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Abstract—Cloud computing is a model for enabling
on-demand network access to a shared pool of com-
puting resources, that can be dynamically allocated
and released with minimal effort. However, this task
can be complex in highly dynamic environments with
various resources to allocate for an increasing number
of different users requirements. In this work, we
propose a Cloud architecture based on a multi-agent
system exhibiting a self-adaptive behavior to address
the dynamic resource allocation. This self-adaptive
system follows a MAPE-K approach to reason and
act, according to QoS, Cloud service information,
and propagated run-time information, to detect QoS
degradation and make better resource allocation de-
cisions. We validate our proposed Cloud architecture
by simulation. Results show that it can properly
allocate resources to reduce energy consumption,
while satisfying the users demanded QoS.

I. INTRODUCTION

Cloud computing is the most flexible computing
model to provide on-demand platforms for access-
ing custom resources and applications in the form
of several types of services. Most common services
in the Cloud are Platform as a Service (PaaS),
Infrastructure as a Service (IaaS), Software as a
Service (SaaS), Data as a Service (DaaS). The
constantly increasing number of such services on
the Cloud arises new challenges for ensuring their
correct use, while guarantying self-adaptivity prop-
erty, especially to manage user requirements (e.g.,
ensure QoS) [6] and optimize the use of resources
(e.g., by minimizing energy consumption [15]).
Taking into account these aspects, resource allo-
cation becomes a complex task in highly dynamic
environments, because of the increasing number
of managed resources, as well as the increasing
number of users with different requirements.

Existing resource allocation strategies lead to
two unwanted situations: (i) the waste of resources
when the demand is more than the capacity and
demands cannot be attended, and (ii) the waste of
resources when the demand is less than the capac-
ity. In the first case, there are users not satisfied; in

both cases, there are idle resources that are misused.
A self-adaptive approach can direct the system to
an ideal situation in which capacity is dynamically
adapted to the demand of resources.

The main aim of this work is to address the
resource allocation in Cloud platforms, towards a
better utilization of resources and satisfaction of
users requirements, by offering a self-adaptive ap-
proach. We propose a Cloud computing architecture
that benefits from the combination of the Cloud and
multi-agent technologies. The self-adaptive multi-
agent system integrated into the proposed Cloud
architecture is inspired on our previous work pre-
sented in [2]. This self-adaptive system is a MAPE-
K-based (monitoring, analyzing, planning, execut-
ing, and knowledge) approach [7] to reason and
act, according to QoS (e.g., time, price), Cloud
service information, and propagated run-time in-
formation, to detect QoS degradation, failures, or
unavailability and make better resource allocation
decisions for all users requests. The agents applica-
tion knowledge for decision making comprises off-
line precomputed global and local information, user
QoS preferences, and propagated actual resource
state information. We validate our proposed multi-
agent based Cloud architecture by prototyping and
simulation. Results show that it can properly allo-
cate resources to reduce energy consumption, while
satisfying the QoS demanded by users.

II. RELATED WORK

Self-adaptive and autonomous management of
computing resources have been topics of research
interest and development for many years. In this
section, we present recent literature concerning
self-adaptive systems and agent-based approaches
for cloud computing.
A. Self-adaptive system in Cloud computing

In [9], a self-adaptive approach for Service-
Level Agreement (SLA) based service virtualiza-
tion in Cloud environments is proposed. The pro-



posed architecture allows the interoperability of
service executions in heterogeneous, distributed,
and virtualized environments. Inter Cloud is a self-
management and SLA handling approach proposed
in [3]. It is a Cloud federation oriented provisioning
environment, that offers just in-time, opportunistic,
and scalable application services. The idea of Inter
Cloud is to envision utility-oriented federated IaaS
systems that are able to predict application service
behavior for intelligent down- and up-scaling in-
frastructures. Though it addresses self-management
and SLA handling, the unified utilization of other
services like PaaS and SaaS are not studied. These
SLA-based works demonstrate that the combination
of negotiation, brokering, and deployment using
SLA-aware extensions and autonomic computing
principles are suitable for achieving reliable and
efficient service operation in distributed environ-
ments. However, its application in resource alloca-
tion has not been proved.

An approach for self-adaptive and self-
configurable CPU resource provisioning for
virtualized servers using Kalman filter1 is presented
in [8]. That work deals with the integration of
a Kalman filter into feedback controllers to
dynamically allocate CPU resources to virtual
machines hosting server applications, creating a
new resource management scheme. The novelty
of this approach is the use of the Kalman filter to
track the CPU usage and update the allocations
accordingly. Another approach based on monitored
data is described in [17], which consists on a
self-adaptive Cloud monitoring approach with
on-line anomaly detection. The main contribution
of this work is the design of a self-adaptive
monitoring framework, that can efficiently collect
monitoring data from various distributed systems
deployed in a Cloud computing environment. The
authors focused on a correlation-based method to
select key metrics representing other metrics. The
problem with these works relies on the limitation
of their applications. They are not generic and
applicable for all kind of resource allocation.

Other works focus on QoS compliant [4], [14].
In [4], it is proposed a distributed self-adaptive
architecture based on the Edge Computing concept
with container-based technologies, such as Docker
and Kubernetes, to ensure QoS for time-critical
applications. For each container, features of re-
sources required for the host can be allocated upon
monitoring data and operational strategies defined
by end-users, application developer, and adminis-
trator. In [14], it is proposed a QoS-aware Cloud
Service Selection approach using service clustering

1Kalman filtering is an algorithm that uses a series of
measurements observed over time and produces estimates of
unknown variables that tend to be more accurate than those
based on a single measurement alone.

and self-adaptation to efficiently support service
selection in which runtime changes in the services
QoS are taken into account to adapt to changes. As
our work, these studies focus on QoS satisfaction;
however, they do not consider local and remote
information for more accurate decisions.

Based on the MAPE model, concepts of auto-
nomic computing for adaptive management of Grid
Computing are leveraged in [10]. However, this
approach does not consider the deployment and
virtualization mechanism in Cloud datacenters.

B. Agent-based Clouds
Agents are networked software entities that can

do specific tasks on behalf of a user and have a
degree of intelligence that allows them to perform
parts of their tasks autonomously and to inter-
act with their environment in a successfully way.
Agents are characterized by important features such
as autonomy, sociality, rationality, responsiveness,
proactiveness, and mobility [11]. Some studies have
been proposed to design Cloud platforms based
on multi-agent systems [1], [5], [13]. In [5], it is
proposed the integration of agent-based system and
Cloud computing for smart objects. This approach
is suitable to effectively model Cooperative Smart
Objects (CSO). In particular, a CSO is a smart
object able to sense, store, and interpret infor-
mation. In [13], it is presented a mechanism to
provide dynamic load balancing for Clouds based
on autonomous agents. The proposed mechanism
is based on Ant mobile agents and whenever the
load of a Virtual Machine (VM) reaches a threshold
value, it initiates a search for a candidate VM from
other datacenters, reducing in this way the alloca-
tion time. This work only considers the workload of
VMs and does not consider the physical machines.
In [1], a multi-agent system is proposed to manage
the Cloud resources, while taking into account the
customers QoS requirements. In this work a VM
migration occurs when its hosting physical machine
is facing an overloading or under loading problem.
This approach is the most similar to ours, however,
our approach is autonomic self-adaptive, allowing
controlling the user requirements depending on the
system and agents states.

To overcome the limitation of existing works in
the field of self-adaptive model for Cloud com-
puting, we propose a novel approach for the man-
agement of resources in Cloud platforms. Our ap-
proach is based on a multi-agent system implement-
ing the MAPE-K model to enable self-adaptation.
Particularly, we enhance the Cloud computing ar-
chitecture with agent technologies to tackle the
energy of consumption problem.

III. AGENTS FOR THE CLOUD

One of the foundations of autonomic computing
is the MAPE-K model for building autonomous
self-adaptive agents [7]. MAPE-K-based agents can



Figure 1. Agent-based Cloud Architecture.

sense diverse properties of the environment and
make rational decisions based on them. Such an
agent can monitor changes on the environment
where it exists, analyze the situation based on the
sensed information, plan what it is going to do next
based on this situation and its own capabilities and
options, and execute the plan. All of these steps
are supported by the knowledge the agent has about
the environment and itself. This model is usually
implemented as a loop to permanently sense the
environment and adapt to changes.

Figure 1 shows our proposed general multi-agent
Cloud Architecture, based on three layers: user in-
terface, Cloud instances, and datacenter infrastruc-
ture. The user layer provides an interface to access
the Cloud services and through which users specify
their resource allocation needs. Analyzer Agents
identify the resources and services demanded by
users and build specific queries. Cloud instances
layer represents an inter-layer between upper layer
(i.e., users) and lower layer (i.e., datacenters).
Scheduler Agents work at this layer. Datacenter
layer provides resources as a service. It consists
of a physical layer (e.g., servers, host, physical
manage) and a virtual layer (i.e., instances of
VMs). There exists a Controller Agent per each
physical machine in datacenters. Additionally, the
Coordinator Agent supervises the whole process.
Figure 2 shows our proposed agent architecture
blueprint. Internal agent components rely on a mod-
ular architecture, favoring the understanding and
reuse of the main components of each agent. Each
component focuses on a specific function required
for accomplishing the purpose of the agent. Each
agent can communicate with other agents through
its communication interfaces. In this section we
detail the analyzer agent, the scheduling agent,
and the controller agent. The coordinator agent
supervises the whole process.

A. The Analyzer Agent

The analyzer agent is the first agent launched by
the system. We illustrate its detailed architecture in

Figure 2. Agent Architecture Blueprint.

Figure 3. Analyzer Agent Architecture.

Figure 3. Its goal is to study a user requirement
(done by the Request Analyzer Component) and to
build a request specifying the resources needed to
satisfy it (through the Resources Requester compo-
nent). This agent relies on a knowledge base con-
taining individual knowledge and analytical knowl-
edge, as follows:
- Individual knowledge: it reflects the agent self-
knowledge, including the following:

• name: Agent analyzer (AA);
• address: the location where it is deployed; e.g.,

web Cloud service interface;
• individual objectives: its objective is analyze

the resources requested by a user;
• state: it can have the following execution

states: receiving user request, sending resource
allocation request, and getting resource alloca-
tion response to/from the Scheduling Agent.

- Analytical knowledge: it concerns rules stored
in its knowledge base dictating its behavior and
actions.

Its detailed behavior is illustrated in the algo-
rithm presented in Alg. 1. It receives the user
requirement, which is analyzed by the Request
Analyser component (lines 2 to 4 in Alg. 1), by
identifying the required resources (line 5 in Alg. 1).
This information is received by the Resources Re-
quester module (line 9 in Alg. 1), which in turn
build a request with the required resources to send it
to the Scheduling Agent (lines 10 and 11 in Alg. 1).

B. The Scheduling Agent

The Scheduling Agent is the central agent in the
system. Its goal is to allocate resources needed by
users. We illustrate its architecture in Figure 4. The
Resource Allocator module receives requests from
the Analyzer Agent and makes allocation decisions
respecting the requested resources and QoS, and



Input : (i), service description; (ii), SAL; (iii), id. user
Output : (i), needed resources

1 switch communication interface do
2 case input interface do
3 if service description then
4 analyzerProcess(service description);
5 return resources = { CPU, RAM, disk,... };
6 end
7 end
8 case output interface do
9 if analyzerProcess returns resources then

10 request = resources + id.user;
11 send request to the scheduling agent;
12 end
13 end
14 end Algorithm 1: Analyzer Agent (AA)

Figure 4. Scheduling Agent Architecture.

according the available resources. The Resource
Availability Monitor is in charge of updating the
resources state.

The knowledge base of the scheduling agent is
composed by two parts:
- Individual knowledge: reflects the agent self-
knowledge, including:

• name: Agent Scheduling (SA);
• address: the location where it is deployed; e.g.,

the resource management system in the data
center;

• individual objectives: its objective is the re-
source allocation;

• state: this agent can have the following exe-
cution states: receiving request from the An-
alyzer Agent, sending a request of available
resources, and waiting for a response to that
request.

- Allocation knowledge:
• Available resources: the available resources on

all physical machines;
• Self-adaptive options: for example, retry, re-

source replacement or reallocation.
• Inference engine and rules: the inference en-

gine applies rules to the knowledge base to
deduce new information. Rules can specify the
actions to take given certain conditions.

Its detailed behavior is illustrated in Figure 5
and in the Alg. 2. If it receives a resource request,
it checks the availability of those resources and

 

Knowledge                

base 

Detection 

Diagnosis 

Recovery 

Resources base Inference Engine  

Detection 

Diagnosis 

Recovery 

Current or expected behavior  

Behavior degradation 

Allocation failure 

Normal 

Degraded 

Broken 

Available Options 

Retry 

Replacement resources 

Reallocation 

Figure 5. Scheduling Agent Behavior (General Description).

sends an allocation request to the Controller Agent
(lines 3 to 5 in Alg. 2). When it receives from
the Controller Agent the availability of resources,
it updates the information in its knowledge base
and does the reserves the resources (allocation
process) for the corresponding query (lines 8 to
16 in Alg. 2). For the allocation process, the
Scheduling Agent verifies the system state and the
SLA (see Alg. 3). If the system state is normal and
the SLA = acceptable, it allocates the resources
(lines 1 to 7 in Alg. 3); if the system state is
degraded, but the SLA = acceptable, it allocates
the resources (lines 8 to 12 in Alg. 3); otherwise
it applies its rules and acts according the available
options ( lines 13 to 17 Alg. 3).

Input : (i), resources request; (ii), available resources
Output : (i), allocated resources

1 switch communication interface do
2 case input interface do
3 if resources request then
4 check available resources;
5 send request to the Controller Agent;
6 end
7 end
8 case input interface do
9 if analyzerProcess returns resources then

10 TAB.resources = [null];
11 while receiving response from the controller agent

do
12 TAB.resources = [CA1.resources,

CA2.resources,...];
13 return TAB.resources;
14 store resources’ data in the knowledge base;
15 //allocation process
16 if available resources ≡ needed resources

then
17 Alg. 3
18 end
19 end
20 end
21 end
22 end Algorithm 2: Scheduling Agent (SA)

C. The Controller Agent

The goal of the controller agent is to man-
age datacenter resources, by tracking their status;
through the Resource Status Updater component.
Figure 6 illustrates its detailed architecture. The
knowledge base of this agent contains the following
information:



1 switch system state do
2 case normal do
3 if SLA ≡ acceptable then
4 allocate resources;
5 return resources;
6 end
7 end
8 case degraded do
9 if SLA ≡ acceptable then

10 allocate resources;
11 return resources;
12 else
13 available options = (retry or replacement or

reallocation);
14 go to line 7;
15 end
16 end
17 end

Algorithm 3: Scheduling Agent (SA) state veri-
fication

Figure 6. Controller Agent Architecture.

- Individual knowledge: reflects the agent self-
knowledge, including:

• name: Controller Agent (CA);
• address: the location where it is deployed; e.g.,

physical servers in the data center;
• individual objectives: the objective of this

agent is to track resource status;
• state: this agent can have the following exe-

cution states: receiving the request from the
Scheduling Agent and sending the available
resources to Scheduling Agent.

- Controller knowledge: it refers to the informa-
tion this agent has about the status of the different
resources in the datacenter.

Finally, its detailed behavior is illustrated in
the algorithm presented in Alg. 4. It permanently
monitors the resources’ states and updates this
information in its knowledge base (lines 7 to 15 in
Alg. 4) . When a request from the Scheduling Agent
arrives, it responds with the resources’ statuses (line
18 in Alg. 4).

D. Resource allocation and inter-agent Interaction

The interaction among agents is illustrated in
Figure 7. The interaction process starts when the
Analyzer Agent receives a user request, which is
analyzed, interpreted, sent it to the Scheduling
Agent. The Scheduling Agent verifies the system

Input : (i), Scheduling Agent’s request
Output : (i), available resources response

1 switch communication interface do
2 case input interface do
3 if Scheduling Agent’s request then
4 update resources;
5 end
6 end
7 case physical output interface do
8 if connection.resources then
9 resources.stat = getNewStat(resources.stat);

10 return resources.stat;
11 end
12 end
13 case physical input interface do
14 get resources.stat;
15 store resources.stat’s data in the knowledge base;
16 end
17 case output interface do
18 send resources.stat to Scheduling Agent;
19 end
20 end Algorithm 4: Controller Agent (CA)

state (state == normal) and sends a request
to the Controller Agent asking for information
about the free resources. As a reminder, the Con-
troller Agent tracks the status of resources in the
datacenter. When the Scheduling Agent gets the
response from the Controller Agent, it verifies if the
proposed QoS and available resources match the
user requirements before making a final decision
about resource allocation. Finally, the Scheduling
Agent sends a detailed report about the process
and decisions made to the Coordinator Agent that
supervises the whole process. The possible agent
states are normal, degraded, and broken. An agent
is in the normal state if the execution goes as
expected concerning QoS allocation and system
failures. An agent is in the degraded state if there is
a degraded QoS allocation or failures in the system,
but the QoS allocation still falls within the allowed
range. Finally, an agent is in the broken state if
the QoS allocation is not acceptable or there are
irreparable failures in the system.

IV. ILLUSTRATIVE EXAMPLE

To illustrate our approach, we propose a scenario
of resource allocation, shown in Figure 8. The steps
of the allocation process are the following:

1) In the first step, a user requests the desired
services and resources through a web in-
terface, by expressing the services/resources
needed and the expected QoS (e.g., desired
resource capacity, acceptable range of ca-
pacity, acceptable time and price). The Ana-
lyzer Agent gets this request and studies the
existing services/resources to extract the re-
quirements concerning the needed resources
and the expected QoS. Some examples of
resources are CPU, RAM, and disk space.
At the end of this step, the Analyzer Agent
builds a query, called Q, specifying the
needed resources and expected QoS, and for-
wards it to the Scheduling Agent.



Figure 7. Inter-agent Interaction.

2) In the second step, the Scheduling Agent
extracts the resource requirements forwarded
by the Analyzer Agent. Its goal is to prepare
the necessary resources to satisfy the request
Q, by building a Virtual Machine, called it
VMQ.
The request Q forwarded by the Analyzer
Agent is composed of three elements, as
follows Q = (R,C,QoS), where:

R = (r1, r2, r3, ..., rn) represents resources
and services needed by the user;

C = (c1, c2, c3, ..., cn) is the capacity
corresponding to each resource; and

QoS = (qos1, qos2, qos3, ..., qosn)
represents the QoS for each resource/service.

We represent the combination of resources
and their corresponding requested capacities
and QoS to build the suitable VMR as:

VMR =


r1 c1 qos1
r2 c2 qos2
...

...
rn cn qosn


3) After the identification of requested re-

sources, the Scheduling Agent sends a re-
quest to the Controller Agent to demand the
corresponding free resources.

4) The Controller Agent receives the request
from the Scheduling Agent and responds with
the current state of the physical machines.
There exists one Controller Agent, CAi, for
each physical machine, PMi, in the Cloud.
CAi manages the resources and information
of its corresponding PMi, including:

• The set of virtual machines
that run in PMi, denoted as
Vi = (VM1, V M2, ..., V Mm);

• The set of capacities corresponding to
each virtual machine, denoted as Ci =
(c.V M1, c.V M2, ..., c.V Mm);

• The set of available resources
on in PMi, denoted as
RAi = (ra1, ra2, ..., rap);

• The set of capacities corresponding
to each available resource, denotes as
CAi = (ca1, ca2, ..., cap).

Then, the Controller Agent sends this infor-
mation to the Scheduling Agent. We model
the response of a Controller Agent CAi as
two matrices:

T.PMi =<


VM1 c.V M1

VM2 c.V M2

...
...

VMn c.V Mn

 ,


ra1 ca1

ra2 ca2

...
...

rap cap

 >

5) In the next step, the Scheduling Agent stores
the information received from the Controller



Figure 8. Allocation Scenario.

Agent in its knowledge base; then, it builds
a global matrix of available resources at time
t, denoted as A(t):

A(t) =


PM1 RA1 CA1

PM2 RA2 CA2

...
PMn RAn CAn


where PMi are physical machines and RAi

and CAi are the set of available resources
with their corresponding capacities.

6) Finally, after building the global resource
matrix, the Scheduling Agent applies its self-
adaptive allocation algorithm to build from
A(t) a VM that satisfies VMQ.

V. EXPERIMENTS

We measured the performance of our multi-agent
system in terms of energy consumption, by simu-
lation. To do so, we used OMNeT [16] and ICan
Cloud [12] to simulate its functionalities. OMNeT
is an extensible, modular, component-based C++
simulation library and framework, primarily for
building network simulators. ICan Cloud is a simu-
lation platform aimed to model and simulate Cloud
computing systems. This simulation framework has
been developed on the top of OMNeT++ and
INET frameworks. The multi-agents system and the
scheduling algorithm have been developed in C++,
by using sockets to simulate their communication.

We simulated a scenario for allocating resources
as mentioned in Section IV. Subsequently, we
implemented a Cloud computing service provider
to offers Cloud services to users. The data center
implemented for this Cloud runs five heterogeneous
servers. We randomly generated queries (Q =

(R,C,QoS)) to submit to the Cloud in randomly
time intervals (in seconds) and measured the aggre-
gated energy consumption of the five servers.

Figure 9 shows an extract of the simulation
running. Note that queries are submitted at different
time intervals: the first one at time 0, the second
one at 500ms, the third one at 5sec, and so on
until the end of the simulation at 102min. All
queries were satisfied in terms of needed resources
and required QoS. Figures 10 and 11 show the
energy consumption rates in Server 1 and Server 2,
respectively. When we apply our self-adaptive strat-
egy for resource allocation, we observe a remark-
able change in the level of energy consumption,
showing the efficiency of the scheduling algorithm.
For Server 1 (Figure 10), the decrease of energy
consumption was from 2500 megawatts to 480
megawatts, while for Server 2 (Figure 11), it was
from 3500 megawatts to 600 megawatts. These
decreases of energy consumption happen at times
ranging from 0 minutes to 102 minutes.

These results put in evidence the performance
of our algorithm of QoS allocation, confirming the
choice of using a multi-agent system implementing
a self-adaptive mechanism for the smart manage-
ment of resources in Cloud data centers.

VI. CONCLUSIONS

In this work, we tackled the problem of resource
allocation in Cloud platforms. To that end, we have
proposed a multi-agent architecture based on the
MAPE-K model. For our future work, we plan to
present a formal model of our approach defining
the query for resource allocation, user preferences,
agent rules, and state transitions. We also plan
to describe in detail the scheduling algorithm and
present additional experiments to evaluate other
performance aspects, besides energy consumption.



Figure 9. Extract of the Simulation Output.

Figure 10. Energy consumption Server 1.

Figure 11. Energy consumption Server 2.
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