ram(e) > 0 R5

RAM ∃v, e ∈ VCS ctrl(v) = VMO ∧ prnt(v) = e ∧ ram(e) ≥ cpu(e) > 0 R6

V Down (Scale-Down)

CPU ∃v ∈ VCS ctrl(v) = VMP ∧ cpu(v) ≥ ram(v) ∧ cpu(v) > 1 R7

RAM ∃v ∈ VCS ctrl(v) = VMP ∧ ram(v) ≥ cpu(v) ∧ ram(v) > 1 R8

Migration and Load balancing strategies

Mig (Migration)

Infrastructure ∃v, v′ ∈ VCS ctrl(v) = VMO ∧ ctrl(v′) 6= VMO ∧ load(v)− load(v′) > 1 R9

LB (Load balancing)

Application ∃s, s′ ∈ VCS ctrl(s) = SO ∧ ctrl(s′) 6= SO ∧ load(s)− load(s′) > 1 ∧ prntCS(s) = prntCS(s′) R10

V Down (Scale-Down). This strategy describes how an

overprovisioned VM (i.e., of control VMP) adapts its

offering by reducing its CPU/RAM offering as follows.

– CPU: a CPU unit is freed from the VM if the VM

is using more CPU units than RAM.

– RAM: a RAM unit is freed from the VM if the VM

is using more RAM units than CPU.

Migration and Load Balancing strategies. In or-

der to control the triggering of reaction rules R9−R10,

we introduce the strategies Mig and LB to describe

the migration and load balancing behaviors of a Cloud

system at infrastructure and application levels as fol-

lows. We introduce the function load(x) which gives for

a given VM or service instance, as a parameter x, the

number of service instances or requests it is hosting.

The Mig and LB strategies are defined as follows:

Mig. This strategy describes how a Cloud system bal-

ances its load at infrastructure level with the migration

of a service instances from an overloaded VM to a less

loaded one, by triggering rule R9.

LB. This strategy describes the load balancing behav-

ior of a Cloud system at application level with the trans-

fer of a request from an overloaded service instance to

a less loaded one, by triggering rule R10.

Note that migration and load balancing strategies

are designed to complement horizontal and vertical scale

strategies. For instance, a newly provisioned hosting in-

stance (i.e., VM/service) is initially unused. To reach a

load equilibrium, Mig and LB strategies will balance

the overall system load at infrastructure and applica-

tion levels, as specified.

3.2.3 Modeling the desirable elastic behaviors with LTL

Linear Temporal Logic (LTL) [43] as an analytic sup-

port is particularly powerful. It is expressive enough

to accurately describe (in a declarative fashion) a sys-

tem’s evolution over time. It is also generic enough to

describe desired high-level goals. LTL semantics allow

defining formulas that globally express the liveness fun-

damental property (i.e. the insurance that a given state

is reachable). The satisfaction of such formulas can be

interpreted as a qualitative indicator of behavioral cor-

rectness.

Modeling the introduced elastic behavior with Lin-

ear Temporal Logic allows the specification of formulas

to verify the system’s elastic adaptations. To this pur-

pose, we define a model of temporal logic with a Kripke

structure ACS , as follows.

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

10 Khaled Khebbeb et al.

Definition 3. Given a set APCS of atomic propositions,

we consider a Kripke structure ACS = (A,→A, LCS).

Where A is a set of states, →A is a transition relation,

and LCS : A→ APCS is a labeling function associating

to each state a ∈ A, the set LCS(a) of atomic proposi-

tions in APCS that hold in the state a. LTL(APCS) de-

notes the formulas of the propositional linear temporal

logic. The semantics of LTL(APCS) is defined by a sat-

isfaction relation: ACS , a |= ϕ, where ϕ ∈ LTL(APCS).

We consider the set of atomic propositions APCS =

{Stable,Overloaded,Overprovisioned, Unbalanced}

that describe the hosting environment’s states. For the

sake of simplicity, these states are symbolic and relate

to the elastic behavior of the system. The system is

considered Overloaded/Over-provisioned when at least

one entity (VM, Service) is overloaded/unused, and it is

Stable otherwise. Unbalanced is a non-exclusive propo-

sition that can hold together with Stable, Overloaded or

Overprovisioned states (that are exclusive) when load

balancing at VM or Service levels is applicable. In other

terms, different structural states of the system in A

(i.e., configurations) can be gathered (i.e., labeled) in

the same class of equivalence with respect to the global

symbolic state of of the system’s elasticity in APCS .

To describe the desirable elastic behaviors that are

triggered by the elasticity controller in LTL, we intro-

duce the set

LTL(APCS) = {UpScale,DownScale,Balance,
Elasticity} of the propositional formulas, as follows.

– UpScale ≡ G(Overloaded→ FStable)

– DownScale ≡ G(Overprovisioned→ FStable)

– Balance ≡ G(Unbalanced→ FStable)

– Elasticity ≡ G(∼ Stable→ FStable)

Formulas UpScale, DownScale and Balance respec-

tively state that a given system that is Overloaded,

Overprovisioned and Unbalanced will eventually reach

its Stable state. Elasticity formula states that a sys-

tem that is not Stable will eventually reach its Stable

state. We use the symbol ∼ for negation. The symbols

G and F are LTL operators that respectively stand of

“henceforth” and “eventually”.

We represent system’s transitions with Labeled Tran-

sition Systems (LTS) [47]. States are the introduced

states of elasticity (S: Stable, O: Overloaded, P: Over-

provisioned and B: Unbalanced). Transitions are the dif-

ferent adaptation actions for horizontal scaling (R1 −
R4), vertical scaling (R5−R8), migration and load bal-

ancing (R9−R10). In addition, transitions in and out

Fig. 9 LTS for horizontal scaling

Fig. 10 LTS for vertical scaling

stand for receiving (input) and releasing (output) end-

users’ requests.

Figure 9 and Figure 10 show the system transi-

tions when controlled with horizontal and vertical scale

strategies respectively. Migration and load balancing

actions are also shown as they complement the two

scaling methods. Note that any state can be initial as

it is determined at runtime, by monitoring. However,

the shown transition systems depict the system’s tran-

sitions with Stable as an initial state. This shows that

there always exists a path that leads back to the Stable

state even if the system transits by any other states.

This behavior is related to the non-plasticity property,

defined in [8].

4 Principles of Maude encoding and property

verification

To verify the correctness of the introduced elasticity

strategies and to watch the aimed cross-layered elastic-

ity, it is important to provide an executable solution

for the specified elastic behaviors. Theoretically, BRS

provide good meta-modeling bases to specify Cloud sys-

tems’ structure and their elastic behavior. As for their

executable capabilities, the few existing tools built around

BRS as BigraphER [48] and BPL Tool [21] are limited

and only suitable for some specific application domains.

Furthermore, the BRS model-checker BigMC [40] that

was used in [45], allows formal verification of safety

properties. However, the possible verifications rely on

very limited predefined predicates. These tools lack of

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

Formalizing and simulating cross-layer elasticity strategies in Cloud systems 11

providing autonomic executability of the specified BRS

models. In this paper, we turn to Maude language to

tackle these limitations and to provide a generic ex-

ecutable solution of elasticity strategies together with

the verification of their correctness.

4.1 Motivating the use of Maude

Maude [11] is a high-level formal specification language

based on equational and rewriting logics. A Maude pro-

gram is a logical theory and a Maude computation is

logical deduction which uses the axioms specified in the

program/theory. A Maude specification is structured

in two parts. (1) A functional module that specifies a

theory in membership equational logic. Such a theory

is a pair (Σ, E ∪ A), where the signature Σ specifies

the type structure (sorts, subsorts, operators etc.). E

is the collection of the (possibly conditional) equations

declared in the functional module, and A is the col-

lection of equational attributes (associative, commuta-

tive, etc.) declared for the operators. (2) And a sys-

tem module that specifies a rewrite theory as a triple

(Σ, E ∪A,R), where (Σ, E ∪A) is the module’s equa-

tional theory part, and R is a collection of the (possibly

conditional) rewrite rules.

The Bigraphical specifications for Cloud systems’

structure (i.e., sorting discipline and construction rules

in Section 3.1) can be encoded in a functional module

Elastic Cloud System, where the declared operations and

equations define the constructors that build the sys-

tem’s elements and the predicates that determine their

states. Similarly, BRS dynamics (i.e., reaction rules in

Section 3.2) that describe the elasticity controller’s be-

havior can be encoded in a system module Elatic Cloud-

Behavior, where the elasticity strategies are described

as conditional rewrite rules. The set of rewrite rules R

expresses the bigraphical reaction rules. Their trigger-

ing conditions, expressed as equations from the func-

tional or system module, encode the strategies’ pred-

icates. To verify the correctness of the defined Cloud

systems’ elastic behavior as encoded in the system mod-

ule, we define a Maude property specification based

on Linear Temporal Logic. It consists of an additional

system module Elastic Cloud Properties which encodes

the specified Kripke structure and LTL formulas. It

provides a support for the verification of their satisfac-

tion through the Maude-integrated LTL-based model-

checker.

Figure 11 shows an overview of our solution of mod-

eling, executing and verifying Cloud system’s elasticity.

Straight arrows show encoding phases to build Maude

modules from the specified BRS and Kripke formal defi-

nitions. Dashed arrows show the dependencies between

Fig. 11 Top view of our solution for specifying and verifying
Cloud elastic behaviors

the produced modules (a dashed arrow from A to B

means that B requires A in order to be built).

4.2 Setting up the functional module

Table 5 gathers the main Maude definitions of the func-

tional module Elastic Cloud System, where the speci-

fied bigraphical specifications in terms of system struc-

ture and system state predicates are encoded a follows.

Structure encoding. In the functional module, the

bigraph sorts e, v, s and r (i.e., server, VM, service and

resource pool) are encoded as Maude sorts CS, VM, S and

Res. Note that we enriched Maude sorts with additional

information as the maximum hosting thresholds and

the entities states. A sort is built according to its asso-

ciated constructor (ctor). For instance, a Cloud server

is built by the operation CS<x,y,z/VML:Res:state>,

where x, y and z are naturals that encode upper host-
ing thresholds at server, VM and service levels. VML

is a list of VMs, as sort VM is defined as a subsort

of sort VML. The term state gives a state out of the

constructors (overloaded, overprovisioned, stable, unbal-

anced etc.). Sort Res stands for resource pool and gives

values for CPU and RAM resources. It is given with the

constructor [cpu & ram] where cpu and ram are ex-

pressed as units, using naturals. Similarly, sorts VM and

S are defined with their constructors. For instance, a

service instance is given with S[z,load:state] where

z is its upper hosting threshold, state is its state of

elasticity and load is a natural which gives the number

of requests the service instance is handling.

System state predicates encoding. In order to ex-

press different states of the system, we define a set of

operations and predicates in Maude, introduced with

the keyword op or ops when the operations have the

same signature. The defined operations are applied on

the different Cloud entities such as CS, VM, S, etc. to

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

12 Khaled Khebbeb et al.

Table 5 Encoding the BRS Cloud model into a Maude functional module

Functional module Elastic Cloud System

Enriched bigraphical
model

Maude specification

Structural semantic

sorts CS VM S Res VML SL state . subsort VM < VML . subsort S < SL .

op CS<_,_,_/_:_:_> : Nat Nat Nat VML Res state -> CS [ctor] .

op VM{_,_:_:_} : Nat SL Res state -> VM [ctor] .

op S[_,_:_] : Nat Nat state -> S [ctor] .

op [_&_] : Nat Nat -> Res [ctor] .

ops stable overloaded overprovisioned unbalanced : -> state [ctor] .

· · ·

Operations and
system state
predicates

op loadCS(_): CS -> Nat . op loadVM(_): VM -> Nat . op loadS(_): S -> Nat .

op getResCS(_): CS -> Res . getResVM(_): VM -> Res .

ops getCpu(_) getRam(_): CS -> Nat . ops getVCpu(_) getVRam(_): VM -> Nat .

ops isStable(_) isOverloaded(_) isOverprovisioned(_) isUnbalanced(_) AoverV(_)

EoverV(_) EunV(_) AoverS(_) EoverS(_) EunS(_) ... : CS -> Bool .

ops stableV(_) overV(_) idelV(_) ... : VM -> Bool .

ops stableS(_) overS(_) idleS(_) ... : S -> Bool .

ops lessS(_) mostS(_): CS -> S . ops lessV(_) mostV(_): CS -> VM .

· · ·

return information regarding their load, the amount of

resources Res each entity (Server, VM) is allocated or

a truth value on the applied state predicate. The de-

fined operations and predicates are used to monitor the

system during its runtime. For instance, AoverV() is

a predicate for “all VMs are overloaded” and EunS()

is a predicate for “there exists an unused service in-

stance”. We also encode system state predicates is-

Stable(), isOverloaded(), isOverprovisioned() and isUn-

balanced() that are true if the Cloud system is stable,

overloaded, overprovisioned and unbalanced. In addi-

tion, we extend the model’s expressivity by introducing

operations like lessS/V() or mostS/V() in order to de-

tect the most or less loaded service instance or VM.

These operations are used to make choices regarding

the aimed entities for migration and load balancing.

4.3 Setting up the system module

Table 6 gathers the main Maude definitions of the sys-

tem module Elatic Cloud Behavior, where different scal-

ing functions and the introduced elasticity strategies are

encoded as follows.

Elasticity strategies encoding. Strategies are en-

coded as conditional rewrite rules in the system module.

Their conditions are the states and monitoring predi-

cates and their actions (bigraph reaction rules) are en-

coded as Maude functional computation. Like bigraphi-

cal reaction rules, Maude rewrite rules consist of rewrit-

ing the left-hand side of the rule to its right-side. For

instance, migration strategy is specified as the following

conditional rewrite rule (crl):

crl[migration]:cs => MigS(cs) if MigSpred(cs).

Where cs is a given Cloud system, MigS(cs) is an

equation that reduces the term cs in such a way to

apply migration at infrastructure level (by encoding re-

action rule R9), and MigSpred(cs) is a predicate that is

true if migration at infrastructure level in cs is possible

(i.e., it implements the triggering condition of the previ-

ously introduced strategy Mig). MigS() and MigSpred()

are defined as equations in the system module.

Note that rewrite rules in Maude are designed to be

concurrent. Hence, we introduce two sorts VSCALE and

HSCALE to specify structures that exclusively support

vertical and horizontal scaling strategies respectively,

without concurrency, as follows.

– Vertical scaling: sort VSCALE is introduced with a

constructor “VSCALE :: cs” where cs is the con-

trolled Cloud system. Such an expression is used to

restrain the application of vertical scaling strategies

over cs. For instance, strategy V_Up for scaling-up

the system at CPU level is specified with :

crl[up-cpu]: VSCALE :: cs => VSCALE ::

addCpu(cs) if scaleUpPredCPU(cs).

– Horizontal scaling: sort HSCALE is given with a con-

structor “HSCALE (V i, S j):: cs” where param-

eters i, j ∈ [1, 2] indicate which scale-out strategy

(H Out1/2) is applied at infrastructure and appli-

cation levels of cs. For instance, strategy H Out1 at

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

Formalizing and simulating cross-layer elasticity strategies in Cloud systems 13

Table 6 Encoding the BRS Cloud model into a Maude system module

System module Elastic Cloud Behavior

Enriched bigraphical
model

Maude specification

Sorts and elasticity
predicates

sorts VSCALE HSCALE .

op VSCALE :: _ : CS -> VSCALE [ctor] .

op HSCALE (V_ , S_) :: _ : Nat Nat CS -> HSCALE [ctor] .

ops LBpred(_) MigSpred(_) scaleUpPredCPU(_) scaleUpPredRAM(_)

scaleDownPredCPU(_) scaleDownPredRAM(_) ... : CS -> Bool .

· · ·

Functions
ops addCpu(_) addRam(_) subCpu(_) Hout1V(_) Hout1S(_)

Hout2V(_) Hout2S(_) HinV(_) HinS(_) MigS(_) LB(_) ... : CS -> CS .

· · ·

Reaction rules and
elasticity strategies

Conditional rewrite rules of the form: crl [rule-name] : term => term’ if condition(s) .

crl [migration] : cs => MigS(cs) if MigSpred(cs) .

crl [load-balancing] : cs => LB(cs) if LBpred(cs) .

crl [V-up-CPU] : VSCALE :: cs => VSCALE :: addCpu(cs) if scaleUpPredCPU(cs) .

crl [V-down-RAM] : VSCALE :: cs => VSCALE :: subRam(cs) if scaleDownPredRAM(cs) .

crl [H_Out1S] : HSCALE (V i, S j) :: cs => HSCALE (V i, S j) :: HoutS1(cs)

if (j == 1 and EoverS(cs) and (not EunS(cs))) .

crl [H_Out2V] : HSCALE (V i, S j) :: cs => HSCALE (V i, S j) :: HoutS1(cs)

if (i == 2 and AoverV(cs)) .

crl [H_inV] : HSCALE (V i, S j):: CS< ct,vt,st/v | vl :res: cst >

=> HSCALE (V i , S j):: HinV(CS< ct,vt,st/v | vl :res: cst >

if ((not EoverV(vl)) and unV(v)).

· · ·

application level is defined with:

crl[H_Out1-S]: HSCALE(V i, S j) :: cs =>

HSCALE(V i, S j) :: HoutS1(cs)

if (j==1 and EoverS(cs) and (not EunS(cs))

4.4 Formal verification of elasticity

Maude allows associating Kripke structures to the rewrite

theory specified in the system module. The semantics

introduced by the Kripke structure ACS in Section 3.2

allows to conduct a generic LTL model-checking that

can reason on any system configuration. For instance,

determining that a Cloud configuration is stable in terms

of elasticity is specified with: cs |= Stable = true if

isStable(cs) == true. Where cs is a given Cloud con-

figuration. Stable is a proposition ∈ APCS that repre-

sent the symbolic elastic state Stable. And isStable(cs)

is a predicate for “the Cloud system cs is stable” which

is defined in the functional module.

We execute Maude’s LTL model-checker with, as pa-

rameters, (1) a Cloud configuration as an initial state

and (2) a property formula in LTL(APCS) to verify.

The model-checker can give counter examples showing

the succession of the triggered rewrite rules that are

applied on the initial state of the system, in such a

way to verify the given property according to the spec-

ified elasticity strategies. For more detail about formal

verification of Cloud elasticity in Maude, refer to our

previous work [27]. Note that this paper also extends

[27] in terms of (1) structure (to consider processing

and memory computing resources), (2) behavior (to ex-

tend horizontal scale elasticity and to consider vertical

scale elasticity and load balancing), (3) formal verifica-

tion capabilities (to consider the correctness of all the

provided elastic behaviors) and (4) quantitative study

(by providing a deeper methodology and comparative

analysis of the introduced elasticity strategies).

5 A Queuing approach for the simulation and

quantitative analysis of Cloud elasticity

Elasticity strategies allow the elasticity controller to de-

cide when, where and how to trigger the suitable adap-

tation given the system’s state of elasticity. In order

to validate the correctness of the designed strategies,

their quantitative analysis is a mandatory task before

their use in real Cloud environments. In this Section, we

introduce a tooled queuing-based methodology to simu-

late and quantitatively analyze the introduced elasticity

strategies over an original case-study.

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

14 Khaled Khebbeb et al.

Fig. 12 A queuing-based view of Cloud systems

As its input workload rises, the congestion that may

result in a system are in fact waiting queues that indi-

cate the insufficiency of the provisioned resources. For

this reason, we advocate that a queuing approach is

a relevant support to illustrate the elastic behavior of

a system. It allows to quantitatively analyze the hypo-

thetical performance and costs induced by our elasticity

strategies.

5.1 A queuing model for Cloud elasticity

We consider a queuing model, defined by a set of pa-

rameters as introduced by the Kendall notation:

A/S/C/Q/P/D [7], where C is the number of service

instances. A is the arriving process describing how the

requests arrive into the system. D is the serving disci-

pline describing how the requests are processed (e.g.,

first come first served). The service process S gives the

amount of time required to process the requests. Queue

size Q gives the maximum number of requests that the

system can hold and the population P is the number

of requests expected to arrive into the system. In our

study, we will consider that Q = ∞ and N = ∞. We

consider that A is a Poisson process which gives an ex-

ponential distribution of the received requests (at each

time unit) with the average value of λ. S also follows

an exponential law with the average value of µ to give

the number of requests that are processed by service

instances. The essence of elasticity being the adapta-

tions, we use a queuing model with on-demand num-

ber C of service instances, inspired from [31], to show

how the system adapts to its varying input workload by

(de)provisioning resources at service and infrastructure

levels, using the defined elasticity strategies.

Fig. 13 Functional structure of the designed simulation and
monitoring tool

Figure 12 illustrates the principle of our queuing-

based vision of Cloud systems. This vision allows con-

sidering the front-end and back-end parts of a Cloud

system (i.e., reception and processing of end users’ re-

quests) with a robust mathematical semantics (i.e., us-

ing the introduced queuing model). The load balancer

(LB) component connects the front-end and the back-

end parts of a Cloud system. It transfers incoming re-

quests from the principal system queue to the available

service instances deployed in the Cloud hosting envi-

ronment. The values x, y and z correspond to upper

hosting thresholds at server, VM and service layers, in-

troduced in Section 4.2.

5.2 A simulation and monitoring tool for Cloud

elasticity

In order to simulate and illustrate the defined elasticity

strategies, we designed a program which works accord-

ing to the MAPE (Monitor, Analyze, Plan, Execute)

autonomic control loop [25]. The tool enables simulat-

ing and monitoring a managed elastic Cloud system

during its runtime. It implements the defined elasticity

controller and elastic behavior (elasticity strategies). In

addition, the tool allows to reproduce a traffic of incom-

ing requests (arrival process) and processed requests

(service process) as specified by the introduced queu-

ing model. The tool’s functional structure is given in

Figure 13. It implements the principal notions intro-

duced in this paper such as the architectural entities

(VMs, services) of a Cloud system and the introduced

queuing approach (through the components Queue and

Poisson). Furthermore, it integrates the main phases of

the MAPE control loop through the components Mon-

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

Formalizing and simulating cross-layer elasticity strategies in Cloud systems 15

itor, Actuator (for the Execute phase) and a compo-

nent Elasticity which gathers both Analyze and Plan

phases of the loop. Finally, the tool defines a Simula-

tion component for setting-up, executing and recording

the runtime of a simulated Cloud system. Note that En-

tity component is used to define a method to produce

unique identifiers for VMs and services from CPU time

stamps.

Using our tool, a Cloud system is simulated with, as

input: (1) an initial configuration of the Cloud system

(in terms of deployed VMs and service instances), (2)

initial values of maximum hosting thresholds at server,

VM and service levels, (3) a request arrival rate λ and

(4) a request service rate µ.

Proposed algorithm. We provide an algorithm to ex-

plain the introduced tool’s approach for elasticity man-

agement and simulation. The Algorithm 1 shows the

main MAPE control loop approach where the studied

system is initialized then simulated. Note that the pre-

sented algorithms’ purpose is to simplify the reader’s

understanding of the proposed approach. They give a

simplified vision of the previously defined behaviors’ se-

mantics. Once the specified behaviors are formally ver-

ified, the purpose of our simulation tool is to (1) illus-

trate the capabilities of our approach in terms of mod-

eling expressiveness and to (2) observe the proposed

behaviors in terms of quantitative results. The overall

idea is to analyze and discuss the hypothetical use of

these defined behaviors (i.e. elasticity strategies) in real

environments.

In the initialization phase, the initial system con-

figuration is built. Sets of virtual machines (Vset) and
service instances (Sset) running inside those VMs are

specified. Requests arrival rate (λ), requests service rate

(µ) and upper hosting thresholds (x, y, z) are initialized

to set-up the system’s queuing aspect. And the set of to

be applied strategies (Stratset) is specified. Note that

the the number of VMs is bounded by the value of x.

During the whole simulation time, the tool applies

the MAPE concept, at each step (tick). Input request

flux (workload) is generated as a Poisson process around

the value of λ. Incoming requests are queued in the sys-

tem then distributed to the deployed service instances.

At this point, Monitoring calculates the system global

state (overloaded, stable, etc.) in function of the de-

ployed hosting entities’ sates as shown in The Algo-

rithm 2. For each VM (Vi) and service instance (Si),

the state of elasticity (overloaded, unused, stable) is ob-

tained regarding their respective upper hosting thresh-

olds (respectively y and z).

Once the system’s state obtained, the elasticity con-

troller (component Elasticity or Elast in the algorithm)

Algorithm 1 Pseudo code for elasticity control loop

1: Initialization: instantiate initial VMs (Vset) and services
(Sset); init λ, µ and hosting thresholds; specify applied
strategies ids (Stratset)

2: Begin
3: while (tick < simulation time) do
4: generate incoming requests (workload = Poisson.gen(λ))
5: put requests in system queue (Actuator.queue(workload))
6: distribute requests to services (Actuator.dist(Sset))
7: calculate system global state (Monitor.monitor(Vset,
Sset))

8: adapt according to strategies (Elast.adapt(Stratset))
9: process requests (Actuator.output(µ,Sset))

10: output monitoring log (Monitor.log())
11: end while
12: End

Algorithm 2 Pseudo code for states monitoring
1: Begin
2: /* calculate deployed VMs states */
3: for (every virtual machine Vi in Vset) do
4: if (Vi.load() == 0) then Vi.state = unused
5: elseif (Vi.load() < y-threshold) then Vi.state = stable
6: elseif (Vi.load() >= y-threshold) then Vi.state = over-

loaded
7: end if
8: end for
9: /* calculate deployed services states */

10: for (every service Si in Sset) do
11: if (Si.load() == 0) then Si.state = unused
12: elseif (Si.load() < z-threshold) then Si.state = stable
13: elseif (Si.load() >= z-threshold) then Si.state = over-

loaded
14: end if
15: end for
16: determine system global state /* from Vset and Sset

states */
17: End

Algorithm 3 Pseudo code for elastic adaptation
1: Begin
2: for (every strategy strati in Stratset) do
3: /*Stratset ⊆ {H Out1, H Out2, H In, V Up, V Down,

Mig, LB}*/
4: evaluate triggering predicates /*using monitoring data*/
5: apply the suitable adaptation actions Ai in Actionsset
6: /*Actionsset ⊆ {scale-up, scale-down, scale-out, scale-

in, migration, load-balancing}*/
7: end for
8: End

applies the desired elasticity strategies as shown in the

Algorithm 3. The controller analyzes monitoring data

to evaluate the triggering conditions of each strategy

strati in in Stratset and the Actuator applies the associ-

ated adaptation actions Ai in Actionsset, as specified in

Section 3.2.2. After the suitable adaptation actions are

applied, requests are processed (i.e., freed from services

queues) according to the service process rate µ. Finally,

the Monitor prints information logs to keep monitoring

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

16 Khaled Khebbeb et al.

traces, and the adaptation loop (starting with incoming

requests) is reiterated.

5.3 Simulation and analysis methodology

According to the shown tool’s elasticity control algo-

rithms, a Cloud system’s runtime is simulated and mon-

itored from a given initial configuration. Information is

gathered from the conducted simulations order to quan-

titatively analyze the obtained behaviors.

Recorded parameters. At each time step, monitoring

records the following information:

– Number of input requests

– Number of requests waiting in the system queue

– Number of deployed VMs and service instances

– Number of requests waiting in the service queues

Calculated metrics. At the end of a simulation, the

following metrics are calculated from the recorded val-

ues listed above:

– Average number of deployed VMs and service in-

stances

– Average waiting rate of requests before processing

(delay)

– Average usage rate of VMs and service instances

The obtained metrics indicate the performance and

cost induced by the elastic behavior of the simulated

Cloud system. Performance is given by the average wait-

ing rate of requests before processing (i.e., response

time). Operating costs and scaling accuracy are given

with the average number of deployed resources (i.e.,

VMs and service instances).

Analysis and validation. The system’s elastic behav-

ior efficiency is analyzed in terms of performance, costs

and average usage rate of resources [44]. In order to

validate the obtained results we propose the following

solutions for horizontal and vertical scaling:

– Horizontal scaling: as horizontal scale elasticity con-

sists of adding/removing Cloud resources in a cross-

layered manner (i.e., VMs, services), we compare

the obtained simulation results with those given by

the Erlang-C formula [16]. This formula calculates,

from a given arrival and service rates λ and µ, the

minimal needed number of servers (i.e., service in-

stances) to ensure a given level of service (i.e., aver-

age waiting rate).

– Vertical scaling: unlike horizontal scaling, vertical

scale elasticity consists of resizing the already exist-

ing VM instances in the initial system configuration

without adding/removing them. As the number of

deployed instances remains unchanged, the Erlang-

C formula is no longer of use. Vertical scaling is

more about the efficiency of computing resources al-

location (i.e., minimum resources for maximum per-

formance). However, it is not a trivial task to define

a generic correlation between input workload and an

ideal and minimal resources (CPU, RAM) allocation

[4]. Therefore, we propose an arbitrary solution to

deal with resources consumption: we consider that

a VM is initially allocated one unit of CPU and one

unit of RAM which give it a initial capacity z of up-

per threshold in terms of requests in service queues

and an initial service rate µ. Adding or removing a

CPU/RAM unit simply adds or removes a constant

amount to its z/µ (as adding/removing resources

modifies the system’s capacity in terms of handled

and processed requests by time unit). Finally, we

study the obtained results by analyzing the system

states of over-provisioning and under-provisioning

regarding the deployed computing resources.

5.4 The Steam digital library: a case study

Steam is a platform for online contents distribution,

of rights management and communication developed

by Valve in 2003 [50]. Mainly focusing on the market

of video-games, Steam platform enables users to buy

games, software and automatically update their prod-

ucts. Since 2013, Steam benefits from a complete Cloud-

based support for distributed hosting of its offered ser-

vices. In this case study, we focus on the Steam digital

library online store.

In January 2018, Steam recorded about 125 Million

registered users and a catalog of about 28000 items for

sale. Steam bases most of its business model on the

high availability of its services and ubiquitous acces-

sibility worldwide. According to [51], nearly 1 Million

products have been sold on Steam in 2018, with an

average of 83, 000 sales monthly. Actually, the online

store is the object of permanent solicitation but activ-

ity peaks are recorded during special events such as sea-

sonal sales and periodic discounts. For instance, about

200, 000 sales were recorded during the last week of De-

cember 2017.

From these reports, we can see that Steam store

knows an important activity (excluding browsing, re-

searches, display of multimedia content, uncompleted

transactions, etc.) and is of a highly variable nature in

terms of solicitation fluctuations. This makes of Steam

store a suitable case study to illustrate our solution for

managing the elastic behaviors of a Cloud system. We

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

Formalizing and simulating cross-layer elasticity strategies in Cloud systems 17

propose an experimental study of its elasticity, accord-

ing to our introduced strategies, in order to validate

their correctness under a quantitative point of view.

5.4.1 Setting up the experimental study

In order to illustrate the defined elasticity strategies,

we simulate the execution of the Steam store. First, we

apply our bigraphical modeling over the Steam store to

identify an initial state of the service as a Cloud config-

uration. Then, we set values for the different simulation

parameters (i.e., thresholds, arrival and service rates).

Finally, we explain the study protocol and identify some

simulation scenarios.

System initial state. We consider the Steam store as

an initial instance of service (S node) deployed inside

a virtual machine (VM node), which is running on top

of a physical server (SE node) as shows in Figure 14.

In terms of computing resources, CPU and RAM units

(CU and M nodes) are deployed inside the available

and allocated resource pools (RA and RV node) for the

server and the VM respectively. The VM is allocated

one CPU unit and one RAM unit. The server has 3

available units of both CPU and RAM. Remember that

sites (numbered from 0 to 5 here) are used to abstract

some parts of the system. For instance, site 5 nested

inside the service instance is used to abstract all the

requests the service is handling to avoid overloading

the graphical representation.

Such a configuration is encoded in Maude and en-

riched with the upper hosting thresholds x, y and z for

services, VMs and servers respectively, according to the

introduced constructors in Section 4.2, as follows:

CS< x,y,z/ VM{y,S[z,q: stateS]:[1 & 1]:

stateVM}:[3 & 3]: stateSE > .

The terms stateS, stateV and stateSE are states

(out of overloaded, unused, stable, etc.) of the service

instance, the VM and the physical server respectively.

The term q gives the number of handled requests by the

service instance. Finally, the structures [a & b] encode

the resource pools where a and b give the number of

CPU and RAM units respectively.

Simulation inputs. We define input values for the

simulations as follows:

– Arrival rate λ: We consider that λ = 500. This value

gives the maximal request arrival rate that will be

reached in our simulation.

Fig. 14 Bigraphical modeling of the Cloud based Steam
store service initial state

– Service rate µ: We consider that µ = 50. This values

indicates the initial capacity of the system in terms

of requests processing.

– Upper server hosting threshold x: We consider that

x = 4 which means that the system can provision

up to 4 VM instances.

– Upper VMs hosting threshold y: We consider that

y = 4 which indicates that each VM can host up to

4 instances of the Steam store service.

– Upper services hosting threshold z: We consider that

z = 50 which means that a service instance can

handle up to 50 requests at a time (i.e., service queue

size).

Experiment and scenarios. We face the Cloud based

Steam store service to an unpredictable model of in-

coming workload as shown in Figure 15(a). This model

describes a highly fluctuating activity over 200 units of

time (t). It is obtained with an algorithm shown in Fig-

ure 15(b) and describes three main simulation phases.

The obtained activity represent the Steam store solic-

itations following the announcement of short duration

discount offers as follows.

– Phase 1 (t = [0, 70]): Slow and progressive rise of

the workload. The value of λ goes from 5% to 70%.

– Phase 2 (t = [71, 100]): Workload peak rise. The

value of λ goes from 70% to 100%.

– Phase 3 (t = [101, 200]): Fast drop of workload. The

value of λ goes from 100% to 1%.

Once set up, we simulate the system’s runtime to

study its elastic behavior according to the following sce-

narios, focusing on the horizontal then the vertical scale

strategies:

Horizontal scale scenarios: we propose four scenarios

where we compose the defined Scale-Out strategies at

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

18 Khaled Khebbeb et al.

infrastructure and application levels. The Scale-Down

strategy (H in) is also applied for all scenarios:

– H1: we apply strategy H Out1 at both infrastruc-

ture and application levels.

– H2: we apply strategy H Out2 at both infrastruc-

ture and application levels.

– H3: we apply strategy H Out1 at infrastructure level

and strategy H Out2 at application level.

– H4: we apply strategy H Out2 at infrastructure level

and strategy H Out1 at application level.

Vertical scale scenario: we propose one scenario where

we apply Scale-Up and Scale-Down strategies. As ex-

plained before, in the scenario we focus on the system’s

capacity in terms of queue size and request processing

rate. The capacity is given with: c = s × µ where s in

the number of deployed service instances and µ is the

service rate.

– V: we apply strategies V Up and V Down to add/re-

move computing resources (CPU,RAM) to cope with

the varying demand.

5.4.2 Experiment results and analysis

In this Section, we present the obtained simulation ex-

periment results. In Table 7, we give, for the horizontal

scale scenarios, the obtained metrics values in terms of

average waiting rate, average deployed VMs, average

deployed service instances and the average value of λ

for the three simulation phases. For the vertical scale

scenario, we give the obtained results in terms average

waiting rate, the average amount of deployed CPU and

RAM, and the average value of λ for the three simula-

tion phases.

Horizontal scale scenarios. Intuitively, applying high

resources availability scale-out strategy H Out1 at in-

frastructure and application levels (scenario H1), the

systems behaves in a way to achieve High performance

high-level policy. In summary, the system runtime ends

with a request processing waiting rate of 0.03%. How-

ever this implies important deploying costs with 78%

of total VM capacity (out of x = 4) and 70% total ser-

vice instances capacity (out x×y = 16). In addition,

the system presents a relatively low resources use rate

efficiency (i.e., system load) of 37% on average.

In terms of validation, the Erlang-C formula indi-

cates that at a minimum of 14 service instances are re-

quired to cope with the workload peak (phase 2) given

the value of λ during this phase. However, H1 shows

that 16 instances were deployed which indicates the

Fig. 15 A model of unpredictable input workload

system’s trend to an over-provisioning state in terms

of deployed resources. Note that the Erlang-C formula

gives the same values for all scenarios as all the input

data are the same. The recorded system’s monitoring

traces are given in Figure 16.
Conversely, applying limited availability scale-out

strategy H Out2 in a cross-layered manner, i.e., at in-

frastructure and application levels (scenario H2), the

systems achieves a High economy high-level policy. In

summary, it achieves an average of 52% and 35% of

total VMs and service instances capacity deployment.

However, this implies relatively low performance with

an average waiting rate of 15%. Finally, the system

achieves a high system load of 73%. The system’s mon-

itoring records are given in Figure 17. In terms of vali-

dation, the system deploys 12 service instances to cope

with the growing demand in phase 2, which is better

than the Erlang-C results.

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

Formalizing and simulating cross-layer elasticity strategies in Cloud systems 19

Table 7 Simulation scenarios quantitative results

Horizontal scale scenarios

H1

Metrics Phase 1 Phase 2 Phase 3 Total

Avg. wait (%) 0,08 0 0 0,03

Avg. VMs 3,7 4 2,1 3,1

Avg. services 13,5 16 6,7 11,3

Avg. λ 201 500 129 210

H2

Metrics Phase 1 Phase 2 Phase 3 Total

Avg. wait (%) 12 18 0 15

Avg. VMs 1,6 4 2 2

Avg. services 4,8 12 5 5,6

Avg. λ 194 490 154 207

H3

Metrics Phase 1 Phase 2 Phase 3 Total

Avg. wait (%) 6 12 0 8

Avg. VMs 3,5 4 3 3

Avg. services 5,5 14 5,3 7

Avg. λ 197 486 155 208

H4

Metrics Phase 1 Phase 2 Phase 3 Total

Avg. wait (%) 9 0 0 2

Avg. VMs 3,1 4 2,4 2,6

Avg. services 12,5 16 7,7 10,2

Avg. λ 204 484 156 209

Vertical scale scenario

V

Metrics Phase 1 Phase 2 Phase 3 Total

Avg. wait (%) 4,7 8,6 0,6 6,4

Avg. CPU 4,9 11,6 4,5 5,42

Avg. RAM 3,5 11,47 4,6 4,8

Avg. λ 201 473 155 208

By combining H Out1 and H Out2 scale-out strate-

gies at infrastructure and application levels respectively

(scenario H3), the systems achieves a compromise be-

tween H1 and H2 in terms of deployment costs and

overall performance. This combination leads the system

to achieve a High infrastructure availability high-level

policy, where it rapidly provisions VMs when the work-

load suddenly rises. During its runtime (as shown in

Figure 18), the system ends up with a waiting rate of

8% (against 0.03% in scenario H1 and 15% in H2). It

achieves a similar yet inferior resources usage rate, com-

paring to H2 with a system load of 68%. However, H3

presents higher infrastructure deployment costs than

H2, with an average rate of 74% deployed VMs against

52% in H2. In terms of validation, this scenario is coher-

ent with the given results with the Erlang-C formula

as it gives the same total amount of deployed service

instances (i.e., 14).

Fig. 16 H1 scenario monitoring traces

Fig. 17 H2 scenario monitoring traces

Fig. 18 H3 scenario monitoring traces

Fig. 19 H4 scenario monitoring traces

Fig. 20 V scenario monitoring traces

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

20 Khaled Khebbeb et al.

Fig. 21 Horizontal scale strategies cross-layer high-level policies

Fig. 22 Monitoring trace for t = 93 in H2 scenario

Finally, by combining H Out2 and H Out1 scale-

out strategies at infrastructure and application levels

respectively (scenario H4), the system depicts a subtle

behavior (as shown in Figure 19). It achieves Infras-

tructure costs optimization high-level policy with an

equivalent, yet inferior, VMs and service instances to-

tal capacity provisioning of respectively 65% and 63%

against 78% and 70% in H1. In addition, the Cloud sys-

tem achieves a better resources usage efficiency than H1

with 45% against 37%. Finally, it shows a slightly worse

performance with a waiting rate of 3% against 0.03%

in H1. In terms of validation, H4 gives the same results

as H1 in terms of deployed service instances (i.e., 16),

which is higher than the minimal value given with the

Erlang-C formula.

In conclusion, we observe that the different obtained

behaviors, resulting from the different strategies com-

binations widely influence the studied Cloud system

in terms of performance, costs and efficiency. On the

one hand, limiting resources deployment in terms of

VMs and service instances leads to better efficiency.

However, it implies worse overall performance for lower

costs. On the other hand, the preference of a higher

resources availability globally implies a higher infras-

tructure deployment cost (due to the system’s frequent

over-provis-ioning tendency), and less efficient resources

usage rate. However, it implies a higher overall perfor-

mance. A comparison of the obtained horizontal scale
strategies’ results is shown in Figure 21 in terms of av-

erage amount of deployed resources in a cross-layered

manner, average system load (i.e., services usage rate)

and average requests processing waiting rate.

Vertical scale scenario. In our experiment, we have

set request service rate to µ = 50 and upper requests

hosting threshold (i.e., service queue size) to z = 50 .

As explained before, we consider that these values ar-

bitrarily correspond to one unit of CPU and one unit

of RAM respectively. To illustrate the system’s capac-

ity growth and decrease, adding/removing an unit of

CPU/RAM results in adding/subtracting 50 to the val-

ues of z/µ. Consequently, it becomes possible to deduce

the amount of deployed CPU and RAM units during

the system’s runtime from the values of the system’s

capacity c and the sum of services queue size q, accord-

ing to the applied scale-up and scale-down strategies.

Thus, the amount of CPU/RAM units is given with

CPU = c/50 and RAM = q/50.

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

Formalizing and simulating cross-layer elasticity strategies in Cloud systems 21

Fig. 23 Horizontal scaling vs. vertical scaling

By applying vertical scale strategies, the studied

Cloud system achieves a High resource efficiency high-

level policy. The scenario V (Figure 20) shows that the

systems adapts particularly efficiently to the workload

fluctuations by provisioning resources quite closely to

the actual demand, in a way to diminish the occur-

rence of over-provisioning and under-provisioning sys-

tem states. In summary, the system ends up with an

average waiting rate of 6.4%. In terms of deployed re-

sources, average values of 5.42 CPU units and 4.8 RAM

units are recorded.

Migration and load balancing. Notice that the shown

graphs does not provide information about the strate-

gies Mig and LB behaviors. However, those behaviors

are visible at the level of the log outputs produced by

our monitoring tool, where traces are kept of all the op-

erations triggered regarding the system’s state. Figure

22 gives the log trace printed by the tool for t = 93

(beginning of phase 2) of scenario H2 activity. The log

shows how requests are transferred from the system

queue to the different service queues. In addition, it

shows when a service instance is migrated from a VM

to another one.

Horizontal scaling vs. vertical scaling. In order to

compare the horizontal and vertical scaling induced by

the defined strategies, we need to calculate the amount

of computing resources (CPU and RAM) deployed for

horizontal scale scenarios (H1 to H4). We consider that

a service instance car run only if one unit of CPU and

one unit of RAM are available in its hosting VM. Since

we set upper hosting threshold of hosted service in-

stances to y = 4, a VM needs to provide at least 4 units

of each CPU and RAM to be able to run this number

Table 8 Horizontal scaling vs. vertical scaling

Results H1 H2 H3 H4 V

Depl. CPU 12,52 8,32 11,92 10,4 4,8

Used CPU 11,32 5,67 7,1 10,2 4,8

Depl. RAM 12,52 8,32 11,92 10,4 5,42

Used RAM 11,32 5,67 7,1 10,2 5,42

Waiting (%) 0.03 15 8 3 7

Load (%) 37 73 68 45 79

of service instances. Thus, the average amount of de-

ployed resource units is given with CPUD = RAMD =

4 × v where v is the average amount of recorded de-

ployed VMs during each simulation. As the full poten-

tial of deployed of deployed service instance is not al-

ways reached, we can also calculate the average amount

of really used resources with CPUU = RAMU = s,

where s is the average amount of deployed service in-

stances.

In the case of vertical scaling, we consider that the

deployed resources are de-facto used, since only one

instance of service is deployed. Thus, the amount of

deployed and used resources is given with CPUD =

CPUU and RAMD = RAMU .

Figure 23 shows a comparison between horizontal

scaling and vertical scaling scenarios in terms of de-

ployed and used resources. Table 8 shows the displayed

values which are calculated, as described, from the pre-

viously shown values. The data is analyzed in the fol-

lowing:

– Vertical scaling advantages: vertical scale scenario

showed overall better results than horizontal scale

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

22 Khaled Khebbeb et al.

ones, with a high system usage rate of 79% (which

is similar to H2) for a moderate waiting rate of 7%

(which is similar to H3). However, vertical scenario

truly distinguishes with a more optimized resources

deployment whereas horizontal scenarios showed an

overall system over-provisioning tendency.

– Horizontal scaling advantages: if vertical scale elas-

ticity puts an accent on efficiency, horizontal scale

elasticity distinguishes from the vertical with a high

reliability and system availability. In fact, having

multiple deployed Cloud resources (i.e., VMs and

service instances) provides a distributed deployment

for the running Cloud service (i.e., the Steam store

service in our study). Such a deployment results on a

high reliability of the system in front of software and

hardware breakdown (e.g., network failure, software

and VM crash, etc.). In addition, the service avail-

ability is maintained in case of system node sudden

crash. On the other hand, vertical scaling consists

of a SPOF (single point of failure) kind of deploy-

ment, where a single node stop or failure (e.g., crash,

update, ect.) results on the potentially extended un-

availability of the whole service [52].

5.5 Discussion

The presented experimental study shows the elastic be-

havior of a simulated Cloud system. Globally, the de-

fined horizontal scale strategies gave results that were

in adequacy with those obtained with the Erlang-C for-

mula. Through the conducted simulation-based quanti-

tative study, we showed that horizontal scaling focuses

on availability and reliability whereas vertical scaling

focuses on resources usage efficiency.

Given the different nature of the obtained results,

one can ask: “which scenario shows the better results

?” or “which strategy is the best to be adopted ?”. To

answer these questions, let’s discuss the concept of a

“good” strategy. We advocate that this notion remains

of very subjective nature and is not trivially formaliz-

able, even by considering the objective nature of the

obtained performance, costs and efficiency estimations.

Thus, it is legitimate to consider that a “good” strat-

egy is one which leads to maximized performance and

efficiency for minimized costs. However, results depend

heavily on the case study, the workload nature and the

system constraints in terms of hosting thresholds.

Our modeling and simulation approach gives a wide

notion of freedom and choice in setting-up desirable

elastic behaviors. We provide a way to design behav-

iors (i.e., elasticity controller’s strategies) which can

be adapted to a Cloud system’s requirements and con-

straints, in terms of budget and nature of activity (i.e.,

workload intensity and fluctuations). Thus, our pro-

posed solution of elasticity management enables a Cloud

service provider to set-up its product’s elastic behavior

considering its constraints and requirements. Precisely,

the introduced hosting thresholds (x, y, z) can be set in

a way to model a real-life system. The upper VMs host-

ing threshold x models a providers financial constraints

(budget) on affording VMs provisioning. The bigger is

the value of x, the more VMs can be provisioned to

provide a distributed deployment of a Cloud service.

The upper service instances threshold y indicates the

nature of the provisioned VM profiles in terms of re-

sources (CPU,RAM) offering. The bigger is the value of

y, the more a provisioned VM carries resources (CPU,

RAM) to host more service instances.

Finally, the values of the system queue size (Q),

service rate µ and the upper requests hosting threshold

y can be adapted in function of the running service’s

nature. For example, a lightweight service (e.g., sim-

ple data access service) could handle more requests at

a time than a complex time consuming one (e.g., file

conversion service).

6 Related work

This paper’s contributions are structured in two main

parts. In the first part, we proposed a formal approach

for the modeling and specification of Cloud systems

structures and elastic behavior using the BRS formal-

ism in Section 3, and an execution and verification solu-

tion of the defined behaviors, using the rewriting-logic-

based Maude system in Section 4. In the second part

(Section 5), we introduced a tooled queuing-based ap-

proach for the simulation, monitoring and quantitative

analysis of the introduced elastic behavior. Hence, this

Section discusses related works in two parts. First, we

discuss some related papers about formal modeling of

Cloud system’s elastic behaviors. The second part of

this Section is dedicated to some papers about solu-

tions for monitoring and managing elasticity in Cloud

systems.

6.1 Formal approaches for Cloud elasticity

specification and management

There have been several works in the literature propos-

ing solutions and frameworks for Cloud systems’ elas-

ticity management, such as [29, 3, 53]. Overall, these

solutions are mainly from the academic world and pro-

vide MAPE-based approaches to control elasticity. Re-

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

Formalizing and simulating cross-layer elasticity strategies in Cloud systems 23

cently, formal methods have been increasingly used to

deal with Cloud elasticity [28]. Woks such as [17, 41],

were for example proposed to study elasticity using for-

mal models. We will discuss in this sub-Section some

similar work in terms of Cloud systems and their elas-

tic behaviors modeling.

In [8], the temporal logic named CLTLt(D)(Timed

Constraint LTL) was used to model some properties re-

lated to Cloud systems such as elasticity, resource man-

agement and quality of service. In their work, authors

provided horizontal scale (scale-out/in) elastic behav-

ior and vertical scale. Other elasticity methods are not

addressed. In terms of modeling, Cloud system’s ar-

chitecture has been abstrated to only consider Cloud

resources as virtual machines (number of VMs). The

application layer is also not addressed. The proposed

approach is verified with an offline SAT/SMT based

tool to analyze execution traces of online simulations

that gave the system’s evolution in terms of number of

deployed VMs.

Authors in [5] proposed a Petri Nets based formal-

ization to describe Cloud-based business processes’ elas-

tic behaviors. They introduced elasticity strategies for

routing, duplicating and consolidating Cloud compo-

nents at application level. Authors focused on the ap-

plication layer of a Cloud configuration but did not ad-

dress the Cloud infrastructure in their model. Authors

simulate their approach at design time to observe its

hypothetical performance in terms of deployed service

instances. The approach was also verified at design time

via mathematical proofs using SNAKES, a Petti nets

based tool for reachability graphs analysis.

In [54], authors proposed an analytical model based

on a queuing approach with variable number of servers.

They represented service-based business processes hor-

izontal scale adaptation (scale-out/in) focusing on the

application layer only. In their approach, authors mod-

eled the input workload as a Poisson process and the

whole system as a Markov Chain, where Cloud-based

services are seen as queuing systems, which global state

is given as the size of the waiting queue. Metrics such as

the number of deployed instances and average response

time were calculated using probabilistic formulas. Au-

thors did not provide a formal verification support.

In [38], authors proposed a formal model for the

quantitative analysis of Cloud elasticity at infrastruc-

ture level. They used a Markov decision process to model

proactive strategies for horizontal scaling elasticity. The

elasticity actions are modeled as a non-deterministic be-

havior and their impact on the system state are mod-

eled as a probabilistic function. In their approach, au-

thors model the global system state as the number of

VMs. To verify their approach, authors used a contin-

uous online verification technique. This verification is

performed before an adaptation is applied to check and

verify its impact on the system.

Globally, these approaches based on the CLTLt(D)

[8], Petri nets [5], Markov decision process [38] or Markov

chains [54] formal supports, allow considering a Cloud

system at a very high level of abstraction. In these

works, authors respectively considered number of VMs,

number of requests and system queue size as main vari-

ables impacting the elasticity controller’s decision-mak-

ing in adapting the controlled system. Given the simple

modeling, the approaches provide elasticity solutions at

a single Cloud level (i.e., infrastructure or application).

A similiar approach for modeling elastic Cloud sys-

tems using BRS was proposed in [46]. Authors modeled

Cloud structures with bigraphs in three parts: the front-

end part, the back-end part and the elasticity controller.

They relied on bigraphical reaction rules to express the

front/back-end interactions along with the adaptation

actions of Cloud configurations at service and infras-

tructure levels and according to horizontal scale, ver-

tical scale and migration elasticity methods. However,

they lacked providing elasticity strategies which oper-

ate in an autonomic manner, they did not provide an

executable support for their solution and did not quan-

titatively evaluate the introduced behaviors.

In this paper, we provide an overall deeper modeling

expressiveness comparing to [8, 5, 54, 38, 46]. We pro-

pose a more complete solution for the design of Cloud

elasticity using formal methods which covers the es-

sential phases of modeling, qualitative verification and

quantitative analysis. We use Bigraphical reative sys-

tems (BRS) formalism to model Cloud systems’ host-
ing environment structure, and to model their elasticity

controller as a behavioral entity. The controller is mod-

eled using bigraphical reaction rules alongside with the

logic which triggers the reactions. This logic is repre-

sented by elasticity strategies which specify the elastic

behavior of the Cloud system in a cross-layered manner

(i.e., at service and infrastructure levels). This mod-

eling approach enables seeing the elasticity controller

as an intrinsic entity of the Cloud system. Therefore,

monitoring tasks over the controlled Cloud system en-

ables considering it as “self-aware”; and the adaptation

actions which are triggered in function of its state en-

ables considering it as “self-adaptive” [10]. In addition,

we answer to the limitations of [46] by defining a set of

elasticity strategies for horizontal scale, vertical scale

and migration methods, and for load balancing. We en-

code the proposed specifications into the Maude formal

framework to enable their executability and the for-

mal verification of their correctness basing on an LTL

state-based model-checking technique. Furthermore, we

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

24 Khaled Khebbeb et al.

Table 9 Comparative study of formal approaches for Cloud elasticity specification and management

Approach [8] [5] [54] [38] [24] [46]
Our

approach

Modeling Cloud structure - - - - -
√ √

Elasticity
methods

Horizontal
√ √ √ √

-
√ √

Vertical - - - - -
√ √

Migration - - - -
√ √ √

Load
Balancing

-
√

- -
√

-
√

Cloud
layer

Infrastructure
√

- -
√

-
√ √

Platform - - - - - - -

Application -
√ √

-
√ √ √

Elasticity
strategies

Reactive
√ √ √

- - -
√

Proactive
√

- -
√ √

- -

Formalism / formal model
CLTLt(d)

Petri
Nets

Markov
chains

Markov
decision
process

Game
theory

BRS
BRS/
Maude

Formal verification technique
SAT/
SMT

solvers

Proof
verifica-

tion
-

Continu-
ous

verifica-
tion

Stochastic
games
model

checking

Model-
checking

LTL state-
based
model-

checking

Quantita-
tive

analysis
Technique

Simula-
tion

Simula-
tion

Proba-
bilistic

calculation
/ Queuing

theory

Proba-
bilistic

calculation
Simulation -

Queuing
theory /

Simulation

Tooled support - - - -
√

-
√

provided a queuing based modeling as a quantitative so-

lution for analyzing the designed behaviors in terms of

hypothetical performance, costs and efficiency.

Also as related work using mathematical analysis on

self-adapting Cloud systems, authors of [24] use game

theory to study the decision-making behaviors to per-

form adaptations in a Cloud environment. Elements

of SLA contracts are encoded into a set of quality-

oriented objectives as desired output for the adapta-

tions. resources variation and uncertainty concerns in

Cloud environments are considered to model the adap-

tation behaviors as stochastic games and the quality

objectives as a variant of temporal logic. Authors con-

sider a Cloud environment as a set of Cloud collab-

orators (servers). When a Cloud realizes that it can-

not execute an application due to its limited resources,

it requires to find the optimal collaborator that can

do the job. Game theory is used to provide proactive

optimal decision-making strategies to find the optimal

collaborator. In our work, we propose a solution to

study how a single Cloud system could self-reconfigure

in terms of resources capability, i.e., by (de)provisioning

resources at infrastructure (VMs, offering) and appli-

cation (service instances) layers. Particularly, we focus

more on the modeling on all elasticity methods (hori-

zontal/vertical scaling, migration and load balancing)

in a complemetary way. However, the migration and

load balancing strategies that we proposed are simi-

lar to the behaviors proposed in [24]. The difference is

that we describe how service instances and requests are

migrated and redirected across VMs and services; espe-

cially given the adapting, thus varying, amount of such

VMs and services (according to our strategies given

the fluctuating workload). Our behaviors are reactive

and go towards ensuring (or at least converging to-

wards) the desired “stable” state of the entire managed

Cloud system’s hosting environment. Authors of [24]

focus on the proactive optimization problem of find-

ing a Cloud collaborator in order to meet the mod-

eled quality objectives. Cloud elasticity mechanisms are

not studied in their approach. The approach is verified

using a stochastic games model-checking technique. It

is simulated for quantitative study purposes using the

PRISM-games tool.

Table 9 gives a comparative study of our approach

with the presented papers in the literature about formal

solutions for Cloud elasticity specification and manage-

ment. Globally, it shows that the presented approach in

this paper incarnates a complete formal solution that

distinguishes from the others with a considerable mod-

eling expressiveness, particularly in terms of Cloud struc-

ture and elastic behaviors. Furthermore, it shows that

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

Formalizing and simulating cross-layer elasticity strategies in Cloud systems 25

it is formally verified and quantitatively studied by sim-

ulation.

Besides, control theory was used for resource man-

agement in distributed [30] and Cloud [33] systems.

Control theory is commonly used to design controllers

that manage the behavior of dynamical systems. Such

systems have a desired output, called “the reference”,

which is often defined as mathematical functions of var-

ious complexity. Control theoretical-based systems are

often designed as control loops which principle is the

following [49]: when one or more output variables of

the system need to follow a certain reference over time,

a controller manipulates the inputs to a system to ob-

tain the desired effect on the output of the system. One

of the main limitations of this approach is the non-

linearity of most inter-relationships in computing sys-

tems [55]. This requires designing non-linear and adap-

tive controllers that are particularly difficult to imple-

ment and to verify qualitatively. In this paper, we in-

spire from closed-loop based approaches to design our

elasticity controller. It aims at having the controlled

Cloud system reach a “stable” global state (which is de-

fined in first-order logic) by relying on elasticity strate-

gies we specified using BRS. The Maude-based encod-

ing of these behaviors ensures autonomic execution of

the elastic adaptations. And the Maude’s LTL model-

checker enables verifying the correctness of the adapta-

tions regarding the reachability of the “stable” state.

Furthermore, authors of [9] discuss the verification

of non-functional properties (NFPs) in Cloud systems.

In their work, the authors describe how a formal ver-

ification technique, called “runtime quantitative verifi-

cation”, can be used to (1) verify evolving Cloud sys-
tems continually and (2) to guide this evolution towards

meeting configurations that are guaranteed to satisfy

the system non-functional requirements (NFRs). Ac-

cording to the authors, continual verification can be

used to manage the reliability of service deployed on

Cloud infrastructure. Such verification enables quanti-

fying the impact of both planned and unexpected vari-

ations on the reliability of services. It can provide an-

swers to some questions such as : “how many additional

VMs should be used to run a service over time consid-

ering their resources variations ?”. The authors expose

different formal verification techniques such as “compo-

sitional NFR verification” and “incremental NFR ver-

ificaiton”. These techniques can be used to continually

verify NFPs of service-based systems on the fly, using

the PRISM probabilistic model checker. In our work, we

used a state-based model-checking technique supported

by the temporal lineal logic (LTL) to verify the NFRs

linked to elastic Cloud systems. Precisely, we showed

that the reachability of the desired “stable” state is en-

sured using the defined behaviors. In other words, we

ensure the liveness NFP. Most importantly, unlike the

strict quantitative nature of the NFRs to be met by the

verification technique in [9], our conducted verification

is mainly qualitative. It is categorized with flexible ver-

ification goals that depend on the controlled system’s

configuration itself (i.e., the cross-layer defined thresh-

olds and the deployed resources). Precisely, we define

symbolic states as first order logic predicates to iden-

tify the desirable and undesirable states. We defined

a Kripke structure to identify the high-level goals (i.e.,

NFRs) as LTL formulas describing the desirable system

evolution over time (i.e., the correctness of the designed

behaviors). In future work, we think that our approach

could significantly benefit from integrating a continual

verification technique to extend its verification capabil-

ities, especially in terms of quantitative verification on

runtime.

6.2 Solutions for Cloud elasticity monitoring and

management

In [20], authors present an autonomic resource provi-

sioning approach based on the MAPE control loop con-

cept. The proposed approach is implemented as a re-

source provisioning framework which supports the MAPE

control loop. The proposed approach is simulated and

evaluated in the CloudSim Toolkit to analyze how the

managed system could dynamically adapt to uncertain-

ties, sudden changes and workload spikes, dealing with

the undesirable states of over-provisioning and under-

provisioning. The solution is evaluated in terms of per-

formance under both smooth and bursty workloads.

The obtained results are compared with other approaches,

and showed that the proposed solution increases the re-

sources utilization and decreases the total cost, while

avoiding SLA violations.

Authors of [13] proposed a framework to perform

Cloud systems’ elastic behaviors and to monitor these

behaviors at runtime. In their approach, authors in-

terpreted service-based Cloud application platforms as

sensor networks in order to apply sensor web techniques

for PaaS-level autonomic management. The proposed

solution promotes extensibility, scalability, platform in-

dependence, genericity and complementarity to other

approaches of auto-scaling management.

In [36] authors introduced concepts and techniques

for monitoring and analyzing the elastic behavior of

Cloud services according to their elasticity controller in-

troduced in [12]. Cross-layer metrics were introduced to

link service level with its underlying infrastructure level

monitoring information and to derive higher level infor-

mation from it. Authors introduced a framework which

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

26 Khaled Khebbeb et al.

provides features and functions for real-time cross-layer

analysis of elastic Cloud services.

Authors of [14] presented a framework for maximiz-

ing Cloud service availability. In their approach, Cloud

service availability is preserved through virtual machines

migration. Authors proposed a solution to specify which

services should be migrated, and when and where these

services should be migrated in response to anomalous

events, such as workload peaks, which impact perfor-

mance and availability. Algorithms for monitoring and

controlling a Cloud service were proposed and evalu-

ated through an experimental study.

In this paper, we propose a complete solution of

robust mathematical foundations to specify Cloud sys-

tems and their elastic behaviors. We model Cloud sys-

tems using the BRS formalism in order to (1) integrate

the complexity of their cross-layer architectures (i.e.,

application, infrastructure and computing resources) and

to (2) specify an elasticity controller which governs their

elastic behaviors. Precisely, we propose elasticity strate-

gies which provide a logic that governs the elasticity

controller’s decision-making for horizontal scale, ver-

tical scale and migration elasticity methods together

with load-balancing in a cross-layered manner. In the

first part of our contributions, we propose a rewriting-

logic-based solution for executing the BRS specifica-

tions, which is supported by the formal specification

language and system called Maude. In addition, Maude,

as a semantic framework, enables conducting a quali-

tative verification of the introduced approach through

a LTL state-based model-checking technique [6]. Typi-

cally, we reason over a controlled Cloud system’s global

state which is obtained in function of the conjunction

of all the entities (service instances, virtual machines,

etc.) that compose the system. The qualitative verifi-

cation consists of checking the reachability of the sys-

tem’s global stable state, which categorizes the absence

of over-provisioning and under-provisioning states.

In the second part of our contributions, we propose

a tooled queuing-based solution to simulate and to illus-

trate, in a quantitative point of view, the hypothetical

performance, costs and efficiency induced by the de-

signed elasticity controller’s behaviors. Similarly to [20],

we propose an autonomic MAPE-based control loop to

simulate the runtime of a Cloud system according to

the designed elasticity strategies. Regarding the moni-

toring methodoloy, our solution reaches the philosophy

of [13] in their search for identifying virtual sensors to

gather information about the system state. Precisely,

our proposed modeling approach enables representing

a Cloud system cross-layer configuration as a forest of

overlapping nodes which enables isolating sets of ser-

vices according to their host VMs, for example. The

obtained sets are then analyzed to gather information

(i.e., monitored) using first-order logic predicates, re-

garding the introduced upper hosting thresholds. This

solution provides a similar solution than [36] for speci-

fying complex cross-layer monitoring metrics.

Unlike [14] and the other referenced works, we do

not validate our approach’s performance by compari-

son to other approaches. We use the Erlang-C formula

which gives a mathematical ideal to be reached in terms

of provisioned resources and response time. In this pa-

per, our goal is not to provide the best approach for

elasticity management. Instead, we intend to provide

an original solution to design and illustrate different

composable elasticity strategies in order to obtain dif-

ferent high-level policies. Precisely, we showed through

our simulation-based experimental study that different

strategies compositions allow to achieve high perfor-

mance, high economy, high infrastructure availability,

infrastructure cost optimization or high resource effi-

ciency high-level policies.

Unlike [20] and [13] who evaluate elastic behaviors

to diagnose SLAs (Service Level Agreements) [39] vi-

olations, our approach can be applied in real-life ser-

vices in order to establish SLAs between a Cloud ser-

vice provider and a Cloud infrastructure provider rather

than diagnose them. We showed that the introduced

strategies induce correct behaviors regarding a system’s

elasticity, in front of unpredictable workload activity.

By applying the proposed tooled support, a service pro-

vider could simulate their product in an infinity of sit-

uations while taking into account their constraints and

requirements. They could ultimately estimate the re-

quired amount of resources to achieve a desired level of

service. By varying the possibilities of scaling adapta-

tion (i.e., elasticity strategies), a service provider could

ultimately elaborate the suitable agreements with a Cloud

provider (i.e., SLA) which satisfy the most their needs

and requirements while ensuring, at the best, their de-

sired high-level policies and constraints.

7 Conclusion

In this paper, we propose a formal-based approach to

design, qualitatively verify and quantitatively analyze

Cloud elasticity, basing on an original and complemen-

tary combination of formal models and logics. Namely:

Bigraphical Reative Sysmtes (BRS), rewriting logic, Lin-

ear Temporal Logic (LTL) and Queuing theory.

We have provided a modeling approach for Cloud

systems’ structure and elastic behaviors based on BRS.

We have used bigraphs and bigraphical reaction rules to

express both aspects respectively. These behaviors im-

plement the elasticity controller and are described by

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

Formalizing and simulating cross-layer elasticity strategies in Cloud systems 27

elasticity strategies. We have proposed different strate-

gies for horizontal scale, vertical scale, migration and

load-balancing adaptations to (de)provision and opti-

mize Cloud system resources consumption in a cross-

layered manner (i.e., at service and infrastructure lev-

els). Strategies describe the logic that enables the elas-

ticity controller to reason over the entire Cloud system’s

state and manage its elastic adaptations. In order to

identify the desirable behaviors of the designed elastic-

ity controller (i.e., their correctness), we have defined a

Kripke structure which identifies the desirable and un-

desirable states, and which enables describing the de-

sirable temporal evolution of the system as formulas

expressed in LTL.

One step further, we have encoded the BRS-based

modeling approach and the LTL specifications into the

Maude formal language, which is an implementation of

Rewriting logic, to provide a generic executable solu-

tion for elasticity in Cloud systems. We have also pro-

vided a formal verification of the designed elastic be-

haviors’ correctness, basing on the LTL model-checker

integrated in Maude. Besides, we have presented an

original way to compose different elasticity strategies at

both service and infrastructure levels to provide multi-

ple high-level elastic behaviors.

Finally, we have proposed a queuing-based approach

to conduct experimental analysis by simulation of the

different elasticity strategies combinations in order to

provide a quantitative study of the adaptations. We

showed that the introduced elasticity strategies could

be composed in a cross-layered manner in order to pro-

vide several high-level policies for different patterns of

performance, cost and efficiency. We have demonstrated

that our introduced elasticity strategies ensure different

high-level policies: high performance, high economy, in-

frastructure availability, infrastructure costs optimiza-

tion and high resource efficiency.

As future work, we aim at enlarging the specifica-

tions of Cloud system’s elastic behavior. Our goal is

to provide a more complete solution which considers

horizontal and vertical scale elasticity coordination to

achieve hybrid Cloud resources’ dynamic management.

References

1. Giuseppe Aceto, Alessio Botta, Walter De Donato, and
Antonio Pescapè. Cloud monitoring: A survey. Computer
Networks, 57(9):2093–2115, 2013.

2. Yahya Al-Dhuraibi, Fawaz Paraiso, Nabil Djarallah, and
Philippe Merle. Elasticity in cloud computing: state of
the art and research challenges. IEEE Transactions on
Services Computing, 11(2):430–447, 2017.

3. Ahmed Ali-Eldin, Johan Tordsson, and Erik Elmroth. An
adaptive hybrid elasticity controller for cloud infrastruc-

tures. In 2012 IEEE Network Operations and Manage-
ment Symposium, pages 204–212. IEEE, 2012.

4. Maryam Amiri and Leyli Mohammad-Khanli. Survey on
prediction models of applications for resources provision-
ing in cloud. Journal of Network and Computer Appli-
cations, 82:93–113, 2017.

5. Mourad Amziani. Modeling, evaluation and provisioning
of elastic service-based business processes in the cloud.
PhD Thesis, Institut National des Télécommunications,
2015.

6. Christel Baier and Joost-Pieter Katoen. Principles of
model checking. MIT press, 2008.

7. Bruno Baynat. Théorie des files d’attente. Hermès,
Paris, 2000.

8. Marcello M Bersani, Domenico Bianculli, Schahram
Dustdar, Alessio Gambi, Carlo Ghezzi, and Sr\d jan
Krstić. Towards the formalization of properties of cloud-
based elastic systems. In Proceedings of the 6th Interna-
tional Workshop on Principles of Engineering Service-
Oriented and Cloud Systems, pages 38–47. ACM, 2014.

9. Radu Calinescu, Kenneth Johnson, Yasmin Rafiq, Simos
Gerasimou, Gabriel Costa Silva, and Stanimir N Pehli-
vanov. Continual verification of non-functional properties
in cloud-based systems. Citeseer, 2013.

10. Tao Chen, Rami Bahsoon, and Xin Yao. A survey
and taxonomy of self-aware and self-adaptive cloud au-
toscaling systems. ACM Computing Surveys (CSUR),
51(3):61, 2018.

11. Manuel Clavel, Francisco Durán, Steven Eker, Santi-
ago Escobar, Patrick Lincoln, Narciso Martı-Oliet, José
Meseguer, and Carolyn Talcott. Maude Manual (Version
2.7. 1). 2016.

12. Georgiana Copil, Daniel Moldovan, Hong-Linh Truong,
and Schahram Dustdar. Multi-level elasticity control of
cloud services. In International Conference on Service-
Oriented Computing, pages 429–436. Springer, 2013.

13. Rustem Dautov, Iraklis Paraskakis, and Mike Stan-
nett. Towards a framework for monitoring cloud appli-
cation platforms as sensor networks. Cluster Computing,
17(4):1203–1213, Dec 2014.

14. Mamadou H. Diallo, Michael August, Roger Hallman,
Megan Kline, Scott M. Slayback, and Christopher T.
Graves. Automigrate: a framework for developing intelli-
gent, self-managing cloud services with maximum avail-
ability. Cluster Computing, 20(3):1995–2012, 2017.

15. Schahram Dustdar, Yike Guo, Benjamin Satzger, and
Hong-Linh Truong. Principles of elastic processes. IEEE
Internet Computing, 15(5):66–71, 2011.

16. Mohamed Firdhous, Osman Ghazali, and Suhaidi Has-
san. Modeling of cloud system using Erlang formulas. In
Communications (APCC), 2011 17th Asia-Pacific Con-
ference on, pages 411–416. IEEE, 2011.

17. Leo Freitas and Paul Watson. Formalizing workflows par-
titioning over federated clouds: multi-level security and
costs. International Journal of Computer Mathematics,
91(5):881–906, 2014.

18. Guilherme Galante and Luis Carlos E de Bona. A survey
on cloud computing elasticity. In Proceedings of the 2012
IEEE/ACM Fifth International Conference on Utility
and Cloud Computing, pages 263–270. IEEE Computer
Society, 2012.

19. Mostafa Ghobaei-Arani, Sam Jabbehdari, and Moham-
mad Ali Pourmina. An autonomic approach for re-
source provisioning of cloud services. Cluster Computing,
19(3):1017–1036, Sep 2016.

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

28 Khaled Khebbeb et al.

20. Arne John Glenstrup, Troels Christoffer Damgaard, Lars
Birkedal, and Espen Højsgaard. An implementation of bi-
graph matching. IT University of Copenhagen, page 22,
2007.

21. Nikolas Roman Herbst, Samuel Kounev, and Ralf Reuss-
ner. Elasticity in cloud computing: What it is, and what
it is not. In Proceedings of the 10th International Confer-
ence on Autonomic Computing (${$ICAC$}$ 13), pages
23–27, 2013.

22. Abdul R Hummaida, Norman W Paton, and Rizos Sakel-
lariou. Adaptation in cloud resource configuration: a sur-
vey. Journal of Cloud Computing, 5(1):7, 2016.

23. Azlan Ismail and Marta Kwiatkowska. Synthesizing
pareto optimal decision for autonomic clouds using
stochastic games model checking. In 2017 24th Asia-
Pacific Software Engineering Conference (APSEC),
pages 436–445. IEEE, 2017.

24. Bart Jacob, Richard Lanyon-Hogg, Devaprasad K Nad-
gir, and Amr F Yassin. A practical guide to the ibm au-
tonomic computing toolkit. IBM Redbooks, 4(10), 2004.

25. Khaled Khebbeb, Nabil Hameurlain, and Faiza Belala.
Modeling and evaluating cross-layer elasticity strategies
in cloud systems. In El Hassan Abdelwahed, Ladjel Bel-
latreche, Mattéo Golfarelli, Dominique Méry, and Car-
los Ordonez, editors, Model and Data Engineering, pages
168–183, Cham, 2018. Springer International Publishing.

26. Khaled Khebbeb, Nabil Hameurlain, Faiza Belala, and
Hamza Sahli. Formal modelling and verifying elasticity
strategies in cloud systems. IET Software, 13(1):25–35,
2018.

27. Shinji Kikuchi and Kunihiko Hiraishi. Improving relia-
bility in management of cloud computing infrastructure
by formal methods. In 2014 IEEE Network Operations
and Management Symposium (NOMS), pages 1–7. IEEE,
2014.

28. Loic Letondeur. Planification pour la gestion au-
tonomique de l’élasticité d’applications dans le cloud.
PhD Thesis, Université de Grenoble, 2014.

29. Xue Liu, Xiaoyun Zhu, Sharad Singhal, and Martin Ar-
litt. Adaptive entitlement control of resource containers
on shared servers. In 2005 9th IFIP/IEEE International
Symposium on Integrated Network Management, 2005.
IM 2005., pages 163–176. IEEE, 2005.

30. Vladimir V Mazalov and Andrei Gurtov. Queuing sys-
tem with on-demand number of servers. Mathematica
Applicanda, 40(2):1–12, 2012.

31. Peter Mell, Tim Grance, and others. The NIST definition
of cloud computing. 2011.

32. Milton Mendieta, César A Mart́ın, and Cristina L Abad.
A control theory approach for managing cloud computing
resources: a proof-of-concept on memory partitioning. In
2017 IEEE Second Ecuador Technical Chapters Meeting
(ETCM), pages 1–6. IEEE, 2017.

33. Robin Milner. Bigraphs and their algebra. Electronic
Notes in Theoretical Computer Science, 209:5–19, 2008.

34. Robin Milner. The space and motion of communicating
agents. Cambridge University Press, 2009.

35. Daniel Moldovan, Georgiana Copil, Hong Linh Truong,
and Schahram Dustdar. MELA: elasticity analytics for
cloud services. IJBDI, 2(1):45–62, 2015.

36. Francesc D Muñoz-Escóı and José M Bernabéu-Aubán. A
survey on elasticity management in paas systems. Com-
puting, 99(7):617–656, 2017.

37. Athanasios Naskos, Emmanouela Stachtiari, Anastasios
Gounaris, Panagiotis Katsaros, Dimitrios Tsoumakos,
Ioannis Konstantinou, and Spyros Sioutas. Cloud elas-
ticity using probabilistic model checking. arXiv preprint
arXiv:1405.4699, 2014.

38. Pankesh Patel, Ajith H Ranabahu, and Amit P Sheth.
Service level agreement in cloud computing. 2009.

39. Gian Perrone, Søren Debois, and Thomas T Hildebrandt.
A model checker for bigraphs. In Proceedings of the 27th
Annual ACM Symposium on Applied Computing, pages
1320–1325. ACM, 2012.

40. Mariam Rady. Formal definition of service availability in
cloud computing using OWL. In International Confer-
ence on Computer Aided Systems Theory, pages 189–194.
Springer, 2013.

41. Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale.
Efficient autoscaling in the cloud using predictive models
for workload forecasting. In 2011 IEEE 4th International
Conference on Cloud Computing, pages 500–507. IEEE,
2011.

42. Kristin Y Rozier. Linear temporal logic symbolic model
checking. Computer Science Review, 5(2):163–203, 2011.

43. Manuj Sabharwal, Abhishek Agrawal, and Grace Metri.
Enabling green it through energy-aware software. IT Pro-
fessional, 15(1):19–27, 2013.

44. Hamza Sahli, Faiza Belala, and Chafia Bouanaka. Model-
Checking Cloud Systems Using BigMC. In VECoS, pages
25–33, 2014.

45. Hamza Sahli, Nabil Hameurlain, and Faiza Belala. A
bigraphical model for specifying cloud-based elastic sys-
tems and their behaviour. International Journal of Par-
allel, Emergent and Distributed Systems, 32(6):593–616,
2017.

46. Rob Schoren. Correspondence between kripke structures
and labeled transition systems for model minimization.
In Seminar project, Technische Universiteit Eindhoven,
Department of Computer Science, 2011.

47. Michele Sevegnani and Muffy Calder. BigraphER: rewrit-
ing and analysis engine for bigraphs. In International
Conference on Computer Aided Verification, pages 494–
501. Springer, 2016.

48. Stefan Simrock. Control theory. 2008.
49. Steam. Steam, the ultimate online game plat-

form. https://store.steampowered.com/about/, 2019.
[Browsed on 2019-02-23].

50. SteamSpy. Steamspy - all the data about steam games.
https://steamspy.com/year/, 2019. [Browsed on 2019-02-
23].

51. Basem Suleiman, Sherif Sakr, Ross Jeffery, and Anna Liu.
On understanding the economics and elasticity challenges
of deploying business applications on public cloud infras-
tructure. Journal of Internet Services and Applications,
3(2):173–193, 2012.

52. Demetris Trihinas, Chrystalla Sofokleous, Nicholas Loul-
loudes, Athanasios Foudoulis, George Pallis, and Mar-
ios D Dikaiakos. Managing and monitoring elastic cloud
applications. In International Conference on Web Engi-
neering, pages 523–527. Springer, 2014.

53. Lydia Yataghene, Mourad Amziani, Malika Ioualalen,
and Samir Tata. A queuing model for business processes
elasticity evaluation. In Advanced Information Systems
for Enterprises (IWAISE), 2014 International Workshop
on, pages 22–28. IEEE, 2014.

54. Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang, Sharad Sing-
hal, Arif Merchant, Pradeep Padala, and Kang Shin.
What does control theory bring to systems research?
ACM SIGOPS Operating Systems Review, 43(1):62–69,
2009.

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

Formalizing and simulating cross-layer elasticity strategies in Cloud systems 29

Khaled Khebbeb received a Ph.D. degree in com-

puter science from the University of Pau, France and

the University of Constantine 2, Algeria in 2019. Since

September 2018, he is a research and teaching assis-

tant at the University of Pau and is affiliated to the

MOVIES team of the LIUPPA laboratory. His research

interests include software engineering and formal mod-

eling of self-adaptive software systems applied on cloud

and service-oriented computing.

Nabil Hameurlain received a Ph.D. degree in com-

puter science from the University of Toulouse, France

in 1998 and a HdR (French Habilitation to become Re-

search Activity Supervisor) in computer science from

the University of Pau in 2011. Since October 1999, he

is associate professor at the University of Pau and the

head of MOVIES team at LIUPPA Laboratory. His

main research interests include software engineering for

distributed and self-adaptive software systems, with a

particular focus on cloud and service oriented comput-

ing.

Faiza Belala received a Ph.D. degree in computer sci-

ence from Mentouri University of Constantine in 2001.

She is currently a professor at the same university and

head of the GLSD team (LIRE Laboratory). Her cur-

rent research focuses on architecture description lan-

guages, formal refinement (Rewriting Logic, Bigraphs,

Petri nets, ect.), mobility and concurrency aspects in

software architectures, formal analysis of distributed

systems. She has organized and chaired the interna-

tional conferences on Advanced Aspects of Software En-

gineering ICAASE 2014/2016/2018, she is the author of

many refereed journal articles and peer reviewed inter-

national and regional conference papers. She has super-

vised over sixty Master and Ph.D. theses.

DOI:https://doi.org/10.1007/s10586-020-03080-8

https://doi.org/10.1007/s10586-020-03080-8

	Introduction
	Cloud systems and elasticity
	BRS-based specification of elastic Cloud systems
	Principles of Maude encoding and property verification
	A Queuing approach for the simulation and quantitative analysis of Cloud elasticity
	Related work
	Conclusion

