
HAL Id: hal-02437037
https://univ-pau.hal.science/hal-02437037

Submitted on 13 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The architecture of Kaligreen V2: A Middleware aware
of hardware opportunities to save energy

Hernán H Álvarez Valera, Marc Dalmau, Philippe Roose, Christina Herzog

To cite this version:
Hernán H Álvarez Valera, Marc Dalmau, Philippe Roose, Christina Herzog. The architecture of
Kaligreen V2: A Middleware aware of hardware opportunities to save energy. IEEE International
Conference on Internet of Things, 2019, Granada, Spain. �hal-02437037�

https://univ-pau.hal.science/hal-02437037
https://hal.archives-ouvertes.fr

The architecture of Kaligreen V2: A Middleware
aware of hardware opportunities to save energy

Hernán H. Álvarez Valera∗, Marc Dalmau† and Philippe Roose‡
LIUPPA, Université de Pau et des Pays de l’Adour

Anglet-France
Email: ∗hhavalera@univ-pau.fr, †Marc.Dalmau@iutbayonne.univ-pau.fr,

‡Philippe.Roose@iutbayonne.univ-pau.fr

Christina Herzog
EFFICIT SAS

Mauzac, France
herzog@efficit.com

Abstract—Nowadays, energy saving in the use of information
technologies is a very important issue both from the economic
and sustainability point of view. Many scientists investigate
methods to save energy at different application levels (cloud:
i.e. architectures, grid: i.e. middlewares and frameworks and
hardware management: i.e. operating systems) and many of
them agree on the strategy of executing programs, processes
or virtual machines only using the time and resources that are
strictly necessary. For this, it is necessary to plan strategies
for deployment and relocation of processes; but always taking
into account hardware repercussions and the knowledge of the
architecture and applications behavior. On the other hand, it has
already been demonstrated that the use of microservices brings
numerous advantages in availability and efficiency; but we do
not find many jobs that exploit this technique on the energy
level. In this article, we present the architecture of a middleware
for distributed microservices-based applications, which allows
any negotiation-based scheduling algorithm to duplicate or move
microservices from one device to another in a non-centralized
way for energy savings, taking into account the consumption
characteristics of the microservices and the capabilities that the
hardware components offer.

Index Terms—microservices, middleware, energy, consump-
tion, CPU, network, hard disk

I. INTRODUCTION

Currently, energy saving has become a very important
factor. Green computing scientists, normally base the incentive
of their jobs in (1) the cost generated by spending energy and
(2) the serious problem of sustainability that our planet has.
We consider that both represent very serious problems. For
example, the Office of Scientific and Technical Information of
the USA points out that the data center sector was estimated
to have consumed about 61 billion kilowatt/hours (kWh) in
2006 (1.5 percent of total U.S. electricity consumption) for a
total electricity cost of about $4.5 billion (2006 dollars). The
electricity use of the nation’s servers and data centers in 2006
was more than double the electricity that was estimated to have
been consumed for this purpose in 2000 [1]. On the other hand,
attending to sustainability and using the same idea, carbon
emissions have grown and will continue to grow exponentially
in the following years, seriously deteriorating our planet.

These reasons have inspired many computer scientists to
develop methods that allow cloud and grid designers to be
aware of the energy they spend in each of their operations.

They argue that cloud administrators should have policies and
tools to optimize their services in execution operations [2]
[3] [4], by analyzing variables like, the natural environment
in which the data centers are located and correctly studying
customers’ real needs.

From other points of view, energy can also be saved by
moving the modules of distributed applications or virtual
machines through the nodes of a network, in such a way that
some of the hardware’s features are exploited [5] [6] [7] [8].
In this last approach, computer scientist found the relationship
between the load of node devices and the running processes.
With this, a software module could be moved or stoped with
the aim of allowing (1) a CPU to turn off its cores or decrease
its frequency [8] [9] [10], (2) Decrease disk access [11] [12]
and (3) eventually turn off or suspend the entire node [6].

Finally other types of work focus on energy savings through
the energetic analysis of programming languages in some
operating system [13] and their repercussions at instruction
level [14]. Thus, we classify energy saving techniques on three
different levels in two main moments:

Fig. 1. Strategies to save energy in 3 different levels

In Figure 1, we show three levels of execution of techniques
for energy saving: Cloud, data center and node. On each of
these three levels, the design moment and the deployment
of applications are taken into account to apply control or
execution techniques.

As it’s possible to see, most work concentrate their efforts
on saving energy from the perspective of an administrator.
There are no inspiring statistics focusing in users contexts
(For example, the relationship between user’s applications and
the deterioration of smartphones batteries) and there are not
many works that talk about the possibility of saving energy by
studying the conception and deployment of applications from
the user’s point of view.

We already proposed a middleware capable of managing
user applications based on microservices [15]. This middle-
ware is based on Kalimucho, which uses the ”Osagaia” con-
tainer to start, stop, move or duplicate microservices through
user devices [16].

In order to design and develop it, first, we differentiated
the microservices that can be moved (in order to release
processing load) or duplicated (allowing to distribute the load
of an operation in different devices to free transfer rate or
use of cpu) without altering the user’s experience. Then, we
demonstrated that if an application is conceived from the point
of view of microservices, it is possible to apply some of the
load balancing techniques mentioned above for energy saving.

Kaligreen [15] allows the communication and negotiation
among users’ common devices (laptops, smartphones, etc.),
installing in each of these, a special microservice in charge of
monitoring the CPU frequency, amount of used ram, use of the
network and of the internal storage . If these values represent
an inefficient load condition (i.e. overloading of any of this
components) affecting the efficient use of energy, or mainly
causing battery problem, the device’s monitoring microservice
will send a light vector with the load that it wishes to transfer
(that is, what the heaviest microservice consumes) in order to
find some generous devices. On the other hand, if a device is
not being used enough, it can use the vector to propose others
to send to it some load if necessary. This negotiation is applied
iteratively every certain amount of time, in such a way that
the load distribution is sensitive to new changes caused by the
user (opening or closing applications) and at the same time,
this produces the greatest possible energy savings.

Finally, after having applied the load balancing algorithm,
we demonstrate that the final consumption of a device is
optimized and that the applications that run on devices with
batteries, can survive longer without being connected to elec-
tricity.

Now we go further: To save energy (even at cloud and
grid level), it is logically necessary to optimally use all the
hardware components, in such a way that they are only
used at a time and intensity that is really necessary while
understanding its capabilities, behaviour and opportunities. In
this article we will use this knowledge to design a middleware
that is as aware of the hardware features as possible. This
will allow filtering those microservices (in order to reduce
scheduling complexity and increase efficiency) that we con-
sider candidates to be treated (moved or duplicated) in relation
to the opportunities that each hardware component offers,
so that then, these candidates are categorized and ordered
according to their consumption characteristics. With this, any

distributed scheduling algorithm (which we will implement
in our next work) will be able to operate based on intelligent
and complete negotiations between the user devices for energy
saving.

Thereby, in Section II, we found out which are the most
important hardware devices to take into account to analyze the
energy consumption in a node/server/user device. In Sections
III, IV and V, we will explain the opportunities that each
of these hardware devices offers for the best control of
energy consumption. In Section VI we propose our proposal
middleware architecture. Finally, in Section VII we expose our
conclusions and future works.

II. MOST ENERGY-EXPENSIVE HARDWARE COMPONENTS

In order to save energy at a computational level, no matter
the level of abstraction, it is necessary to study the con-
sumption of each of the installed devices’ components. The
question is: Is it necessary to study all these components when
designing middlewares (i.e. motherboard, CPU, video card,
network card, RAM, etc)?. For us, this will depend on the
middleware’s goal.

In the context of cloud and data centers, for example, the
CPU is one of the main agents of energy consumption. There
is a consumption relationship between the CPU, RAM and
other components such as the video card or the motherboard
(This last components are understood as constants directly
proportional to the use of the CPU) [8]. This analysis can
also be done by taking into account the daily execution time
[6]. On the other hand, in the context of a host, consumption
relations have been demonstrated between processing (high
efficiency and idle state) and the transfer rate [17] (use of the
network) and between the consumption of an entire system
and the proper use of storage devices [18].

We believe that all the devices mentioned are important,
since they also offer interesting features and opportunities for
saving energy in the context of a user’s daily life. However, we
will also take into account the type of application that is being
addressed. Thereby, in the following sections we will analyze
the opportunities that the CPU, network devices and storage
devices offer for energy saving which can also be exploited
from the perspective of our middleware.

III. CPU ANALYSIS

The CPU is one of the components with the fastest evo-
lution, since there are always improvements in physical size,
frequency, cache, energy consumption, etc. To understand how
the CPU consumes electrical power, it is necessary to study
the relationship between its way of operating and the amount
of voltage / amperage expended. Thus, to measure its power
consumption, SPEC CPU2017 [19] performs stress operations
while studying the use of voltage and amperage according
to the type of benchmark. On the other hand, SpeedStep
[20] shows the relationship between the clock frequency and
the energy consumed. Logically then, to save energy (even
from the middlewares’ perspective) at the CPU level, it is
necessary to work with the proper frequency in the proper

time, intelligently using the opportunities that processors offer
and that we explain below:

A. Automatic overclocking techniques (Performance boosting
technologies

In an attempt to increase their efficiency, CPU designers try
to raise each core’s processing frequency. The challenge is to
do it using the least amount of energy possible (and thus, save
battery for example) and generating as little heat as possible.
One of the ways to do this is by making the CPU work at
non energy expensive frequencies in normal conditions and
only raise them (i.e. overlocking) when necessary without any
user/configuration intervention. Examples of this technique is
Intel Turbo Boost [21] , or AMD Turbo Core [22]. For us it
is important to understand this feature since it allows: (1) our
middleware to request the CPU at maximum processing loads
at prudent moments in a implicit or indirect way by applying
load balancing algorithms and invoquing operating system
configurations (2) and for us to conceive applications taking
into account some energetical repercussions in the applications
programming using techniques like CPU-multithreading [23]
or other source code features [14] [24].

B. Automatic shutdown of CPU cores (PCPG)

On the other hand, as it is possible that the CPU au-
tomatically increases its frequency when a high processing
capacity is needed, it is possible that it also turns off its cores
automatically (users or developers are able to configure this)
when they are not being used (e.g. Intel Atom CPU [25]).
Jacob Leverith et al. [9] demonstrated that using PCPG is up
to 30% more efficient than using DVFS and we believe that
this capability can also be used when designing middlewares
by: (a) invoking specific operating system configurations, like
the same author did by modifying task priorities through the
“/proc/stat” file and (b) studying energy consumption models
[8] [10] to design energy awareness load balancing algorithms
or to design more energetically configurable applications.

C. Frequency reduction techniques invoked by software
(DVFS)

Dynamically adjusting the CPU voltage and/or frequency is
an opportunity to save energy (e.g.: SpeedStep [26] or AMD
PowerNow [27]), and there are several authors who have taken
advantage of this feature in software development/research,
by for example, relating I / O operations with ideal CPU
frequencies [18], modifying kernel governors [12], studying
energy impact and cpu frequencies equations to intelligently
allocate virtual machines [5] and finding the relationship
between the type of task and the clock cycles [8].

We will explain in the next section, how we can take
advantage of these characteristics in designing our middleware
and in the conception of the applications that it will handle.

D. Middlewares and improvement opportunities

Many authors have developed middlewares with the aim
of saving energy by focusing on the use of the CPU, ex-
posing different points of view, such as analyzing/scheduling

virtual machines [5] [28] [29]; applying process load bal-
ancing algorithms between servers and establishing minimum
allowed loads [6]; finding the process/application and CPU
consumption relationship to apply load balancing algorithms
[30] [8] [13] [18] [29] [24]. These perspectives have shown
good results. However, we also believe that in order to achieve
a maximum level of energy savings at the CPU level in the
context of a middleware, it is necessary not to omit any of the
features mentioned above, since perfect energy savings will
only occur when in complete awareness of energy expenditure
of the hardware. In the particular case of our middleware, we
argue that there are two types of information necessary to make
good use (i.e. perform load balancing operations) of energy in
cpu terms: (1) the energetical characteristics offered by the
CPU and (2) how the application and its microservices were
conceived. For this second point, we consider two important
facts: (1) if a microservice needs to be executed persistently
(like a daemon), or if it is a process that will disappear once its
task has been completed (for example: analyzing an image);
and (2) the impact that the microservice causes to the CPU.
These characteristics allow Kaligreen V2 to opportunistically
and naturally take advantage of the CPU characteristics previ-
ously shown, since CPU energetic characteristics implication
is given according to the intensity and time with which they
are invoked.

M.S. Features CPU Features
Persistent

MS
High CPU

Consumption Boosting PCPG DVFS

NO YES Candidate Candidate Candidate
NO NO – – –
YES YES Candidate Candidate Candidate
YES NO – Candidate Candidate

TABLE I
CORRELATION BETWEEN MICROSERVICES FEATURES AND CPU

CAPABILITIES

In Table I, we show our criteria for selecting microservices
candidates to be moved/duplicated by Kaligreen V2, according
to the CPU capabilities and to the microservices characteris-
tics. The table shows, for example, that in the presence of
a microservice that needs to be executed permanently (i.e.
“persistent microservice”) and that has a high computational
cost, the middleware will evaluate moving it to a device that
does not contain the boosting characteristic. On the other hand,
Kaligreen V2 could try to move a microservice that does not
have high consumption, when the CPU has the possibility to
lower its frequency or turn off cores. This will be decided by
the scheduling algorithm by studying the current load of the
CPU and other important variables. At the end of the article we
will show a heuristic in which we will use these relationships,
after detailing the network device and hard disk features in
the following sections.

It is important to note that the “high” or “low” criteria
expressed in the table will be established according to the
device in our next work, since it will depend on the criteria
analyzed by a scheduling algorithm.

IV. THE NETWORK DEVICE ANALYSIS

Network devices are one of the most important agents of
energy consumption, since regardless of the level of analysis
(Section I: cloud, data-center or a single device), the sending
of massive information influences the overall efficiency of the
system and the level of charge of the network cards. While
it is true that it is possible to be aware of the amount of
energy expended by each network device in its different states
thanks to descriptives jobs like the one done by Salvatore
Chiaravalloti [31], and it is possible to perform some basic
operations of power management of network devices, such
as putting them in sleep mode (e.g. automatic D’link green
ethernet [32]) or rate adaptation [33]; we consider, that for the
development of a middleware (even more for ours), it is better
to leave the management of these capabilities to the operating
system and the automatic configuration of drivers, since these
directly affect physical phenomena such as the length of a
network cable [34] or the distance between two Wi-Fi points
(i.e. the capacity of the i.w command , to manage the state and
the energy used during the data transmission [35]). Thereby,
the best way to manage energy at network level is by: (a)
scheduling the amount of data transmitted [36] [37] [38] [39]
(b) making improvements on the network topology [40] [39]
[41] and (c) improving communication paths [42] [43], even
taking into account battery states of each node [17].

As we described in our previous middleware [15], we
worked on a topology in which load balancing does not work
in a centralized way. This characteristic makes it difficult for
us to make improvements in terms of communication paths
or topological hierarchies; but it does allow us to focus on
the amount of information sent (for us, microservice size and
amount of data it sends/receives) and on the transmission pro-
tocols when the middleware moves/replies to a microservice.

In Table II, we show the microservices that we consider
candidates (Cand.) to be moved, duplicated or eventually also
move their data; taking into account its characteristics that we
consider most influential at the moment of performing these
load balancing operations. These characteristics are: (a) if the
microservice is persistent or not (b) if it is heavy at ram level
(c) if it causes high network transfer (d) if it communicates
with other microservices on the same device: communications
between them they will be done through the network if
the microservice is moved and (e) if the microservice is
related to a large database: Since this could allow moving
the microservice with its database if possible.

All this information should be understood as a set of abstract
”rules” that our middleware must follow in order to apply a
planning algorithm, in which the terms: large, short, small,
high and low should be understood according to the properties
of the device and thresholds that in future work we will study.
For example, there is a microservice that occupies 500kb,
fulfills permanent functions (like a daemon) and saturates more
than 90% of the bandwidth of the device, our middleware will
try to move it, as the first operation, to another device that
does not depend on the battery or has a better type of network

M.S. Features Network operations

Persist.
M.S.

Heavy
M.S.

Hard
NET

Usage

Many
M.S.
relat.

large
M.S.
data

Move
MS

Dup.
M.S.

Move
M.S.
Data

yes yes yes yes yes Cand. Cand. –
yes yes yes yes no Cand. Cand. Cand.
yes yes yes no yes Cand. Cand. –
yes yes yes no no Cand. Cand. Cand.
yes yes no yes yes – Cand. –
yes yes no yes no – Cand. Cand.
yes yes no no yes Cand. Cand. –
yes yes no no no Cand. Cand. Cand.
yes no yes yes yes Cand. Cand. –
yes no yes yes no Cand. Cand. Cand.
yes no yes no yes Cand. Cand. –
yes no yes no no Cand. Cand. Cand.
yes no no yes yes Cand. Cand. –
yes no no yes no Cand. Cand. Cand.
yes no no no yes Cand. Cand. –
yes no no no no Cand. Cand. Cand.
no yes yes yes yes – – –
no yes yes yes no – – Cand.
no yes yes no yes Cand. Cand. –
no yes yes no no Cand. Cand. Cand.
no yes no yes yes – Cand. –
no yes no yes no – Cand. Cand.
no yes no no yes – – –
no yes no no no – – Cand.
no no yes yes yes Cand. Cand. –
no no yes yes no Cand. Cand. Cand.
no no yes no yes Cand. Cand. –
no no yes no no Cand. Cand. Cand.
no no no yes yes – – –
no no no yes no – – Cand.
no no no no yes Cand. Cand. –
no no no no no Cand. Cand. Cand.

TABLE II
CORRELATION BETWEEN THE MICROSERVICES FEATURES AND

MIDDLEWARE OPERATIONS AT NETWORK LEVEL

card.
On the other hand, if a microservice occupies 1Gb, it does

not saturate the network, and the process will end when it
has fulfilled its mission (like the calculation of movement in
a game), then our middleware will avoid operating with this
microservice. On the other hand, if a microservice occupies
1Gb, it does not saturate the network, and the process will
end when it has fulfilled its mission (like the calculation
of movement in a game), then our middleware will avoid
operating with this microservice.

It is important to note that the high or low criteria expressed
in the table will be established according to the device in our
next work, since it will depend on the criteria analyzed by a
scheduling algorithm.

In the next section, we will analyze the opportunities given
by storage devices. Finally we will propose an analysis of all
the hardware in general so that our middleware can operate.

V. THE HARD DISK ANALYSIS

Some hard drives also offer the ability to save energy by
changing their working status [44]. For this reason there are
some researchers that study the relationship between the I / O
requirements and the opportunity to keep the hard drive in a

suspended state [11], even in the context of virtual machines
[45].

For us, this feature represents an opportunity in cases where
a disk node can be seen as underutilized. In this particular case,
for example, our middleware could help free the device from
I / O processes.

Condition Action
if Hdd requirements of Application Microservice

== total load of hard disk now Candidate to move

TABLE III
CORRELATION BETWEEN HARD DISK CAPABILITIES AND MIDDLEWARE

ACTIONS

Table III shows the only relation useful for us. That is, to
move microservices when they are the only reason why a hard
disk is still in an active mode.

Finally, in the next section, we will explain the architecture
of Kaligreen V2. Our middleware that will apply planning
algorithms based on the hardware’s energy opportunities.

VI. KALIGREEN V.2 ARCHITECTURE

Kaligreen [15] is a middleware that applies an iterative and
negotiation-based scheduling algorithm in a non-centralized
way. That is, each user device belonging to a network, can
exchange microservices with its neighbors to balance the
processing and transmission load in a collaborative way.

Fig. 2. A device in Kaligreen V1

Figure 2 represents an example of the context in which
Kaligreen works. Each device Dev, in an undesirable energy
situation (i.e. underloading or overloading of a certain hard-
ware component or low remaining battery like the smartphone
of the figure 2), builds a metadata vector called vector,
representing the CPU, network (use of the card + microservice
dependencies) and disk consumption of the microservice that
is energetically problematic (In case of the figure 2, MS1 is
the most expensive in terms of energy, because it uses more of
the CPU, NET and HDD than the other microservices), which
we call MSP . Then, Dev uses a special microservice called
monitor to send vector to all visible devices in the network.
Each of these devices will analyze vector and decide if they
can process MSP in a better energetic condition. After that,
they return to Dev a processing offer, using the same kind of
vector as vector, exposing its own components load situation.
Finally Dev decides to move MSP to the candidate that it
considers has the best energetic conditions to process it.

In this article, we improve Kaligreen to create its new
version 2.0. It has a better level of analysis to determine if
a microservice really provokes an energetically problematic
condition. We argue that in any environment and at any
level where scheduling algorithms are applied, all hardware
components should be analyzed in terms of their capabilities
and energetic repercussions in order to move (releasing pro-
cessing load) or duplicate (allowing to distribute the load of
an operation in different devices to free transfer rate or use of
cpu) a microservice.

For example, if a microservice is launched and causes the
CPU to activate its overlocking capability, Kaligreen V.2. will
not move or duplicate it if it has a short lifetime (as seen in
Table I). On the contrary, if the microservice will be executed
permanently (like a demon), Kaligreen V.2. will move it to
another device as long as the new energetic conditions are
really better (i.e. after analyzing the new CPU, RAM and
network repercussions).

The architecture of Kaligreen V2, then, consists of a set
of user devices connected together. Each device Dev will
have a special microservice called monitor, which evaluates
the energy status of each hardware components (i.e. CPU,
disk and network) every certain amount of time T . monitor
detects undesirable energy situations such as: (1) Low battery
(2) component overload or (3) component underload. Then,
it executes algorithm 1 to filter the microservices (taking
into account it’s features and the features/capabilities of each
device component) into three non-disjoint (A microservice can
be expensive for the CPU, NETWORK and RAM at the same
time) lists of candidates to be moved or replicated in other
devices depending on its energetic repercussions.

Algorithm 1 Algorithm 1: Selecting candidate microservices
1: L M ← List of all Microservices
2: while true do
3: L CPU ← filter by Table1(L M)
4: L DISK ← filter by Table3(L M)
5: L NETWORK ← filter by Table2(L M)
6: SLEEP (T)
7: end while

With Algorithm 1, Kaligreen V.2. filters the microservices
that are energy costly at the CPU level (considering their
internal properties, such as Boosting) and that have ideal char-
acteristics (i.e. CPU consumption and persistence condition) to
be moved or duplicated, obtaining the L CPU list. Then, our
middleware does the same analysis but at the hard disk level,
considering the load generated on disk and its ability to save
energy through the suspended state, obtaining the L DISK
list. Finally, Kaligreen V.2. analyze the microservices, based
on network availability and repercussions (i.e. size of the
microservice, dependency links, use of the network card and
persistence condition), obtaining the L NETWORK list. As
a result, we have three non-disjoint sets of microservices ideal
to be moved or duplicated to reduce energy consumption.
We consider that the filtering is useful to avoid that a future

planning algorithm increases its analysis complexity and lose
its efficiency without obtaining significantly better results.

After the operations described, Kaligreen V2, through the
monitor, is able to sort the lists of microservice candidates
of each device according to all possible comparison criteria.
That is:

1) CPU usage: Amount in percentage of CPU used by each
microservice.

2) Network usage. Traffic in Mb/s generated by each mi-
croservice.

3) Disk Usage. I/O disk operations in Mb/s generated by
each microservice.

4) Overall consumption: Number of joules per unit of time
consumed per microservice. For this point, we made our
consumption modeling like Abhishek Jaiantilal et al. [8]
(i.e. in an additive model way); but instead of taking the
cycles as a unit of measure, we will use the measurement
units visible from the point of view of a middleware that
analyze a particular software entity consumption:

MS Cons = T ∗(F (N+extern)+F (D)+F (C)) (1)

Where:
• T = Time in seconds
• N=Network transfer rate generated by internal mi-

croservice operations (in Kb/s).
– externals = transfer rate generated by the com-

munication with the linked microservices in-
stalled in devices differents to Dev.

– F (N) = Function to measure the network con-
sumption in joules/bit unit of measurement [46]
[47] [48].

• D=Disk I/O transfer rate in Mb/s.
– F (D) = Function to measure the disk consump-

tion in joules [48].
• C=Microservice CPU requirements in Ghz.

– F (C) = Function to measure the CPU consump-
tion in joules [48].

Formula 1 calculates the energy consumption generated
by a microservice M in a device Dev at a certain
moment, taking into account the load that it generates
in terms of each of Dev hardware components. It is
important to note that in a distributed application, its
microservices can be installed in different devices in
a certain time . This causes that when these microser-
vices communicate between them, the involved devices
network load is increased. This is the reason why we
consider the value of externals in the formula.

This diversity of points of view (i.e. orders criteria), will
allow to execute any type of scheduling algorithm as appro-
priate. Kaligreen V2 will be able to select in a dynamic way,
through the monitor, one or a set of microservices installed in
a Device Dev, for example, (a) The microservice(s) that con-
sumes more energy in terms of CPU (b) The microservice(s)

that consumes less energy in terms of CPU (c) The third
microservice that consumes more energy globally, etc. Then
the monitor in Dev, will build a metadata Matrix (before:
a vector for only one microservice metadata, in Kaligreen
V.1.0), which will be ready to be sent intelligently. Finally,
the devices that receive this matrix will be able to analyze
several microservices in the best way taking into account the
hardware components involved.

Thus, for each device, a future planning algorithm will have
the ability to select the ideal microservice (among several
represented in the matrix) and move or replicate it. For this
reason, in our current work, we are developing a planning
algorithm using this architecture, which is based on graph
theory and some heuristics similar to those of the SRTF or
those of the SJF. This algorithm will be the reason for our
next article.

VII. CONCLUSIONS

In the present article, we present an evolution of Kaligreen’s
architecture called Kaligreen V2. It consists of a set of
user devices connected together using a special monitoring
microservice called monitor, to generate awareness of the
capacities of the hardware components (i.e. CPU, network
and hard disk) of each device. The monitor studies the
correlation of the characteristics of each microservice running
on a device and the energy opportunities of its hardware
components, in order to filter only those microservices that are
candidates to be moved (release processing load directly) or
duplicates (delegate part of the load to another device) by our
middleware. Kaligreen V.2. does this filtering by generating 3
sorted groups: The candidate microservices from the point of
view CPU, network and hard disk.

This architecture will allow the implementation of any
scheduling algorithm based on decentralized negotiations, with
awareness of the particular energy opportunities of each hard-
ware component. Our next work will focus on the development
of this point.

REFERENCES

[1] A. Shehabi, S. J. Smith, D. A. Sartor, R. E. Brown, M. Herrlin, J. G.
Koomey, E. R. Masanet, N. Horner, I. L. Azevedo, and W. Lintner,
“United states data center energy usage report,” Tech. Rep., 06/2016
2016.

[2] G. Procaccianti, P. Lago, and G. A. Lewis, “Green architectural tactics
for the cloud,” in Proceedings of the 2014 IEEE/IFIP Conference
on Software Architecture, ser. WICSA ’14. Washington, DC, USA:
IEEE Computer Society, 2014, pp. 41–44. [Online]. Available:
https://doi.org/10.1109/WICSA.2014.30

[3] M. I. Hassan and R. Bahsoon, “Green-as-a-service (gaas) for cloud
service provision operation,” in Proceedings of the 29th Annual
ACM Symposium on Applied Computing, ser. SAC ’14. New
York, NY, USA: ACM, 2014, pp. 1219–1220. [Online]. Available:
http://doi.acm.org/10.1145/2554850.2555182

[4] G. R. Howard and S. Lubbe, “Synthesis of green is frameworks
for achieving strong environmental sustainability in organisations,” in
Proceedings of the South African Institute for Computer Scientists
and Information Technologists Conference, ser. SAICSIT ’12. New
York, NY, USA: ACM, 2012, pp. 306–315. [Online]. Available:
http://doi.acm.org/10.1145/2389836.2389873

[5] N. M. Azmy, I. A. El-Maddah, and H. K. Mohamed, “Adaptive power
panel of cloud computing controlling cloud power consumption,” in
Proceedings of the 2Nd Africa and Middle East Conference on Software
Engineering, ser. AMECSE ’16. New York, NY, USA: ACM, 2016, pp.
9–14. [Online]. Available: http://doi.acm.org/10.1145/2944165.2944167

[6] I. Siddavatam, E. Johri, and D. Patole, “Optimization of load balancing
algorithm for green it,” in Proceedings of the International Conference
& Workshop on Emerging Trends in Technology, ser. ICWET ’11.
New York, NY, USA: ACM, 2011, pp. 1344–1346. [Online]. Available:
http://doi.acm.org/10.1145/1980022.1980321

[7] M. Pawlish, A. S. Varde, S. A. Robila, and A. Ranganathan,
“A call for energy efficiency in data centers,” SIGMOD Rec.,
vol. 43, no. 1, pp. 45–51, May 2014. [Online]. Available:
http://doi.acm.org/10.1145/2627692.2627703

[8] A. Jaiantilal, Y. Jiang, and S. Mishra, “Modeling cpu energy
consumption for energy efficient scheduling,” in Proceedings of
the 1st Workshop on Green Computing, ser. GCM ’10. New
York, NY, USA: ACM, 2010, pp. 10–15. [Online]. Available:
http://doi.acm.org/10.1145/1925013.1925015

[9] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis,
“Power management of datacenter workloads using per-core power
gating,” Computer Architecture Letters, vol. 8, pp. 48–51, 02 2009.

[10] N. Madan, A. Buyuktosunoglu, P. Bose, and M. Annavaram, “Guarded
power gating in a multi-core setting,” in Proceedings of the 2010
International Conference on Computer Architecture, ser. ISCA’10.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 198–210. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-24322-6 17

[11] F. Chen and X. Zhang, “Caching for bursts (c-burst): Let hard
disks sleep well and work energetically,” in Proceedings of the 2008
International Symposium on Low Power Electronics & Design, ser.
ISLPED ’08. New York, NY, USA: ACM, 2008, pp. 141–146.
[Online]. Available: http://doi.acm.org/10.1145/1393921.1393961

[12] L. Corral, A. B. Georgiev, A. Janes, and S. Kofler, “Energy-aware
performance evaluation of android custom kernels,” in Proceedings of
the Fourth International Workshop on Green and Sustainable Software,
ser. GREENS ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 1–7.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2820158.2820160

[13] L. Corral, A. B. Georgiev, A. Sillitti, and G. Succi, “Method reallocation
to reduce energy consumption: An implementation in android os,” in
Proceedings of the 29th Annual ACM Symposium on Applied Computing,
ser. SAC ’14. New York, NY, USA: ACM, 2014, pp. 1213–1218.
[Online]. Available: http://doi.acm.org/10.1145/2554850.2555064

[14] N. Nikzad, O. Chipara, and W. G. Griswold, “Ape: An
annotation language and middleware for energy-efficient mobile
application development,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. New
York, NY, USA: ACM, 2014, pp. 515–526. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568288

[15] H. H. lvarez Valera, P. Roose, M. Dalmau, C. Herzog, and K. Respicio,
“Kaligreen: A distributed scheduler for energy saving,” Procedia
Computer Science, vol. 141, pp. 223 – 230, 2018, the 9th International
Conference on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN-2018) / The 8th International Conference on Current and
Future Trends of Information and Communication Technologies in
Healthcare (ICTH-2018) / Affiliated Workshops. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050918318222

[16] K. Da, M. Dalmau, and P. Roose, “Kalimucho: Middleware
for mobile applications,” in Proceedings of the 29th Annual
ACM Symposium on Applied Computing, ser. SAC ’14. New
York, NY, USA: ACM, 2014, pp. 413–419. [Online]. Available:
http://doi.acm.org/10.1145/2554850.2554883

[17] P. Zhang and M. Martonosi, “Energy adaptation techniques to optimize
data delivery in store-and-forward sensor networks,” in Proceedings
of the 4th International Conference on Embedded Networked Sensor
Systems, ser. SenSys ’06. New York, NY, USA: ACM, 2006, pp. 405–
406. [Online]. Available: http://doi.acm.org/10.1145/1182807.1182878

[18] R. Ge, X. Feng, and X.-H. Sun, “Sera-io: Integrating energy
consciousness into parallel i/o middleware,” in Proceedings of the
2012 12th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (Ccgrid 2012), ser. CCGRID ’12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 204–211. [Online]. Available:
https://doi.org/10.1109/CCGrid.2012.39

[19] J. Bucek, K.-D. Lange, and J. v. Kistowski, “Spec cpu2017: Next-
generation compute benchmark,” in Companion of the 2018 ACM/SPEC

International Conference on Performance Engineering, ser. ICPE ’18.
New York, NY, USA: ACM, 2018, pp. 41–42. [Online]. Available:
http://doi.acm.org/10.1145/3185768.3185771

[20] Intel, “Intel - speedstep.” [Online]. Available:
https://www.intel.com/content/www/us/en/support/articles/000005723/
processors.html

[21] I. TurboBoost, “Intel - turboboost.” [Online]. Available:
https://www.intel.com/content/www/us/en/support/articles/000007359/
processors/intel-core-processors.html

[22] AMD, “Amd - turbocore.” [Online]. Available:
https://www.amd.com/en/technologies/turbo-core

[23] S. Kondguli and M. Huang, “A case for a more effective,
power-efficient turbo boosting,” ACM Trans. Archit. Code Optim.,
vol. 15, no. 1, pp. 5:1–5:22, Mar. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3170433

[24] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating android
applications’ cpu energy usage via bytecode profiling,” in Proceedings
of the First International Workshop on Green and Sustainable Software,
ser. GREENS ’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 1–7.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2663779.2663780

[25] Intel-Atom, “Intel atom - power gating.” [Online]. Available:
https://www.intel.com/content/www/us/en/embedded/software/emgd/
emgd-dynamic-power-gating-paper.html

[26] Intel-SpeedTest, “Intel-speedtest.” [Online]. Available:
https://www.intel.com/content/www/us/en/support/articles/000005723/
processors.html

[27] AMD-PowerNow, “Amd-powernow.” [Online]. Available:
http://www.amd-k6.com/wp-content/uploads/2012/07/24404a.pdf

[28] D. Seo, “A study of workload consolidation and power consumption
on a multi-core processor,” in Proceedings of the 2012 ACM
Research in Applied Computation Symposium, ser. RACS ’12. New
York, NY, USA: ACM, 2012, pp. 457–458. [Online]. Available:
http://doi.acm.org/10.1145/2401603.2401702

[29] Q. Chen and J. Li, “The balance mechanism of power and performance
in the virtualization,” in Proceedings of the Second International
Conference on Innovative Computing and Cloud Computing, ser.
ICCC ’13. New York, NY, USA: ACM, 2013, pp. 189:189–189:192.
[Online]. Available: http://doi.acm.org/10.1145/2556871.2556912

[30] N. Yigitbasi, K. Datta, N. Jain, and T. Willke, “Energy efficient
scheduling of mapreduce workloads on heterogeneous clusters,” in
Green Computing Middleware on Proceedings of the 2Nd International
Workshop, ser. GCM ’11. New York, NY, USA: ACM, 2011, pp. 1:1–
1:6. [Online]. Available: http://doi.acm.org/10.1145/2088996.2088997

[31] S. Chiaravalloti, F. Idzikowski, and L. Budzisz, “Power consumption of
wlan network elements,” 08 2011.

[32] dlink Green, “Technologie d-link green.” [Online]. Avail-
able: https://eu.dlink.com/fr/fr/support/faq/knowledge/technologie-dlink-
green

[33] V. D. Maio, V. Nae, and R. Prodan, “Evaluating energy efficiency
of gigabit ethernet and infiniband software stacks in data centres,”
in Proceedings of the 2014 IEEE/ACM 7th International Conference
on Utility and Cloud Computing, ser. UCC ’14. Washington, DC,
USA: IEEE Computer Society, 2014, pp. 21–28. [Online]. Available:
http://dx.doi.org/10.1109/UCC.2014.10

[34] dlink, “Dlinkgreen.” [Online]. Available:
http://www.dlinkgreen.com/energyefficiency.asp

[35] L. man page, “iw.” [Online]. Available: https://linux.die.net/man/8/iw
[36] S. Kiertscher and B. Schnor, “Scalability evaluation of an energy-

aware resource management system for clusters of web servers,”
in Proceedings of the International Symposium on Performance
Evaluation of Computer and Telecommunication Systems, ser.
Spects ’15. San Diego, CA, USA: Society for Computer
Simulation International, 2015, pp. 1–8. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2874988.2875004

[37] N. P. Esfahani and A. E. Cerpa, “Poster: Energy optimization
framework in wireless sensor network,” in Proceedings of the 13th
ACM Conference on Embedded Networked Sensor Systems, ser. SenSys
’15. New York, NY, USA: ACM, 2015, pp. 441–442. [Online].
Available: http://doi.acm.org/10.1145/2809695.2817904

[38] K. Zhan, C.-H. Lung, and P. Srivastava, “A green analysis of
mobile cloud computing applications,” in Proceedings of the 29th
Annual ACM Symposium on Applied Computing, ser. SAC ’14. New
York, NY, USA: ACM, 2014, pp. 357–362. [Online]. Available:
http://doi.acm.org/10.1145/2554850.2555069

[39] J. Jo, Y. Kim, K. H. Lee, S. H. Cho, and J. H. Kim, “The energy saving
strategy using the network coding in the wireless mesh network,”
in Proceedings of the 6th International Conference on Ubiquitous
Information Management and Communication, ser. ICUIMC ’12. New
York, NY, USA: ACM, 2012, pp. 127:1–127:4. [Online]. Available:
http://doi.acm.org/10.1145/2184751.2184895

[40] T. Malik, L. Nistor, and A. Gehani, “Middleware for managing
provenance metadata,” in Middleware ’10 Posters and Demos Track, ser.
Middleware Posters ’10. New York, NY, USA: ACM, 2010, pp. 5:1–
5:2. [Online]. Available: http://doi.acm.org/10.1145/1930028.1930033

[41] K. Bao, I. Mauser, S. Kochanneck, H. Xu, and H. Schmeck, “A
microservice architecture for the intranet of things and energy in smart
buildings: Research paper,” in Proceedings of the 1st International
Workshop on Mashups of Things and APIs, ser. MOTA ’16. New
York, NY, USA: ACM, 2016, pp. 3:1–3:6. [Online]. Available:
http://doi.acm.org/10.1145/3007203.3007215

[42] E. Yaacoub, A. Kadri, and A. Abu-Dayya, “Cooperative wireless sensor
networks for green internet of things,” in Proceedings of the 8H ACM
Symposium on QoS and Security for Wireless and Mobile Networks,
ser. Q2SWinet ’12. New York, NY, USA: ACM, 2012, pp. 79–80.
[Online]. Available: http://doi.acm.org/10.1145/2387218.2387235

[43] Y.-F. Lu, J. Wu, and C.-F. Kuo, “A path generation scheme
for real-time green internet of things,” SIGAPP Appl. Comput.
Rev., vol. 14, no. 2, pp. 45–58, Jun. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2656864.2656868

[44] Seagate, “Seagate-baracuda.” [Online]. Available:
https://www.seagate.com/www-content/product-content/barracuda-fam/
barracuda-new/en-us/docs/100804187g.pdf

[45] L. Ye, G. Lu, S. Kumar, C. Gniady, and J. H. Hartman, “Energy-efficient
storage in virtual machine environments,” in Proceedings of the 6th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, ser. VEE ’10. New York, NY, USA: ACM, 2010, pp. 75–
84. [Online]. Available: http://doi.acm.org/10.1145/1735997.1736009

[46] M. Yan, C. A. Chan, A. F. Gygax, J. Yan, L. Campbell, A. Nirmalathas,
and C. Leckie, “Modeling the total energy consumption of mobile
network services and applications,” Energies, vol. 12, no. 1, 2019.
[Online]. Available: http://www.mdpi.com/1996-1073/12/1/184

[47] E. Björnson and E. G. Larsson, “How energy-efficient can a wireless
communication system become?” CoRR, vol. abs/1812.01688, 2018.
[Online]. Available: http://arxiv.org/abs/1812.01688

[48] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption
modeling: A survey,” IEEE Communications Surveys Tutorials, vol. 18,
no. 1, pp. 732–794, Firstquarter 2016.

