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Abstract

The European insurance industry benefits from some special antitrust exemp-
tions. Indeed, insurers can syndicate, via a ”pool”, for the coverage of undiversifiable
risks. We show that the pool issue amounts to share a common value divisible good
between capacity constrained agents with a reserve price and private information.
We characterize the equilibrium risk premium of this game and the resulting insur-
ance capacity offered. We then compare the pool to a discriminatory auction upon
two dimensions, the total capacity insured and the premiums. There is no clear
domination of one auction format. Strength of affiliation and competition are key
variables.
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1 Introduction

The European insurance industry benefits from some special antitrust exemptions.1 The
European Commission adopted a Block Exemption Regulation in 1992 and when this
Regulation expired at the end of March 2010, the Commission, after in-depth consultation
with the insurance sector, consumers organizations and public sector bodies adopted a new
Insurance Block Exemption Regulation which is valid for seven years. The new insurance
Block Exemption Regulation applies Article 101(3) of the European Commission Treaty to
grant an exemption to the application of competition rules to certain types of agreements
in the insurance sector. One of these agreements concerns the opportunity of insurers to
syndicate, via a pool, for the coverage of undiversifiable risks. On 13 December 2016 the
Commission took note of the expiry of the IBER on 31 March 2017.

During the consultation, the adequacy of pools has been discussed by the European
Commission. What is the impact of this form of cooperation on the demand and supply
of insurance and on the pricing of insurance policies? To what extent is the performance
(profitability, solvency) of the insurance industry affected? The EC Commission was
arguing that such syndicates cannot allow for competitive offers because it favors collusive
practices. It also claimed that pools may constitute barriers to entry for new insurers.
Insurance companies put forward these arguments. They claim that without pools, there
would be a decrease in insurance capacity and thus less protection for new risks.2 In
particular, they recall that pools for nuclear risks (Assuratome) or medical liability risks
(GTAM) were the only solution to provide insurance for those risks. Also, they argue
that pools enable insurance companies to share knowledge and experience about certain
less frequently occurring risks, which should, according to them, benefit to both sides of
the market. The objective of the paper is to analyze the efficiency of such pools. We want
to study whereas the exemption for the setting up and operation of insurance pools or
the coverage of new risks is justified.

The setting up of a pool can be described as a two-stage game. The first stage is an
auction designed for all insurers. An insurer that participate to the auction announces
a risk premium and a capacity. Insurers are capacity constraints so that a single insurer

1See Faure and Van den Bergh (1995) for a description of these exemption clauses.
2Defined in the Regulation as ”risks which did not exists before, and for which insurance cover re-

quires the development of an entirely new insurance product not involving an extension, improvement or
replacement of an existing insurance product.
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cannot take the whole risk. The pool risk premium is the lowest risk premium announced
by the insurers. Also, this offer defines a pool leader as the insurer having announced
the lowest risk premium. In a second stage, the pool leader is in charge to collect all
the capacities up to the policyholders demand at the pool risk premium. Insurers are
assumed to be expert in the evaluation of such new risks. They then participate to the
auction with a private evaluation of the actuarial premium. This amounts to study the
problem of sharing a common value divisible good between capacity constrained agents
with a reserve price and private information. The game we consider is then a particular
auction of a divisible good with common value and possibly affiliated signals. The first
stage is a uniform price auction with an exit option for the followers, and the second stage
offers a re-entry option for followers. We characterize the equilibrium risk premium of
this game and the resulting insurance capacity offer. We then compare the outcome of
the pool to the outcome of discriminatory auctions that are traditionally used to allocate
such divisible goods. We next examine how a re-entry option impacts the discriminatory
auction.

From now, the literature on undiversifiable risks has focused on the risk sharing prob-
lem between insurers and policyholders. This risk sharing problem is analyzed for instance
in Doherty and Dionne (1993) or Mahul and Wright (2003). Doherty and Dionne (1993)
introduce a new form of insurance contract called Decomposed Risk Transfer contract
(DRT contract) defined by an insurance policy packaged with a residual claim on the
insurance pool. They show that this contract increases policyholders welfare. They char-
acterize the optimal coverage and the risk premium as a function of the cost of risk bearing
derived from asset pricing models. Our setting builds on this contract in the sense that a
pool offers a two dimensional contract (a risk premium and a coverage) for which they pay
the risk bearing cost. In our model, the pool risk premium (paid by the policyholders)
may differ from the actuarial premium (paid by the insurer) because of the particular
competition emerging from the pool.

The literature on undiversifiable risks has mainly focused on the risk sharing problem
between insurers and policyholders leaving aside the problem of risk sharing between
insurers. We think that it is necessary to open the door to other fields of economics
to answer this question. Pool agreements are a particular strategic interaction between
insurer. Auction theory is then a powerful tool to understand insurance cooperation. This
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theory has been widely used since its development by Milgrom (1981).3 We establish a
relation between agreeing on a common coverage of a risk and exchanging Treasury debt
and other divisible securities (Back and Zender (1993)). Our objective is then to adapt
this literature to discuss the costs and benefits of insurance cooperation schemes.

We compare the different auctions format upon two dimensions, the total capacity
insured and the premiums. There is no clear domination of one auction format. We
show that the strength of affiliation between insurers private information and strength
of competition (adjusting capacity constraints) are key variables. Premiums are lower in
the uniform auction compared to the discriminatory auction. Allowing for reentry in a
second round offers a better insurance coverage. We also show that increasing competition
between insurers has two opposite effects on insurance coverage: full coverage of the risk is
less likely but the proportion of uninsured risk decreases. Finally, we show that a limited
knowledge of risks (a low affiliation between insurers signals) makes the pool more efficient.

The paper is organized as follows. We present the model in section 2. We then
solve the equilibrium of the pool in section 3. In section 4, we introduce discriminatory
auction and allow followers to re-enter in a second round. Section 5 compares the different
outcomes. All proofs are relegated to the appendix.

2 The model

Two identical risk neutral insurers, a and b, are asked for the coverage of an undiversifiable
risk. In what follows, i refers to an arbitrary insurer and j to its opponent.

2.1 Risk and insurance contract

In this section, we set up a simple characterization of risk. Consider n ≥ 1 identical risk
averse agents that are exposed to a non diversifiable risk: the aggregate loss nL occurs
with probability p.

In the absence of insurance, the expected utility of each agent writes

U(p) = pu (w − L) + (1− p)u (w)

where u denotes the increasing and concave utility function and w each agent’s initial
3See also Hendricks, Porter and Tan(2008)or Haile (2003).
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wealth.
Assume that agents can insure this risk. We define β as the proportion of the risk

demanded by agents and P the unit risk premium asked by the insurers to bear this
undiversifiable risk. The expected utility of each agent with such a contract writes

V (β, P, p) = pu (w − L+ βL− βLP ) + (1− p)u (w − βLP )

where βL is the indemnity paid by insurers in case of loss, and βLP is the insurance
premium paid for this coverage. The contract can be then completely defined by (β, P ),
the proportion of the loss that is insured and the unit risk premium.

We define P (β, p) ≡ P as the maximum premium that agents are willing to pay for
this coverage. At P , they are indifferent between insuring or not:

V (β, P , p) = U(p).

This minimum risk premium that insurers are willing to accept for this coverage is the
actuarial premium rate p. The insurer net expected benefit of such a contract writes

βL (P − p) .

The term L(P − p) is the net unit premium received by the insurer once the risk has
been transferred to the reinsurance market which in particular means that no indemnity
is paid by the insurer to the insuree. We must have p ≤ P ≤ P for the insurance contract
to exist.4

2.2 Insurers’ expertise for new risks

We assume that the probability of the undiversifiable risk p is not perfectly known by
the agents. All agents have the same prior on this probability, denoted p0 (the a priori
actuarial premium). This belief defines the a priori maximum premium P 0 implicitly
defined by V (β, P 0, p0) = U(p0).

Insurers are assumed to be expert in the evaluation of such new risks. They have the
ability to better identify the true risk. This assumption reflects the fact that insurers
often concentrate their activities in specific lines of business and can use their expertise

4We have that β = 1 if and only if P = p.
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to infer the probability of new risks. Consequently, we assume that insurers can obtain a
costless signal related to the true probability. Si (resp. Sj) is the signal privately observed
by insurer i (resp. j). The two signals Si and Sj whose realizations are denoted si and sj
are assumed to be affiliated. They are distributed according to the same continuous dis-
tribution on the interval [0, 1]. Let g(.|s) denote the (symmetric) probability distribution
function of an insurer’s signal conditional on the other insurer having observed signal s.
This translates into the following assumption on the family of densities g(.|s).

Assumption 1

∀s′i > si and s′j > sj,
g(s′i|s′j)
g(s′i|sj)

≥
g(si|s′j)
g(si|sj)

. (1)

This implies that the actuarial premium rate is a function of insurers’ private infor-
mation. While it is ex ante unknown to any particular insurer, it is ex post common to
all insurers. We consider that this function is the same for the two insurers and that it
can be expressed as a symmetric function of all insurers’ signals.

p(si, sj) = p(sj, si). (2)

We impose the following regularity assumptions on the actuarial premium rate.

Assumption 2 The actuarial premium rate p satisfies the following properties.

(i) Function p is twice continuously differentiable and strictly increasing in the two
variables;

(ii) E [p(Si, Sj)|Sj = 0] < P 0 < E [p(Si, Sj)|Sj = 1];

(iii) s 7→ p(s, s) is convex;

(iv) Function p is supermodular,

∂2p(si, sj)
∂si∂sj

≥ 0,∀(si, sj) ∈ [0, 1]2. (3)

Observe that a high value of s signals a risk that is assumed to be more costly to insure
and that some risks cannot be insured. Assumption 2(ii) means that if insurer j observes
the best (resp. worst) possible signal, covering the risk is always (resp. never) profitable
for insurer i.
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Definition 1

(i) σ̃ is implicitly defined by
p (σ̃, σ̃) = P 0. (4)

(ii) α is implicitly defined by

p(α(x), x) = P 0 ∀x ∈ [0, 1]. (5)

Signal σ̃ is the maximal signal for which the two insurance companies accept to cover the
risk in case they observe the same signal. Function α can be interpreted as an isocost
curve evaluated at the maximal premium P 0.5

Given our assumptions, if P is paid by insurees, insurer i’s net expected benefit of
providing a unit coverage writes6

(P − E [p(Si, Sj)|Si = si]) . (6)

Insurers compete for the coverage of this risk by choosing the quantity they insure and the
price at which they provide insurance. The existence of solvency regulation and capital
requisites for the coverage of such new and undiversifiable risk implies that insurers are
capacity constrained. Therefore, a single insurer can not offer more than a proportion
βi ≤ β, with βi = βj = β. We assume that the market is too small to absorb the full
capacity of the two insurers, i.e. β ≤ 2β.7 To measure the strength of competition on the
insurance market, we define

κ = 2β − β
β

∈ [0, 1], (7)

which can be interpreted as the relative excess supply. When κ = 0, the two insurance
companies may sell their entire capacity so that there is no competition. On the contrary,
when κ = 1, a unique insurer could satisfy the whole demand leading to intense competi-
tion. Note that equation (7) implies that the proportion of the total demand an insurer
can satisfy by itself, β/β, equals 1/(2− κ).

These capacity constraints require to organize insurance supply in a syndicated form.
5According to Assumption 2(ii), α is a decreasing function. Moreover, the symmetry of α with respect

to its arguments implies that α−1 = α.
6In what follows, we normalize L to 1.
7Assuming sufficiently large capacities can avoid a monopoly outcome and allows to focus on the most

interesting cases.
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2.3 Insurers’ syndication

The organization of insurance supply amounts to the problem of sharing a common value
divisible good between capacity constrained agents with a reserve price. Typically, this
issue has been addressed for the particular case of Treasury Bonds. These bonds are
usually exchanged through a uniform auction or a discriminatory auction. The insurance
industry has its own practice to provide coverage for undiversifiable risks under capacity
constraints. Such agreements are named “pools”. Even if these different auctions have
specific rules, they all share the following timing.

1. Each insurer performs a risk analysis and receives a private signal si.

2. If it decides to participate8, it announces a risk premium Pi ≤ P 0 based on its own
signal.9

3. The insurer that announces the smallest risk premium, PL = min(Pa, Pb), becomes
the leader of the syndicate, the other insurer is the follower.

4. The leader has the priority to choose the capacity it wants. Given the linearity of
the insurer’s expected net benefit (see Equation (1)), the leader (resp. the follower)
sells its full capacity β (the remaining capacity β − β) in case of an exchange.

5. If the two insurers announce the same risk premium, they share the capacity so that
they both sell β/2 at the same price.

6. The terms of exchange depend on the syndicate’s format.

The objective of this paper is to analyze different auction rules to constitute the
syndicate, namely the pool and the more standard discriminatory auction. Each auction
determines a game of incomplete information among the insurers: we look for a symmetric
Bayesian Nash equilibrium that is increasing in the bidding strategies of each resulting
game.

8Insurance is provided only if at least one insurer accepts to participate.
9Recall that P 0 is the maximum premium that policyholders are willing to pay.
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3 Analysis of the pool

3.1 Description of the pool

Ernst and Young (2014) provides a detailed description of the procedures leading to
agreements in several European countries. Even if some country-specific differences exist,
they share some common features. The pool premium P P is unique and equals the lowest
bid: this is a uniform auction. Ernst and Young (2014) also notes that “the followers are
usually invited to either accept or decline or take a share of the risk on the same terms
and conditions as the lead insurer”.

We summarize these features with the following rules.

- A first price auction determines the pool risk premium.

- If the two insurers submit a bid Pi ≤ P 0,

o The pool risk premium is P P = min(Pa, Pb). The pool leader sells β at price
P P .

o The follower observes P P and decides whether it withdraws from the pool or
not. If it does not, it sells β − β at price P P .

- If only insurer i submits a bid Pi ≤ P 0,

o The pool risk premium is P P = Pi. The pool leader sells β at price P P .

o Insurer j observes P P and decides whether it enters into the pool or not. If it
does, it sells β − β at price P P .

This particular syndication works as if there exists two rounds. The pool’s rule states
that the follower can join or quit the pool whatever its initial choice to submit a bid. A
player submits a bid only if it is sufficiently optimistic about the new risk ex ante. If it
turns out to be the follower, it has always the possibility to quit the pool after having
observed P P . Also, if a player is too pessimistic to submit a bid ex ante, it may still, in
a second round, re-enter and participate if the leader’s bid reveals a good risk.

3.2 Separating equilibrium

We first look for an equilibrium in strictly increasing and symmetric biding strategies that
are characterized by a threshold σ̂P such that
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- when si ≤ σ̂P , firm i bids according to a strictly increasing bidding strategy P P (si)
with P P (σ̂P ) = P 0,

- when si > σ̂P , firm i is willing to participate in the second round only.

In such a separating equilibrium, the bid a insurer submits unambiguously reveals the
signal it observes. The profit of firm i that observed a signal si and bids a risk premium
P P (b) reads10

ΠP (b, si) =



β

∫ 1

b

(
PP (b)− p(si, sj)

)
g (sj |si) dsj

+
(
β − β

) ∫ b

0

(
PP (sj)− p(si, sj)

)
+
g (sj |si) dsj for b ≤ σ̂P (8a)

(
β − β

) ∫ σ̂P

0

(
PP (sj)− p(si, sj)

)
+
g (sj |si) dsj for b > σ̂P (8b)

Let us explain the different terms composing the expression of ΠP (b, si).

- When firm i bids P P (b) ≤ P 0 (equation (8a)), two situations may arise:

1. Firm j is only willing to participate in the second round or firm j participates
and proposes a risk premium greater than P P (b). Firm i’ turns out to be the
pool leader and serves β at its proposed price P P (b);

2. Firm j participates and proposes a risk premium smaller than P P (b). Firm
i’ turns out to be the pool follower and, in case it is profitable, serves the
remaining capacity β − β at firm j proposed price P P (sj).

- When firm i observes a signal strictly greater than σ̂P it is only willing to participate
in the second round (equation (8b)). Two situations may arise.

1. Firm j bids a risk premium strictly less than P 0. Firm i, as the pool follower,
participates only in case it is profitable and serves the remaining capacity β−β
at firm j proposed price P P (sj).

2. Firm j is also only willing to participate in the second round meaning that it
observed a signal greater than σ̂P , too. No trade will occur for any player.

10Note that it is independent of i since the strategies are the same for the two insurers.
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Incentive compatibility requires that bidders with signals greater than σ̂P prefer not
to bid to submitting the bid P 0.

∫ 1

σ̂P

(
P 0 − p(σ̂P , sj)

)
g
(
sj|σ̂P

)
dsj = 0. (9)

Lemma 1 The threshold σ̂P exists and is unique. Moreover, σ̂P < σ̃.

Given the specific rules of the pool (uniform pricing, options to exit and to re-enter),
the follower profit is the same whatever the initial choice to participate to the auction.
Therefore, the threshold is only determined by the condition that the leader’s expected
profit is non negative which refrains from bidding when signals are too high.

At equilibrium, P P (b) = P P (si),∀si ≤ σ̂P so that

∂ΠP (b, si)
∂b

|b=si
= 0,∀si ≤ σ̂P .

This implies that the equilibrium bid P P (si) satisfies the following differential equation

P P ′(si) = κ
g(si|si)

1−G(si|si)
(
P P (si)− p(si, si)

)
. (10)

The differential equation (10) is solved with the boundary condition that P P (σ̂P ) = P 0.
In order the bidding strategy to be strictly increasing, a necessary condition is that σ̂P ≤ σ̃

(Lemma 1). We then obtain the following equilibrium strategy.

Proposition 1 There exists a unique symmetric Nash equilibrium in strictly increasing
bidding equilibrium strategies where

P P (s) = P 0(1− L(σ̂P |s)) +
∫ σ̂P

s
p(x, x)dL(x|s) ∀ s ≤ σ̂P (11)

with
L(x|s) = 1− exp

(
−κ

∫ x

s

g(τ |τ)
1−G(τ |τ)dτ

)
(12)

and where L(x|s) is an increasing function with L(s|s) = 0 and L(1|s) = 1.

Insurer i’s equilibrium expected profit thus writes as
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ΠP∗ (si) =



∫ 1

si

β
(
PP (si)− p(si, sj)

)
g (sj |si) dsj

+
∫ si

0

(
β − β

) (
PP (sj)− p(si, sj)

)
+
g (sj |si) dsj for si ≤ σ̂P (13a)∫ σ̂P

0

(
β − β

) (
PP (sj)− p(si, sj)

)
+
g (sj |si) dsj for si > σ̂P (13b)

Figure 1 presents insurer i’s profit as a function of insurers’ signals.

s

ΠP
*

(s)

σ
 P 10

Figure 1: ΠP∗
i (si).

One of the specificities of the pool is not only that the insurer may want to enter
in the second round when it observes a signal si > σ̂P , but also that it may decide not
to participate to the auction (ex-post) if its payoff is negative when it receives a signal
sj ≤ si ≤ σ̂P (and turns out to be the follower). This happens when P P (sj) < p(si, sj)
with sj < si. In this case, the capacity is not fully served. The following lemma tells us
that this will never be the case: even the most pessimistic insurer never wants to withdraw
ex-post.

Lemma 2 When participating to the pool, the follower never withdraws ex-post:

P P (sj)− p(si, sj) > 0 ∀ sj < si ≤ σ̂P . (14)

The specific rules applying to the follower makes the leader position less enviable. The
tradeoff is between insuring a large capacity with the risk of ex-post negative profit and
insuring a smaller capacity at no risk of loss. This refrains the leader from bidding for high
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signal values. This result also holds when si is greater than but close to σ̂P (continuity).
However, when its signal is too high it may not want to enter as Figure 2 illustrates.

the two insurers participate in the 1st round

only one insurer participates

one insurer participates in the 1st round,the other in the 2nd round

Figure 2: The different regions.

Let us describe Figure 2 assuming insurer i’s signal si is the smallest and that it is
smaller than σ̂P :

- in region IP , si ≤ sj ≤ σ̂P : both insurance companies bid in the first round and
never withdraw, total capacity is insured;

- in region IIP , si ≤ σ̂P , sj ≥ σ̂P and P P (si) > p(si, sj): insurer i bids in the first
round and insurer j enters in the second round, total capacity is insured;

- in region IIIP , si ≤ σ̂P , sj ≥ σ̂P and P P (si) < p(si, sj): insurer i bids in the
first round and insurer j does not participate to the pool, only the leader provides
capacity β;

- the boundary between regions IIP and IIIP is
{

(si, sj) ∈ [0, 1]2|P P (si) = p(si, sj)
}

:
insurer j is indifferent between entering in the second round and never participating
to the pool;
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- in region IV P , the two insurers observe a signal greater than σ̂P , none of them
submits a bid and no trade occurs.

Note that the boundary between regions IIP and IIIP might be non-monotonic with
respect to si. In particular, as ∂2RP (si)

∂si∂κ
≥ 0, the higher κ, the steeper RP (si). Therefore,

if si 7→ RP (si) − r(si, sj) is a decreasing function of si when κ = 0; it might be a non
monotonic function of si when κ is close to 1 as the following graph illustrates.

3.3 Impact of the strength of competition

First, observe that the region of the signal values for which insurers decide to submit a bid
in the first round is independent of the strength of competition (see equation (9)). Being
a follower in the first round or in the second round yields exactly the same (non-negative)
profit. Then, σ̂P only matters for the leader’s strategy and is determined to guarantee
that the unit maximum net expected benefit is non negative. As a consequence, σ̂P does
not depend on κ and so region IPi , where the total capacity is insured. However, the value
of κ modifies the equilibrium bid P P which in turn affects the follower decision to enter
or not in the second round (the boundary between regions IIPi and IIIPi ).

Proposition 2 When competition increases

- P P (s) decreases;

- Region IIPi (resp. IIIPi ) shrinks (resp. expands).

The equilibrium bidding strategy is represented in Figure 3 for two values of κ. Com-
petition unambiguously lowers premiums. When competition increases, the pool more
often fails in offering complete coverage. Even if region IIIPi expands with κ, the pro-
portion of the risk insured ( β̄

β
= 1

2−κ) increases. Therefore, increasing competition has
two opposite effects on the coverage : full coverage is less likely but the proportion of
uninsured risk decreases.

4 Discriminatory auction

This part is devoted to the analysis of the discriminatory auction, when reentry is possible
or not.
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R
P(s) for κ

R
P(s) for κ'>κ

Figure 3: The equilibrium bidding strategy P P (s) for two values of κ.

4.1 Discriminatory auction without reentry

The bidding process is organized in a single round where each firm proposes a risk premium
according to the private signal it received.11 The leader and the follower (if any) sell at
their announced risk premium.

4.1.1 Equilibrium analysis

Separating equilibrium. We first look first for an equilibrium in strictly increasing
and symmetric bidding strategies. Proceeding as before, assume there exists a threshold
σ̂D such that:

- when si ≤ σ̂D, firm i bids according to a strictly increasing bidding strategy PD(si)
with PD(σ̂D) = P 0,

- when si > σ̂D, firm i does not participate anymore.

The profit of firm i that observed a signal si and bids a risk premium PD(b) reads

ΠD (b, si) =


β

∫ 1

b

(
PD(b)− p(si, sj)

)
g (sj |si) dsj

+
(
β − β

) ∫ b

0

(
PD (b)− p(si, sj)

)
g (sj |si) dsj for b ≤ σ̂D (15a)

0 for b > σ̂D. (15b)

11When the risk is shared with a discriminatory auction without reentry, no specific agreement between
the auction participants is needed. In particular, a syndicate is not necessary to organize the trade.

15



- When firm i bids PD(b) ≤ P 0 (equation (15a)), two situations may arise.

1. Firm j does not participate to the auction or participates and proposes a risk
premium greater than PD(b). Firm i’ turns out to be the syndicate leader and
serves β at its proposed price PD(b);

2. Firm j participates and proposes a risk premium smaller than PD(b). Firm i

turns out to be the syndicate follower and serves the remaining capacity β− β
at its proposed price PD(b).

- When firm i observes a signal greater than σ̂D, it prefers not to bid (not to partici-
pate) to the auction.

Incentive compatibility requires that bidders with signals greater than σ̂D prefer not
to bid to submitting the bid P 0.

∫ 1

σ̂D

(
P 0 − p(σ̂D, sj)

)
g
(
sj |σ̂D

)
dsj +

∫ σ̂D

0
(1− κ)

(
P 0 − p(σ̂D, sj)

)
g
(
sj |σ̂D

)
dsj = 0. (16)

Lemma 3 The threshold σ̂D exists and is unique.

Contrary to equation (9) that defined the pool threshold, the follower’s payoff (the
second term of equation (16)) matters. As a consequence, the leader’s expected payoff
is negative at the threshold making the winners’ curse more present. Indeed, an insurer
bids until σ̂D in the expectation of being the follower rather than the leader.

As for the pool, the first order conditions imply that the equilibrium bid PD(si)
satisfies the following differential equation

PD′(si) = κg(si|si)
1− κG(si|si)

(
PD(si)− p(si, si)

)
, (17)

and we must have σ̂D ≤ σ̃ in order the bidding strategy to be strictly increasing. Whether
σ̂D ≤ σ̃ depends now on the parameters of the model (the shape of both the actuarial
premium rate p, the conditional probability distribution characterized by the density
probability distribution g and the cumulative probability distribution G and the strength
of competition κ).12

12See Proposition 4 for a comparative static analysis of σ̂D with respect to κ.
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Therefore, if σ̂D ≤ σ̃, the differential equation (17) is solved with the boundary con-
dition PD(σ̂D) = P 0.

Semi-pooling equilibrium. If σ̂D > σ̃, the equilibrium strategy we just derived is
not an equilibrium since it is not strictly increasing (see equation 17). We must look for
another equilibrium strategy that involves pooling for some values of the signal. More
precisely, we look for an equilibrium in symmetric and increasing bidding strategy that is
characterized by two thresholds σD and σD > σD such that

- when si ∈ [0, σD], firm i bids according to a strictly increasing bidding strategy
PD(si) with PD(σD) = P 0,

- when si ∈ [σD, σD], firm i bids P 0,

- when si > σD, firm i does not participate anymore.

The equilibrium is thus separating when si ∈ [0, σD] and it is pooling when si ∈

[σD, σD]. The profit of firm i that received a signal si and proposes a risk premium PD(b)
reads

ΠD (b, si) =



β

∫ 1

b

(
PD(b)− p(si, sj)

)
g (sj |si) dsj

+
(
β − β

) ∫ b

0

(
PD (b)− p(si, sj)

)
g (sj |si) dsj for b ≤ σD (18a)

β

∫ 1

σD

(
P 0 − p(si, sj)

)
g (sj |si) dsj

+β

2

∫ σD

σD

(
P 0 − p(si, sj)

)
g (sj |si) dsj

+
(
β − β

) ∫ σD

0

(
P 0 − p(si, sj)

)
g (sj |si) dsj for σD < b ≤ σD (18b)

0 for b > σD (18c)

Contrary to (15), there is a new intermediate case where firm i bids P 0 (equation (18b)).
Three situations may arise.

1. Firm j does not participate to the auction, firm i is the only participant and serves
its capacity β at price P 0;

2. Firm j also bids P 0. Firms i and j therefore share the market and each serves a
capacity β/2 at price P 0;
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3. Firm j bids a risk premium strictly less than P 0. Firm i’ turns out to be the
syndicate follower and serves the remaining capacity β − β at P 0.

Incentive compatibility requires that insurers with signal in [σD, σD] prefer submitting
P 0 to not participating and to submitting any lower bid. Moreover, insurers with signals
greater than σD prefer not to bid to submitting the bid P 0. The two thresholds are thus
defined by the following system.



∫ σD

σD

(
P 0 − p(σD, sj)

)
g
(
sj |σD

)
dsj = 0 (19a)

∫ 1

σD

(
P 0 − p(σD, sj)

)
g
(
sj |σD

)
dsj +

∫ σD

σD

(
1− κ

2

)(
P 0 − p(σD, sj)

)
g
(
sj |σD

)
dsj

+
∫ σD

0
(1− κ)

(
P 0 − p(σD, sj)

)
g
(
sj |σD

)
dsj = 0. (19b)

It must also be checked that an insurer that bids P 0 when it observes a signal comprised
between σD and σD does not have an incentive to underprice. This comes down to checking
that13 ∫ σD

σD

(
P 0 − p(si, sj)

)
g (sj|si) dsj ≤ 0 ∀si ∈ [σDσD].

Lemma 4 The semi-pooling equilibrium exists and is unique if and only if the separating
equilibrium does not exist (σ̂D > σ̃). Moreover, if the semi-pooling equilibrium exists, the
following ranking holds

α(σD) ≤ σD < σ̃ < α(σD) ≤ σD ≤ σ̂D.

When the separating equilibrium exists (σ̂D < σ̃), the system ((19a)-(19b)) has a
unique solution σD = σD = σ̂D involving no pooling region. We can then state the
following proposition that characterizes the equilibrium strategy.

Proposition 3 If σ̂D ≤ σ̃, there exists a unique separating symmetric Nash equilibrium.
The strictly increasing bidding equilibrium strategies read

PD(s) = P 0(1−K(σ̂D|s)) +
∫ σ̂D

s
p(x, x)dK(x|s) ∀s ≤ σ̂D. (20)

13This is checked in the proof of Lemma 4.
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If σ̂D > σ̃, there exists a unique symmetric Nash equilibrium in increasing bidding equi-
librium strategies with partial pooling where

PD(s) =

 P 0(1−K(σD|s)) +
∫ σD

s
p(x, x)dK(x|s) for s ≤ σD (21a)

P 0 for σD < s ≤ σD (21b)

where K(x|s) = 1− exp
(
−
∫ x
s

κg(τ |τ)
1−κG(τ |τ)dτ

)
is an increasing function with K(s|s) = 0 and

K(1|s) ≤ 1.

4.2 Impact of the strength of competition

Contrary to the pool, the region in which insurance companies submit bids now depends
on the competition strength. The thresholds matter not only for the leader’s but also for
the follower’s strategy so that the leader and the follower capacities (and thus the strength
of competition) are important to determine the bidding regions strategies. The higher κ,
the lower the capacity is left to the follower. As a consequence, the three thresholds σ̂D,
σD and σD depend on κ.

Lemma 5 In the separating equilibrium, the signal limiting the bidding region is decreas-
ing in κ

∂σ̂D

∂κ
≤ 0.

In the semi-pooling equilibrium, the lowest (resp. highest) bound of the pooling region is
increasing (resp. decreasing) in κ

∂σD

∂κ
≥ 0 and ∂σD

∂κ
≤ 0.

A direct consequence of this lemma can be stated in the following proposition.

Proposition 4 If P 0 ≤ E [p(Si, Sj)|Sj = σ̃], then the separating equilibrium exists ∀κ ∈
[0, 1].
If P 0 > E [p(Si, Sj)|Sj = σ̃] then there exists a unique κ∗ such that the separating equilib-
rium (resp. the semi-pooling equilibrium) exists if and only if κ ≥ κ∗ (resp. κ < κ∗).

When P 0 ≤ E [p(Si, Sj)|Sj = σ̃] the reserve price is too low with respect to the ex-
pected actuarial premium, so that bidders refrain from insuring large risks and σ̂D < σ̃.
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Figure 4: The different thresholds as a function of κ.

On the contrary, when P 0 ≤ E [p(Si, Sj)|Sj = σ̃] (as illustrated in Figure 4), the semi-
pooling equilibrium exists when κ ≤ κ∗ and the separating equilibrium exists when
κ ≥ κ∗. In the semi pooling equilibrium, the outcome of the pooling region [σD, σD]
is the monopoly outcome (P 0). The lower the competition, the larger this region. When
competition becomes too intense, this region disappears and the separating equilibrium
exists. In this case, the capacity left to the follower decreases so that bidders refrain
from taking high risks (σ̂D decreases). There is then a non-monotony in the signal that
generates the monopoly premium.

Corollary 1 The regions in which the capacity is fully served is decreasing with compe-
tition.

i is leader, j is follower

i is leader, j does not participate

i is follower, j is leader

i does not participate, j is leader

i and j equally share the market

(a) κ < κ∗. (b) κ > κ∗.

Figure 5: Regions in the two equilibria.
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Contrary to the pool, the two insurers obtain different premiums. When there is full
coverage, the comparative statics with respect to κ is not straightforward for the premium
PD. Indeed, even if the direct effect that tends to decrease the premium level is the same,
there exists an indirect effect that comes from the fact that the threshold min(σ̂D, σD)
depends on κ. This indirect effect writes:

−∂min(σ̂D, σD)
∂κ

(
P 0 − p(min(σ̂D, σD),min(σ̂D, σD))

) dK(x|s)
dx

|x=min(σ̂D,σD).

If min(σ̂D, σD) = σD (when the semi-pooling equilibrium exists, κ < κ∗), the indirect
effect is negative as the direct effect. In this case, PD decreases when competition increases
until κ∗. At the opposite, the indirect effect is positive in the separating equilibrium
since σ̂D is a decreasing function of κ. As we can see in Figure 6(a), the total effect is
ambiguous. Also, the variation in premium is ambiguous when κ increases so that the
equilibrium switches from semi-pooling to separating as we can see in Figure 6(b).

s
σ
 D

(κ)

σ
 D

(κ')

R0

0

R
D(s) for κ

R
D(s) for κ'>κ

(a) κ∗ < κ < κ′.

s
σ
D(κ')

σD(κ)
σD(κ)

R0

0

(b) κ < κ∗ < κ′.

Figure 6: Premiums in the two equilibria.

4.3 Discriminatory auction with reentry

We now introduce the possibility of reentry. A firm that refrains from bidding in the
first round has the opportunity to enter the syndicate in the second round at the leader
premium. As in the case without reentry, the equilibrium may be separating or semi-
pooling. Reentry affects the various thresholds modifying the cases where equilibrium is
separating or semi-pooling. Note that the shape of the premium remains the same.

Separating equilibrium. The threshold σ̂Dr is determined by the incentive compati-
bility constraint.14

14This threshold is the maximal signal for which an insurer bids in the first round.
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∫ 1

σ̂D
r

(
P 0 − p(σ̂Dr , sj)

)
g
(
sj |σ̂Dr

)
dsj +

∫ σ̂D
r

0
(1− κ)

(
P 0 − p(σ̂Dr , sj)

)
g
(
sj |σ̂Dr

)
dsj

=
∫ σ̂D

r

0
(1− κ)

(
PDr (sj)− p(σ̂Dr , sj)

)
+
g
(
sj |σ̂Dr

)
dsj . (22)

The only difference with Equation (16) comes from the possibility for the follower to
enter in the second round at the leader’s premium, PD

r (sj).

Lemma 6 Reentry yields to more conservative strategies (σ̂Dr ≤ σ̂D). Moreover, when
σ̂D < σ̃, insurers bid less aggressively (PD

r (s) > PD(s), ∀s ≤ σ̂Dr ).

Separating equilibria are therefore more frequent when reentry is allowed.

Semi-pooling equilibrium. When σ̂Dr > σ̃, the equilibrium involves some pooling on
a region [σDr , σDr ]. Again, the difference with the case where reentry is not allowed comes
from the possible reentry when an insurer observed a signal greater than σDr so that the
incentive compatibility constraints write



∫ σD
r

σD
r

(
P 0 − p(σDr , sj)

)
g
(
sj |σDr

)
dsj = 0 (23a)

∫ 1

σD
r

(
P 0 − p(σDr , sj)

)
g
(
sj |σDr

)
dsj +

∫ σD
r

σD
r

(
1− κ

2

)(
P 0 − p(σDr , sj)

)
g
(
sj |σDr

)
dsj

+
∫ σD

r

0
(1− κ)

(
P 0 − p(σDr , sj)

)
g
(
sj |σD

)
dsj =

∫ σD
r

σD
r

(1− κ)
(
P 0 − p(σDr , sj)

)
+
g
(
sj |σDr

)
dsj

+
∫ σD

r

0
(1− κ)

(
PDr (sj)− p(σDr , sj)

)
+
g
(
sj |σD

)
dsj . (23b)

The comparative statics with respect to κ, and thus whether the equilibrium is sep-
arating or semi-pooling, is more involved since the endogenous premium PD

r enters in
the definition of the thresholds. However, we can prove that the separating equilibrium
always exists in the two extreme cases where κ = 0 and κ = 1.

- When κ = 0, according to Proposition 4, if P0 > E[p(Si, Sj)|Sj = σ̃], the no-reentry
separating equilibrium does not exist. However, σ̂Dr = σ̂P < σ̃ when κ = 0 so that
the re-entry separating equilibrium exists.
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- When κ = 1, we have σ̂Dr = σ̂P < σ̂D < σ̃ so that the equilibrium is always
separating.

Re-entry separating equilibrium exists for low and large values of κ. The value of the re-
entry option decreases with κ since both the premium and the residual capacity decrease.
It is therefore less valuable to be the follower and insurers become less conservative.
However, when competition becomes more intense, the winner’s curse leads insurers to
become more conservative. As a consequence, there is a non monotony in the shape of
σ̂Dr as Figure 7 shows.

κ*κ*0 1

σ

r

D

σ
D

σ


σ
 P

Figure 7: The different thresholds as a function of κ.

5 Discussion

This section discusses the benefit of the pool compared to the standard auctions upon
two dimensions, the capacity insured and the premiums. The following lemma compares
the thresholds of the different auctions.

Lemma 7 Insurance companies submit the maximal bid P 0 for lower signal’s values in
the pool auction:

σ̂P ≤ min
(
σ̂Dr , σ

D
r

)
≤ min

(
σ̂D, σD

)
.

Also, if the separating equilibrium exists, the boundary between regions IIPi and IIIPi in
the pool always lies above σ̂D.
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Lemma 7 means that regions IP are always smaller than regions ID. If both signals are
between σ̂P and σ̂D, the discriminatory auction offers a full coverage of the risk whereas
the pool offers no coverage. If one signal is between σ̂P and σ̂D and the other is larger than
σ̂D, the pool offers no coverage and the other auctions offer a partial coverage. These two
cases happen with a greater probability the stronger the affiliation between the signals.
When only one insurer initially bids (sj > σ̂D > si), the pool may offer full coverage
(in region IIPi ) whereas the other auctions always cover risk only partially. This is more
likely when affiliation is weak as summarized in Proposition 5.

Proposition 5 The strength of affiliation determines which auction format provides the
better coverage. Reentry offers more insurance when affiliation is weak.

We next compare the auctions upon price dimension. It has been already been estab-
lished that premiums are lower in the uniform auction compared to the discriminatory
auction. Also, as we have shown in Lemma 7, we know that the pool premium is larger
that both the discriminatory and the uniform premiums for high signals (by continu-
ity around σP ). It remains to compare the premiums for lower signals. In particular,
we would like to establish whether the pool (in which insurers are more “conservative”)
yields to aggressive pricing strategy for low signal values.

Lemma 8 There exist σT < σTr ∈ [0, σ̂P ]2 such that

- when s ∈ [0, σT ], P P (s) ≤ PD(s) ≤ PD
r (s)

- when s ∈ [σT , σTr ], PD(s) ≤ P P (s) ≤ PD
r (s)

- when s ∈ [σTr , σ̂P ], PD(s) ≤ PD
r (s) ≤ P P (s)

For low signal values, the pool premium is smaller than the premium of both the leader
and the follower in the discriminatory auction: the pool is unambiguously better for the
insureds. This is affect is stronger when affiliation is weak. Combined with Proposition
5, the pool dominates the two forms of discriminatory auctions. For higher signal values,
the leader premium is larger in the pool but the follower premium may be lower. In
particular, this effect may be stronger when affiliation is weak.
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6 Appendix

6.1 Proof of Lemma 1

We first prove that σ̂P < σ̃. Assume by contradiction that σ̂P ≥ σ̃. Then,

∫ 1

σ̂P

(
P 0 − p(σ̂P , sj)

)
g
(
sj|σ̂P

)
dsj <

(
P 0 − p(σ̂P , σ̂P )

) (
1−G(σ̂P |σ̂P )

)
≤ 0

which contradicts the definition of σ̂P .

We introduce functions ψ and L defined by

ψ(x) ≡
∫ 1

x

(
P 0 − p(x, sj)

)
g (sj|x) dsj (24)

L (s|x) ≡
dg(s|x)
dx

g (s|x) . (25)

We have σ̂P defined by ψ(σ̂P ) = 0. Function s 7→ L(s|x) is increasing according to
Assumption 1.

Let us prove that ψ has a unique zero.

ψ′(x) = −
(
P 0 − p(x, x)

)
g (x|x)−

∫ 1

x
P1(x, sj)g (sj|x) dsj

+
∫ 1

x

(
P 0 − p(x, sj)

)
L (sj|x) g (sj|x) dsj.

The first two terms are negative (since σ̂P < σ̃). Let us focus on the third one

∫ 1

x

(
P 0 − p(x, sj)

)
L (sj|x) g (sj|x) dsj =

∫ α(x)

x

(
P 0 − p(x, sj)

)
L (sj|x) g (sj|x) dsj

+
∫ 1

α(x)

(
P 0 − p(x, sj)

)
L (sj|x) g (sj|x) dsj

≤ L (α(x)|x)
∫ α(x)

x

(
P 0 − p(x, sj)

)
g (sj|x) dsj

+L (α(x)|x)
∫ 1

α(x)

(
P 0 − p(x, sj)

)
g (sj|x) dsj

= L (α(x)|x)ψ(x)

where the inequality comes for the fact that L is increasing in s and that P 0 − p(x, sj) >
0 ⇔ sj < α(x). Therefore, the derivative of function ψ is negative when ψ equals zero,
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and the zero of function ψ, if it exists is unique. Assumption 2(i) implies that ψ(0) > 0.
Moreover ψ(1) = 0. As a consequence, ψ is positive and then negative as x increases and
σ̂P always exists and is unique.

6.2 Proof of Lemma 2

We have that si 7→ P P (sj) − p(si, sj) is a decreasing function. We prove the result by
showing that P P (sj)− p(σ̂P , sj) > 0, ∀sj ≤ σ̂P .

P P (sj)− p(σ̂P , sj) = P 0
(
1− L

(
σ̂P |sj

))
+
∫ σ̂P

sj

p(x, x)dL(x|sj)− p
(
σ̂P , sj

)
= P 0

(
1− L

(
σ̂P |sj

))
+ L

(
σ̂P |sj

) ∫ σ̂P

sj

p(x, x) dL(x|sj)
L (σ̂P |sj)

− p
(
σ̂P , sj

)
≥ P 0

(
1− L

(
σ̂P |sj

))
+ L

(
σ̂P |sj

)
p
(
σ̂P , sj

)
− p

(
σ̂P , sj

)
=

(
P 0 − p

(
σ̂P , sj

)) (
1− L

(
σ̂P |sj

))
> 0

where the first inequality holds if
∫ σ̂P

sj
p(x, x) dL(x|sj)

L(σ̂P |sj) ≥ r
(
σ̂P , sj

)
and the second inequality

holds since sj ≤ σ̂P < σ̃.
The remaining of the proof consists in proving that

∫ σ̂P

sj
p(x, x) dL(x|sj)

L(σ̂P |sj) ≥ r
(
σ̂P , sj

)
,

∀sj ≤ σ̂P . As r is symmetric and supermodular (Assumption 2(iii)), it holds that
p(σ̂P , σ̂P ) + p(sj, sj) ≥ 2p(σ̂P , sj) so that it is sufficient to prove that

∫ σ̂P

sj

p(x, x) dL(x|sj)
L (σ̂P |sj)

≥ p(sj, sj) + p(σ̂P , σ̂P )
2 ∀sj ≤ σ̂P .

An integration by part implies that

∫ σ̂P

sj

p(x, x) dL(x|sj)
L (σ̂P |sj)

= p
(
σ̂P , σ̂P

)
−
∫ σ̂P

sj

d

dx
p(x, x) L(x|sj)

L (σ̂P |sj)
dx.

Therefore, inequality (26) reads

p(σ̂P , σ̂P )− p(sj, sj)− 2
∫ σ̂P

sj

d

dx
p(x, x) L(x|sj)

L (σ̂P |sj)
dx ≥ 0 ∀sj ≤ σ̂P .

The derivative of function sj 7→ r(σ̂P , σ̂P ) − p(sj, sj) − 2
∫ σ̂P

sj

d
dx
p(x, x) L(x|sj)

L(σ̂P |sj)dx equals

− d
dx
p(x, x)|x=sj

< 0 (since L(sj) = 0). Moreover, as p(σ̂P , σ̂P )−p(sj, sj)−2
∫ σ̂P

sj

d
dx
p(x, x) L(x|sj)

L(σ̂P |sj)dx =

0 when sj = σ̂P it follows that p(σ̂P , σ̂P )− p(sj, sj)− 2
∫ σ̂P

sj

d
dx
p(x, x) L(x|sj)

L(σ̂P |sj)dx ≥ 0 ∀sj ≤
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σ̂P and the result is proved.

6.3 Proof of Proposition 2

It is straightforward to see that L(x|s) is increasing in κ. Remember that

P P (s) = P 0(1− L(σ̂P |s)) +
∫ σ̂P

s
p(x, x)dL(x|s).

As σ̂P is independent from κ, L(σ̂P |s) is increasing in κ as we just underlined. This also
implies that

∫ σ̂P

s p(x, x)dL(x|s) is increasing in κ because, for κ′ > κ function Lκ first
order stochastic dominates Lκ′ .15

The boundary between regions IIi and IIIi is defined by
{

(si, sj) ∈ [0, 1]2|P P (si) = p(si, sj)
}

.
For a given sj, if kappa increases, in order the equality P P (si) = p(si, sj) to hold it must
be the case that si decreases, do that IIi shrinks. As a consequence, IIIi expands.

6.4 Proof of Lemma 3

Introduce function φ and ϕ defined by

φ(x) ≡
∫ x

0

(
P 0 − p(x, sj)

)
g (sj|x) dsj (26)

ϕ(x) ≡ ψ(x) + (1− κ)φ(x) (27)

where ψ is defined by equation (24) in the proof of Lemma 1. σ̂D (equation (16)) is defined
by ϕ(σ̂D) = 0. Observe that the only possibility for such an equality to be satisfied is that
φ(σ̂D) > 0 and ψ(σ̂D) < 0.

As in the proof of Lemma 1, we are going to prove that ϕ can cancel only once and
that its derivative is negative at this point.

15The subscript “κ” indicates the parameter value, κ.
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ϕ′(x) = ψ′(x) + (1− κ)φ′(x)

= −
(
P 0 − p(x, x)

)
g (x|x)−

∫ 1

x
P1(x, sj)g (sj |x) dsj

+
∫ 1

x

(
P 0 − p(x, sj)

)
L (sj |x) g (sj |x) dsj + (1− κ)

(
P 0 − p(x, x)

)
g (x|x)

−(1− κ)
∫ x

0
P1(x, sj)g (sj |x) dsj + (1− κ)

∫ x

0

(
P 0 − p(x, sj)

)
L (sj |x) g (sj |x) dsj

= −
∫ 1

x
P1(x, sj)g (sj |x) dsj − (1− κ)

∫ x

0
P1(x, sj)g (sj |x) dsj − κ

(
P 0 − p(x, x)

)
g (x|x)

+
∫ 1

x

(
P 0 − p(x, sj)

)
L (sj |x) g (sj |x) dsj + (1− κ)

∫ x

0

(
P 0 − p(x, sj)

)
L (sj |x) g (sj |x) dsj .

The first two terms are negative. Let us analyze the last two.

∫ 1

x

(
P 0 − p(x, sj)

)
L (sj |x) g (sj |x) dsj + (1− κ)

∫ 1

x

(
P 0 − p(x, sj)

)
L (sj |x) g (sj |x) dsj

=
∫ α(x)

x

(
P 0 − p(x, sj)

)
L (sj |x) g (sj |x) dsj +

∫ 1

α(x)

(
P 0 − p(x, sj)

)
L (sj |x) g (sj |x) dsj

+(1− κ)
∫ 1

x

(
P 0 − p(x, sj)

)
L (sj |x) g (sj |x) dsj

≤ L (α(x)|x)
∫ α(x)

x

(
P 0 − p(x, sj)

)
g (sj |x) dsj + L (α(x)|x)

∫ 1

α(x)

(
P 0 − p(x, sj)

)
g (sj |x) dsj

+(1− κ)L (x|x)
∫ 1

x

(
P 0 − p(x, sj)

)
g (sj |x) dsj

≤ L (α(x)|x)
∫ α(x)

x

(
P 0 − p(x, sj)

)
g (sj |x) dsj + L (α(x)|x)

∫ 1

α(x)

(
P 0 − p(x, sj)

)
g (sj |x) dsj

+(1− κ)L (α(x)|x)
∫ 1

x

(
P 0 − p(x, sj)

)
g (sj |x) dsj

= L (α(x)|x) (ψ(x) + (1− κ)φ(x))

= L (α(x)|x)ϕ(x).

Therefore the derivative of function ϕ is negative when ϕ equals zero, and the zero of
function ϕ, if it exists is unique. Assumption 2(i) implies that ϕ(0) > 0 and ϕ(1) < 0.
This implies that ϕ is positive and then negative as x increases and that σ̂D always exists
and is unique.
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6.5 Proof of Lemma 4

We prove first that if the separating equilibrium does not exist (σ̃D > σ̃), then the semi-
pooling equilibrium exists and is unique.

The first part of this proof goes through a series of steps. Let us first introduce function
I, J and K

I(x, y) =
∫ y

x

(
P 0 − p(x, t)

)
g(t|x)dt (28)

J(x, y) =
∫ y

x

(
P 0 − p(y, t)

)
g(t|y)dt (29)

H(x, y) = ϕ(y) + κ

2J(x, y) (30)

where ϕ is defined by equation (27). Observe that ψ(x) = I(x, 1), φ(x) = J(0, x) and
ϕ(x) = I(x, 1) + (1− κ)J(0, x).
Step 1: We show that α(σD) ≤ σD < σ̃ < α(σD) ≤ σD ≤ σ̂D.
To prove this step, assume that (σD, σD) is a solution meaning that I(σD, σD) = 0 and
H(σD, σD) = 0. I(σD, σD) = 0 implies that

P 0
(
G(σD|σD)−G(σD|σD)

)
=

∫ σD

σD
p(σD, t)g(t|σD)dt

> p(σD, σD)
(
G(σD|σD)−G(σD|σD)

)
.

Therefore, P 0 > p(σD, σD) implying that σD < σ̃.

Remember that t 7→ P 0−p(σD, t) is a decreasing function. In order to have I(σD, σD) =
0, it must be the case that P 0 − p(σD, t) is first positive and then negative as t increases
from σD to σD. In particular, we must have that P 0 − p(σD, σD) < 0. This implies that
σD > α(σD) and σD > α(σD) where function α is defined by equation (5). Note that
the symmetry of r and the fact that it is increasing with respect to each of its argument
imply that α = α−1.
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To prove that σD ≤ σ̂D, we show that J(σD, σD) < 0 so that ϕ(σD) > 0.

J(σD, σD) =
∫ σD

σD

(
P 0 − p(t, σD)

)
g(t|σD)g(t|σD)

g(t|σD)dt

≤
∫ σD

σD

(
P 0 − p(t, σD)

)
g(t|σD)g(t|σD)

g(t|σD)dt

=
∫ α(σD)

σD

(
P 0 − p(t, σD)

)
g(t|σD)g(t|σD)

g(t|σD)dt+
∫ σD

α(σD)

(
P 0 − p(t, σD)

)
g(t|σD)g(t|σD)

g(t|σD)dt

≤ g(α(σD)|σD)
g(α(σD)|σD)I(σD, σD)

= 0.

The second inequality holds because t 7→ g(t|y)
g(t|x) is an increasing function ∀x ≤ y.

It therefore holds that α(σD) ≤ σD ≤ σ̃ ≤ α(σD) ≤ σD ≤ σ̂D. This allows us to define
the region D ≡

{
(x, y) ∈ [0, 1]2|α(y) ≤ x ≤ σ̃ ≤ α(x) ≤ y ≤ σ̂D.

}
to which the solution to

the following system should belong to

 I(x, y) = 0
H(x, y) = 0.

Step 2: We show that xI(y) defined by I(xI(y), y) = 0 onDy =
{
σ̃ ≤ y ≤ σ̂D|α(y) ≤ xI(y)

}
is a decreasing function.
The implicit function theorem implies that

dxI(y)
dy

= −I1(xI(y), y)
I2(xI(y), y) .

I2(xI(y), y) = (P 0 − p(xI(y), y))g(y|xI(y)) ≤ 0 since α(y) ≤ xI(y) (or equivalently y ≥

α(xI(y))).

I1(xI(y), y) = −
(
P 0 − p(xI(y), xI(y))

)
g(xI(y)|xI(y))−

∫ y

xI(y)
P1(xI(y), t)g(t|xI(y))

+
∫ y

xI(y)
(P 0 − p(xI(y), t))L (t|xI(y)) g(t|xI(y))dt

The first two terms are negative (the first because xI(y) ≤ σ̃). As for the third term,
using the fact that t 7→ L (t|xI(y)) is an increasing function and as we did in the proofs
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of Lemmas 1 and 3

∫ y

xI(y)
(P 0 − p(xI(y), t))L (t|xI(y)) g(t|xI(y))dt

≤ L (α(xI(y))|xI(y))
∫ y

xI(y)
(P 0 − p(xI(y), t))g(t|xI(y))dt

= 0.

This implies that y 7→ xI(y) is a decreasing function.
Note moreover that xI(σ̃) = σ̃ and that xI(σ̂D) > α(σ̂D). To prove this last inequality,

assume by contradiction that xI(σ̂D) ≤ α(σ̂D). Knowing that I(xI(y), y) = 0 and since
p(xI(σ̂D), t) < p(α(σ̂D), t) this implies that

∫ σ̂D

xI(σ̂D)

(
P 0 − p(α(σ̂D), t)

)
g(t|xI(σ̂D))dt < 0.

However, as p(α(σ̂D), t) < p(α(σ̂D), σ̂D) = P 0,

∫ σ̂D

xI(σ̂D)

(
P 0 − p(α(σ̂D), t)

)
g(t|xI(σ̂D))dt > 0,

hence a contradiction implying that xI(σ̂D) > α(σ̂D).

The last property that remains to be showed for this function xI is that y 7→ xI(y)
and y 7→ α(y) only cross once when y ∈ [σ̃, σ̂D]. This is not a priori obvious since the
two functions are decreasing. We know that xI(σ̃) = α(σ̃) = σ̃. Assume that there exists
y ∈ (σ̃, σ̂D] such that xI(y) = α(y). By definition of xI , this implies that

∫ y

α(y)

(
P 0 − p (α(y), t) g (t|α(y))

)
dt = 0.

However, p (α(y), t) < p (α(y), y) = P 0, ∀t ∈ [α(y), y], so that it is not possible that the
integral equals 0. Therefore such an y does not exist. As a consequence, y 7→ xI(y) and
y 7→ α(y) only cross for y = σ̃, and ∀y ∈ [σ̃, σ̂D], xI(y) > α(y).

Step 3: we show tat yH(x) defined byH(x, yH(x)) = 0 onDx =
{
α
(
σ̂D
)
≤ x ≤ σ̃|α(x) ≤ yH(x)

}
is an increasing function.
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The implicit function theorem implies that

dyH(x)
dx

= −H1(x, yH(x))
H2(x, yH(x)) .

Remembering that H(x, y) = ϕ(y) + (κ/2)J(x, y) (where ϕ is defined by equation (27)),
this reads

dyH(x)
dx

= −
κ
2J1(x, yH(x))

ϕ′(yH(x)) + κ
2J2(x, yH(x)) .

J1(x, yH(x)) = −(P 0 − p(x, yH(x)))g(x|yH(x)))

> −(P 0 − p(x, α(x)))g(x|yH(x)))

= 0.

H2(x, yH(x)) = −
(
P 0 − p (yH(x), yH(x))

)
g (yH(x)|yH(x))−

∫ 1

yH(x)
P1 (yH(x), t) g (t|yH(x)) dt

+
∫ 1

yH(x)

(
P 0 − p (yH(x), t) g (t|yH(x))

)
L (t|yH(x)) dt

+(1− κ)
((
P 0 − p (yH(x), yH(x))

)
g (yH(x)|yH(x))−

∫ yH(x)

0
P2 (t, yH(x)) g (t, |yH(x)) dt

+
∫ yH(x)

0

(
P 0 − p (t, yH(x))

)
g (t|yH(x))L (t|yH(x)) dt

)

+κ

2

((
P 0 − p (yH(x), yH(x))

)
g (yH(x), yH(x))−

∫ yH(x)

x
P2 (t, yH(x)) g (t|yH(x)) dt

+
∫ yH(x)

x

(
P 0 − p (t, yH(x))

)
g (t|yH(x))L (t|yH(x)) dt

)

= −κ2
(
P 0 − p (yH(x), yH(x))

)
g (yH(x)|yH(x))−

∫ 1

yH(x)
P1 (yH(x), t) g (t|yH(x)) dt

−(1− κ)
∫ yH(x)

0
P2 (t, yH(x)) g (t, |yH(x)) dt− κ

2

∫ yH(x)

x
P2 (t, yH(x)) g (t|yH(x)) dt

+
∫ 1

yH(x)

(
P 0 − p (yH(x), t) g (t|yH(x))

)
L (t|yH(x)) dt

+(1− κ)
∫ yH(x)

0

(
P 0 − p (t, yH(x))

)
g (t|yH(x))L (t|yH(x)) dt

+κ

2

∫ yH(x)

x

(
P 0 − p (t, yH(x))

)
g (t|yH(x))L (t|yH(x)) dt.

The first four terms are negative. Let us analyze the last three terms.
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∫ 1

yH(x)

(
P 0 − p (yH(x), t)

)
g (t|yH(x))L (t|yH(x)) dt

+(1− κ)
∫ yH(x)

0

(
P 0 − p (t, yH(x))

)
g (t|yH(x))L (t|yH(x)) dt

+κ

2

∫ yH(x)

x

(
P 0 − p (t, yH(x))

)
g (t|yH(x))L (t|yH(x)) dt

≤ L (yH(x)|yH(x)) I (yH(x), 1) + (1− κ)L (α (yH(x)) |yH(x)) J (0, yH(x)) + κ

2L (x|yH(x)) J (0, yH(x))

≤ L (α (yH(x)) |yH(x))
(
I (yH(x), 1) + (1− κ)J (0, yH(x)) + κ

2J (0, yH(x))
)

= L (α (yH(x)) |yH(x))H(x, yH(x)).

The first inequality holds because

- the first integral is negative. Indeed, σ̃ ≤ yH(x) ≤ t so that P 0 − p (yH(x), t) ≤ 0,
∀t ∈ [yH(x), 1];

- the second integral is positive (resp. negative) when t ∈ [0, α (yH(x))] (resp. t ∈

[α (yH(x)) , yH(x)]);

- the third integral is negative. Indeed, α(yH(x)) ≤ x ≤ t so that P 0−p (yH(x), t) ≤ 0,
∀t ∈ [x, yH(x)];

- function t 7→ L (t|yH(x)) is increasing (Assumption 1).

The second inequality holds because α(yH(x)) ≤ x ≤ yH(x) and because function
t 7→ L (t|yH(x)) is increasing. This implies that H2(x, yH(x)) ≤ 0 and therefore yH is
increasing function.

Moreover note that yH(σ̃) ∈ [σ̃, σ̂D]. Suppose by contradiction that yH(σ̃) > σ̂D. In
this case, ϕ(yH(σ̃)) < 0 and J(σ̃), yH(σ̃) > 0. This implies that

0 <
∫ yH(σ̃)

σ̃

(
P 0 − p (yH(σ̃), t)

)
g (t|yH(σ̃)) dt

<
∫ yH(σ̃)

σ̃

(
P 0 − p (σ̃, t)

)
g (t|yH(σ̃)) dt

< 0,

leading to a contradiction. Therefore yH(σ̃) ≤ σ̂D. The same reasoning implies that
yH(σ̃) ≤ σ̃.
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Step 4: We show that the solution (σD, σD) is unique.
xI is a deceasing function such that xI(σ̃) = σ̃, xI(σ̂D) = σ̃ and YH is an increasing
function such that yH(σ̃) ∈ [σ̃, σ̂D]. As xI(y) > α(y), ∀y ∈ (σ̃, σ̂D], the two function cross
only once on D. This intersection point that is unique corresponds to the unique solution
of the system that is (σD, σD).

The last part of the proof consists in showing that if the semi-pooling equilibrium
exists, then the separating equilibrium does not exist. We are going to prove that if
the separating equilibrium exists then the semi-pooling equilibrium does not exist. As-
sume therefore that σ̂P < σ̃. We have proven in Step 1 that σP ≤ σ̂P , this implies that
σD < σD < σ̃. But in this case, I(σD, σD) > 0. Therefore, if σ̂P < σ̃, there do not exist
(σD, σD) satisfying I(σD, σD) = 0 and H(σD, σD) = 0.

It remains to prove that

∫ σD

σD

(
P 0 − p(s, t)

)
g (t|s) dt ≤ 0∀s ∈ [σDσD].

∫ σD

σD

(
P 0 − p(s, t)

)
g (t|s) dt =

∫ σD

σD

(
P 0 − p(t, s)

)
g(t|σD) g(t|s)

g(t|σD)dt

≤
∫ σD

σD

(
P 0 − p(t, σD)

)
g(t|σD) g(t|s)

g(t|σD)dt

=
∫ α(σD)

σD

(
P 0 − p(t, σD)

)
g(t|σD) g(t|s)

g(t|σD)dt

+
∫ σD

α(σD)

(
P 0 − p(t, σD)

)
g(t|σD) g(t|s)

g(t|σD)dt

≤ g(α(σD)|s)
g(α(σD)|σD)I(σD, σD)

= 0.

6.6 Proof of Lemma 5

ϕ(σ̂D) = ψ(σ̂D) + (1− κ)φ(σ̂D) = 0. As we noted in the proof of Lemma 3, φ(σ̂D) > 0.
The implicit function theorem implies that

∂σ̂D

∂κ
=

φ
(
σ̂D
)

ψ′ (σ̂D) + (1− κ)φ′ (σ̂D) =
φ
(
σ̂D
)

ϕ′ (σ̂D) .
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In Lemma 3, we have proved that ϕ′(σ̂D) ≤ 0 so that ∂σ̂D

∂κ
≤ 0.

If σ̂D > σ̃, σD and σD are such that I(σD, σD) = 0
H(σD, σD) = 0.

The implicit function theorem implies that

∂σD

∂κ
=

J(0, σD)− 1
2J(σD, σD)

I1(σD, 1) + (1− κ)J1(0, σD) + κ
2J2(σD, σD)− κ

2J1(σD, σD) I2(σD,σD)
I1(σD,σD)

∂σD

∂κ
= −∂σ

D

∂κ

I2(σD, σD)
I1(σD, σD) .

We have proven in Step 3 of the proof of Lemma 4 that H2(σD, σD) = I1(σD, 1) +
(1 − κ)J1(0, σD) + κ

2J2(σD, σD) ≤ 0 and that J1(σD, σD) ≥ 0. In Step 2 of the proof of
Lemma 4, we also showed that I1(σD,σD)

I2(σD,σD) ≥ 0. This implies that the denominator of ∂σD

∂κ

is negative and that ∂σD

∂κ
and ∂σD

∂κ
have opposite signs.

J(0, σD)− 1
2J(σD, σD) = 1

κ

(
I(σD, 1) + J(0, σD)

)
.

= 1
κ

(
I(σD, 1) + (1− κ)J(0, σD) + κJ(0, σD)

)
.

In Step 1 of the proof of Lemma 4, we also proved that J(σD, σD) ≤ 0. Together with
H(σD, σD) = 0 implies that

I(σD, 1) + (1− κ)J(0, σD) = −κ2J(σD, σD) ≥ 0.

Moreover, as I(σD, 1) ≤ 0 and κ ∈ (0, 1), it must be the case that J(0, σD) ≥ 0. It follows
that J(0, σD)− 1

2J(σD, σD) ≥ 0. As a consequence, ∂σD

∂κ
≤ 0 and ∂σD

∂κ
≥ 0.

6.7 Proof of Proposition 4

Remember that the separating equilibrium exists if and only if σ̂D < σ̃. Let us analyze
the function κ 7→ σ̂D − σ̃. Thanks to Lemma 5, we know that this function is decreasing
(σ̃ is independent of κ). When κ = 1, observe that σ̂D = σ̂P , so that σ̂D− σ̃ = σ̂P− σ̃ ≤ 0.
If, when κ = 0, σ̂P − σ̃ < 0, then ∀κ ∈ [0, 1], σ̂D < σ̃ and the separating equilibrium
always exists. If, on the contrary, when κ = 0, σ̂P − σ̃ > 0, then there exists a unique κ∗
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such that the separating equilibrium (resp. semi-pooling equilibrium) exists if and only if
κ ≥ κ∗ (resp. κ < κ∗). The rest of the proof consists in proving that the comparison of σ̂P

to σ̃ when κ = 0 comes down to comparing P 0 to
∫ 1

0 p(σ̃, s)g(s|σ̃)ds = E[p(Si, Sj)|Sj = σ̃].
When κ = 0, σ̂D is implicitly defined by

∫ 1

0

(
P 0 − p(σ̂D, t)

)
g(t|σ̂D)dt = 0.

Let us introduce function Λ defined by Λ(x) =
∫ 1

0

(
P 0 − p(x, t)

)
g(t|x)dt. As in the

prof of Lemmas 1 and 3, we can prove that

Λ′(x) =
∫ 1

0
−P1(x, t)g(t|x)dt+

∫ 1

0

(
P 0 − p(x, t)

)
L(t|x)g(t|x)dt

≤
∫ 1

0
−P1(x, t)g(t|x)dt+ L(α(x)|x)Λ(x)

so that Λ′(σ̂D) ≤ 0. Because of Assumption 2(i), Λ(0) > 0 and Λ(1) < 0, so that Λ is
positive if and only if x ≤ σ̂D. It follows that σ̂D > σ̃ if and only if Λ(σ̃) > 0 which comes
down to the condition stated in the proposition, that is P 0 >

∫ 1
0 p(σ̃, s)g(s|σ̃)ds.

6.8 Proof of Proposition ??

Separating equilibrium. We first look first for an equilibrium in strictly increasing
and symmetric bidding strategy as far as the insurance company wants to participate to
the auction. Such a equilibrium is characterized by a threshold σ̂U such that

- when si ≤ σ̂U , firm i bids according to a strictly increasing bidding strategy PU(si)
such that PU(σ̂U) = P 0,

- when si > σ̂U , firm i does not participate to the syndicate.

The profit of firm i that observed a signal si and bids a risk premium PU(b) reads

ΠU (b, si) =



β

∫ 1

σ̂U

(
P 0 − p(si, sj)

)
g (sj |si) dsj

+β
∫ σ̂U

b

(
PU (sj)− p(si, sj)

)
g (sj |si) dsj

+
(
β − β

) ∫ b

0

(
PU (b)− p(si, sj)

)
g (sj |si) dsj for b ≤ σ̂U (31a)

0 for b > σ̂U (31b)
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Let us explain the different terms composing the expression of ΠU
i (b, si). In this

auction format, the risk premium an insurer proposes depends on the signal it observed
(or it claimed it observed, b in our case) that determines its position as a leader or a
follower, but also on the opponent’s signal that determines the risk premium.

- When firm i bids PU(b) ≤ P 0, three situations may arise:

1. Firm j participates and proposes a risk premium smaller than PU(b). Firm
i’ turns out to be the syndicate’s follower leader and serves the remaining
capacity β − β at his proposed price PU(b);

2. Firm j participates and proposes a risk premium equal to PU(sj) greater than
P P (b). Firm i’ turns out to be the syndicate leader and serves β at the follower’s
proposed price PU(sj);

3. Firm j does not want to participate to this uniform auction, meaning that it
received a signal greater then σ̂U . Firm i’ turns out to be the unique syndicate
member and serves β at its proposed price P 0.

- When firm i observes a signal greater than σ̂U , it does not participate to the auction.

Incentive compatibility requires that

∫ 1

σ̂U

(
P 0 − p(σ̂U , sj)

)
g
(
sj |σ̂U

)
dsj + (1− κ)

∫ σ̂U

0

(
P 0 − p(σ̂U , sj)

)
g
(
sj |σ̂U

)
dsj = 0. (32)

Note that σ̂U = σ̂D.

At equilibrium, PU(b) = PU(si),∀si ≤ σ̂D so that

∂ΠU (b, si)
∂b

|b=si
= 0,∀si ≤ σ̂D.

This implies that the equilibrium bid PU(si) satisfies the following differential equation

PU ′(si) = κ

1− κ
g(si|si)
G(si|si)

(PU(si)− p(si, si)). (33)

In order the bidding strategy to be strictly increasing, a necessary condition is that

PU(si)− p(si, si) > 0,∀si < σ̂D. (34)
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As in the discriminatory auction, such a strictly increasing strategy is an equilibrium if
and only if σ̂D ≤ σ̃.

Semi-pooling equilibrium. When σ̂P > σ̃, the necessary condition (34), we look for
a semi pooling equilibrium such that the equilibrium strategy is characterized by two
thresholds σU and σU such that

- when si ∈ [0, σU ], firm i bids according to a strictly increasing strategy PU(si),

- when si ∈ [σU , σU ], firm i bids P 0,

- when si > σU , firm i does not participate to the syndicate.

σU and σU are such that firm i’s profit is continuous at these two values. It follows
that

ΠU (b, si) =



β

∫ 1

σU

β
(
P 0 − p(si, sj)

)
g (sj |si) dsj

+β
∫ σU

b

(
PU (sj)− p(si, sj)

)
g (sj |si) dsj

+
(
β − β

) ∫ b

0
(1− κ)

(
PU (b)− p(si, sj)

)
g (sj |si) dsj for b ≤ σU (35a)

β

2

∫ 1

σU

(
P 0 − p(si, sj)

)
g (sj |si) dsj

+
(
β − β

)(∫ σU

0

(
P 0 − p(si, sj)

)
g (sj |si) dsj

)
for σU < b ≤ σU (35b)

0 for b > σU (35c)

Contrary to (31), there is an intermediate case that has to be taken into account when
firm i bids P 0, that it when firm i bids as if it observed a signal b comprised between σU

and σU . Three situations may arise.

1. Firm j does not want to participate to this uniform auction, meaning that it received
a signal greater then σU . Firm i’ turns out to be the unique syndicate member and
serves β at its proposed price P 0;

2. Firm j also bids P0 meaning that firm j also observed a signal comprised between
σU and σU . Firms i and j therefore share the market and each serves a capacity
β/2 at price P 0;
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3. Firm j bids a risk premium strictly less than P0 meaning that firm j observed a
signal smaller than σU . Firm i’ turns out to be the syndicate’s follower leader and
serves the remaining capacity β − β at his proposed price P 0.

The values σU and σU are such that



∫ σU

σU

(
P 0 − p(σU , sj)

)
g
(
sj |σU

)
dsj = 0 (36a)∫ 1

σU

(
P 0 − p(σU , sj)

)
g (sj |σU ) dsj +

∫ σU

σU
(1− κ

2 )
(
P 0 − p(σU , sj)

)
g (sj |σU ) dsj

+
∫ σU

0
(1− κ) (P0 − p(σU , sj)) g (sj |σU ) dsj = 0. (36b)

This system is the same as for the discriminatory auction so that σU = σD and
σU = σD.

6.9 Proof of Lemma 7

Remember that

- σ̂P is such that ψ(σ̂P ) = 0 where ψ is defined in Equation (24),

- σ̂D is such that ϕ(σ̂D) = ψ(σ̂D) + (1 − κ)φ(σ̂D) = 0 where φ and ϕ are defined in
Equations (26) and (27),

- σD and σD are the solution of the system I(σD, σD) = 0 and H(σD, σD) = 0 where
I and J are defined in Equations (29) and (30).

Assume first that σ̂D ≤ σ̃.
We already noted (see the proof of Lemma 3) that ψ(σ̂D) < 0. In addition, we also proved
in Lemma 1 that ψ(x) > 0⇔ x < σ̂P . As ψ(σ̂P ) = 0, this implies that σ̂P ≤ σ̂D.

Assume now that σ̂D > σ̃.
ψ(σD) = I(σD, 1) < I(σD, σD) = 0. The same reasoning implies that σP ≤ σ̂D.

6.10 Proof of Proposition 8

To be written.

39



References

[1] Back, K. and J. Zender (1993), Auction of divisible goods : on the rationale for the
treasury experiment, Review of Financial Studies, 6 pp 733-764.

[2] Berger, L.A., Cummins, J.D. and S. Tennyson (1992), Reinsurance and the liability
insurance crisis, Journal of risk and Uncertainty, 5 pp 253-272.

[3] Doherty, N., A. and G. Dionne (1993), Insurance with undiversifiable risk: Contract
structure and organizational form of insurance firm, Journal of risk and uncertainty,
6 pp 187-203.

[4] Ernst and Young, 2014, Study on co(re)insurance pools and ad-hoc co(re)insurance
agreements on the subscription market, European Commission.

[5] Faure, M. and R. Van den Bergh (1995), Restrictions of competition on insurance
markets and the applicability of EC antitrust law, KYKLOS, 48 pp 65-85.

[6] Fudenberg, D. and J. Tirole (1996), Game Theory, MIT Press.

[7] Mahul, O. and B. D. Wright (2003), Efficient risk sharing within a catastrophe insur-
ance pool, ?

[8] Wilson, R. (1979), Auctions of shares, Quarterly Journal of Economics, 93 pp 675-689.

40


