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Abstract

This paper discusses the decision of the European Commission not to renew the
antitrust exemption for the setting up of syndicates in the insurance industry. Pools
are constituted to provide insurance for undiversifiable and/or new risks for which
insurers with private expertise are capacity constrained. Our objective is to study
if such syndicates improve insurance supply. Organizing this supply amounts to
sharing a common value divisible good between capacity constrained and privately
informed agents with a reserve price. Pools turn out to operate as a uniform price
auction with an “exit/re-entry” option that we compare to a discriminatory auction
where no specific agreements are needed. Both auction formats lead to different
coverage/premium tradeoffs. If at least one insurer provides an optimistic expertise,
the pool offers both lower premiums and higher coverage. This result is reversed
when all insurers are pessimistic about the risk. Static comparative results with
respect to capacity constraints and reserve price are provided.
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1 Introduction

On December 13, 2016 the European Commission took note of the expiry of the Insurance
Block Exemption Regulation (IBER) on March 31, 2017. The IBER that was established
in 1992 (and regularly renewed) authorized certain categories of agreements, decisions
and concerted practices in the insurance sector “to ensure the proper functioning of this
sector and promote consumer interest” 1. The application we focus on is the practice
of insurance companies to co-operate and jointly insure risks via ‘co-(re)insurance pools’.
These co-(re)insurance pools are defined as (...) groups set up by insurance undertakings
either directly or through brokers or authorized agents (...) whereby a certain part of a
given risk is covered by a lead insurer and the remaining part of the risk is covered by
follow insurers who are invited to cover that remainder.”

The decision to maintain pools or not not has been discussed for several years. This
discussion was centered on the efficiency of such pools. What is the impact of this form of
cooperation on the supply of insurance and on the pricing of insurance policies? To what
extent is the performance of the insurance industry affected? Would we observe a decrease
in insurance capacity and thus less coverage for new risks without pools? According to
insurers, pools for nuclear risks (Assuratome) or environmental risks (Assurpol) are the
only solution to provide insurance. Also, they argue that pools enable insurance companies
to share knowledge and experience about certain less frequently occurring risks, which
should, according to them, benefit to both sides of the market. After a large consultation,
the European Commission decided not to renew the exemption for pools, as it fears that
pools generate a restriction of competition.2 The new policy is to provide a case by case
analysis on the principle of self-assessment. The objective of the paper is to analyze the
efficiency of such pools and other possible agreements to discuss the European Commission
decision.

Pools are usually constituted of a small number of firms and all risks are not eligible to
1(REPORT FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT AND THE COUN-

CIL On the functioning of Commission Regulation (EU) No 267/2010 on the application of Article 101(3)
of the Treaty on the functioning of the European Union to certain categories of agreements, decisions
and concerted practices in the insurance sector)

2Arguments of the European Commission decision can be found in the report ”REPORT FROM THE
COMMISSION TO THE EUROPEAN PARLIAMENT AND THE COUNCIL On the functioning of
Commission Regulation (EU) No 267/2010 on the application of Article 101(3) of the Treaty on the
functioning of the European Union to certain categories of agreements, decisions and concerted practices
in the insurance sector”.
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this exemption. These pools apply to new3 and/or undiversifiable risks. The insurance of
known risks is usually possible by standard diversification principles. When risks cannot
be washed out by diversification (these risks are called non-diversifiable risks), insurance
economics theory teaches us that co-(re)insurance pools allow risk sharing between the
members (see for instance Doherty and Dionne, 1993). Pools “are necessary to allocate
risk efficiently in the economy and, under some conditions, they create social value by dis-
seminating undiversifiable risks within the largest possible set of risk-bearers” as claimed
by Bobtcheff et al. (2015). However, when contemplating insuring new risks, insurers use
their own expertise to evaluate them. At the industry level, this creates informational
asymmetries not only between insurers and insurees, but also between insurers. The deter-
mination of the characteristics of insurance products is therefore much more complicated.
Also, the undiversifiable nature of the risks may generate a lack of sufficient insurance
capacity. These capacity constraints may come either from legal solvency regulation con-
straints and capital requisites that are imposed to prevent from insurers’ bankruptcy
(Solvency II) or from the characteristics of the risk itself (“extraordinary large risks that
occur in irregular intervals but may lead to very large damage claims” for instance.

We propose to develop a unified theoretical model to analyse different pooling agree-
ments as well as alternative forms of insurance cooperations. Different bargaining rules
between insurers will be considered depending on whether a leader exists or not. This
leads us to study both existing pool agreements and alternative organizations. This the-
oretical model is a simplified representation of insurers’ interactions based on empirical
findings of Ernst and Young report (2014) and takes into account the legal rules pre-
vailing in the insurance industry. Ernst and Young (2014) provide a detailed description
of the procedures leading to pool agreements in several European countries. Even if
some country-specific differences exist, they share some common features. First, pools
are generally constituted within a two-round auction, which defines a leading insurer and
following ones. The leader’s selection process may combine the following factors: capacity,
premium, insurer’s expertise or reputation, terms and conditions of the offer. As Ernst
and Young (2014) note, “the followers are usually invited to either accept or decline or
take a share of the risk on the same terms and conditions as the lead insurer”. Based

3Defined in the Regulation as ”risks which did not exists before, and for which insurance cover re-
quires the development of an entirely new insurance product not involving an extension, improvement or
replacement of an existing insurance product.
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on this, we propose to study a simplified scenario in which the leader is selected on the
basis of a single factor to disentangle the nature of the strategic interaction on the mar-
ket performance. This analysis aims at understanding on which factor (price, capacity, or
expertise) a pool should be constituted depending on the objectives of the decision-maker.

Organizing insurance supply then amounts to sharing a common value divisible good
between capacity constrained agents with a reserve price where agents have private infor-
mation. The question of agreeing on a common coverage of a risk is indeed akin to the
one of exchanging Treasury debt and other divisible securities. These bonds are usually
exchanged through a uniform auction in which a broker selects a price that equalizes the
supply and demand for bonds or through a discriminatory auction. Not only are the pool’s
rules specific to the insurance industry, but also the nature of the good (the risk) that is
exchanged (reserve price and capacity constraints) so that there is a need to develop a
theoretical model.

The model we consider builds on the following elements. There exist an exogenous
demand for insurance : insurees ask for a coverage for which they have a reserve premium.
Insurers are capacity constrained and a receive a private signal about the common value
risk. They syndicate through a particular two-round auction. The game we consider is
a uniform price auction with an exit/re-entry option. We characterize the equilibrium
risk premium of this game and the resulting insurance capacity offered. We then consider
an a discriminatory auction in which each insurer offers its own conditions (capacity and
premium). This scenario fits the situation where a broker meets each insurer individually
so that no specific agreement between insurers is needed. This leads us to compare
different auction pricing rules and to understand the role of the re-entry option. All
auction formats are compared with respect to premiums and coverage taking into account
the impact of different markets and characteristics (intensity of competition, risk aversion,
affiliation).

We provide two kind of results: some results directly help to the discussion of the
European Commission and other complete the auction literature.

Let us first discuss the outcome of the pool. We determine the unique equilibrium in
symmetric and strictly increasing bidding strategies. Conditional on bidding, the equilib-
rium strategy completely reveals the signal an insurer observed. The reserve price implies
the existence of a maximum signal determining the participation to the first round of the
auction. The equilibrium exhibits both a complete market failure (no insurance) when
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both insurers have private pessimistic evaluations (above the threshold) and a partial
market failure (partial insurance) when only one insurer is pessimistic about the risk.
The re-entry option impacts these market failures in two ways: insurers refrain from bid-
ding in the first round (increasing the no-insurance region) but an insurer always has the
possibility to re-enter to auction in the second round if he discovers that his opponent
received a good signal (increasing the full insurance region). All these market failure
regions are affected by the parameters of the model: intensity of capacity constraints,
reserve price and degree of common information on the risk. In particular, we show that
new risks (known risks) lead to a more (lower) complete market failure but the partial
market failure reduces (increases).

Considering the discriminatory auction, the equilibrium is semi-pooling or separating
and also involves some complete and partial market failure regions. We show that both
auction formats lead to different coverage/premium tradeoffs. We compare these two
auctions for any possible realization of the two insurers’ signals. If at least one insurer
provides an optimistic expertise about the risk, the pool offers both lower premiums and
higher coverage. If all insurers receive pessimistic information, the discriminatory auction
offers a better coverage at a lower leader’s premium but at a higher follower’s premium.

The other contribution of this paper is to complement the auction literature on dis-
criminatory auction of a common value divisible good with a reserve price. We determine
the type of equilibrium that exists (separating or semi-pooling) in a bi-dimensional setting
(reserve price and strength of competition).

From now, the literature on undiversifiable risks has focused on the risk sharing prob-
lem between insurers and policyholders. This risk sharing problem is analyzed for instance
in Doherty and Dionne (1993) or Mahul and Wright (2003). Doherty and Dionne (1993)
introduce a new form of insurance contract called Decomposed Risk Transfer contract
(DRT contract) defined by an insurance policy packaged with a residual claim on the
insurance pool. They show that this contract increases policyholders welfare. They char-
acterize the optimal coverage and the risk premium as a function of the cost of risk bearing
derived from asset pricing models. Our setting builds on such a two dimensional contract
(a risk premium and a coverage). We do not discuss any risk sharing issue associated
with the undiversifiable risk, but consider that such risk implies legal capacity constraints
for insurers. In our model, the pool risk premium (paid by the policyholders) may differ
from the actuarial rate (paid by the insurer) because of the particular competition emerg-
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ing from the pool. Our main objective is to analyze how to organize insurance supply
(premiums and coverage).

The paper is organized as follows. We present the model in section 2. We then
solve the equilibrium of the pool in section 3. In section 4, we introduce an alternative
organization. Section 5 is devoted to the comparison between the two auction formats.
All proofs are relegated to the appendix.

2 The model

Two identical insurers are asked for the coverage of an undiversifiable risk where non
diversifiability translates into capacity constraints.

2.1 Risk, insurers and contract

A risk averse agent is exposed to an undiversifiable risk characterized by a loss of size L
occurring with probability p. This agent asks for an exogenous coverage βL. An insurance
contract is completely defined by the unit risk premium P .4 The expected utility with
such a contract writes

V (P, p; β) = pu (w − L+ βL− βLP ) + (1− p)u (w − βLP )

where u denotes the increasing and concave utility function, w the agent’s initial wealth,
βL is the indemnity paid by insurers in case of loss, and βLP is the insurance pre-
mium paid for this coverage. We define P (p) ≡ P as the maximum premium that the
agent is willing to pay for this coverage. At P , he is indifferent between insuring or not
V (P , p; β) = V (0, p; 0).

The two identical risk neutral insurers, i and j, compete for the coverage of this risk
by choosing the price at which they provide insurance and the quantity they insure. The
minimum risk premium that they are willing to accept for this coverage is the actuarial
premium rate p so that there are gains from trade if and only if p ≤ P ≤ P . We then
obtain that insurers’ net expected benefit of such a contract is linear with respect to β

and writes
βL (P − p) .

4We assume that P is independent of β.
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The existence of solvency regulation and capital requisites for the coverage of such
new and/or undiversifiable risk implies that insurers are capacity constrained. A single
insurer can not offer more than a proportion βi ≤ β, with βi = βj = β. As a consequence,
if gains from trade exist, an insurer prefers to insure its maximum capacity β.

We also assume that the market is too small to absorb the full capacity of the two
insurers, i.e. β ≤ 2β.5 To measure the strength of competition on the insurance market,
we define

κ = 2β − β
β

∈ [0, 1], (1)

which can be interpreted as the relative excess supply. When κ = 0 (β = β/2), the two
insurance companies may sell their entire capacity so that there is no competition. On the
contrary, when κ = 1 (β = β), a unique insurer could satisfy the whole demand leading
to intense competition. Note that equation (1) implies that the proportion of the total
demand an insurer can satisfy by itself, β/β, equals 1/(2− κ).

2.2 Insurers’ expertise

We assume that the probability of the undiversifiable risk p is not perfectly known by the
agents. All agents have the same prior on this probability, denoted p0 = E[p], the a priori
actuarial premium. This belief defines the a priori maximum premium P 0 implicitly
defined by V (P 0, p0; β) = V (0, p0; 0).

Insurers are assumed to be expert in the evaluation of such risks. They have the
ability to better identify the true risk. This assumption reflects the fact that insurers
often concentrate their activities in specific lines of business and can use their expertise
to infer the probability of these risks. As a consequence, we assume that insurers can
obtain a costless signal related to the true probability. Si (resp. Sj) is the signal privately
observed by insurer i (resp. j). As a consequence, the actuarial premium rate is a function
of insurers’ private information. It is assumed to be the same for the two insurers and to
be a symmetric function of all insurers’ signals.

p(si, sj) = p(sj, si) ≡ E [p|Si = si, Sj = sj] . (2)

We impose the following regularity assumptions on the actuarial premium rate.
5Assuming sufficiently large capacities can avoid a monopoly outcome and allows to focus on the most

interesting cases.
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Assumption 1 The actuarial premium rate p satisfies the following properties.

(i) Function p is twice continuously differentiable and strictly increasing in the two
variables;

(ii) E [p(Si, 0)] < P 0 < E [p(Si, 1)].

Observe that a high value of s signals a risk that is assumed to be more costly to insure
and that some risks cannot be insured. Assumption 1(ii) means that if insurer j observes
the best (resp. worst) possible signal, covering the risk is always (resp. never) profitable
for insurer i.

The two signals Si and Sj and p are assumed to be affiliated. Signals are distributed
according to the same continuous distribution on the interval [0, 1]. Let g(.|s) denote
the (symmetric) probability distribution function of an insurer’s signal conditional on the
other insurer having observed signal s. Affiliation translates into the following assumption
on the family of densities g(.|s).

Assumption 2

∀s′i > si and s′j > sj,
g(s′i|s′j)
g(s′i|sj)

≥
g(si|s′j)
g(si|sj)

. (3)

Let us also define signal σ̃ as the maximal signal for which the two insurance companies
accept to cover the risk in case they observe the same signal and function α that can be
interpreted as an isocost curve evaluated at the maximal premium P 0.6

Definition 1

(i) σ̃ is implicitly defined by
p (σ̃, σ̃) = P 0. (4)

(ii) α is implicitly defined by

p(α(x), x) = P 0 ∀x ∈ [0, 1]. (5)

Given our assumptions, if the premium is P , insurer i’s net expected benefit of pro-
viding one unit of coverage writes7

P − E [p(si, Sj)] . (6)
6According to Assumption 1(ii), α is a decreasing function. Moreover, the symmetry of α with respect

to its arguments implies that α−1 = α.
7In what follows, we normalize L to 1.
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2.3 Insurers’ syndication

The organization of insurance supply then amounts to the problem of sharing a common
value divisible good between capacity constrained agents with a reserve price. Typically,
this issue has been addressed for the particular case of Treasury Bonds. These bonds
are usually exchanged through a uniform auction or a discriminatory auction. The in-
surance industry has its own practices to provide coverage for undiversifiable risks under
capacity constraints. As we describe in the introduction, such arrangements are named
co(re)insurance pools or co(re)insurance agreements.

The objective of this paper is to analyze different auction rules to constitute the
syndicate, namely the pool (or the co(re)insurance agreements) and the more standard
discriminatory auction. Each auction determines a game of incomplete information among
the insurers: we look for a symmetric Bayesian Nash equilibrium that is increasing in the
bidding strategies of each resulting game.

3 Analysis of the pool

3.1 Description of the pool

In this section, we model the most representative organization of the insurance sector,
namely co(re)insurance pools and co(re)insurance agreements. We will refer to this rep-
resentative organization as the “pool”. Ernst and Young (2014) provides a detailed de-
scription of the procedures leading to agreements in several European countries. Even if
some country-specific differences exist, they share some common features that we decide
to highlight. The pool premium is unique and equals the lowest bid: this is a uniform
auction. Ernst and Young (2014) also notes that “the followers are usually invited to
either accept or decline or take a share of the risk on the same terms and conditions as
the lead insurer”. We summarize these features with the following rules.

- Each insurer performs a risk analysis and receives a private signal si.

- A first price auction determines the pool risk premium.

- If at least one insurer submits a bid Pi ≤ P 0,

o The insurer that submitted the smallest risk premium is the pool leader and
sells β at price P P
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o The other insurer is the follower and observes P P . It decides whether it sells
β − β at price P P or not

- If no insurer submits a bid, there is no trade.

This particular syndication works as if there exists two rounds. The rules state that
the follower can join or quit the pool whatever its initial choice to submit a bid. A player
submits a bid only if it is sufficiently optimistic about the risk ex ante. If it turns out to
be the follower, it always has the possibility to quit the pool after having observed P P .
Also, if a player is too pessimistic to submit a bid ex ante, it may still, in a second round,
re-enter and participate if the leader’s bid reveals a good risk.

3.2 Separating equilibrium

We first look for an equilibrium in strictly increasing and symmetric biding strategies that
are characterized by a threshold σ̂P such that

- when si ≤ σ̂P , firm i bids according to a strictly increasing bidding strategy P P (si)
with P P (σ̂P ) = P 0,

- when si > σ̂P , firm i is willing to participate in the second round only.

In such a separating equilibrium, the bid an insurer submits unambiguously reveals the
signal it observes. The profit of firm i that observed a signal si and bids a risk premium
P P (si) reads

ΠP (si) =



β (1−G (si|si))E
[
PP (si)− p(si, Sj)|Sj > si

]
+
(
β − β

)
G (si|si)E

[(
PP (Sj)− p(si, Sj)

)
+
|Sj < si

]
for si ≤ σ̂P (7a)(

β − β
)
G
(
σ̂P |σ̂P

)
E

[(
PP (Sj)− p(si, Sj)

)
+
|Sj < σ̂P

]
for si > σ̂P (7b)

Three terms compose the expression of ΠP (si).

- The first term of equation (7a) corresponds to the case where insurer i observes the
lowest signal. This happens when Sj > si, an event of probability 1−G (si|si). In
such case, firm i proposes the lowest risk premium and becomes the pool leader. It
therefore serves β at its proposed price P P (si). We refer to this term as the leader’s
value of firm i.
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- The second term of equation (7a) corresponds to the case where insurer i observes
the highest signal. This happens when Sj < si, an event of probability G (si|si). In
such case, firm i proposes the highest risk premium and becomes the pool follower.
It serves β − β at firm j’s price P P (sj). Note that if firm i’s payoff turns out to be
negative, it can withdraw from the pool (hence the subscript “+”). Therefore, we
refer to this term as the follower’s option value of firm i.

- Equation (7b) corresponds to the case where firm i observes a signal greater than
σ̂P and therefore does not want to participate to the first round of the pool whereas
its opponent submits a bid smaller than P 0. Firm i as the pool follower agrees to
re-enter in case it is profitable. In such case, it serves the remaining capacity β − β
at firm j’s proposed price P P (sj). We refer to this term as the re-entry option value
of firm i.

Incentive compatibility requires that bidders with signals greater than σ̂P prefer not
to bid to submitting the bid P 0.

(
1−G

(
σ̂P |σ̂P

))
E
[
P 0 − p(σ̂P , Sj)|Sj > σ̂P

]
= 0. (8)

Lemma 1 The threshold σ̂P exists and is unique. Moreover, σ̂P < σ̃.

Given the specific rules of the pool (uniform pricing, options to exit and to re-enter),
the follower profit is the same whatever the initial choice to participate to the auction.
At si = σ̂P , the follower’s option value exactly compensates the re-entry option value:
an insurer is indifferent between entering as a follower in the first round or re-entering in
the second round. Therefore, the threshold is only determined by the condition that the
leader’s expected profit is non negative which refrains from bidding when signals are too
high. We therefore say that insurers are conservative.

We look for an equilibrium strategy such that firm i’s has an incentive to submit a
bid according to its true signal . This implies that the equilibrium bid P P (si) satisfies
the following differential equation8

P P ′(si) = κ
g(si|si)

1−G(si|si)
(
P P (si)− p(si, si)

)
, ∀si ≤ σ̂P . (9)

8The details of the equilibrium analysis is in the Appendix.
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The differential equation (9) is solved with the boundary condition that P P (σ̂P ) = P 0. In
order the bidding strategy to be strictly increasing, a necessary condition is that σ̂P ≤ σ̃

(it is satisfied as Lemma 1 teaches us). We then obtain the following equilibrium strategy.

Proposition 1 There exists a unique symmetric Nash equilibrium in strictly increasing
equilibrium bidding strategies where

P P (s) = P 0(1− L(σ̂P |s)) +
∫ σ̂P

s
p(x, x)dL(x|s) ∀ s ≤ σ̂P (10)

with
L(x|s) = 1− exp

(
−κ

∫ x

s

g(τ |τ)
1−G(τ |τ)dτ

)
(11)

and where L(x|s) is an increasing function with L(s|s) = 0 and L(1|s) = 1.

One of the specificities of the pool is not only that insurer i may want to enter in
the second round when it observes a signal si > σ̂P , but also that it may decide not
to participate to the auction (ex post) if its payoff is negative when it receives a signal
sj ≤ si ≤ σ̂P (and turns out to be the follower). This happens when P P (sj) < p(si, sj)
with sj < si. In this case, the capacity is not fully served leading to a market failure.

Because p is increasing in each of its argument, the leader signal’s values for which
the follower is indifferent between entering in the second round or not entering define a
function sPj (si) for si ∈ [0, σ̂P ] that takes value on [σ̂P , 1]. It is implicitly defined by

P P (si) = p(si, sPj (si)). (12)

Re-entry for firm j occurs if and only if sj ∈ (σ̂P , sPj (si)).
Let us describe Figure 1 focusing on the case where insurer i’s signal si is the smallest

and is smaller than σ̂P :

- in region IP , si ≤ sj ≤ σ̂P : both insurance companies bid in the first round and
never withdraw, total capacity is insured;

- in region IIP , si ≤ σ̂P , σ̂P ≤ sj ≤ sPj (si) (so that P P (si) > p(si, sj)): insurer i bids
in the first round and insurer j enters in the second round, total capacity is insured;

- in region IIIP , si ≤ σ̂P , sj ≥ σ̂P and sj > sPj (si) (so that P P (si) < p(si, sj)):
insurer i bids in the first round and insurer j does not participate to the pool, only
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the two insurers participate in the 1st round

only one insurer participates

one insurer participates in the 1st round,the other in the 2nd round

Figure 1: The different regions.

the leader provides capacity β. We refer to this region as the partial market failure
region;

- the boundary between regions IIP and IIIP is
{

(si, sj) ∈ [0, 1]2|P P (si) = p(si, sj)
}

and corresponds to sPj (si): insurer j is indifferent between entering in the second
round and never participating to the pool;9

- in region IV P , the two insurers observe a signal greater than σ̂P , none of them
submits a bid and no trade occurs. We refer to this region as the complete market
failure region.

Note that the boundary between regions IIP and IIIP , sPj (si), might be non-monotonic
with respect to si. In particular, as ∂2PP (si)

∂si∂κ
≥ 0, the higher κ, the steeper P P (si).

Therefore, if si 7→ P P (si) − p(si, sj) is a decreasing function of si when κ = 0; it might
be a non monotonic function of si when κ is close to 1 as the Figure 1 illustrates.

P P is the equilibrium bidding strategy. As for the premium, it depends on the signal
9Note that re-entry always exists: PP (σ̂P ) = P 0 > p(σ̂P , σ̃).
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of the two insurers. The premium insurer i receives also depends on insurer j’s signal as
we can see in Figure 3.2.

σ
 P

P0

sj sP(sj)0

(a) sj < σ̂P .
σ
 P

P0

sj0

(b) sj > σ̂P .

Figure 2: Insurer i’s premium for different insurer j’s signal values.

On Figure 2(a), insurer i turns out to be the leader when si ≤ sj in which case its
premium corresponds to its bid, but when si > sj, as the pool follower, its premium
corresponds to insurer j’s bid. Observe that insurer i decides to re-enter in the second
round when its signal belongs to [σ̂P , sP (sj)]. On Figure 2(b), its opponent observes a
signal high than σ̂P , so that it is absent from the first round and insurer i is always the
pool leader.

3.3 Equilibrium properties

Increasing competition. The region of the signal values for which insurers decide
to submit a bid in the first round is independent of the strength of competition (see
equation (8)). Being a follower in the first round or in the second round yields exactly
the same (non-negative) profit. Then, σ̂P only matters for the leader’s strategy and is
determined to guarantee that the unit maximum net expected benefit is non negative.
As a consequence, σ̂P does not depend on κ and so region IPi (where the total capacity
is insured) and region IV P

i (where there is complete market failure). However, the value
of κ modifies the equilibrium bid P P which in turn affects the follower decision to enter
or not in the second round (the boundary between regions IIPi and IIIPi ).

Proposition 2 When competition increases

- Region IIPi (resp. IIIPi ) shrinks (resp. expands);
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- The equilibrium bidding strategy P P (s) decreases.

The equilibrium bidding strategy is represented in Figure 3 for two values of κ. Compe-
tition unambiguously lowers premiums. When competition increases, the pool more often
fails in offering complete coverage: the partial market failure region increases. However
the proportion of the risk insured ( β̄

β
= 1

2−κ) increases. Therefore, increasing competition
has two opposite effects on coverage: partial coverage is more likely but the proportion
of uninsured risk decreases.

σ
 P

P0

0

PP(s) for κ

PP(s) for κ'>κ

Figure 3: The equilibrium bidding strategy P P (s) for two values of κ.

Modifying the reserve price. A change in the reserve price can also be interpreted
as an increase in insurees’ risk aversion (see Gollier (????)).

Proposition 3 When the reserve price increases

- Region IPi (resp. IV P
i ) expands (resp. shrinks)

- The equilibrium bidding strategy P P increases.

If a higher reserve price unambiguously increases the bidding regions, it has an am-
biguous effect on the pool premium. Indeed, on the one hand, for a given bidding region
(direct effect), a greater reserve price tends to increase the premium insurance companies
may ask to the insuree. But on the other hand, as bidding regions increase and because the
equilibrium is in strictly increasing strategies, this tends to lowers the premiums (indirect
effect). However, we show that the direct effect always dominates so that the more risk
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averse insurees (the higher the reserve price, the higher the equilibrium bidding strategy
as Figure 4 illustrates.

σ
 P(P0) σ

 P(P0

)

P0

P0


0

PP(s) for P0

PP(s) for P0


Figure 4: The equilibrium bidding strategy P P (s) for two values of P 0.

Increasing the common knowledge of risk. We assume that the signal is a weighted
average of a common signal and a private signal, each following a uniform distribution
function on [0, 1]

Si = (1− γ)Yi + γε

Sj = (1− γ)Yj + γε

where Yi, Yj and ε are three independent random variables distributed according to a
uniform distribution on [0,1]. When γ = 0, the common term of the signals disappears
so that the two signals are independent (this corresponds to the case where the risk to be
insured is new). On the contrary, when γ = 1, the two signals equal ε (this corresponds
to the case where the risk is already known). Therefore, by increasing γ , we describe a
situation where insurers have more and more common information on the risk. Parameter
γ can be interpreted as the degree of common knowledge: new risks may be associated
with low value of γ.

The computation of the joint density function is given in Appendix.

Proposition 4 When the degree of common knowledge γ increases

- Region IPi (resp. IV P
i ) expands (resp. shrinks);
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σ
 P(γ'')

σ
 P(γ')

σ
 P(γ)

P0

0

P
P(s) for γ

P
P(s) for γ'>γ

P
P(s) for γ''>γ'

Figure 5: Leader’s premium in the pool for three different values of γ.

- The equilibrium bidding strategy P P (s) decreases.

A change in γ has two opposite effects on the supply of insurance. On the one hand,
there is a higher complete market failure (no insurance) for new risks (σ̂P decreases when
γ decreases). On the other hand, a direct consequence of the decrease in the equilibrium
strategies is that the boundary between regions IIP and IIIP decreases with γ. This
means that, conditional on at least one optimistic insurer (si ≤ σ̂P ), full coverage increases
for new risks (partial coverage decreases). Concerning known risks, the possibility to end
up with no insurance decreases but we may observe more partial coverage. To sum-up,
new risks (known risks) lead to a more (lower) complete market failure but the partial
market failure reduces (increases).

4 A market alternative: A discriminatory auction

As an alternative to the pool, we model an agreement between insurance companies
without premiums alignment. This corresponds to the case where a broker collects all the
information and leaves the insurer with the lowest signal in the syndicate’s leadership. The
bidding process is organized in a single round where each firm proposes a risk premium
according to the private signal it received. The leader and the follower (if any) sell
insurance coverage at their announced risk premium. Typically, this corresponds to a
discriminatory auction. We first provide a detailed equilibrium analysis and we turn to
the comparison with the pool.
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4.1 Equilibrium analysis

Separating equilibrium We first look for an equilibrium in strictly increasing and
symmetric bidding strategies. Proceeding as for the pool, assume there exists a threshold
σ̂D such that

- when si ≤ σ̂D, firm i bids according to a strictly increasing bidding strategy PD(si)
with PD(σ̂D) = P 0,

- when si > σ̂D, firm i does not participate anymore.

The profit of firm i that observed a signal si and bids a risk premium PD(si) reads

ΠD (si) =


β (1−G (si|si))E

[
PD(si)− p(si, Sj)|Sj > si

]
+
(
β − β

)
G (si|si)E

[
PD(si)− p(si, Sj)|Sj < si

]
for si ≤ σ̂D (13a)

0 for si > σ̂D. (13b)

As for the pool, the leader’s value (first term of equation (13a)) correspond to the case
where firm i proposes the smallest risk premium. Unlike the pool, the follower’s value
(second term of equation (13a)) now depends on the follower’s premium and not on the
leader’s premium. It tends therefore to be greater than the pool’s follower’s value.

Incentive compatibility requires that bidders with signals greater than σ̂D prefer not
to bid to submitting the bid P 0.

(
1−G

(
σ̂D|σ̂D

))
E
[
P 0 − p(σ̂D, Sj)|Sj > σ̂D

]
+ (1− κ)G

(
σ̂D|σ̂D

)
E
[
P 0 − p(σ̂D, Sj)|Sj < σ̂D

]
= 0.

(14)

Contrary to equation (8) that defined the pool threshold, the follower’s payoff (the second
term of equation (14)) matters. As a consequence, the leader’s expected payoff is negative
at the threshold making the winner’s curse more intense. Indeed, an insurer bids until
σ̂D in the expectation of being the follower rather than the leader. As a consequence, the
solution of Equation (14) may be larger than σ̃.

At equilibrium, PD(b) = PD(si),∀si ≤ σ̂D so that

∂ΠD
i (b, si)
∂b

|b=si
= 0.

As for the pool, incentive compatibility constraints imply that the equilibrium bid
PD(si) satisfies the following differential equation solved with the boundary condition
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PD(σ̂D) = P 0.
PD′(si) = κg(si|si)

1− κG(si|si)
(
PD(si)− p(si, si)

)
, (15)

and we must have σ̂D ≤ σ̃ in order the bidding strategy to be strictly increasing.

Lemma 2 If E
[
P 0 − p(σ̃, Sj)

]
− κG (σ̃|σ̃)E

[
P 0 − p(σ̃, Sj)|Sj < σ̃

]
≤ 0, there exists a

unique threshold σ̂D on [0, σ̃].

Whether σ̂D ≤ σ̃ now depends on the parameters of the model (the shape of the actu-
arial premium rate p, the conditional probability distribution characterized by the density
probability distribution g and the cumulative probability distribution G, the strength of
competition κ and the reserve price P 0).10

Semi-pooling equilibrium. If E
[
P 0 − p(σ̃, Sj)

]
−κG (σ̃|σ̃)E

[
P 0 − p(σ̃, Sj)|Sj < σ̃

]
>

0, we must look for another equilibrium strategy that involves pooling for some values of
the signal. More precisely, we look for an equilibrium in symmetric and increasing bidding
strategy that is characterized by two thresholds σD and σD > σD such that

- when si ∈ [0, σD], firm i bids according to a strictly increasing bidding strategy
PD(si) with PD(σD) = P 0,

- when si ∈ [σD, σD], firm i bids P 0,

- when si > σD, firm i does not participate anymore.

The equilibrium is thus separating when si ∈ [0, σD] and it is pooling when si ∈

[σD, σD]. The profit of firm i that received a signal si and proposes a risk premium
PD(si) reads

ΠD (si) =



β (1−G (si|si))E
[
PD(si)− p(si, Sj)|Sj > si

]
+
(
β − β

)
G (si|si)E

[
PD(si)− p(si, Sj)|Sj < si

]
for si ≤ σD (16a)

β
(
1−G

(
σD|σD

))
E
[
PD(si)− p(si, Sj)|Sj > σD

]
+β

2
(
G
(
σD|σD

)
−G

(
σD|σD

))
E
[
PD(si)− p(si, Sj)|σD < Sj < σD

]
for σD < si ≤ σD

+
(
β − β

)
G
(
σD|σD

)
E
[
PD(si)− p(si, Sj)|Sj < σD

]
(16b)

0 for si > σD. (16c)
10See Proposition 6 for a comparative static analysis of σ̂D with respect to κ.
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Contrary to (13), there is a new intermediate case where firm i bids P 0 (equation
(16b)). The first term corresponds to the leader’s value, the last to the follower value. As
for the second term, it corresponds to the case where the two firms bid P 0 so that they
equally share the market.

Incentive compatibility requires that insurers with signal in [σD, σD] prefer submitting
P 0 to not participating and to submitting any lower bid. Moreover, insurers with signals
greater than σD prefer not to bid to submitting the bid P 0. The two thresholds are thus
defined by the following system.



(
G
(
σD|σD

)
−G

(
σD|σD

))
E
[
P 0 − p(si, Sj)|σD < Sj < σD

]
= 0 (17a)(

1−G
(
σD|σD

))
E
[
P 0 − p(si, Sj)|Sj > σD

]
+
(

1− κ

2

)(
G
(
σD|σD

)
−G

(
σD|σD

))
E
[
P 0 − p(si, Sj)|σD < Sj < σD

]
+G

(
σD|σD

)
E
[
P 0 − p(si, Sj)|Sj < σD

]
= 0. (17b)

It must also be checked that an insurer that bids P 0 when it observes a signal comprised
between σD and σD does not have an incentive to underprice. This comes down to checking
that11

(
G
(
σD|σD

)
−G

(
σD|σD

))
E
[
P 0 − p(si, Sj)|σD < Sj < σD

]
≤ 0 ∀si ∈ [σD, σD].

Lemma 3 The semi-pooling equilibrium exists and is unique if and only if the separating
equilibrium does not exist (σ̂D > σ̃). Moreover, if the semi-pooling equilibrium exists, the
following ranking holds

α(σD) ≤ σD < σ̃ < α(σD) ≤ σD ≤ σ̂D.

When the separating equilibrium exists (σ̂D < σ̃), the system ((17a)-(17b)) has a
unique solution σD = σD = σ̂D involving no pooling region. We can then state the
following proposition that characterizes the equilibrium strategy.

Proposition 5 If σ̂D ≤ σ̃, there exists a unique separating symmetric Nash equilibrium.
11This is checked in the proof of Lemma 3.
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The strictly increasing bidding equilibrium strategies read

PD(s) = P 0(1−K(σ̂D|s)) +
∫ σ̂D

s
p(x, x)dK(x|s) ∀s ≤ σ̂D. (18)

If σ̂D > σ̃, there exists a unique symmetric Nash equilibrium in increasing bidding equi-
librium strategies with partial pooling where

PD(s) =

 P 0(1−K(σD|s)) +
∫ σD

s
p(x, x)dK(x|s) for s ≤ σD (19a)

P 0 for σD < s ≤ σD (19b)

where
K(x|s) = 1− exp

(
−
∫ x

s

κg(τ |τ)
1− κG(τ |τ)dτ

)
(20)

is an increasing function with K(s|s) = 0 and K(1|s) ≤ 1.

σ
D

P0

sj0

(a) sj < σ̂P .
σ
D

P0

sj0

(b) sj > σ̂P .

Figure 6: Insurer i’s premium for different insurer j’s signal values.

4.2 Equilibrium properties

This section provides a comparative static analysis of the discriminatory auction equilib-
rium where we emphasize the role of the strength of competition and the reserve price on
the equilibrium outcome.

Contrary to the pool, the region in which insurance companies submit bids now de-
pends on the competition strength. The thresholds matter not only for the leader’s but
also for the follower’s strategy so that the leader and the follower capacities (and thus the
strength of competition) are important to determine the bidding regions strategies. The
higher κ, the lower the capacity is left to the follower. Therefore, the three thresholds
σ̂D, σD and σD depend on κ.
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Lemma 4 In the separating equilibrium, the signal limiting the bidding region is decreas-
ing in κ and increasing in P 0

∂σ̂D

∂κ
≤ 0 and ∂σ̂D

∂P 0
≥ 0.

In the semi-pooling equilibrium, the lowest (resp. highest) bound of the pooling region is
increasing (resp. decreasing) in κ

∂σD

∂κ
≥ 0 and ∂σD

∂κ
≤ 0.

κκ*0

σ
D

σD

σD

σ


Figure 7: The different thresholds as a function of κ.

The regions in which the capacity is fully served are decreasing with competition. The
minimal signal for which insurers bid the reserve price is non monotonic with respect to
κ.

We now discuss how equilibrium bidding strategies are affected by a change in the pa-
rameters’ values. Firstly, as for the pool, the equilibrium bidding strategy PD is increasing
in P 0. Secondly, when there is full coverage, the comparative statics with respect to κ is
not straightforward for the premium PD. Indeed, even if the direct effect that tends to
decrease the premium level is the same as for the pool, there exists an indirect effect that
comes from the fact that the threshold min(σ̂D, σD) depends on κ. This indirect effect
writes:

−∂min(σ̂D, σD)
∂κ

(
P 0 − p(min(σ̂D, σD),min(σ̂D, σD))

) dK(x|s)
dx

|x=min(σ̂D,σD).
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If min(σ̂D, σD) = σD (when the semi-pooling equilibrium exists, κ < κ∗), the indirect
effect is negative as the direct effect. In this case, PD decreases when competition increases
until κ∗. At the opposite, the indirect effect is positive in the separating equilibrium
since σ̂D is a decreasing function of κ. As we can see in Figure 8(a), the total effect is
ambiguous. Also, the variation in premium is ambiguous when κ increases so that the
equilibrium switches from semi-pooling to separating as we can see in Figure 8(b).

s
σ
D(κ')

σ
D(κ)

P0

0

P
D(s) for κ

P
D(s) for κ'>κ

(a) κ∗ < κ < κ′.

s
σ
D(κ')

σD(κ)
σD(κ)

R0

0

(b) κ < κ∗ < κ′.

Figure 8: Premiums in the two equilibria.

A direct consequence of these discussions is that we can identify whether the equilib-
rium is separating or semi-pooling depending on both κ and P 0.

Proposition 6 There exists an increasing function

κ∗
(
P 0
)

= max
 P 0 − E [p (σ̃, Sj)]
G (σ̃|σ̃)

(
P 0 − E [p (σ̃, Sj) |Sj < σ̃]

) , 0
 (21)

such that the separating equilibrium (resp. the semi-pooling equilibrium) exists if and only
if κ ≥ κ∗(P 0) (resp. κ < κ∗(P 0)).

When P 0 ≤ E [p(Si, σ̃)] the reserve price is too low with respect to the expected
actuarial premium, so that bidders refrain from insuring large risks and σ̂D < σ̃. Then,
κ∗
(
P 0
)

= 0 and the separating equilibrium always exists. On the contrary, when P 0 >

E [p(Si, σ̃)], we have that κ∗
(
P 0
)
> 0 (as illustrated in Figure 7). The semi-pooling

equilibrium exists when κ ≤ κ∗(P 0) and the separating equilibrium exists when κ ≥

κ∗(P 0). In the semi pooling equilibrium, the outcome of the pooling region [σD, σD] is
the monopoly outcome (P 0). The lower the competition, the larger this region. When
competition becomes too intense, this region disappears and the separating equilibrium
exists. In this case, the capacity left to the follower decreases so that bidders refrain from
taking high risks (σ̂D decreases).
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lien avec la littérature (Haile Jehiel).

5 Which auction for the coverage of these risks?

We evaluate the efficiency of the pool with respect to two dimensions: premiums’ levels
and coverage. Strength of competition, insuree’s risk aversion and affiliation are the key
elements in this discussion.

5.1 Pool vs discriminatory auction

We have already explained that both auctions deal with different risk/return tradeoff for
the follower. The follower’s position is essential to understand the efficiency of an auction
format. In the pool, the follower does not take any risk, but only enjoys relatively low
profits (because of uniform pricing), whereas in the discriminatory auction the potential
negative profit of the follower is counterbalanced by higher premiums.

This first result compares the different thresholds.

Lemma 5 Insurance companies submit the maximal bid P 0 for lower signal’s values in
the pool auction

σ̂P ≤ min
(
σ̂D, σD

)
.

Lemma 5 means that regions IP are always smaller than regions ID. If both signals are
between σ̂P and σ̂D, the discriminatory auction offers a full coverage of the risk whereas
the pool offers no coverage. If one signal is between σ̂P and σ̂D and the other is larger than
σ̂D, the pool offers no coverage and the discriminatory auction offer a partial coverage.
When only one insurer initially bids (sj > σ̂D > si), the pool may offer full coverage (in
region IIPi ) whereas the other auctions always cover risk only partially. Even if insurers
are more conservative in the pool

(
σ̂P ≤ min

(
σ̂D, σD

))
, the re-entry option left to the

follower eliminates its ex post risk so that it can re-enter after having observed a signal
larger than σ̂D.

When competition increases, the difference in coverage between the two auctions re-
duces.12

12Both σ̂D and σD decrease with κ so that the discriminatory auction additional full coverage area
decreases. σ̂P is independent of κ, but the frontier determining the follower re-entry region decreases,
diminishing the additional coverage providing by the pool.
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The comparison of the equilibrium bidding strategies is stated in the following lemma.

Lemma 6 If PD(0) ≤ P P (0), then PD(s) < P P (s) for all s ∈ (0, σ̂P ].
If PD(0) > P P (0), there exists a unique s̆ ∈ (0, σ̂P ], such that P P (s) < PD(s) if and only
if s < s̆.

This result is driven both by the conservativeness of the bidding interval in the pool
and by the marginal effect of an increase in risk on bidding strategies. First, as P 0 is
reached for smaller signal values in the pool, equilibrium bidding strategies are higher
in the pool than in the discriminatory auction for signal values close to σ̂P . Indeed, an
insurance company receiving a high signal knows that it faces no risk by being the pool
follower whereas it faces the risk of receiving a negative revenue as the pool leader. Thus,
for such signal values that still belong to the bidding regions, players submit higher bids
than in the discriminatory auction. Second, we look for increasing bidding strategies.
Therefore, starting from the upper boundary, both PD and P P decrease when the signal
decreases. Imagine there exists a signal value such that the bidding strategies are equal
in the two auction formats. Having a look at the two ODEs satisfied by the strategies, we
observe that the slope must be higher in the pool. Indeed, the expected revenue in the
pool for a given insurer is only affected in the case it is the leader, whereas the expected
revenue is affected whatever the insurer’s role in the discriminatory auction. Therefore,
in order to compensate this asymmetry between the leader’s and the follower’s positions,
the marginal bid increase is higher in the pool. However, the reserve price can be so low
that such a threshold does not exist (when P P (0) > PD(0)).

Once again, the analysis must also be done for the premiums as we can see in Figure 9.

Clearly, uniform pricing at the leader’s premium tends to reduce the expected value of
the premium. Nevertheless, when both signals are high (so that PD(si) < P P (si) when
insurer i is the leader), the ranking of the follower’s premiums can be reversed. Indeed,
in the discriminatory auction, conditional on bidding despite a high signal, players tend
to submit high bids to ensure a high potential follower’s revenue.

Comparison with respect to affiliation.

This analysis shows that ex-ante there is no clear dominance of one auction format.
However, we can highlight two messages depending on the realization of the signals. If at
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σ
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0

(c) Follower’s premium ERREUR.

Figure 9: Comparisons of the premiums.

least one insurer provides an optimistic expertise, the pool offers both lower premiums and
higher coverage. This is true whatever the ex-post expertise of the other insurer. When
all insurers agree about an ex-post pessimistic evaluation of the risk, the discriminatory
auction offers a better coverage at a lower leader’s premium, but a higher follower’s
premium.

5.2 What about re-entry?

Two major differences exist between the two settings. The follower pricing rule (uniform
versus heterogenous pricing) and the re-entry option. In order to better understand the
effect of each characteristics, we now introduce a re-entry option in the discriminatory
auction, that is the possibility for an insurer that did not participate in the first round
(because it was too pessimistic) to re-enter and to sell at the leader’s price.

We obtain an equilibrium13 similar to the discriminatory auction equilibrium except
for the different thresholds. In particular, the threshold σ̂Dr in the separating equilibrium
is given by:

(
1−G

(
σ̂Dr |σ̂Dr

))
E
[
P 0 − p(σ̂Dr , Sj)|Sj > σ̂Dr

]
+ (1− κ)G

(
σ̂Dr |σ̂Dr

)
E
[
P 0 − p(σ̂Dr , Sj)|Sj < σ̂Dr

]
= (1− κ)G

(
σ̂Dr |σ̂Dr

)
E
[(
PDr (Sj)− p(σ̂Dr , Sj)

)
+
|Sj < σ̂Dr

]
. (22)

13The equilibrium analysis is relegated to the Appendix.

26



The main difference with the conditions determining σ̂D (equation (14)) and σ̂P (equa-
tion (8) is that the equilibrium bidding strategy now enters into the determination of σ̂Dr .14

Lemma 7 Re-entry in the discriminatory auction yields to more conservative strategies
(σ̂D ≥ σ̂Dr ).
Heterogenous pricing yields to less conservative strategies when re-entry is allowed (σ̂Dr ≥
σ̂P ).

Not surprisingly, introducing the re-entry option in the discriminatory auction leads to
more conservative strategies. Indeed, when re-entry is possible, an insurer takes less risks
in its bidding strategy since submitting a bid is not a necessary condition to participate
to the auction anymore. Therefore, an insurer reduces the risk of being a leader despite
a high signal by reducing the bidding region.

When re-entry is possible, heterogenous pricing increases the bidding region. Being
a follower after having bid in the first round leads to higher premiums than re-entering
in the second round and being a follower at the leader’s premium. Therefore, the re-
entry option is less valuable under heterogenous pricing. As a consequence, insurers take
advantage of the first round by enlarging the bidding region.

A re-entry option in an auction then yields to more complete market failure but reduces
the partial market failure.

The comparison of the bidding strategies is the next natural step.

Lemma 8 Re-entry in the discriminatory auction raises equilibrium bidding strategies:
PD
r (s) > PD(s), for all s < σ̂Dr .

The effect of uniform versus heterogenous pricing on equilibrium bidding strategies is
ambiguous. If PD

r (0) ≤ P P (0), then PD
r (s) < P P

r (s) for all s ∈ (0, σ̂P ].
If PD

r (0) > P P (0), there exists a unique s̆r ∈ (0, σ̂P ], such that P P (s) < PD
r (s) if and

only if s < s̆r.

In the discriminatory auction, re-entry raises premium since re-entering followers ben-
efit from the leader’s revenue. When re-rentry is possible, the comparison between het-
erogenous and uniform pricing relies on the same forces than the ones described in Lemma
???. Also it is shown in appendix ???? that re-entry increases premium in the uniform

14The follower’s value does not cancel out with the re-entry option value as in the pool.
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auction. A re-entry option then yields to higher premiums both with heterogenous and
uniform pricing.

6 Concluding remarks
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A Determination of the equilibria

A.1 Equilibrium analysis of the pool

A.2 Equilibrium analysis of the discriminatory auction

A.3 Equilibrium analysis of the discriminatory auction with re-
entry

A.3.1 Separating equilibrium.

Assume first there exists a threshold σ̂Dr such that

- when si ≤ σ̂Dr , firm i bids according to a strictly increasing bidding strategy PD
r (si)

with PD
r (σ̂Dr ) = P 0,

- when si > σ̂Dr , firm i may enter in the second round at the risk premium its opponent
bids in case it is profitable.

The profit of firm i that observed a signal si and bids a risk premium PD
r (si) reads

ΠD
r (si) =


β (1−G (si|si))E

[
PDr (si)− p(si, Sj)|Sj > si

]
+
(
β − β

)
G (si|si)E

[
PDr (si)− p(si, Sj)|Sj < si

]
for si ≤ σ̂Dr (23a)(

β − β
)
G
(
σ̂Dr |σ̂Dr

)
E

[(
PDr (Sj)− p(si, Sj)

)
+
|Sj < σ̂Dr

]
for si > σ̂Dr .(23b)

The threshold σ̂Dr is determined by the incentive compatibility constraint.15

(
1−G

(
σ̂Dr |σ̂Dr

))
E
[
P 0 − p(σ̂Dr , Sj)|Sj > σ̂Dr

]
+ (1− κ)G

(
σ̂Dr |σ̂Dr

)
E
[
P 0 − p(σ̂Dr , Sj)|Sj < σ̂Dr

]
= (1− κ)G

(
σ̂Dr |σ̂Dr

)
E
[(
PDr (Sj)− p(σ̂Dr , Sj)

)
+
|Sj < σ̂Dr

]
. (24)

The only difference with Equation (14) comes from the re-entry option value term on
the right hand side. Note that here, unlike the pool, the follower’s value does not cancel
out with the re-entry option value.

Lemma 9 Re-entry at the leader’s premium yields to more conservative strategies (σ̂D ≥
σ̂Dr ≥ σ̂P ).

15This threshold is the maximal signal for which an insurer bids in the first round.
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From a technical viewpoint, observe that Equation (24) determining σ̂Dr is much more
complicated than Equation (14) determining σ̂D since the risk premium PD

r (sj) that is
determined at equilibrium and that depends on σ̂Dr enters in the expression. The analytical
analysis is therefore much trickier.

A.3.2 Semi-pooling equilibrium.

If σ̂Dr > σ̃, the equilibrium strategy we just derived is not an equilibrium since it is not
strictly increasing. We must look for another equilibrium strategy that involves pooling
for some values of the signal. More precisely, we look for an equilibrium in symmetric
and increasing bidding strategy that is characterized by two thresholds σDr and σDr > σDr

such that

- when si ∈ [0, σDr ], firm i bids according to a strictly increasing bidding strategy
PD
r (si) with PD

r (σDr ) = P 0,

- when si ∈ [σDr , σDr ], firm i bids P 0,

- when si > σDr , firm i does not participate in the first round anymore and may
optionally re-enter in the second round.

The equilibrium is thus separating when si ∈ [0, σDr ] and it is pooling when si ∈

[σDr , σDr ]. The profit of firm i that received a signal si and proposes a risk premium
PD
r (si) reads

ΠD
r (si) =



β (1−G (si|si))E
[
PDr (si)− p(si, Sj)|Sj > si

]
+
(
β − β

)
G (si|si)E

[
PDr (si)− p(si, Sj)|Sj < si

]
for si ≤ σDr (25a)

β
(
1−G

(
σDr |σDr

))
E
[
PDr (si)− p(si, Sj)|Sj > σDr

]
+β

2
(
G
(
σDr |σDr

)
−G

(
σDr |σDr

))
E
[
PDr (si)− p(si, Sj)|σDr < Sj < σDr

]
for σDr < si ≤ σDr

+
(
β − β

)
G
(
σDr |σDr

)
E
[
PDr (si)− p(si, Sj)|Sj < σDr

]
(25b)(

β − β
)
G
(
σDr |σDr

)
E
[(
PDr (Sj)− p(si, Sj)

)
+
|Sj < σDr

]
for si > σDr (25c)

Contrary to (23), there is a new intermediate case where firm i bids P 0 (equation (25b)).
The first term corresponds to the leader’s value, the last to the follower value. As for the
second term, it corresponds to the case where the two firms bid P 0 so that they equally
share the market.
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Incentive compatibility requires that insurers with signal in [σDr , σDr ] prefer submitting
P 0 to not participating and to submitting any lower bid. Moreover, insurers with signals
greater than σDr prefer not to bid to submitting the bid P 0. The two thresholds are thus
defined by the following system.



(
G
(
σDr |σDr

)
−G

(
σDr |σDr

))
E
[
P 0 − p(si, Sj)|σDr < Sj < σDr

]
= 0 (26a)(

1−G
(
σDr |σDr

))
E
[
P 0 − p(si, Sj)|Sj > σDr

]
+
(

1− κ

2

)(
G
(
σDr |σDr

)
−G

(
σDr |σDr

))
E
[
P 0 − p(si, Sj)|σDr < Sj < σDr

]
(26b)

+G
(
σDr |σDr

)
E
[
P 0 − p(si, Sj)|Sj < σDr

]
= (1− κ)G

(
σDr |σDr

)
E
[(
PDr (sj)− p(si, Sj)

)
+
|Sj < σDr

]
.

Proposition 7 If σ̂Dr ≤ σ̃, there exists a separating symmetric Nash equilibrium. The
strictly increasing bidding equilibrium strategies read

PD
r (s) = P 0(1−K(σ̂Dr |s)) +

∫ σ̂D
r

s
p(x, x)dK(x|s) ∀s ≤ σ̂Dr . (27)

If σ̂Dr > σ̃, there exists a symmetric Nash equilibrium in increasing bidding equilibrium
strategies with partial pooling where

PD
r (s) =

 P 0(1−K(σDr |s)) +
∫ σD

r

s
p(x, x)dK(x|s) for s ≤ σDr (28a)

P 0 for σDr < s ≤ σDr (28b)

where K(x|s) is defined by Equation (20).

Whether σ̂Dr is greater or smaller than σ̃ depends on the parameters of the model,
among them the strength of competition κ. However, the comparative statics with respect
to κ, and thus whether the equilibrium is separating or semi-pooling, is more involved
since the endogenous premium PD

r enters in the definition of the thresholds. Note that
in the two extreme cases where κ = 0 and κ = 1 Equation (24) implies that σ̂Dr = σ̂P

so that the separating equilibrium exists. Therefore, the separating equilibrium exists for
low and large values of κ. The value of the re-entry option decreases with κ since both
the premium and the residual capacity decrease. It is therefore less valuable to be the
follower and insurers become less conservative. However, when competition becomes more
intense, the winner’s curse leads insurers to become more conservative. As a consequence,
there is a non monotony in the shape of σ̂Dr as Figure 10 shows.
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Figure 10: The different thresholds as a function of κ.

As we did for the pool let us define the maximal signal sDr
j for which the follower

agrees to enter in the second round

PD
r (si) = p(si, sDr

j (si)). (29)

It is defined for si ∈ [0, σ̂Dr ] and takes values in [σ̂Dr , 1].

B Proofs

B.1 Proof of Lemma 1

We first prove that σ̂P < σ̃. Assume by contradiction that σ̂P ≥ σ̃. Then,

∫ 1

σ̂P

(
P 0 − p(σ̂P , sj)

)
g
(
sj|σ̂P

)
dsj <

(
P 0 − p(σ̂P , σ̂P )

) (
1−G(σ̂P |σ̂P )

)
≤ 0

which contradicts the definition of σ̂P .

We introduce functions ψ and L defined by

ψ(x) ≡
∫ 1

x

(
P 0 − p(x, sj)

)
g (sj|x) dsj (30)

L (s|x) ≡
dg(s|x)
dx

g (s|x) . (31)
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We have σ̂P defined by ψ(σ̂P ) = 0. Function s 7→ L(s|x) is increasing according to
Assumption 2.

Let us prove that ψ has a unique zero.

ψ′(x) = −
(
P 0 − p(x, x)

)
g (x|x)−

∫ 1

x
P1(x, sj)g (sj|x) dsj

+
∫ 1

x

(
P 0 − p(x, sj)

)
L (sj|x) g (sj|x) dsj.

The first two terms are negative (since σ̂P < σ̃). Let us focus on the third one

∫ 1

x

(
P 0 − p(x, sj)

)
L (sj|x) g (sj|x) dsj =

∫ α(x)

x

(
P 0 − p(x, sj)

)
L (sj|x) g (sj|x) dsj

+
∫ 1

α(x)

(
P 0 − p(x, sj)

)
L (sj|x) g (sj|x) dsj

≤ L (α(x)|x)
∫ α(x)

x

(
P 0 − p(x, sj)

)
g (sj|x) dsj

+L (α(x)|x)
∫ 1

α(x)

(
P 0 − p(x, sj)

)
g (sj|x) dsj

= L (α(x)|x)ψ(x)

where the inequality comes for the fact that L is increasing in s and that P 0 − p(x, sj) >
0 ⇔ sj < α(x). Therefore, the derivative of function ψ is negative when ψ equals zero,
and the zero of function ψ, if it exists is unique. Assumption 1(i) implies that ψ(0) > 0.
Moreover ψ(1) = 0. As a consequence, ψ is positive and then negative as x increases and
σ̂P always exists and is unique.

B.2 Proof of Proposition 1

See Subsection A.1.

B.3 Proof of Proposition 2

It is straightforward to see that L(x|s) is increasing in κ. Remember that

P P (s) = P 0(1− L(σ̂P |s)) +
∫ σ̂P

s
p(x, x)dL(x|s).

As σ̂P is independent from κ, L(σ̂P |s) is increasing in κ as we just underlined. This also
implies that

∫ σ̂P

s p(x, x)dL(x|s) is increasing in κ because, for κ′ > κ function Lκ first
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order stochastic dominates Lκ′ .16

The boundary between regions IIi and IIIi is defined by
{

(si, sj) ∈ [0, 1]2|P P (si) = p(si, sj)
}

.
For a given sj, if κ increases, in order the equality P P (si) = p(si, sj) to hold it must be
the case that si decreases, do that IIi shrinks. As a consequence, IIIi expands. 2

B.4 Proof of Lemma 3
From the definition of σ̂P (equation (8)), we obtain that

∂σ̂P

∂P 0
= −

1−G
(
σ̂P |σ̂P

)
−
(
P 0 − p (σ̂P , σ̂P )

)
g (σ̂P |σ̂P )−

∫ 1
σ̂P p1 (σ̂P , s) g (s|σ̂P ) ds+

∫ 1
σ̂P

(
P 0 − p (σ̂P , s)

)
g2 (s|σ̂P ) ds

The denominator being negative, ∂σ̂P

∂P 0
> 0. 2

B.5 Proof of Lemma ??
∂P P (s)
∂P 0

= 1− L
(
σ̂P |s

)
− L1

(
σ̂P |s

) σ̂P

∂P 0

(
P 0 − p

(
σ̂P , σ̂P

))
.

The first term is positive and corresponds to the direct effect, whereas the second term is
negative and corresponds to the indirect effect.

Observing that

L1
(
σ̂P |s

)
= κ

g
(
σ̂P |σ̂P

)
1−G (σ̂P |σ̂P )

(
1− L

(
σ̂P |s

))
,

we have that

∂P P (s)
∂P 0

=
(
1− L

(
σ̂P |s

))1− σ̂P

∂P 0

(
P 0 − p

(
σ̂P , σ̂P

))
κ

g
(
σ̂P |σ̂P

)
1−G (σ̂P |σ̂P )

 .
The second term equals

− (1− κ)
(
P 0 − p

(
σ̂P , σ̂P

))
g
(
σ̂P |σ̂P

)
−
∫ 1
σ̂P p1

(
σ̂P , s

)
g
(
s|σ̂P

)
ds+

∫ 1
σ̂P

(
P 0 − p

(
σ̂P , s

))
g2
(
s|σ̂P

)
ds

−
(
P 0 − p (σ̂P , σ̂P )

)
g (σ̂P |σ̂P )−

∫ 1
σ̂P p1 (σ̂P , s) g (s|σ̂P ) ds+

∫ 1
σ̂P

(
P 0 − p (σ̂P , s)

)
g2 (s|σ̂P ) ds

In the proof of Lemma 1, we have shown that each term of this fraction is negative, so
that P P (s) is an increasing function of P 0. 2

16The subscript “κ” indicates the parameter value, κ.
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B.6 Proof of Lemma 2

Introduce function φ and θ defined by

φ(x) ≡
∫ x

0

(
P 0 − p(x, sj)

)
g (sj|x) dsj (32)

θ(x) ≡ ψ(x) + (1− κ)φ(x) (33)

where ψ is defined by equation (30) in the proof of Lemma 1. σ̂D (equation (14)) is defined
by θ(σ̂D) = 0. Observe that the only possibility for such an equality to be satisfied is that
φ(σ̂D) > 0 and ψ(σ̂D) < 0.

We also introduce function Φ and Ψ defined by

Φ(x) ≡ E
[
P 0 − p(x, S)|S < x

]
(34)

Ψ(x) ≡ E
[
P 0 − p(x, S)|S > x

]
(35)

so that
θ (x) = (1−G (x|x)) Ψ (x) + (1− κ)G (x|x) Φ (x) .

We know from Milgrom and Weber (1982) that Φ and Ψ are decreasing functions. As
in the proof of Lemma 1, we are going to prove that θ can cancel only once and that its
derivative is negative at this point.

We also know that (1−G (x|x)) Ψ (x) +G (x|x) Φ (x) is decreasing in x implying that

dG (x|x)
dx

< −G (x|x) Φ′(x)− (1−G (x|x))Ψ′(x)
Φ(x)−Ψ(x) .

θ′(x) = −(1− κ)G(x|x)Φ′(x) + (1−G(x|x))Ψ′(x) + dG (x|x)
dx

((1− κ)Φ(x)−Ψ(x))

Taking into account the fact that θ(σ̂D) = 0, we have that

(1− κ)Φ(σ̂D)−Ψ(σ̂D) = −(1−G(σ̂D|σ̂D))Ψ(σ̂D) +G(σ̂D|σ̂D)Ψ(σ̂D)
G(σ̂D|σ̂D) .

Therefore,

θ′(σ̂D) = −(1− κ)G(σ̂D|σ̂D)Φ′(σ̂D) + (1−G(x|x))Ψ′(σ̂D)−
dG(x|x)
dx
|x=σ̂D

G (σ̂D|σ̂D) Ψ(σ̂D).
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The first two terms are negative and the third one is negative if dG(x|x)
dx
|x=σ̂D < 0. To

complete the proof, we must treat the case where dG(x|x)
dx
|x=σ̂D > 0. To do that, we have

to detail the expressions of φ′(x) and ψ′(x).

θ′(x) = ψ′(x) + (1− κ)φ′(x)

= −
(
P 0 − p(x, x)

)
g (x|x)−

∫ 1

x
p1(x, sj)g (sj |x) dsj

+
∫ 1

x

(
P 0 − p(x, sj)

)
g2 (sj |x) dsj + (1− κ)

(
P 0 − p(x, x)

)
g (x|x)

−(1− κ)
∫ x

0
p1(x, sj)g (sj |x) dsj + (1− κ)

∫ x

0

(
P 0 − p(x, sj)

)
g2 (sj |x) dsj

= −
∫ 1

x
p1(x, sj)g (sj |x) dsj − (1− κ)

∫ x

0
p1(x, sj)g (sj |x) dsj − κ

(
P 0 − p(x, x)

)
g (x|x)

+
∫ 1

x

(
P 0 − p(x, sj)

)
g2 (sj |x) dsj + (1− κ)

∫ x

0

(
P 0 − p(x, sj)

)
g2 (sj |x) dsj .

An integration by part of the last two terms imply that

θ′(x) = −
∫ 1

x
p1(x, sj)g (sj |x) dsj − (1− κ)

∫ x

0
p1(x, sj)g (sj |x) dsj − κ

(
P 0 − p(x, x)

)
g (x|x)

+
∫ 1

x
p2(x, sj)G2 (sj |x) dsj + (1− κ)

∫ x

0
p2(x, sj)G2 (sj |x) dsj − κ

(
P 0 − p(x, x)

)
(G1 (x|x) +G2 (x|x))

The first four terms are negative (remember that affiliation implies that G2 < 0). As
for the last term, it is negative when evaluated at x = σ̂D if σ̂D < σ̃ since dG(x|x)

dx
|x=σ̂D > 0.

Therefore the derivative of function θ is negative when θ equals zero, and the zero
of function θ, if it exists and is smaller than σ̃ is unique. Assumption 1(i) implies that
θ(0) > 0 and θ(1) < 0. This implies that θ is positive and then negative as x increases
and that σ̂D < σ̃ always exists and is unique when θ(σ̃) < 0. 2

B.7 Proof of Lemma 3

We prove first that if the separating equilibrium does not exist (σ̃D > σ̃), then the semi-
pooling equilibrium exists and is unique.

The first part of this proof goes through a series of steps. Let us first introduce function
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I, J and K

I(x, y) =
∫ y

x

(
P 0 − p(x, t)

)
g(t|x)dt (36)

J(x, y) =
∫ y

x

(
P 0 − p(y, t)

)
g(t|y)dt (37)

H(x, y) = θ(y) + κ

2J(x, y) (38)

where θ is defined by equation (33). Observe that ψ(x) = I(x, 1), φ(x) = J(0, x) and
θ(x) = I(x, 1) + (1− κ)J(0, x).
Step 1: We show that α(σD) ≤ σD < σ̃ < α(σD) ≤ σD ≤ σ̂D.
To prove this step, assume that (σD, σD) is a solution meaning that I(σD, σD) = 0 and
H(σD, σD) = 0. I(σD, σD) = 0 implies that

P 0
(
G(σD|σD)−G(σD|σD)

)
=

∫ σD

σD
p(σD, t)g(t|σD)dt

> p(σD, σD)
(
G(σD|σD)−G(σD|σD)

)
.

Therefore, P 0 > p(σD, σD) implying that σD < σ̃.

Remember that t 7→ P 0−p(σD, t) is a decreasing function. In order to have I(σD, σD) =
0, it must be the case that P 0 − p(σD, t) is first positive and then negative as t increases
from σD to σD. In particular, we must have that P 0 − p(σD, σD) < 0. This implies that
σD > α(σD) and σD > α(σD) where function α is defined by equation (5). Note that
the symmetry of p and the fact that it is increasing with respect to each of its argument
imply that α = α−1.

To prove that σD ≤ σ̂D, we show that J(σD, σD) < 0 so that θ(σD) > 0.

J(σD, σD) =
∫ σD

σD

(
P 0 − p(t, σD)

)
g(t|σD)g(t|σD)

g(t|σD)dt

≤
∫ σD

σD

(
P 0 − p(t, σD)

)
g(t|σD)g(t|σD)

g(t|σD)dt

=
∫ α(σD)

σD

(
P 0 − p(t, σD)

)
g(t|σD)g(t|σD)

g(t|σD)dt+
∫ σD

α(σD)

(
P 0 − p(t, σD)

)
g(t|σD)g(t|σD)

g(t|σD)dt

≤ g(α(σD)|σD)
g(α(σD)|σD)I(σD, σD)

= 0.

The second inequality holds because t 7→ g(t|y)
g(t|x) is an increasing function ∀x ≤ y.

It therefore holds that α(σD) ≤ σD ≤ σ̃ ≤ α(σD) ≤ σD ≤ σ̂D. This allows us to define
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the region D ≡
{

(x, y) ∈ [0, 1]2|α(y) ≤ x ≤ σ̃ ≤ α(x) ≤ y ≤ σ̂D
}

to which the solution to
the following system should belong to

 I(x, y) = 0
H(x, y) = 0.

Step 2: We show that xI(y) defined by I(xI(y), y) = 0 onDy =
{
σ̃ ≤ y ≤ σ̂D|α(y) ≤ xI(y)

}
is a decreasing function.
The implicit function theorem implies that

dxI(y)
dy

= −I1(xI(y), y)
I2(xI(y), y) .

I2(xI(y), y) = (P 0 − p(xI(y), y))g(y|xI(y)) ≤ 0 since α(y) ≤ xI(y) (or equivalently y ≥

α(xI(y))).

I1(xI(y), y) = −
(
P 0 − p(xI(y), xI(y))

)
g(xI(y)|xI(y))−

∫ y

xI(y)
P1(xI(y), t)g(t|xI(y))

+
∫ y

xI(y)
(P 0 − p(xI(y), t))L (t|xI(y)) g(t|xI(y))dt

The first two terms are negative (the first because xI(y) ≤ σ̃). As for the third term,
using the fact that t 7→ L (t|xI(y)) is an increasing function and as we did in the proofs
of Lemmas 1 and 2

∫ y

xI(y)
(P 0 − p(xI(y), t))L (t|xI(y)) g(t|xI(y))dt

≤ L (α(xI(y))|xI(y))
∫ y

xI(y)
(P 0 − p(xI(y), t))g(t|xI(y))dt

= 0.

This implies that y 7→ xI(y) is a decreasing function.
Note moreover that xI(σ̃) = σ̃ and that xI(σ̂D) > α(σ̂D). To prove this last inequality,

assume by contradiction that xI(σ̂D) ≤ α(σ̂D). Knowing that I(xI(y), y) = 0 and since
p(xI(σ̂D), t) < p(α(σ̂D), t) this implies that

∫ σ̂D

xI(σ̂D)

(
P 0 − p(α(σ̂D), t)

)
g(t|xI(σ̂D))dt < 0.
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However, as p(α(σ̂D), t) < p(α(σ̂D), σ̂D) = P 0,

∫ σ̂D

xI(σ̂D)

(
P 0 − p(α(σ̂D), t)

)
g(t|xI(σ̂D))dt > 0,

hence a contradiction implying that xI(σ̂D) > α(σ̂D).

The last property that remains to be showed for this function xI is that y 7→ xI(y)
and y 7→ α(y) only cross once when y ∈ [σ̃, σ̂D]. This is not a priori obvious since the
two functions are decreasing. We know that xI(σ̃) = α(σ̃) = σ̃. Assume that there exists
y ∈ (σ̃, σ̂D] such that xI(y) = α(y). By definition of xI , this implies that

∫ y

α(y)

(
P 0 − p (α(y), t) g (t|α(y))

)
dt = 0.

However, p (α(y), t) < p (α(y), y) = P 0, ∀t ∈ [α(y), y], so that it is not possible that the
integral equals 0. Therefore such an y does not exist. As a consequence, y 7→ xI(y) and
y 7→ α(y) only cross for y = σ̃, and ∀y ∈ [σ̃, σ̂D], xI(y) > α(y).

Step 3: we show tat yH(x) defined byH(x, yH(x)) = 0 onDx =
{
α
(
σ̂D
)
≤ x ≤ σ̃|α(x) ≤ yH(x)

}
is an increasing function.
The implicit function theorem implies that

dyH(x)
dx

= −H1(x, yH(x))
H2(x, yH(x)) .

Remembering that H(x, y) = θ(y) + (κ/2)J(x, y) (where θ is defined by equation (33)),
this reads

dyH(x)
dx

= −
κ
2J1(x, yH(x))

θ′(yH(x)) + κ
2J2(x, yH(x)) .

J1(x, yH(x)) = −(P 0 − p(x, yH(x)))g(x|yH(x)))

> −(P 0 − p(x, α(x)))g(x|yH(x)))

= 0.

39



H2(x, yH(x)) = −
(
P 0 − p (yH(x), yH(x))

)
g (yH(x)|yH(x))−

∫ 1

yH(x)
P1 (yH(x), t) g (t|yH(x)) dt

+
∫ 1

yH(x)

(
P 0 − p (yH(x), t) g (t|yH(x))

)
L (t|yH(x)) dt

+(1− κ)
((
P 0 − p (yH(x), yH(x))

)
g (yH(x)|yH(x))−

∫ yH(x)

0
P2 (t, yH(x)) g (t, |yH(x)) dt

+
∫ yH(x)

0

(
P 0 − p (t, yH(x))

)
g (t|yH(x))L (t|yH(x)) dt

)

+κ

2

((
P 0 − p (yH(x), yH(x))

)
g (yH(x), yH(x))−

∫ yH(x)

x
P2 (t, yH(x)) g (t|yH(x)) dt

+
∫ yH(x)

x

(
P 0 − p (t, yH(x))

)
g (t|yH(x))L (t|yH(x)) dt

)

= −κ2
(
P 0 − p (yH(x), yH(x))

)
g (yH(x)|yH(x))−

∫ 1

yH(x)
P1 (yH(x), t) g (t|yH(x)) dt

−(1− κ)
∫ yH(x)

0
P2 (t, yH(x)) g (t, |yH(x)) dt− κ

2

∫ yH(x)

x
P2 (t, yH(x)) g (t|yH(x)) dt

+
∫ 1

yH(x)

(
P 0 − p (yH(x), t) g (t|yH(x))

)
L (t|yH(x)) dt

+(1− κ)
∫ yH(x)

0

(
P 0 − p (t, yH(x))

)
g (t|yH(x))L (t|yH(x)) dt

+κ

2

∫ yH(x)

x

(
P 0 − p (t, yH(x))

)
g (t|yH(x))L (t|yH(x)) dt.

The first four terms are negative. Let us analyze the last three terms.

∫ 1

yH(x)

(
P 0 − p (yH(x), t)

)
g (t|yH(x))L (t|yH(x)) dt

+(1− κ)
∫ yH(x)

0

(
P 0 − p (t, yH(x))

)
g (t|yH(x))L (t|yH(x)) dt

+κ

2

∫ yH(x)

x

(
P 0 − p (t, yH(x))

)
g (t|yH(x))L (t|yH(x)) dt

≤ L (yH(x)|yH(x)) I (yH(x), 1) + (1− κ)L (α (yH(x)) |yH(x)) J (0, yH(x)) + κ

2L (x|yH(x)) J (0, yH(x))

≤ L (α (yH(x)) |yH(x))
(
I (yH(x), 1) + (1− κ)J (0, yH(x)) + κ

2J (0, yH(x))
)

= L (α (yH(x)) |yH(x))H(x, yH(x)).

The first inequality holds because

- the first integral is negative. Indeed, σ̃ ≤ yH(x) ≤ t so that P 0 − p (yH(x), t) ≤ 0,
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∀t ∈ [yH(x), 1];

- the second integral is positive (resp. negative) when t ∈ [0, α (yH(x))] (resp. t ∈

[α (yH(x)) , yH(x)]);

- the third integral is negative. Indeed, α(yH(x)) ≤ x ≤ t so that P 0−p (yH(x), t) ≤ 0,
∀t ∈ [x, yH(x)];

- function t 7→ L (t|yH(x)) is increasing (Assumption 2).

The second inequality holds because α(yH(x)) ≤ x ≤ yH(x) and because function
t 7→ L (t|yH(x)) is increasing. This implies that H2(x, yH(x)) ≤ 0 and therefore yH is
increasing function.

Moreover note that yH(σ̃) ∈ [σ̃, σ̂D]. Suppose by contradiction that yH(σ̃) > σ̂D. In
this case, θ(yH(σ̃)) < 0 and J(σ̃), yH(σ̃) > 0. This implies that

0 <
∫ yH(σ̃)

σ̃

(
P 0 − p (yH(σ̃), t)

)
g (t|yH(σ̃)) dt

<
∫ yH(σ̃)

σ̃

(
P 0 − p (σ̃, t)

)
g (t|yH(σ̃)) dt

< 0,

leading to a contradiction. Therefore yH(σ̃) ≤ σ̂D. The same reasoning implies that
yH(σ̃) ≤ σ̃.

Step 4: We show that the solution (σD, σD) is unique.
xI is a deceasing function such that xI(σ̃) = σ̃, xI(σ̂D) = σ̃ and YH is an increasing
function such that yH(σ̃) ∈ [σ̃, σ̂D]. As xI(y) > α(y), ∀y ∈ (σ̃, σ̂D], the two function cross
only once on D. This intersection point that is unique corresponds to the unique solution
of the system that is (σD, σD).

The last part of the proof consists in showing that if the semi-pooling equilibrium
exists, then the separating equilibrium does not exist. We are going to prove that if
the separating equilibrium exists then the semi-pooling equilibrium does not exist. As-
sume therefore that σ̂P < σ̃. We have proven in Step 1 that σP ≤ σ̂P , this implies that
σD < σD < σ̃. But in this case, I(σD, σD) > 0. Therefore, if σ̂P < σ̃, there do not exist
(σD, σD) satisfying I(σD, σD) = 0 and H(σD, σD) = 0.
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It remains to prove that

∫ σD

σD

(
P 0 − p(s, t)

)
g (t|s) dt ≤ 0∀s ∈ [σDσD].

∫ σD

σD

(
P 0 − p(s, t)

)
g (t|s) dt =

∫ σD

σD

(
P 0 − p(t, s)

)
g(t|σD) g(t|s)

g(t|σD)dt

≤
∫ σD

σD

(
P 0 − p(t, σD)

)
g(t|σD) g(t|s)

g(t|σD)dt

=
∫ α(σD)

σD

(
P 0 − p(t, σD)

)
g(t|σD) g(t|s)

g(t|σD)dt

+
∫ σD

α(σD)

(
P 0 − p(t, σD)

)
g(t|σD) g(t|s)

g(t|σD)dt

≤ g(α(σD)|s)
g(α(σD)|σD)I(σD, σD)

= 0.

B.8 Proof of Proposition 5

See Subsection A.2.

B.9 Proof of Lemma 4

θ(σ̂D) = ψ(σ̂D) + (1− κ)φ(σ̂D) = 0. As we noted in the proof of Lemma 2, φ(σ̂D) > 0.
The implicit function theorem implies that

∂σ̂D

∂κ
=

φ
(
σ̂D
)

ψ′ (σ̂D) + (1− κ)φ′ (σ̂D) =
φ
(
σ̂D
)

θ′ (σ̂D) .

In Lemma 2, we have proved that θ′(σ̂D) ≤ 0 so that ∂σ̂D

∂κ
≤ 0.

If σ̂D > σ̃, σD and σD are such that I(σD, σD) = 0
H(σD, σD) = 0.
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The implicit function theorem implies that

∂σD

∂κ
=

J(0, σD)− 1
2J(σD, σD)

I1(σD, 1) + (1− κ)J1(0, σD) + κ
2J2(σD, σD)− κ

2J1(σD, σD) I2(σD,σD)
I1(σD,σD)

∂σD

∂κ
= −∂σ

D

∂κ

I2(σD, σD)
I1(σD, σD) .

We have proven in Step 3 of the proof of Lemma 3 that H2(σD, σD) = I1(σD, 1) +
(1 − κ)J1(0, σD) + κ

2J2(σD, σD) ≤ 0 and that J1(σD, σD) ≥ 0. In Step 2 of the proof of
Lemma 3, we also showed that I1(σD,σD)

I2(σD,σD) ≥ 0. This implies that the denominator of ∂σD

∂κ

is negative and that ∂σD

∂κ
and ∂σD

∂κ
have opposite signs.

J(0, σD)− 1
2J(σD, σD) = 1

κ

(
I(σD, 1) + J(0, σD)

)
.

= 1
κ

(
I(σD, 1) + (1− κ)J(0, σD) + κJ(0, σD)

)
.

In Step 1 of the proof of Lemma 3, we also proved that J(σD, σD) ≤ 0. Together with
H(σD, σD) = 0 implies that

I(σD, 1) + (1− κ)J(0, σD) = −κ2J(σD, σD) ≥ 0.

Moreover, as I(σD, 1) ≤ 0 and κ ∈ (0, 1), it must be the case that J(0, σD) ≥ 0. It follows
that J(0, σD)− 1

2J(σD, σD) ≥ 0. As a consequence, ∂σD

∂κ
≤ 0 and ∂σD

∂κ
≥ 0.

B.10 Proof of Proposition 6

Remember that the separating equilibrium exists if and only if σ̂D < σ̃. Let us analyze
the function κ 7→ σ̂D − σ̃. Thanks to Lemma 4, we know that this function is decreasing
(σ̃ is independent of κ). When κ = 1, observe that σ̂D = σ̂P , so that σ̂D− σ̃ = σ̂P− σ̃ ≤ 0.
If, when κ = 0, σ̂P − σ̃ < 0, then ∀κ ∈ [0, 1], σ̂D < σ̃ and the separating equilibrium
always exists. If, on the contrary, when κ = 0, σ̂P − σ̃ > 0, then there exists a unique κ∗

such that the separating equilibrium (resp. semi-pooling equilibrium) exists if and only if
κ ≥ κ∗ (resp. κ < κ∗). The rest of the proof consists in proving that the comparison of σ̂P

to σ̃ when κ = 0 comes down to comparing P 0 to
∫ 1

0 p(σ̃, s)g(s|σ̃)ds = E[p(Si, Sj)|Sj = σ̃].
When κ = 0, σ̂D is implicitly defined by

∫ 1

0

(
P 0 − p(σ̂D, t)

)
g(t|σ̂D)dt = 0.
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Let us introduce function Λ defined by Λ(x) =
∫ 1

0

(
P 0 − p(x, t)

)
g(t|x)dt. As in the

prof of Lemmas 1 and 2, we can prove that

Λ′(x) =
∫ 1

0
−P1(x, t)g(t|x)dt+

∫ 1

0

(
P 0 − p(x, t)

)
L(t|x)g(t|x)dt

≤
∫ 1

0
−P1(x, t)g(t|x)dt+ L(α(x)|x)Λ(x)

so that Λ′(σ̂D) ≤ 0. Because of Assumption 1(i), Λ(0) > 0 and Λ(1) < 0, so that Λ is
positive if and only if x ≤ σ̂D. It follows that σ̂D > σ̃ if and only if Λ(σ̃) > 0 which comes
down to the condition stated in the proposition, that is P 0 >

∫ 1
0 p(σ̃, s)g(s|σ̃)ds.

B.11 Proof of Lemma ??

Cf proof of Lemmas 3 and ??.

B.12 Proof of Lemma 5

Remember that

- σ̂P is such that ψ(σ̂P ) = 0 where ψ is defined in Equation (30),

- σ̂D is such that θ(σ̂D) = ψ(σ̂D) + (1 − κ)φ(σ̂D) = 0 where φ and θ are defined in
Equations (32) and (33),

- σD and σD are the solution of the system I(σD, σD) = 0 and H(σD, σD) = 0 where
I and J are defined in Equations (37) and (38).

Assume first that σ̂D ≤ σ̃.
We already noted (see the proof of Lemma 2) that ψ(σ̂D) < 0. In addition, we also proved
in Lemma 1 that ψ(x) > 0⇔ x < σ̂P . As ψ(σ̂P ) = 0, this implies that σ̂P ≤ σ̂D.

Assume now that σ̂D > σ̃.
ψ(σD) = I(σD, 1) < I(σD, σD) = 0. The same reasoning implies that σP ≤ σ̂D.

B.13 Proof of Lemma 6

Note first that P P (σ̂P ) = P 0 > PD(σ̂P ). Second, imagine that the two functions P P and
PD cross at some point such that P P (s) = PD(s) at this point. Using the differential
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equations satisfied by the two premiums (Equations (9) and (15)), we have that P P ′(s) >
PD′(s). Therefore, if the two functions cross, it happens only once. If PD(0) ≤ P P (0),
the two curves never crossed. 2

B.14 Proof of Lemma 7

B.15 Proof of Lemma 8

Since the two premiums satisfy the same differential equation, the difference between them
only comes from the threshold that determine the initial conditions of the differential
equation. Assume the threshold is x and let us differentiate the premium with respect to
this threshold. It equals

−
(
P 0 − p (x, x)

) ∂K (x|s)
∂x

< 0

since the threshold is smaller than σ̃ (both in the separating and in the pooling equilib-
rium).

If the parameters are such that the equilibrium is separating in the two cases: σ̂Dr <

σ̂D < σ̃, then
PD(s) < PD

r (s) ∀ s ≤ σ̂Dr .

When one of the equilibrium is separating, we should check whether σ̂Dr < σD and σDr <

σD. TO BE DONE. 2

B.16 Proof of Lemma ??

By the definition of the two functions sPj (si) and sDr
j (si), we have that

P P (si) > PD
r (si)

⇔ p
(
si, s

P
j (si)

)
> p

(
si, s

Dr
j (si)

)
⇔ sPj (si) > sDr

j (si)

2
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