
Executable Modeling for Reactive Programming

Franck Barbier1 & Eric Cariou1

1 Univ. of Pau - av. de l’université - 64000 Pau - France

Franck.Barbier@FranckBarbier.com

Abstract. After thirty years, it is reasonably time to critically look at Model
Driven Software Development (MDSD). Who may nowadays claim that MDSD
has been massively adopted by the software industry? Who may show numbers
demonstrating that MDSD allowed/allows massive cost savings in daily software
development, but, above all, software maintenance? This paper aims at investigat-
ing executable modeling as a balanced articulation between programming and
modeling. Models at run-time embody the promising generation of executable
models, provided that their usages are thought and intended to cost-effective soft-
ware development. To envisage this not-yet-come success, this paper emphasizes
expectations from the software industry about “reactive programming”. Practi-
cally, executable modeling standards like the SCXML W3C standard or the
BPMN OMG standard are relevant supports for reactive programming, but suc-
cess conditions still need to be defined.

Keywords: Model Driven Software Development, Executable Modeling, Models
at Run-Time, Reactive Programming.

1 Introduction

Since the rise of MDSD, “executable modeling” refers to the possibility of in-
terpreting models via an “execution engine” [1] [2] [3]. Roughly speaking, from
industrial experience, models as “abstractions” are not as readable (and thus un-
derstandable) as it appears. In other words, “abstraction” pushed forward as a
panacea in the literature [4] rather means “approximation”. So, as incomplete rep-
resentations of systems, models hide second-class details (the good), but fail in
providing fully controllable software assets from requirements engineering to pro-
gramming/testing (the bad).

Executable models essentially are more intuitive models that express structures
and behaviors of systems with greater clarity. In a nutshell, at design time, execu-
tion of models is simulation of behaviors. As for structures, simulation informs us

2 Franck Barbier & Eric Cariou

about the evolution, for example, of object links over time. So what? Executable
modeling is just programming (e.g., Java and its Java Virtual Machine as “execu-
tion engine”). Or, from another perspective, programming is a subtype of model-
ing when programs (as models) include implementation details. This seeming
overlapping raises a worrying question: has MDSD reinvented “traditional” soft-
ware development with no-value complication, no more? Indeed, it is extremely
important to prove that MDSD provided/provides added value over its competing
software development “methods”.

1.1 Back to Jurassic programming?

By copying and adapting Winston Churchill’s maxim, we may write: “Indeed it
has been said that MDSD is the worst form of Software Development except for all
those other forms that have been tried from time to time…” Translation: despite
(known) defects, MDSD is a true engineering progress in software development.
In fact, programming and (executable) modeling are not so confusing notions in
spite of some “theoretical” overlapping (see prior paragraph). To justify this opin-
ion, let us go into further detail through the concise analysis of four executable
modeling frameworks:

• The Papyrus UML/SysML integrated modeling environment supports the Ac-
tion Language for Foundational UML (ALF) for model execution. Models are
classical UML/SysML models endowed with executable parts written in ALF. In
this logic, there is, a priori, no use at all of any programming language (i.e., ALF
acts as a neutral “programming” language). Moreover, in the spirit of model trans-
formation, code is derived from models without any tricky model adjustment
when deployment concerns occur about specificities of the targeted platforms
(Web, real-time…). This (open-minded) idealistic (even naïve) vision omits the
reuse of software libraries that require significant imbrication between models and
Application Programming Interfaces (APIs). To that extent, a key ALF evangelist
recently told us that perspectives of ALF take-up (and thus take-off) are poor due
to the misunderstood “sophistication” behind the systematic use of ALF. In short,
nobody really wants to use ALF!

• jBPM (standing for Java Business Process Management) is an integrated
BPMN (Business Process Model and Notation) modeling environment that sup-
ports Java (or JavaScript) as “action language”. BPMN 2.x as executable model-
ing language plus Java as action language for expressing the content of BPMN
(routing) gateways and tasks, makes jBPM a complete platform for executable
modeling. Indeed, jBPM is a simplified form of MDSD in the sense that the target
platform is Java Enterprise Edition (Java EE) only, and more precisely the Wild-
Fly application server, a Java EE-compliant deployment middleware. jBPM per-
fectly illustrates the fact that programming and executable modeling occur at
the same time. Compared to ALF, there is no intrinsic complication (and invest-
ment) associated with the use of Java because, simply, everybody knows Java.

Executable Modeling for Reactive Programming 3

• SCION is the JavaScript support of State Chart XML (SCXML). Client-side
(browser) or server-side (Node.js platform) Web applications benefit from being
designed from Harel’s Statecharts for which SCXML provides its own (rational)
execution semantics. While SCION allows the graphical or textual (a devoted
XML Schema Definition or XSD) expression of SCXML models, SCION-CORE
acts as execution engine for SCION. The actions associated with state entries, ex-
its and transitions must be written in JavaScript (to interact with the Document
Object Model or DOM, for instance, in the browser). Again, programming and ex-
ecutable modeling appear as totally complementary and not alternatives.

• PauWare is similar to SCION apart from supporting the execution semantics
of both SCXML and UML State Machine Diagrams. PauWare is an API and a
self-contained Java library only. Developers may organize their code from com-
plex state machines in the style of reactive programming [5].

So, it is time to admit that MDSD is not the way of making software that, as
much as possible, dismisses programming activities. The later ones cannot be ig-
nored because models cannot encapsulate all of the APIs and software libraries (in
varied programming languages), which are the single access to modern deploy-
ment platforms. As an illustration, a BPMN script task is both a model piece and a
suite of Java statements within jBPM. It is naturally expected to call any “exter-
nal” code within such a task.

1.2 The economy of executable modeling

Model production is time-consuming and thus costly. In this logic, MDSD is a
software engineering “method” (i.e., “a way of making software”) whose goal is,
indubitably, fighting against code-only approaches, say, having no method at all,
preferring DevOps or stressing agility (test driven software development that is of-
ten opposed to MDSD in the literature).

In a nutshell, from an economical viewpoint, one has to demonstrate that the re-
turn on investment is better with models. In other words, the time lost when con-
structing models definitely leads to the reduction of software cost prices in all
conditions. Indeed, significant engineering efforts occur earlier with MDSD: in-
tellectually, models, compared to code, require much thinking, much know-how.
Consequently, software payers expect that models as software artifacts accelerate
software finalization later on: the only way of “getting our money back”.

From experience, is it really observed? In other words, nowadays, considering
1000 (randomly chosen and sizeable) starting software projects in any kind of
business sector and any kind of technological context (Enterprise (payroll, ship-
ping, supply chain…), Web, safety-critical…), how many will use MDSD? We
would bet 10. A missing link therefore exists in the economy of MDSD…

1.3 Executable modeling in action

4 Franck Barbier & Eric Cariou

As written before, as approximations, models (Fig. 1, car sketch) do not con-

form to (generated) code (Fig. 1, real car) while the contrary should be true. Inevi-
table code adaptation at maintenance time (Fig. 1, repairers) breaks the initial
mapping created at code generation (a.k.a. derivation) time. This is the main factor
of MDSD failure because there is (and will be in the future) no MDSD tool capa-
ble of managing such mapping at an industrial scale when software masses per-
vade computers and above all clutter up developers’ minds.

Fig. 1 MDSD recurrent pitfall

In its very deep nature, executable modeling does not impose model transfor-
mation. Instead, executable modeling looks for the better composition of code and
models. Both are expressed in different languages, but these languages have pre-
cise well-defined roles, inner workings and dependencies. Practically, Harel’s
Statecharts with their high-end expressiveness may be (pre-)coded in JavaScript
(SCION) or Java (PauWare). Then, data transformations only require algorithms
and/or external calls that are encapsulated in actions triggered in Statecharts mod-
els. Models exist and persist at run-time [6]. There is no model transformation
provided that model execution engines operate on the top of common program-
ming languages compilers/interpreters.

As an illustration, Fig. 2, Fig. 3 and Fig. 4 show how to coordinate in PauWare
any mobile app. with the Android battery management system.

First, Fig. 2 shows the connection with the Android API. Building a priori
models here creates no value. Worst still, models may be considered as crippling.

class EventSniffer extends android.content.BroadcastReceiver {
 @Override

Executable Modeling for Reactive Programming 5

 public void onReceive(android.content.Context arg0, an-
droid.content.Intent arg1) {

 if (arg1 != null && arg1.getAction() != null) {
 android.content.Intent intent = new android.content.Intent(arg0,

Android_energy_management_example.class);
 intent.setAction(arg1.getAction());
 arg0.startService(intent);
 }
 }
}

Fig. 2 Android battery management (notification subscription)

Next, Fig. 3 is the realization of a model at run-time. Instead of having clutter-
ing Java if-then-else control code, Harel’s Statecharts formalism allows a rational
code organization that is required for processing Android battery management sys-
tem events.

public class Android_energy_management_example extends an-

droid.app.Service {
 EventSniffer _event_sniffer; // Link to the Java class in Fig. 2
 AbstractStatechart _Nominal_Energy_Level;
 AbstractStatechart _Critical_Energy_Level;
 ... // Other states here...
 AbstractStatechart_monitor

_Android_energy_management_example_state_machine;
 ...
 public void start() throws Statechart_exception {

_Android_example_state_machine.fires(android.content.Intent.ACTION_B
ATTERY_LOW, _Nominal_Energy_Level, _Critical_Energy_Level);

_Android_example_state_machine.fires(android.content.Intent.ACTION_P
OWER_CONNECTED, _Critical_Energy_Level, _Critical_Energy_Level);

 ... // Etc.
Fig. 3 Android battery management (notification reaction)

6 Franck Barbier & Eric Cariou

Fig. 4 Android battery management (model at run-time)

From a graphical viewpoint, Fig. 4 is totally equivalent to the model in Fig. 3.
This graphical model may automatically be derived from the Java code in Fig. 3.
Indeed, executable modeling with models at run-time create a true bijection be-
tween models and code. In terms of efforts and elapsed phases, models may be
created first (“classical” MDSD) or not (this example)… While the model in Fig.
4 is an appropriate tool for test (simulation through graphical animation and exe-
cution trace) at design time, it may also be an ideal support for the (remote)
administration of an energy-aware Android mobile app. when in production (i.e.,
in users’ hands). In contrast with model transformation, models at run-time are not
substituted by code. They are code, but they cannot support and express all of the
requirements and functionalities. So, the extra code that is not “models” to achieve
these requirements and functionalities is similar to that in Fig. 2.

As an intermediate summary, we may write that modeling and programming
are brothers-in-arms. The vision that uses modeling as means for code “burying”
led to the unsuccessful spreading of MDSD in the past thirty years. Instead, mod-
eling succeeds when developers do not distinguish modeling and programming ac-
tivities: this is executable modeling with direct and smart integration of program-
ming stuff in models. In this context, beyond a human adhesion to MDSD and its
inherent tools, there are economical spinoffs as well; these are the basic expecta-
tions of a general-purpose software development “method” when facing the recent
“event bombing” challenge.

2 Executable modeling for reactive programming

There is a great opportunity for MDSD to bounce back from the idea of “reac-
tive programming” promoted, in particular, by The Reactive Manifesto (Fig. 5). In
this figure, the entailing principle is “Message Driven” meaning that contempo-
rary computing views applications’ content as complex message exchange and co-
ordination rather than monolithic data transformation.

Messages are point-to-point event communication and processing. As for mes-
sage data, they are brought by events. Of course, events also are the foundational

Executable Modeling for Reactive Programming 7

abstraction paradigm that makes the idea of “Message Driven” viable at modeling
time.

Fig. 5 The Reactive Manifesto four principles

2.1 Reactive programming at a glance

Intuitively, the Internet/Web of Things moves us to some unencountered asyn-
chronicity by which software components in applications have to re-create (i.e., to
create in a postponed way, at run-time essentially) unanticipated synchronization
through very intensive event communication and processing, i.e., the “event
bombing” (Fig. 6).

8 Franck Barbier & Eric Cariou

Fig. 6 Event bombing

The key idea in Fig. 6 is that “Message Driven” middleware is/will be the norm
through products, say, the famous Node.js software development framework or
any other recognized similar computing infrastructure like ReactiveX. Namely,
Fig. 6 shows that “Message Driven” software development imposes a strict inter-
nal organization of the inside of software components. As a complex (modeled)
state machine, this organization is then capable of creating components that can
serve client requests (“events”, “messages”, whatever…) on a concurrent and reli-
able basis.

So, reactive programming refers to computing frameworks that manage event
production and distribution (queuing, routing, fault recovery…). Nonetheless, it is
also a programming style in which event communication and processing benefit
from having a direct and smart support. In this scope, behaviors of software com-
ponents may then be instrumented by concrete models at run-time as illustrated in
Fig. 2, Fig. 3 and Fig. 4. While the model is these three figures is somehow trivial,
Fig. 6 adds the idea that models may express very complex behaviors imposed by
the intrinsic idea of event bombing (great variation of event types, great flow rate
of event occurrences…). For example, the core parallelism construct offered by
Harel’s Statecharts (a.k.a. “state orthogonality”) can wisely replace multithreading
programming statements. These would surely lead to a nightmare at maintenance

Executable Modeling for Reactive Programming 9

time (remind the initial point of this paper about the MDSD incapacity of offering
truly maintainable models).

5 Conclusion

It is never too late to reach maturity, the (accomplishable?) MDSD quest for
the forthcoming years. Honesty leads us to assert that even though modeling is
“common engineering” for “dynamical” (real-time, safety-critical…) systems, en-
terprise computing (more than 90% of the existing software) has thrown MDSD
overboard. Contemplative modeling, the anti-thesis of executable modeling,
was/is the demotivating factor for daily practitioners. By denying this fact, MDSD
promoters misled/mislead people behind labyrinthine MDSD: Model Driven Ar-
chitecture (MDA), model transformation and so on.

This papers show that programming and modeling are brothers-in-arms, pro-
vided that their relationship is well-defined and based on executable software as-
sets. In the jungle of software development “approaches”, fashion highlights agil-
ity, DevOps, Kanban, Lean Management… In this universe, MDSD looks like
Taylorism in the ‘30s: an excessively codified approach that limits creativity in
general. This results from (contemplative) models as totally nonflexible software
matter. Instead, models at run-time are intended to attenuate, even reverse, this
fact and consequential feeling.

Acknowledgements

The presented work is part of the MegaM@RT2 project (Megamodeling at
Runtime -- Scalable Model-based Framework for Continuous Development and
Runtime Validation of Complex Systems) which has received funding from the
Electronic Component Systems for European Leadership Joint Undertaking
(ECSEL-JU) under grant agreement No. 737494. This project receives support
from the European Union's Horizon 2020 research and innovation program and
from Sweden, Spain, Italy, Finland \& Czech Republic.

References

1. Harel D, Gery E (1997) Executable Object Modeling with Statecharts. IEEE Computer
30(7):31-42.

2. Riehle D, Fraleigh S, Bucka-Lassen D, Omorogbe N (2001) The Architecture of a
UML Virtual Machine. Proc. 2001 Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications:327-341.

10 Franck Barbier & Eric Cariou

3. Mellor S, Balcer S (2002) Executable UML – A Foundation for Model-Driven Archi-
tecture, Addison-Wesley.

4. France R, Rumpe B (2013) The evolution of modeling research challenges. Software
and Systems modeling 12(2):223-225.

5. Barbier F (2016) Reactive Internet Programming – State Chart XML in Action,
Morgan & Claypool.

6. Blair G, Bencomo N, France R (2009) Models@run.time. IEEE Computer 42(10).

