
HAL Id: hal-02436948
https://univ-pau.hal.science/hal-02436948v1

Submitted on 13 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security architecture metamodel for Model Driven
security

Makhlouf Q1, Adel Alti, Mohamed Gasmi, Philippe Roose

To cite this version:
Makhlouf Q1, Adel Alti, Mohamed Gasmi, Philippe Roose. Security architecture metamodel for Model
Driven security. Journal of Innovation in Digital Ecosystems, 2015, �10.1016/j.jides.2015.12.001�. �hal-
02436948�

https://univ-pau.hal.science/hal-02436948v1
https://hal.archives-ouvertes.fr

J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S X X (X X X X) X X X – X X X

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/jides

Security architecture metamodel for Model Driven
security

Q1 Makhlouf Derdoura, Adel Altib,∗, Mohamed Gasmia, Philippe Roosec

a LRSD Laboratory, University of Tebessa, 25000, Algeria
b LRSD Laboratory, University of Setif-1, 19000, Algeria
cUPPA – Anglet, 64000, France

A R T I C L E I N F O

Article history:

Received 26 October 2015

Received in revised form

1 December 2015

Accepted 1 December 2015

Keywords:

SMSA

Security connector

UML profile

ADL

OCL

Vulnerability point’s detection

architectures

A B S T R A C T

A key aspect of the design of any software system is its architecture. One issue for

perpetually designing good and robust architectures is the new security concepts. Many

new applications are running on powerful platforms that have ample rich architecture

models to supportmultiples security techniques and to explicit several security constraints.

The design of an architecture meta-model that considers security connectors is required in

order to ensure a realistic secure assembly and to address the problems of vulnerability

of exchanging data flow. Our research proposes a generic meta-modelling approach called

SMSA (Security Meta-model for Software Architecture) for describing a software system as

a collection of components that interact through security connectors. SMSA metamodel

is modeled as a UML SMSA profile. We exploit UML powerful capacities (meta-models

and models) to define security concepts of SMSA (e.g. security connectors, composite and

domain). A major benefit of UML profile is to the faithful representation of connectors to

support the definition of security connector types explicitly and to support them with the

ability to associate semantic properties. We also provide a set of model transformations

to fit security requirements of a system. These transformations are detailed and validated

with phosphate support system (SAGE) for the company FERPHOS: a case study described

in SMSA. The model is tested and validated with the semantic constraints defined by the

profile using Eclipse 3.1 plug-in in this case study.
c⃝ 2015 Qassim University. Production and Hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction1

Nowdays, modern computer systems and applications are2

heterogeneous, connected to Internet and deployed on large3

scale machines independently administered, serving people4

Peer review under responsibility of Qassim University.
∗ Corresponding author.
E-mail addresses: m.derdour@yahoo.fr (M. Derdour), altiadel2002@yahoo.fr, alti.adel@univ-setif.dz (A. Alti),

mohamed_gasmi@yahoo.fr (M. Gasmi), Philippe.Roose@iutbayonne.univ-pau.fr (P. Roose).

anytime and anywhere. Development environments that 5

support their implementation are unstable (e.g. develop ap- 6

plications whose heart is independent of volume, users and 7

devices using adaptive technologies to respond to each case) 8

and applications must deal with the volatility of resources

http://dx.doi.org/10.1016/j.jides.2015.12.001
2352-6645/ c⃝ 2015 Qassim University. Production and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.jides.2015.12.001
http://www.elsevier.com/locate/jides
http://www.elsevier.com/locate/jides
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:m.derdour@yahoo.fr
mailto:altiadel2002@yahoo.fr
mailto:alti.adel@univ-setif.dz
mailto:mohamed_gasmi@yahoo.fr
mailto:Philippe.Roose@iutbayonne.univ-pau.fr
http://dx.doi.org/10.1016/j.jides.2015.12.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S X X (X X X X) X X X – X X X

and services [1]. They must be flexible and be able to adapt1

dynamically (e.g. data persistence, data exchanges between het-2

erogeneous applications, move data to remote sites, management3

of continuous data consistency, interoperability platforms, applica-4

tion portability, managing concurrency, openness and security). So,5

it may be very useful to provide an appropriate approach6

for designing applications taking into account both securityQ27

needs and problems, such as Architecture Description Lan-8

guage (ADL).9

In IT, security is always a major concern and has been well10

studied. Earlier works [1] have focused on discovering new11

security techniques, whereas more recent studies [2] have12

suggested that the security efficiency for the whole system13

is actually more important to make our lives safety and14

easier. To achieve security efficiency is to put as many system15

components in the security mode for communicating and16

processing. One issue for perpetually providing new secure17

services (e.g. e-commerce and sensitive communications,18

etc.) on many distributed devices is the new security aspects.19

Running large distributed devices and communicating among20

them will need several security mechanisms. Researchers21

have proposed various security techniques [2] usually22

incorporated too late into an application using ad hoc23

solutions. This raises several problems:24

• Integration of security mechanisms into a complete25

system is difficult and regards as a poor approach because26

many security properties emerge from the arrangement of27

all almost essential components of an application;28

• Failure to address security concerns (e.g. security system29

management, user sessions and roles management, etc.)30

from employing individual developers without concrete31

guidelines for building more stringent and robust applica-32

tions;33

• The security management applications for e-commerce34

and sensitive communications depend on distributed35

components and platforms;—Difficulty to meeting service36

security because few tools supports for security analysis37

and secure system design.38

These disadvantages can be tided, if wemanage significant39

concerns such as security communication management and40

information exchanges between components at architecture41

level that must be consistent and correct. Thus an efficient42

mechanism is provided making the security requirements43

easy to manage and associate with the intelligent design44

tool for discovering vulnerability points that require security45

techniques and implementation mechanisms between the46

components during system design. In this way, we can47

effectively SMSA: Security Approach for Model-Driven48

Security 3 satisfy security-related requirements and achieve49

robust configuration for system success.50

In this paper, we propose a Security Meta-model of Soft-51

ware Architecture (SMSA) for maintaining architectures co-52

herency by preserving consistency of distributed components53

throughout a (re) assembly or a (re) configuration. We provide54

a new set of common and generic architectural security ele-55

ments (domain: which gives a direct support of distribution56

components in several geographically remote sites, security57

services: which allows a complete a need of security, etc.) and58

various security connectors which allows to add semantic de-59

tails to architectural security elements and their interactions.60

These connectors incorporate the required security services 61

as well as qualitative extensions of those services to provide a 62

measure of QoS reflecting the evolution security needs of data 63

stream exchanged between components. Our approach pro- 64

vides the intelligent detection of possible vulnerability points 65

between components, and conducts mapping security con- 66

nectors among them. In this way, our approach can support 67

easy (re) assembly of components and connectors and robust 68

configuration for IT applications. Our contribution in this pa- 69

per includes: 70

• We define a Security Meta-model of Software Architecture 71

(SMSA), a software architecture meta-model that takes 72

into consideration the concept of security separately from 73

functional components by means of security connectors. 74

• Weproposemodel transformations for integrating security 75

connectors. 76

• We build a UML 2.0 profile for SMSA to define a complete 77

specification for integrating new concepts of security into 78

UML. 79

• We provide full support for supporting the UML 2.0 profile 80

for SMSA and semantics checking of architectural security 81

properties. 82

The reminder of this paper is organized as follows: 83

Section 2 presents the security concepts of SMSA software 84

architecture meta-model. Section 3 details how we propose 85

model transformations and vulnerability point detection to 86

include secure connector, which could adopt various security 87

techniques in one architecture model, to select best security 88

strategy that guarantees robustness of architecture model. 89

Section 4 details UML SMSA Profile. Section 5 provides a case 90

study described in SMSA. Section 6 discusses related work. 91

Section 7 concludes this paper and gives resources for further 92

reading. 93

2. SMSA metamodel 94

The intention is to include security issue at the architectural 95

design in a sole approach called Security Software Architec- 96

ture Meta-model (SMSA) benefits from a precise and common 97

vocabulary definition for design actors (architects, designers, de- 98

velopers, integrators and testers). SMSA approach specifies the 99

abstract architecture of components without implementation 100

details. They explicitly de- fine interactions between system 101

components and provide modeling support to help design- 102

ers to structure and compose the different elements. Obliging 103

components to communicate via secure connectors has num- 104

ber of significant benefits including: increasing reusability 105

(the same component can be used in different environments, 106

each of them providing specific security techniques (i.e. wa- 107

termarking technique, DCT-XOR technique, etc.) direct support for 108

distribution, mobility and connectivity of components. This 109

approach includes a composition description including de- 110

pendencies between components and communication rules 111

and separates a connector’s interface from its security behav- 112

ior. 113

Architectural Description Language (ADL) means three 114

C: Components, Connectors and Configurations [3]. Components 115

J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S X X (X X X X) X X X – X X X 3

Fig. 1 – Metamodel of SMSA approach.

represent the computational units and data storage in a soft-1

ware system. The interaction between these components is2

encapsulated by the connectors. A configuration corresponds3

to components and connectors instantiations. It binds them4

together in order to form the complete system. Some ADLs5

such as Rapide [4] or Darwin [5], for example, do not clar-6

ify the concept of connector. Other ones agree to hierarchi-7

cal description of the components. Components can be seen8

as white boxes and might contain subcomponents. In some9

ADLs such as Rapide, components are considered primarily as10

black boxes. In UniCon [6], Wright [7], Acme [8] and MMSA [9]11

we can define composite connectors, whereas it’s impossible12

in others ADL. In most ADLs we find the following:13

– The management of the non-functional concerns of14

components is ensured after the definition of the global15

architecture and the configuration of the components.16

– The management of assembly does not take into ac-17

count the vulnerability problems and the management18

risks caused by the distributed applications nature, which19

makes difficult the employment of security after configur-20

ing and deploying the application;21

– Few models are able to define new connectors with vari-22

ous services that ensure non-functional concerns of com-23

ponents (security, communication, conversion, etc.);24

– There is no automatic and direct correspondence between25

architectures (models) and its corresponding applications26

(instances).27

Fig. 1 presents a model of the SMSA (Security Software28

Architecture Metamodel) approach. SMSA supports number29

of architectural elements including components, connectors,30

configurations and domains.31

An important aspect of SMSA architecture is to offer a 32

container of various components of composite machine and 33

process in several configurations called domains. 34

The key role of configurations in SMSA is to abstract 35

the details of different components and connectors. A 36

configuration has a name and defined by interfaces (ports and 37

services). 38

Components represent the computational elements (Pro- 39

cess), user interfaces (Presentation) and data stores of a system 40

(Data). Each component may have an interface with multiple 41

security services. The interface consists of a set of points of 42

interactions between the component and the external world 43

that allow the invocation of services and is attached with se- 44

curity properties. A component can be primitive or composite. 45

Connectors represent interactions among components; they 46

provide the link for architectural designs. SMSA connector 47

is mainly represented by an interface and a security glue 48

specification. In principle, the interface shows the necessary 49

information about the connector, including the service type 50

that a connector provides (communication, authentication, 51

integrity and confidentiality). Connectors can be composite 52

or primitive. 53

Interfaces in SMSA are first-class entities. They provide con- 54

nection points among architecture elements. Likewise, they 55

define how the communication between these elements can 56

take place. A component/configuration interfaces connection 57

point is called port and a connector interfaces connection 58

point is Q3 59

2.1. SMSA component 60

The concept of component is used to represent any element 61

providing functionality within an application. In other words, 62

4 J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S X X (X X X X) X X X – X X X

any feature that is part of the logic application is explicitly1

supported by a component [10]. A component can represent2

a complex application that consists of other less complex3

applications. It can also be a feature as a simple arithmetic4

operation.5

In our meta-model we distinguish three types of SMSA6

components: Presentation, Process and data which help us to7

detect vulnerability points that require consideration of se-8

curity. SMSA component is described by two interfaces (pro-9

vided and required) and a set of services that are presented in10

the form of actions and events.11

The component interface (Fig. 1) is the definition of a12

set of interaction points between the component and the13

external environment; it forms what are known as protocols.14

SMSA extends the concept of interface as defined in most15

other ADL by a set of security services of different types16

(authentication, integrity, and confidentiality). Indeed, a service17

can be provided or required by the interface. Provided service18

must be implemented by the component that exposes the19

interface and required service is required by this component.20

The interface of SMSA component describes ports,21

through which they communicate. For example, a component22

of DATA type may have two ports, one for consultation and one23

for the update.24

2.2. SMSA connector25

The main element of our proposal is the connector, which is26

the key communication structure between components. The27

semantic connection is not only the exchange of information28

or the invocation of component services, but also the proposal29

of solutions to address security issues between the business30

components in order to avoid changes to system functional-31

ity. The connector is a first class entity because he does not32

play the traditional simple role related to communication, but33

it also includes security insurance of data flows exchanged.34

There are two types of connector:35

• Communication connector: The communication connector36

provides a connection for exchanging information be-37

tween business components. We find this type of connec-38

tor between two components residing in the same address39

space.40

• Security connector: The role of the security connector is to41

ensure a secured exchange of data between components.42

This function applies according to security aspect used43

and controlled by the QoS manager. It can parameterize44

security services according to sefety needs of components45

and the environment in order to ensure proper delivery46

of data flow (see Fig. 1). This type of connector connects47

tow components that are encapsulated in two different48

abstraction spaces (processes, machines, composite).49

For example if a manufacturer component provides50

important information in a buffer and another component51

consumes contents of this buffer. The encryption and52

decryption of data is provided by a connector because the two53

components are not in the same process.54

The SMSA connector also includes two parts: the first is55

the visible part: the interface describing the roles of partici-56

pants in an interaction. These roles de- fine communication57

modes (synchronous, asynchronous and continuous) and connec- 58

tion types (e.g. GPRS, WAP, MMS, etc.) connection between 59

components. The second part is the glue that implements 60

security mechanisms for communication/exchange of infor- 61

mation and services for securing and managing QoS of com- 62

ponents. 63

A SMSA connector is defined by two interfaces Input/Output 64

and glue which are represented by three managers: commu- 65

nications, security and QoS. It manages the data transfer 66

between components and allows security operations. An in- 67

terface required/provided of a connector consists of a set of 68

roles. Each role serves as a point through which the connec- 69

tor is connected to a component. Thus two components can 70

be linked by a connector, furthermore two connectors can be 71

linked together to ensure complex securities. For the connec- 72

tor, the glue was enriched by a security manager that works 73

with a service quality manager to ensure the security task. 74

The security manager is a set of security services that cooper- 75

ate to achieve security. 76

2.3. SMSA configuration 77

An architectural configuration (or just architecture or system) 78

is a graph that shows how a set of components are connected 79

to each other via connectors. The graph is obtained by 80

combining ports of components with roles of connectors that 81

are suitable to build the application. 82

The goal is to abstract details of configurations of var- 83

ious components and connectors (restricting components ac- 84

cess through interfaces). Configuration has a name and can 85

have an interface represented by components interfaces pro- 86

vided/required oriented to/from external environment and a set 87

of services encapsulated in components. A composite is a unit 88

of description of a configuration and entity structuring an 89

application into cooperating components. The composite is 90

considered as a hierarchy of component types where the 91

root represents the application. A composite is a set of ma- 92

chines. Each machine executes a process that composed of 93

sub components. These elements (Composite, Machine, Process, 94

and Component) may be very useful to guide the security pro- 95

cess. In a configuration, SMSA determines two types of con- 96

nections: 97

• Attachment: a communication link between a port of a 98

component and a role of a connector. A component needs 99

a minimum of a connector to communicate with another 100

component; however it can use more than one connector 101

according the complexity of the security task. 102

• Delegation: a communication link between a port of a prim- 103

itive component and a component of a composite port of 104

the same type. An atomic component communicates only 105

through its extern composite. So, SMSA approach supports 106

implicit delegation in their configuration. 107

The particularity of our ADL is that it is dedicated to 108

the structural description of the architecture at different 109

hierarchies of abstract spaces via the concept of domain. 110

2.4. Domain 111

An important element in our approach is the concept of do- 112

main. A domain is direct support of distribution. It defines

J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S X X (X X X X) X X X – X X X 5

Fig. 2 – Deployment metamodel.

the distribution of components in several geographically re-1

mote sites. A domain can contain one or more composite and2

one or more machines, each with the process in a system. All3

components are running in one or more processes (Fig. 2).4

To illustrate the concept of the field and the dispersion5

of components in composites, machine and processes, we6

present an example (Fig. 3) which describes an area with three7

composites and three machines. The composite consists of8

five components distributed over three processes in two dif-9

ferent machines. The other composite, shown in the lower10

part, performs all components on three processes, dividing11

them into two separate machines. Communications between12

its different components, whether in-process, inter-process,13

or intermachine [11]. The concept of domain is used in our14

approach, which gives us an assembly structure wider than15

the composite; it also provides multiple spaces of abstraction.16

These areas include them when the components depending17

on its location and related to other components. In other18

words, the concept of area providing perimeters of coopera-19

tion between component and allows the detection of points20

that need to take account of security. The concept of domain21

at brought much for SMSA, especially in the choice of secu-22

rity connectors that allow the consideration of environment’s23

constraints when designing the application architecture.24

2.5. SMSA connector taxonomy25

Several ADLs have been proposed. However, except for26

Ren [12] and xADL language [13], most ADLs not support secu-27

rity description of architectural elements. In addition, most of28

them are not formally defined. Compared the description to29

other ADLs [7,14], connectors can be composite or primitive as30

well as ensuring security services. Connectors are a descrip-31

tion of the communication and the security among compo-32

nents.33

Connectors in SMSA are first-class entities. The key role34

of connectors is to provide secure interactions between com-35

ponents. Connectors can be composite or primitive. Fig. 436

presents the Meta-model of our SMSA connector. The Con-37

nector is mainly specified by two interfaces and a glue speci-38

fication. There are two types of interfaces: input and output.39

A glue specification defined three managers: communications,40

security and quality of service.41

They manage the data transfer and the security among42

components. Connector interface required/provided consists43

of a set of roles. Each role provides the link between the con-44

nector and the component. Consequently two components45

Fig. 3 – Example of domain.

Fig. 4 – Description of SMSA connector.

can be linked by a connector, so that two connectors can be 46

related together to create complex security task. We have also 47

extended the glue by a security manager which cooperates 48

with a QoS manager to ensure the security task. This secu- 49

rity manager is a set of security services that cooperates to 50

achieve security. 51

Three types of security aspects can be realized in software 52

architectures: authentication, confidentiality and integrity. 53

SMSA approach offers two services. The first one is to 54

detect possible interaction points that require security. The 55

second service allows a semantic integration of secure 56

connectors between insecure components. There are two 57

types of connectors: communication connectors and security 58

connectors. Communication connectors are used to link 59

two components that are encapsulated within a same 60

process. Security connectors are used to express security 61

interactions among components. We distinguish three types: 62

Authentication, Confidentiality and Integrity. 63

Authentication connector: Typically is installed between two 64

components have same composite and running on two 65

6 J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S X X (X X X X) X X X – X X X

(a) Structure of authentication
connector.

(b) Structure of confidentiality
connector.

(c) Structure of integrity connector. (d) Structure of simple connector.

Fig. 5 – Taxonomy of connectors.

different machines. Authentication connector is composed1

of three managers: the communication manager, the QoS2

manager and the security service manager that proofs the3

data subject’s identity and ensures compliance with data4

protection.5

Confidentiality connector: assure that the information is6

shared only among authorized components that share the7

same privileges and access rights. Usually is installed be-8

tween two components located in two different processes or9

between a DATA component and a PRESENTATION/PROCESS10

component. This connector involves the implementation of11

encryption/decryption service of exchanging data flow.12

Integrity connector: Integrity Connector provides fingerprint13

services such as MD5 to protect against malicious persons or14

software. Usually is installed between two components have15

different composites.16

Simple connector: Usually is installed between two compo-17

nents have the same process at the same machine. It pro-18

vides a link between two components and consist a simple19

communication (see Fig. 5).Q420

3. Proposed transformations21

Security is a principal consideration when designing, imple-22

menting andmanaging communications and information ex-23

changes. To meet security of software components, we must24

include security considerations at a high level of design. Se-25

curity can be considered from different views, e.g. security26

on the level of the user presentation interface-GUI, security27

on the level of the network and security on the level of the28

process level. At the GUI layer, security problems occur when29

the presentation component is not enabled for visual sensi-30

tive data filters over unknown persons.31

Several services attacks that occurs at the network layer,32

when a malicious software agents joins the network; it aims33

and targets the information identity in such a way that it34

will update the flow of data traffic. At the process layer, it is35

possible to connect process component with un-trusted data 36

component. Managing these problems at an architectural 37

level provides developers with security mechanisms to guide 38

in security development process. 39

3.1. Vulnerability point detection 40

To ease vulnerability point detection and to automatic inte- 41

grate more accurately a secure connector, we have included 42

components into processes, processes into machines, ma- 43

chines into composites and composites into domains and as- 44

signment of graphical notationwith different colors to each of 45

them. In this way, SMSA makes the detection of vulnerability 46

points that requires security easier and automatic. Its visually 47

identified by different colors assigned to each container types. 48

Table 1 serves as guide that contains some security directives 49

for solving the detected vulnerability points. The detection is 50

done automatically by the checking of the constraints of con- 51

tainer and colors. For instance, a JAVA component needs to 52

communicate with SQL DataBase and NoSQL un-trusted data 53

items, which are a composite running into another machine 54

of JAVA component. Security connectors can be used to pro- 55

vide non-functional concerns of these components (e.g. con- 56

fidentiality and authenticated access right). 57

3.2. Architectural transformations 58

Once the vulnerability points are detected the transformation 59

can be implemented. In order to better support security 60

design and to better reduce design efforts, we propose a set of 61

architectural transformations to integrate secure connectors 62

types with different security strategies and QoS.We start with 63

a global architecture without secure connectors and then we 64

include our proposed secure connectors. 65

Three transformations according components’ container 66

are proposed to guide designer to securely system at an archi- 67

tectural level. These transformations are: Confidential connector 68

at Provided/Required Ports, Integrity connector at Provided/Required 69

Ports, and Authentication connector at Provided/Required Ports. 70

J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S X X (X X X X) X X X – X X X 7

• Confidential connector at Provided/Required Ports: This trans-1

formation place the confidentiality connector between two2

components in two different processes or before a data3

component at architectural level. The preconditions of the4

transformation are the existence of components of differ-5

ent processes. Specifically, the confidentiality connector is6

required to secure communication only between two com-7

ponents to their own confidential properties over an open8

networked environment. In order to change the param-9

eters of security services to provide adequate quality to10

component needs, the QoS manager controls the security11

manager in its work at runtime. It’s possible to combine12

several connectors which implements hierarchical infor-13

mation based encryption.14

• Authentication connector at Provided/Required Ports: Several15

malicious nodes are present to perform its malicious16

activities (e.g. update data identity) at the network17

level. If we use same composite that can host both18

components between two different machines, then the19

interaction point requires the authentication transmission20

of data. The preconditions of the transformation are two21

components which have different machines for the same22

composite.23

• Integrity connector at Provided/Required Ports: Various ser-24

vices invocations among components of different compos-25

ites require integrity properties. It’s possible to place in-26

tegrity connector between components that implements27

data flow interceptors for fingerprinting and signing. Such28

a transformation helps maintain consistency with corre-29

sponding composites and contributes to a compliant sys-30

tem implementation.31

4. SMSA UML profile32

The primordial interest of defining a UML 2.0 profile for SMSA33

is to represent SMSA concepts using the UML 2.0 notations34

and therefore to formally model SMSA software architecture35

and for the long run to integrate software architecture in36

the framework MDA (Model Driven Architecture), which unifies37

all modeling approaches. The use of stereotypes, constraints38

and tagged values permit to capture the semantics of SMSAs39

architectural concepts. Thus, the advantages provided by the40

UML 2.0 profile permit to define a complete specification41

to structure SMSA software architecture and to achieve the42

mapping of SMSAs architectural concepts into UML 2.0.43

We define the security aspects of the SMSA meta-model44

using UML 2.0 profile. The UML 2.0 profile provides a rigorous45

verification of architectural elements security. Each service46

is provided by component (i.e. configuration) and its global47

security is provided by UML 2.0 SMSA connectors. We decide48

to use the UML standard metamodel in order to profit from its49

advantages:50

• To profit from the precise semantics of UML notations and its51

powerful model abstraction for describingmore stringent and52

robust security mechanisms of the entire system;53

• To profit from variety of UML tools, Eclipse, NetBeans, this54

aims to describe the concepts at the top level and the initial55

glossary (for easy communication);56

Table 1 – Model transformations.

Container Before
transformation

After
transformation

Process

Machine

Composite

• To profit from variety of UML tools, for designing security 57

properties meet our needs, then composing and deploying 58

robust services for IT applications; 59

• To profit from OCL to check the consistency of the SMSA model 60

with the semantic constraints defined by the profile and 61

OCL language is useful for architecture revision in case of 62

inconsistency. 63

To specify this profile, we adopted the common rules 64

described in [3]. They define the following technical aspects: 65

– Identification of the UML subset for the introduction of 66

new construction; 67

– Description of stereotypes and tagged values introduced; 68

– Description semantics of these new buildings; 69

– Description of usage constraints: constraints are ex- 70

pressed in OCL; OCL expresses constraints on the known 71

UML elements (e.g. component, classes, attributes, and 72

associations). This section is devoted to the technical 73

definition of UML-profile for SMSAmetamodel. Such a pro- 74

file includes a set of stereotypes and a set of OCL con- 75

straints applied on UML2.0 meta-classes. The UML profile 76

for the SMSA description language is based on four pack- 77

ages (SMSA components package, SMSA interfaces pack- 78

age, SMSA security Package, SMSA Composition Package) 79

detailed as follows: 80

4.1. SMSA components package 81

This package provides support to represent the functional 82

part of component regardless of their environment. The 83

8 J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S X X (X X X X) X X X – X X X

Fig. 6 – SMSA components package.

Fig. 7 – SMSA interfaces package.

most important concept of this package is the stereotype1

SMSA-Component. In SMSA, component is described as a2

UML class stereotyped “SMSA-Component” these bodies are3

similar to instances of UML component. SMSA component4

may provide services through ports connected to the interface5

input/output. This component hasmultiple types stereotyped6

as “Presentation”, “Process” and “Data” (see Fig. 6).7

Wehave added tagged-values to capture “SMSA-Component”8

semantics and to distinguish between component types. We9

have also defined the value of each tagged value related to10

each component type. The SMSA component must have at11

least one interface component. This constraint can be de-12

scribed in OCL as follows:13

14

4.2. SMSA interfaces package15

In our metamodel, the package interface defines two types16

of interfaces: component interface and connector interface which17

are extensions of the port class of UML and are stereotyped18

Fig. 8 – SMSA connectors package.

“Component-Interface” and “Connector-Interface”, indicating 19

that the constraints on the relation-port interface in UML is 20

not the same in the SMSA metamodel (see Fig. 7). 21

In SMSA, component interface has a set of Input/output 22

ports. A UML Port which has multiple interfaces (provided 23

or required) and supports bidirectional communication, 24

matches SMSA interfaces. SMSA components interface must 25

have at least a port stereotyped “Input-Port” or “Output-Port”. 26

This constraint can be described in OCL as follows: 27

28

We distinguish in the metamodel SMSA two types of 29

interactions points: input port and output port. Each service 30

required (provided) by a component must be expressed 31

by input port (output port) of its corresponding required 32

(provided) services. The class Port of UML represents SMSA 33

ports in the UML metamodel 2.0 and each one is associated 34

with a stereotype. 35

4.3. SMSA security package 36

4.3.1. SMSA connectors package 37

Components and connectors in SMSA have the same level of 38

abstraction and are explicitly defined. Thus, we include in the 39

UML profile two stereotypes: a stereotype to represent the 40

concept of component “SMSAComponent” corresponding to 41

the component class of meta-metamodel and UML stereotype 42

representing the concept of connector “SMSA-Connector” 43

corresponding to the meta-class Class UML metamodel (see 44

Fig. 8). 45

A security connector is a mediator between two hetero- 46

geneous components or component and a connector that 47

does not have same SMSA interface. A UML class, which 48

has at least two interfaces (provided and required), and class 49

“Security-Glue” matches SMSA connector. We have added a 50

tagged-value Security-Type that allows the distinction between 51

different security connector types. 52

J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S X X (X X X X) X X X – X X X 9

The designer can specify security properties which can1

be an expression which refers to additional constraints2

and restrictions. These constraints are expressed in OCL as3

follows:4

5

4.3.2. SMSA connector interface6

A connector interface contains a set of roles. They provide7

connection points among components. Roles interfaces have8

security services that guarantee data securities of the com-9

ponent with which they are associated. There are two types10

of roles: required role (or InputRole) and provided role (or Out-11

putRole). SMSA Role only supports one-way communication.12

SMSA role can be used only in one oriented direction (pro-13

vided/required).14

15

4.3.3. SMSA security glue16

A glue specification define a connector’s behaviour: is a17

way in which to receive data on certain roles, secures18

them according to three security techniques (authentication,19

confidentiality and integrity) and produces on those roles. The20

Glue indicates how the behavior of the roles corresponds21

to ensure a complete interaction. Likewise, they define22

three managers: communication manager, security manager23

and QoS manager work together to ensure the interaction24

between components. The SMSA glue concept is relative to25

the UML Class in which it provides communication between26

components, but it remains defining its semantics with the27

following OCL constraint:28

29

4.3.4. SMSA attachment 30

Attachments define the link between two roles or between 31

a provided port (or a required role) and a required role (or 32

a provided role). A UML assembly connector corresponds to 33

the SMSA concept Attachment. This constraint is expressed 34

in OCL as follows: 35

36

4.3.5. SMSA delegation 37

Delegations define the link between ports of the same type 38

(required/provided) of a component and its container (compos- 39

ite). Delegation allows of related interface components made 40

of composite with the interface of this last. This constraint is 41

expressed in OCL as follows: 42

43

4.4. SMSA composition package 44

In SMSA, there are four types of composition that encapsulate 45

different architectural elements together: process to compose 46

components, machine to encapsulate processes, composite to 47

encapsulate machines and domains to encapsulate composites. We 48

consider these compositions as special types of UML Class 49

(Fig. 9). 50

10 J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S X X (X X X X) X X X – X X X

Fig. 9 – Composition package.

4.4.1. SMSA composite1

An important aspect of the SMSA architecture is the compos-2

ite as graph of components and connectors. As a UML com-3

ponent can contain sub-components and sub-classes, the4

composite SMSA are mapped to a graph with SMSA machine5

following this constraint:6

7

4.4.2. SMSA machine8

In our approach, applications are modeled as distributed sys-9

tem consisting of a set of computing machines deployed in10

different locations in a target environment. On each SMSA11

machine, there are several SMSA processes available for com-12

puting and several connectors available for communication13

and safety. This semantic feature is described in OCL as fol-14

lows:15

16

4.4.3. SMSA process17

SMSA processes are abstractions that include primitive18

components interconnected together by connectors (simple or19

secure). Since a UML component can contain subcomponents20

and subclasses, SMSA processes are mapped into UML21

components with the following constraints:22

23

5. Validation industrial case study 24

5.1. The SAGE system 25

In our study, our metamodel was used in the process of de- 26

veloping a phosphate support system (SAGE) for the com- 27

pany FERPHOS, i.e. PIS (FERPHOS Information System). The SAGE 28

system covers three activities: human resource management 29

and pay provider, formations, invoice and finances provider. 30

The SAGE system is ease management of 300 workers in the 31

society. Goal of the company FERPHOS security is to allow a 32

user with known identity and correct access rights to ma- 33

nipulate the SAGE system. The SAGE system is modeled as 34

a components diagram in UML 2.0 consisting of four applica- 35

tions, each application as a components sets. These applica- 36

tions deployed on different devices in a target environment, 37

connected by wireless or fixed line communication networks. 38

Basically, a main component (e.g. Consolidate GUI) receives 39

its results from a Treatment Consolidate component with 40

itself receives its data from all database components 41

(e.g. Consolidate DataBase, personal and human resource DataBase, 42

Immobilier DataBase, Invoice and Finance DataBase). Simple 43

connectors are used between those components to exchange 44

data and informations. 45

We have proposed a UML diagram corresponding to the 46

SAGE system illustrated in Fig. 10. Table 2 shows an overview Q5 47

of the SAGE system in SMSA. 48

The security goals of the company FERPHOS are summa- 49

rized as follows: 50

• Prevention: all of 19 components of the SAGE system 51

should be compliant with the occurrence of unwanted 52

security problems. 53

• Correction: an integrated security management process 54

and strategies could protect each service of the SAGE 55

system related to each component. 56

• Analysis: requirements of security goals should be 57

analysed with the consideration of FERPHOS-specific 58

characteristics. 59

• Detection: identification of vulnerability events during the 60

design phase or after they are occurred. 61

5.2. Architecture modelling and transformations 62

It’s essential to consider security aspects of the company 63

FERPHOS at a high level of design, the SMSA metamodel is 64

practically significant as well related to security aspects of 65

SAGE system. We start with a global architecture without 66

J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S X X (X X X X) X X X – X X X 11

Fig. 10 – SAGE system in UML 2.0.

Table 2 – Containers of components.

Application and services SMSA components types
Process Data Presentation

HR management

GRH_Treat

PGRH_DB

Service:
• HR affectation
• Needs analysis GC_GUI
• Personal selection GT_GUI
• HR planning GF_GUI
• Formation planning
• Time map design

Pay application
Service:
– Payment

Pay_Treat P_GUI
– Salary augmentation

Finance application
Services:
• finance planning F_Treat FC_DB F_GUI
• Cash prediction C_Treat I_DB C_GUI
• Needs analysis I_Treat
• Success/failure analysis I_GUI

Consolidation
Service:
• Finance planning Cs_Treat Cs_DB Cs_GUI
• Cash prediction
• HR planning

secure connectors and then we include our proposed secure1

connectors.2

Later in Section 5.3 (see Section 5.3), we will illustrate3

how our strategy of mapping can be used; we apply it to the4

SAGE system. Fig. 10 illustrates the description of the system5

using SMSA. Fig. 11, shows the architecture in UML 2.0 afterQ66

applying the profile.7

The security goals of the company FERPHOS are summa-8

rized as follows:9

– First, the SAGE architecture was modeled using SMSA 10

using a set of components types (e.g. data, process and 11

presentation). Each component type belongs to a col- 12

ors class. For example, in Fig. 11, bleu color can be 13

used for presentation components: Personal GUI and Pay 14

GUI respectively. Fig. 10 shows a SAGE domain with 15

10 machines and 19 components (e.g. in the category 16

Data we find 4 databases, in the category Process we find 17

6 components and in the category Presentation we find 9 18

components); 19

12 J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S X X (X X X X) X X X – X X X

Fig. 11 – Description of the SAGE application in SMSA. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

– We define processes to include k components sets for dif-1

ferent applications, processes set deployed into machines,2

machines into composites and composites into a SAGE do-3

main. Different colors are assigned to each of them related4

to container types of the SAGE system. For example, in5

Fig. 10, on the top-left, 4 bleu components that run in 46

processes on 4 machines, on the bottom-left, one finds 27

yellow presentations in one processes and a single data in8

another process but on the same machine;9

– Finally, the designer finishes the encapsulation when all10

components are settled, leaving the component architec-11

ture as the SAGE domain.12

The uses of graphic notations make the detection13

of vulnerability points that requires security easier and14

automatic. For each container of the SAGE components, if it is15

described by different processes, the interaction point among16

components requires the confidentiality connector. But if we17

use same composite that can host both components, then the18

interaction point among components requires authentication19

connector. In the context of integrating SMSA connector20

types, it is necessary to respect the structural and semantic21

features of SMSA that mean for:22

• Authentication connector: we integrate the authentication23

connector explicitly between two machines in the same24

composite.25

• Confidentiality connector: we integrate the confidentiality26

connector explicitly between two components in two27

different processes or before a data component.28

• Integrity connector: we integrate the integrity connector 29

explicitly between two composites. 30

For example, in Fig. 10, authentication connector C1 used 31

for P1 and P2 respectively. In order to better represent SMSA 32

connectors with respect of some criteria such as visual clarity, 33

it is essential to well distinguish between connector types by 34

colors assigned to each one of them. This is themotivation for 35

our security sentient integration strategy. The set of security 36

connectors provided in Table 3 make the 19 SAGE related 37

components secure. 38

5.3. SMSA-UML 2.0 visual plug-in 39

We have implemented the SMSA metamodel in IBM Rational 40

Software Modeler for Eclipse 3.1. In this section, we show 41

how we build up a mapping environment, the consideration 42

for integration SMSA concepts into UML 2.0 and present 43

the evaluation results for SMSA concepts. With SMSA- 44

UML mapping environment, the following features may be 45

performed on the modeled system: 46

– Checking the structural coherency of a given system and 47

to validate its semantics with SMSA approach. 48

– Providing an easy way to describe complex software 49

architectures in one easy-to-use visual editor and 50

diagramming facilities. 51

– Deriving architectural security constraints form security 52

requirements. 53

J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S X X (X X X X) X X X – X X X 13

Table 3 – Security connectors for SAGE.

Container type SAGE elements Connector type

Same process
PRH_DB

Integrity connector
RH_Treat P_Treat

Different processes
P_GUI

Confidentiality connector
P_Treat

Same machine

Different machines
PRH_DB, FC_DB, I_DB

Authentication connector
Cs_Treat

Same composite with different processes
I_GUI

Integrity connector
I_Treat

Different composites
PRH_DB

Authentication connector
Cs_Treat

Different machines, processes and
composites

F_GUI Composition of authentication, confidentiality and integrity
connectors

– Implementing most architectural security concepts (data1

ports, user defined connectors, structures such as2

configurations of complex components and complex3

connectors).4

– The detection of heterogeneity is done automatically by5

checking of the constraints of formats and data type.6

– Providing a more suitable representation of security7

connectors which are defined at the meta-level (Class8

concept of UML 2.0) rather than using a simple attributes9

for this purpose.10

Fig. 12 shows the final mapped of the SAGE system in11

UML 2.0 after applying the profile. The model is tested and12

validated with the semantic constraints defined by the profile.13

5.4. Comparison and lessons learned14

For evaluation of our approach, we designed more compli-15

cated systems with/without model transformations (see Sec-16

tion 3.2). We have performed these experiments on a Laptop17

running Windows 7 (x64) with 6 GB of RAM and i7-2630QM18

quadruple coreprocessor (2 GHz). The architect can use our19

graphical tool provides to compare the performance and se-20

curity risk values for various architectures. We provide easy21

and quick access to the required security connectors.22

After some performance tests, we concluded that SMSA23

UML profile constraints execution gets alarmingly slow when24

the system grows in components instances as can be seen in25

Table 4. Once this problem was detected, we decided to use26

our JAVA implementation to integrate security connectors.27

After determination of the components container, the system28

integrates required security connectors. This made the29

checking time considerably faster by applying each rule30

separately. Moreover, the execution time remains constant31

at any model size. This experiment enables architects to32

gain insights into performance and security tradeoffs in their33

architectures.34

Our approach currently gives only an answer of vulnera-35

bility point’s detection architectures retrieved from structural36

contexts. It does not identify the behavior source of vulnera-37

bility attacks as the result of a virus.38

Table 4 – Performance results.

Case 1: Secure electronic transaction system (components size = 4)

OCL rules without model
transformation

Elapsed time: 989 ms

OCL rules with model transformation Elapsed time: 427 ms

Case 2: Secure client/server system (components size = 7)

OCL rules without model
transformation

Elapsed time: 9975 ms

OCL rules with model transformation Elapsed time: 1487 ms

Case 3: Parking access control system (components size = 11)

OCL rules without model
transformation

Elapsed time:
12 613 ms

OCL rules with model transformation Elapsed time: 2613 ms

6. Related work 39

In modern applications, security is always a major concern 40

and has been well studied. Earlier works [1] has focused on 41

improving security on quality development process, whereas 42

more recent works have suggested that the security strategies 43

for the whole system is actually more important to generate 44

more stringent and robust systems [15–18]. 45

A common strategy [7,19–26] to achieve ease security 46

integration is to use of well-known languages (ADLs, UML) 47

and a clear separation between functional concerns from 48

non-functional concerns of a system. We mainly distinguish 49

two categories of approach: Component-Based Software 50

Engineering (CBSE) and Service-Oriented Architecture (SOA). 51

In the first case [7,22,23,20] focus on the static structure of the 52

system: the software elements are components assembled by 53

connectors in configurations. Whereas in the second case [25, 54

23,20,19] focus on the functional structure of the system: 55

the software elements are functionalities (services) linked by 56

relations of collaboration or combination. 57

Modern applications are more and more developed 58

according to ADL-based development processes [21]. It 59

proposes security analysis and verification of security 60

properties (e.g. availability, confidentiality and integrity) early 61

at architecture level while meeting the system requirements 62

on the number of components for each service at the design 63

14 J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S X X (X X X X) X X X – X X X

Fig. 12 – SAGE system in UML 2.0 after transformation.

time. ADLs can be classified in three different categories [27]:1

ADL without connector, ADL with a set of predefined2

connectors and ADL with explicit connector types. Several3

ADLs consider connectors as first-class entities such as:4

Wright [7], ACME C2 [8], XADL [13], AADL [28], etc. These ADLs5

points a major impact on how architecture is practiced and6

how components and connectors are reused. In our approach,7

we support the definition of security connector types8

explicitly and independently of any particular use of them9

and to support them with the ability to specialize them in10

which system is being used are changing in significant ways.11

Most of existing ADLs such as SPT-UML [29], MARTE [24],12

Fractal [30], SCA [31], Kmelia [20] and AADL [32] do not support13

security description of data flow among components to their14

locations during the design phase. In addition, most of them15

are not formally defined. However, except for architecture16

meta-models proposed by Marcel and al. [33,34] which sup-17

port security entities updates and security services at model18

level. Another approach, C3 (Component Connector Config-19

uration) [27] proposes taxonomy of connectors with better20

visual clarity, namely logic-based and physic-based; to au-21

tomatic generate physic architecture for each application in-22

stance and to fulfil various connections among components.23

It supports three levels modeling defined by the OMG [24]. But24

this work supports neither security connectors nor security25

transformations out.26

In [35], authors discussed how to use UML to specify au-27

thorization constraints and to specify access control-based28

informations. It can be exploited for generating architectures 29

instances playing security roles. Nevertheless, since OCL is 30

an important factor of how analysis security properties of a 31

system. Basin et al. [36] studied the OCL oriented mapping. 32

Compared to our work, our approach offers a very high level 33

modeling and considers several security concepts (e.g. secu- 34

rity connectors, composite, domain, and service security). 35

[36] propose a components diagram in UML 2.0 for describ- 36

ing port types (required or provided) of the system and then 37

exploit SysML to define data flow direction. Its approach al- 38

lows a well description of different interfaces, but disagrees 39

in the more integration of explicit security connectors avail- 40

able in SMSA. Other approaches [37,38] consider a data flow in 41

embedded systems with security mechanisms as an impor- 42

tant feature of how secure system could be. Previous works 43

done by Menzel et al. [39,40] rely on high-level metamodel to 44

define service-oriented security intensions such as trust rela- 45

tionships, identity provisioning, and confidentiality and how 46

to transform them on UML using a set of stereotypes. This 47

work not provides security connectors as mediator between 48

heterogeneous services and does not provides a formal anal- 49

ysis to validate transformation process. [40] studies various 50

security problems related to SOA environments and provides 51

an optimal solution to integrate security at the design time 52

for SOA applications using Model Driven Development. 53

Our SMSA Plug-in can be compared with similar archi- 54

tecture tools, such as AcmeStudio [41], COSABuilder [42] and 55

J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S X X (X X X X) X X X – X X X 15

UML 2.0 Profile for C3 [27]. Indeed, these two applications al-1

low graphical representation of architectures and automatic2

security constraints verification of models using OCL stan-3

dard. The use of SMSA-Plugin offers number of advantages4

compared to these tools, including:5

• The extension of existing UML profiles to include explicit6

security aspects such as security connector types. It7

enriches profiles with semantic constraints at a high8

level of abstraction accurate the generation of robust9

configuration;10

• The automatic vulnerability point detection that solves all11

the problems of security through visual semantic rules12

defined on components containers (domain, machine,13

composite, and process);14

• The component services which violate security properties15

filtered at a high level of abstraction, making our16

development process easier and robust;17

• The visual design of system can be customized to make18

it more suitable for particular user security needs and a19

particular domain area;20

• In summary, from previous comparison, we believe that21

is good for electronic commerce system and sensitive22

communications) that need to support security mapping,23

security policies and QoS management at architecture24

level.25

7. Conclusion26

This paper presents a generic metamodel for integrating and27

managing security flow-based IT applications on distributed28

environments. Our work proposes to integrate security con-29

nectors at a high level of design by using distribution concepts30

(e.g. domain as a very important components assemblies and con-31

figurations). Since security is often to be considered to be one32

of the most important concerns for IT applications, we have33

designed a transformation strategy from insecure system to34

secure system that will minimize the total design costs for35

secure communication. We detect vulnerability points of sys-36

tem at the architecture level, and define transformation rules37

to integrate security connector types for secure system archi-38

tecture to make security services co-assemblies.39

To profit from the advantages of SMSA including the ex-40

plicit definition and support of security connectors, a direct41

transformation strategy from SMSA to UML 2.0 in needed. We42

define the UML 2.0 profile for SMSA that can be integrated43

in MDA. This profile contains a set of stereotypes which all44

tagged values and OCL constraints to grantee correct map-45

ping of robust systems. Our contributions can be used as46

a support to guarantee security aspects for the numerical47

resources (DAM: Digital Asset Management) at architectural48

level. Such applications handle a wide variety of media, and49

communicate with users through various platforms (Smart-50

phones, tablets, desktops, laptops, etc.. . .). SMSA can bring an51

effective solution to DAM development. Especially in parts of:52

acquisition, processing, distribution and content use. SMSA53

provides way to talk objectively about security problems of54

media contents. Their security connectors have many im-55

portant properties: for instance it improves various security56

properties by managing QoS and reconfiguring connectors at 57

the execution level. 58

Our future works will be the integration of security policies 59

and QoS management and the integration of SMSA profile in 60

the approach MDA (Model Driven Architecture) to ensure the 61

automatism of the process of transformation 62

Uncited references 63

Q7

[43] and [44]. 64

R E F E R E N C E S 65

66

[1] ISO/IEC 27000, Information technology and security tech- 67

niques, 2014. http://www.iso.org/iso/. 68

[2] B. Issac, N. Israr, Case studies in secure computing, Achiev.
Trends (2014).

Q8 69

[3] J. Magee, J. Kramer, Dynamic structure in software architec- 70

tures, in; Proceedings of the Fourth ACM SIGSOFT Sympo- 71

sium on Foundations of Software Engineering, FSE’96, San 72

Francisco, USA, 1996, pp. 3–14. 73

[4] D.C. Luckham, J.L. Kenney, L.M. Augustin, J. Vera, D. Bryan,
W. Mann, Specification and analysis of system architecture
using rapide, IEEE Trans. Softw. Eng. 21 (4) (1995) 336–355.

74

[5] N.R. Mehta, N. Medvidovic, S. Phadke, Towards a taxonomy
of software connectors, in: ICSE’00, ACM Press, 2000,
pp. 178–187.

75

[6] David A. Basin, J. Doser, T. Norderstedt, Model-driven
security: From UML models to access control infrastructures,
ACM Trans. Softw. Eng. Methodol. 15 (1) (2006) 39–91.

76

[7] R. Allen, D. Garlan, A formal basis for architectural
connection, ACM Trans. Softw. Eng. Methodol. 6 (3) (1997)
213–249.

77

[8] D. Garlan, R.T. Monroe, D. Wile, Acme: Architectural
description component-based systems, in: Foundations of
Component-Based Systems, Cambridge University Press,
2000, pp. 47–68.

78

[9] M. Derdour, R. Roose, M. Dalmau, N. Ghoualmi Zine, A. Alti, 79

MMSA: Metamodel multimedia software architecture, Adv. 80

Multimed. 2010 (2010) 17. 81

http://dx.doi.org/10.1155/2010/386035. Hindawi Ed., Article 82

ID 386035. 83

[10] Society of Automotive Engineers, Architecture Analysis & 84

Design Language, AADL, 2008. 85

[11] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, AddisonWesley Publishing Company, 1997.

86

[12] R. Roshandel, N. Medvidovic, Multi-view software component
modeling for dependability, in: Architecting Dependable Sys-
tems II, in: Lecture Notes in Computer Science, (ISSN: 0302-
9743), vol. 3069, (ISSN: 0302-9743), 2004, pp. 286–304.

87

[13] E. Dashofy, A.v.d. Hoek, R.N. Taylor, A comprehensive
approach for the development of XML-based software
architecture description languages, ACM Trans. Softw. Eng.
Methodol. (TOSEM) 14 (2) (2005) 199–245.

88

[14] OMG, Unified Modeling Superstructure, 2006, 2000. 89

http://www.omg.org/docs/ptc/06-04-02.pdf. 90

[15] G. Georg, I. Ray, R. France, Using aspects to design a
secure system, in: The 8th International Conference on
Engineering of Complex Computer Systems (ICECCS ’02), pp.
117, Washington, DC, USA, 2002, IEEE Computer Society,
2002.

91

http://www.iso.org/iso/
http://dx.doi.org/10.1155/2010/386035
http://www.omg.org/docs/ptc/06-04-02.pdf

16 J O U R N A L O F I N N O VA T I O N I N D I G I T A L E C O S Y S T E M S X X (X X X X) X X X – X X X

[16] J. Jurjens, Towards development of secure systems us-
ing UMLsec, in: Heinrich Hussmann (Ed.), Fundamental
Approaches to Software Engineering (FASE/ETAPS 2001),
in: LNCS, vol. 2029, Springer-Verlag, 2001, pp. 187–200.

1

[17] J. Jurjens, Jean-Marc Jézéquel, Heinrich Hussmann, Stephen
Cook, UMLsec: Extending UML for secure systems devel-
opment, in: UML 2002—The Unified Modeling Language,
in: LNCS, vol. 2460, Springer-Verlag, 2002, pp. 412–425. Edi-
tors.

2

[18] Anneke Kleppe, Wim Bast, Jos B. Warmer, Andrew Watson,
MDA Explained: The Model Driven Architecture–Practice and
Promise, Addison-Wesley, 2003.

3

[19] B. El Asri, A. Kenzi, M. Nassar, A. Kriouile, Vers une architec-4

ture MVSOA pour la mise en œuvre des composants multi-5

vue, in: 3ème Conférence Francophone sur les Architectures6

Logicielles, CAL’2009, RNTI, 2009, pp 1–17.7

[20] C. Attiogbé, P. André, M. Messabihi, Correction d’assemblages8

de composants impliquant des interfaces paramétrées,9

in: 3ème Conférence Francophone sur les Architectures10

Logicielles, CAL’2009, Hermès, 2009.11

[21] P. Avgeriou, Uwe Zdun, Modeling architecture patterns using12

architecture primitives, in: The ACM SIGPLAN Conference13

on Systems, Programming, Languages and Applications14

OOPSLA’2005, Vol. 40, No. 10, 2005, pp. 133–146.15

[22] K. Bergner, A. Rausch, M. Sihling, A formal model for
component ware, in: Foundations of Component-Based
Systems, Cambridge University Press, New York, 2000,
pp. 189–210. Eds..

16

[23] N. Medvidovic, R.N.A Taylor, Classification and comparison
framework for software architecture description languages,
IEEE Trans. Softw. Eng. 26 (1) (2000) 70–93.

17

[24] OMG, Unified Modeling Language: Infrastructure, 2007.18

http://www.omg.org/docs/formal/07-02-06.pdf.19

[25] Jie Ren, Richard N. Taylor, A secure software architecture20

description language, in: Workshop on Software Security21

Assurance Tools, Techniques, and Metrics, 2005.22

[26] M. Shaw, R. DeLine, D.V. Klein, T.L. Ross, D.M. Young, G.
Zelesnik, Abstractions for software architecture and tools to
support them, IEEE Trans. Softw. Eng. 21 (4) (1995) 314–335.

23

[27] A. Amirat, M. Oussalah, First-class connectors to support sys-
tematic construction of Hierarchical software architecture, J.
Object Technol. 8 (7) (2009) 107–130.

24

[28] R. Allen, S. Vestal, B. Lewis, D. Cornhill, Using an architecture
description language for quantitative analysis of real-time
systems, in: Proceedings of the Third InternationalWorkshop
on Software and Performance, ACM Press, Rome, Italy, 2002,
pp. 203–210.

25

[29] S. Graf, I. Ober, How useful is the UML real-time profile SPT26

without semantics, SIVOES 2004, associated with RTAS 2004,27

Toronto Canada, 2004.28

[30] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, J.-B.
Stefani, An open component model and its support in Java,
in: I. Crnkovic, J.A. Stafford, H.W. Schmidt, K.C. Wallnau
(Eds.), CBSE, in: Lecture Notes in Computer Science, vol. 3054,
Springer, Berlin, 2004, pp. 7–22.

29

[31] G. Barber, What is SCA, 2007. 30

http://www.oasis-opencsa.org/sca. 31

[32] L. Seinturier, P. Merle, D. Fournier, N. Dolet, V. Schiavoni, J.-B. 32

Stefani, Reconfigurable SCA applications with the FraSCAti 33

platform, in: IEEE International Conference on Services 34

Computing, Bangalore, India, September 2009. 35

[33] C. Marcel, R. Michel, M. Christian, L. Calin, Costin, 36

Adaptation dynamique de services, in: Déploiement et (Re) 37

Configuration de Logiciels, DECOR’04, Grenoble, France, 2004. Q9 38

[34] C. Marcel, R. Michel, M. Christian, Autonomic adaptation
based on service-context adequacy determination, J. Elec-
tron. Notes Theoret. Comput. Sci. (ENTCS) 189 (2007) 35–50.
Elsevier;

39

E. Maximilien, M. Singh, Self-adjusting trust and selection 40

for web services, in: IEEE Second International Conference on 41

Autonomic Computing, ICAC’05, 2005, pp. 385–386. Q10 42

[35] D.A. Basin, M. Clavel, J. Doser, M. Egea, A metamodel-based 43

approach for analyzing security-design models. in: MoDELS 44

2007, 2009. 45

[36] T. Lodderstedt, D. Basin, J. Doser, SecureUML: A UML- 46

based modeling language for model-driven security, in: 5th 47

International Conference, 2002. 48

[37] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic con-
cepts and taxonomy of dependable and secure computing,
IEEE Trans. Dependable Secure Comput. (2004) 11–33.

49

[38] S. Balsamo, M. Bernado, M. Simeoni, Performance evaluation
at the architecture level, in: Formal Methods for Software
Architectures, in: LNCS, vol. 2804, Springer, Berlin, Germany,
2003, pp. 207–258.

50

[39] R.B. Michal Hafner, Security Engineering for Service-Oriented
Architectures, Springer-Verlag, Berlin Heidelberg, 2009.

51

[40] M.Q. Saleem, J. Jaafar, M.F. Hassan, Model driven security 52

frameworks for addressing security problems of service 53

oriented architecture, in: ITSim 2010, 2010. 54

[41] AcmeStudio, The ACME ADL Toolkit, 2004. 55

http://www.cs.cmu.edu/~acme/AcmeStudio/index.html. 56

[42] A. Alti, A. Boukerram, A. Smeda, S. Maillard, M. Oussalah,
COSABuilder and COSAInstantiator: An extensible tool for
architectural description, Int. J. Softw. Eng. Knowl. Eng.
(ISSN: 0218-1940) 20 (3) (2010) 423–455.

57

[43] M.M. Menzel, Security meta-model for service-oriented 58

architectures. in: IEEE International Conference on Services 59

Computing, SCC ’09, 2009. 60

[44] M. Menzel, C. Meinel, SecureSOA modelling security 61

requirements for service-oriented architectures. in: 2010 IEEE 62

International Conference on Services Computing, SCC, 2010. 63

http://www.omg.org/docs/formal/07-02-06.pdf
http://www.oasis-opencsa.org/sca
http://www.cs.cmu.edu/%7Eacme/AcmeStudio/index.html

	Security architecture metamodel for Model Driven security
	Introduction
	SMSA metamodel
	SMSA component
	SMSA connector
	SMSA configuration
	Domain
	SMSA connector taxonomy

	Proposed transformations
	Vulnerability point detection
	Architectural transformations

	SMSA UML profile
	SMSA components package
	SMSA interfaces package
	SMSA security package
	SMSA connectors package
	SMSA connector interface
	SMSA security glue
	SMSA attachment
	SMSA delegation

	SMSA composition package
	SMSA composite
	SMSA machine
	SMSA process

	Validation industrial case study
	The SAGE system
	Architecture modelling and transformations
	SMSA-UML 2.0 visual plug-in
	Comparison and lessons learned

	Related work
	Conclusion
	References

