
HAL Id: hal-02436893
https://univ-pau.hal.science/hal-02436893

Submitted on 13 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An emerging multi-paradigm for representing mobile
applications’ architectures using heterogeneous

conceptual bricks
Afrah Djeddar, Hakim Bendjenna, Abdelkrim Amirat, Philippe Roose,

Lawrence Chung

To cite this version:
Afrah Djeddar, Hakim Bendjenna, Abdelkrim Amirat, Philippe Roose, Lawrence Chung. An emerging
multi-paradigm for representing mobile applications’ architectures using heterogeneous conceptual
bricks. International Journal of Computer Applications in Technology, 2018, 57 (1), pp.1-13. �hal-
02436893�

https://univ-pau.hal.science/hal-02436893
https://hal.archives-ouvertes.fr

Int. J. Computer Applications in Technology, Vol. X, No. Y, XXXX

Copyright © 200X Inderscience Enterprises Ltd.

An emerging multi-paradigm for representing mobile
applications’ architectures using heterogeneous
conceptual bricks

Afrah Djeddar* and Hakim Bendjenna
Laboratory of Mathematics, Informatics and Systems (LAMIS),
Department of Mathematics and Computer Science,
University of Larbi Tebessi,
Tebessa 12002, Algeria
Email: afrah-djeddar@hotmail.fr
Email: hbendjenna@yahoo.fr
*Corresponding author

Abdelkrim Amirat
Laboratory of Informatics and Mathematics (LIM),
Department of Mathematics and Computer Science,
University of Souk Ahras,
Souk Ahras 41000, Algeria
Email: abdelkrim.amirat@yahoo.com

Philippe Roose
LIUPPA Laboratory,
Department of IUT de Bayonne,
University of Pau et de pays de l’adour,
Pau 64000, France
Email: philippe.roose@iutbayonne.univ-pau.fr

Lawrence Chung
Department of Computer Science,
University of Texas at Dallas,
Dallas, TX, USA
Email: chung@utdallas.edu

Abstract: The mobile applications have enjoyed explosive growth these last years. Taking
advantage from these existing softwares, the constituent software bricks to compose such mobile
application can take different implementation forms and manipulate heterogeneous data by dint
of user’s requirements or its execution context. However, the mobile software developer
confronts difficulty to compose already existing software entities because of their heterogeneity.
An emerging need is then to have a new modelling space to support the development of
heterogeneous mobile applications. In view of this fact, this paper discusses the proposal of a
multi-paradigm for representing mobile applications based-on heterogeneous conceptual bricks
including their architectural conception and the specification of the necessary adaptation
mediators. The proposed paradigm aims to deal with the heterogeneity presented by the
constituent conceptual bricks and the execution environment of the final product. A conceptual
description of a mobile application baptised ShopReview is presented to show the usability of the
proposed paradigm.

Keywords: multi-paradigm; architectural description; heterogeneity; mobile applications;
conceptual bricks; adaptation mediators.

Reference to this paper should be made as follows: Djeddar, A., Bendjenna, H., Amirat, A.,
Roose, P. and Chung, L. (XXXX) ‘An emerging multi-paradigm for representing mobile
applications’ architectures using heterogeneous conceptual bricks’, Int. J. Computer Applications
in Technology, Vol. X, No. Y, pp.xxx–xxx.

Biographical notes: Afrah Djeddar is a PhD student in Computer Science at Tebessa University,
Algeria. She is a member in LAMIS Laboratory of Tebessa University. She received her Master’s

 A. Djeddar et al.

degree in Software Engineering from the University of Souk Ahras, Algeria, in 2013. Her areas
of research include software architectures, transformation models, mobile applications, meta-
modelling, context description, and adaptive applications.

Hakim Bendjenna is an Assistant Professor in the Department of Computer Science at Tebessa
University, Algeria. He received his PhD in Computer Science from Mentouri University,
Algeria, and Toulouse University, France. His research interests lie in the general field of
software engineering and decision support with special focuses on requirement engineering. He
has taught primarily introductory programming courses and courses in software engineering for
over ten years. He also frequently serves as a program committee member for various
international conferences and workshops. He is a Chair of IT4OD 2014 Conference.

Abdelkrim Amirat received his PhD in Computer Science in 2007, and Habilitation in 2010.
Currently he is a Professor of Computer Science at the University of Souk Ahras, Algeria. He is
the Director of Mathematics and Computer Science Laboratory and the chief of the software
engineering team. His main research concerns are software architectures and their evolution,
modelling and meta-modelling. He has served on program committees of several international
journals, conferences and workshops.

Philippe Roose is an Associate Professor at LIUPPA Research Lab at University of Pau/France.
His research deals with middleware, adaptations, and context-aware applications. Application
fields are about smart-* (health, home, city). Since 2016, he has been a Leader of the T2I
Research Team. He supervised ten PhD and is involved in many research projects and
conferences animations. He wrote two books on history of micro-computers and directed several
other ones focused on his research domains. He gave several national and international talks in
French, English or Spanish. He is strongly involved in actions with South America.

Lawrence Chung has been working in requirements engineering and system/software
architecture. He was the principal co-author of the research monograph ‘Non-functional
requirements in software engineering’, and has been involved in developing ‘RE-Tools’ (a
multinotational requirements modelling project), ‘HOPE’ (a smartphone app project for people
with difficulties), and ‘Silverlining’ (a cloud computing and big data project). He has been a
keynote speaker, invited lecturer, Co-Editor-in-chief for Journal of Innovative Software, editorial
board member for Requirements Engineering Journal, editor for ETRI Journal, and program Co-
Chair for various international events. He is currently on the faculty of Computer Science at
University of Texas at Dallas. He received his PhD in Computer Science from University of
Toronto in 1993.

This paper is a revised and expanded version of a paper entitled [title] presented at [name,
location and date of conference].[AQ1]

1 Introduction

The massive adoption of mobile devices to perform our
tasks in the daily life proves the exponential growth of
mobile applications and their development (Ickin et al.,
2012; Jones, 2013; Statista, 2015). These mobile devices are
characterised by heterogeneous hardware and software
configurations, present limited resources and have specific
execution context (Chen et al., 2014). Thus, the constituent
software entities of the desired mobile application can take
different forms of implementation (e.g. components,
services, etc.) or manipulate heterogeneous data owing to
the user’s requirements. However, this heterogeneity forces
software publishers to entirely redevelop their products for
each target technology or confront a difficulty to compose
the existing software entities in view of their heterogeneity,
which generates unbearable additional costs in terms of time
and money (Cugola et al., 2014). In view of this fact, MDA
(Model-Driven Architecture) (Blanc and Salvatori, 2011)
precepts are faced with this issue by producing PIM models
(Platform Independent Model) for representing mobile

applications in a technologically neutral way (Diaw et al.,
2010) through what is called software architectures using
specific ADLs (Architectural Description Languages)
(Medvidovic et al., 1999; Medvidovic and Taylor, 2000).
Nowadays, several principles, standards and practices are
used for the architectural description of applications using
different types of the constituent conceptual bricks. Among
the most adopted paradigms dedicated to describe and
represent the functional core of applications we find: the
approach using services (SOSE) and the approach based-on
components (CBSE) (Amirat et al., 2014).

To take advantage of the benefits presented by software
components and services (Cai et al., 2000; Papazoglou and Van
Den Heuvel, 2007), a combination between the based-
components approach and services-oriented approach has
appeared necessary. Therefore, several studies have focused on
the technological aspect of heterogeneity management whether
in terms of the implementation forms of the software bricks or
the exchanged data between them where many multi-paradigm
systems have thus emerged. The approaches which borrow and
combine the conceptual and technical elements derived from

AQ1: If a previous version of
this paper has originally been
presented at a conference, please
complete the statement to this
effect or delete if not applicable.

 An emerging multi-paradigm

CBSE and SOSE are qualified as hybrid. We cite among them
those that accurately reflect the heterogeneity concept: SCA
(Service Component Architecture) (Beisiegel, 2007) and
SLCA (Service Lightweight Components Architecture)
(Hourdin et al., 2008).

SCA allows defining architecture of components and
services using components to manipulate the orchestration of
services and thus create a composite service, while SLCA
shows an architectural model for the composition of services
based on the assembly of lightweight components. Taking
advantage of these multi-paradigms, we propose in this study
a new paradigm which enables to combine software entities
regardless of their implementation forms while integrating,
subsequently, necessary adaptation mediators to ensure the
communication between the connected software bricks of
different types and the compatibility of exchanged
heterogeneous data. Thereby, this proposed multi-paradigm is
devoted to compose heterogeneous mobile applications from
the architectural perspective.

The different existing software entities offer different forms
of implementations and handle heterogeneous data. For this
raison, designers/developers are sometimes forced to combine
heterogeneous entities to build mobile applications that meet
users’ needs and that will be adaptable to their execution
environments. The existing hybrid paradigms serve either to
describe the composition of services using lightweight
components (e.g. SLCA) or to manipulate the orchestration of
services using components (e.g. SCA) but in some cases we
need to describe our desired applications by combining any
type of software entities in order to take advantage of their
services independently of their implementation details. Our
emerging multi-paradigm comes as a solution to fill this lack
by allowing the composition of heterogeneous applications
using conceptual bricks of different types (e.g. composition of
services and components).

The remaining part of the paper is organised as follows:
the next section introduces several representations dedicated
to describe the functional core of applications and presents
some research works studied in the literature to cope with
the heterogeneity problem presented by these paradigms
which concerned the exchanged data. Afterwards, the third
section describes our multi-paradigm for modelling
heterogeneous mobile applications while proposing a
metamodel for the architectural description of their
functional core. Then, in the fourth section, we implement
the proposed metamodel and we explain the functioning of
our paradigm, after that we introduce an example to show
the applicability of this paradigm. Finally, Section 5 draws
the conclusion and future scope of our research work.

2 Related works

2.1 Functional-core representations

Brown and Wallnau (1998) and Cai et al. (2000) attack the
components-oriented programming, whose purpose is to build
software systems using shelf components (COTS:
Commercial Off-the-Shelf) and thus accelerate the software
development process. An approach based-on software

components (Weinreich and Sametinger, 2001) serves to
capitalise the code in software entities called black boxes that
are reusable and only software interfaces of exchange are
known. There are several modelling languages called ADLs
(Architecture Description Languages) devoted to describe
software architecture of such application using software
components. These description languages provide formalisms
allowing a designer to model software’s specifications and
development in a high level of abstraction without forgetting
that ADLs are independent of any programming language and
execution environment. Therefore, ADLs are a support for the
description of the application’s structure (Soucé and Duchien,
2002). As examples of description languages for this kind of
architectures we quote: Fractal (Bruneton et al., 2006),
Wright (Allen et al., 1998), Darwin (Luckham and Vera,
1995), Rapid (Luckham et al., 1995), 2SADEL (Medvidovic
et al., 1999), ACME (Garlan and Perry, 1995), and xADL2.0
(Dashofy and Van Der Hoek, 2002).

A second approach for building applications and
representing its functional core is based on Services-Oriented
Architectures (SOA). In 2005, Srinivasan and Treadwell draw
attention to the meaning of SOA which refers to the design of
a system and not its implementation (Srinivasan and
Treadwell, 2005). In 2007, the authors describe SOA as the
logical way for designing software systems that provide
services where a service is provided by a producer to benefit a
customer (Papazoglou et al., 2007). Srinivasan and Treadwell
(2005) and Papazoglou and Van Den Heuvel (2007) discuss
several features for this type of software entities. These
services communicate with their customers through
transmitted messages and provided responses and don’t
require describing the implementation details. The declination
of services on internet is web services where several
languages have been addressed to describe this type of
software entities. WSDL (Web Services Description
Language) (Christensen et al., 2001) is a language based-on
XML dedicated for describing web services which respect the
WS * specification. OWL-S (Ontology Web Language for
Services) (Martin et al., 2004) is a complement to the WSDL
description that aims to add the semantic aspect of services.
This language used to describe web services semantically
following three parts: service profile, service model, service
grounding (Maheswari and Karpagam, 2015).

2.2 Heterogeneous representations: multi-paradigms

CBSE and SOSE are two very similar paradigms which are
dedicated to construct applications from existing software
entities, components or services (Amirat et al., 2014). CBSE is
based at the design phase on the notions configuration type and
composite component type and on the runtime on their
instances configurations and composite components.
Nevertheless, the notion of abstract service exists in some
approaches (Cavallaro et al., 2009). Most existing studies refer
to a service as an entity of the runtime (Stojanovic and
Dahanayake, 2005) where the extension of the composite
service through the composition mechanism is mainly in
runtime.

 A. Djeddar et al.

Serval works are devoted for the composition of
software entities of service type (Chemaa et al., 2015;
Kalamegam and Zayaraz, 2016). Most of them consider the
composite service as the execution, through a composition
engine, of a collaborative schema between services where
some others (Geebelen et al., 2008) introduced concepts of
instantiation of collaborative schema from abstract template
that describes them. Hock-Koon in his research work
(Hock-Koon, 2011) has chosen to consider this representation
similar to the OO (Object-Oriented) with types of collaborative
schema as entities at the design phase and instances of
collaborative schema as runtime entities which is the case
on our research work. A critical that we bring to the
architecture based-on components is its static character after
the composition of the system. Indeed, once components
selected and coupled are only with difficulty changed during
execution (Brel, 2013).

To take advantage of benefits offered by software
components and services, a combination of the approach
components-based and services-oriented appeared necessary.
Among the approaches that borrow and combine the
conceptual and technical elements arising from the CBSE or
SOSE we can find: SCA (Beisiegel et al., 2005), SLC
(Hourdin et al., 2008), FROGi (Desertot et al., 2006)). SCA
corresponds to the creation of service-oriented applications
based-on SCA components assemblies. Another model
classified as hybrid approaches is SLCA. Its main objective is
to define a dynamic architecture for the composition of
services by leveraging several existing paradigms: web
services-oriented architecture, lightweight assembly of
components and Events.

2.3 Heterogeneity management of exchanged data

The heterogeneity challenge cannot concern only the
software bricks but it can also affect the exchanged data
between these constitutive entities. In fact, several studies
have focused on the technological aspect of the management
of exchanged data heterogeneity.

Hock-Koon treated this issue for its proposed composite
service (Hock-Koon and Oussalah, 2010). It brings together the
concerns of invocation that reflect the triggering of the
execution of the constituent services and mediation that
represent the capacity of the composite to ensure proper
understanding of data exchanged between its constituent
services.

Kalasapur et al. (2007) propose a method for the
composition of services which target the data heterogeneity
problems. Services are organised in a graph that represents
the set of possible compositions. During data incompatibility
between services, the system uses the compositions graph for
identifying a succession of services capable of ensuring the
necessary changes on the data a priori incompatible.

Derdour in his research (Derdour et al., 2010a; Derdour
et al., 2010b) attacked this problem for the multimedia
software architectures. He declared that the heterogeneity
problem is based on the flow of exchanged multimedia data
(e.g. picture, sound, text). In view of this fact, he proposed a
metamodel MMSA (Metamodel Multimedia Software

Architecture) for multimedia architectures where this
metamodel allows describing multimedia systems as a
collection of components that handle different types and
formats of multimedia data and interact with them via
adapters. This model serves to facilitate the adaptation task
between media of the same type (e.g. picture to picture), or
between different types of media (e.g. text to sound).

3 Proposed paradigm

Software development for mobile environments through the
reuse of the existing software entities is headed by user’s
requirements and the context of the mobile device that will be
used to implement the final product. The concrete software
entities selected according to the execution context to
implement the desired functionalities can be heterogeneous
both in terms of their implementation forms or exchanged
data between them. Thereby, the resulting application will be
an application that reflects a set of software entities of
different types and/or the exchanged data between them
require some transformations to make them understandable.

If the related software entities cannot communicate
directly due to the fact that the exchanged data between
them are not understandable, we say that these related
entities haven’t the same nature. By way of example, the
functionality Acquire Photo, which serves to acquire an
image of a product that we want to buy, provides an image
of jpg type while the functionality Read Barcode, used to
extract the product barcode from the acquired image, needs
an image of WebP type so that it can function properly.

If the related software entities cannot communicate
directly due to the incompatibility of their communication
interfaces (i.e. heterogeneous interfaces), we say that these
related software entities are not of the same type. By way of
example, software entity of component type connected with
another of service type.

For this reason, we propose in this paper a metamodel
baptised HMA-AD (Heterogeneous Mobile Applications-
Architectural Description) to describe heterogeneous mobile
applications at the architectural level. The following
subsections present respectively: a conceptual vision on the
proposed description language (i.e. defining HMA-AD
metamodel), the specification of the proposed adaptation
mediators and the different types of composition treated by
our multi-paradigm.

3.1 HMA-AD metamodel: heterogeneous mobile
application-architectural description

In this section, we will present the proposed metamodel for
modelling the functional core of heterogeneous mobile
applications. The aim of this metamodel is to represent any
mobile application whatever the implementation details of its
constituent software entities. Thereby, it describes a formalism
that allows the designer to perform a heterogeneous or
homogeneous composition by means of concrete software
bricks chosen to implement the required functionalities. A great

 An emerging multi-paradigm

advantage of the proposed description language is to use any
type of the constituent software entities, i.e. don’t restrict the
technology choice, while specifying and treating heterogeneity
problems in the case of heterogeneous coordinations. So it
gives the possibility to associate heterogeneous composition
relations with adaptation mediators in order to overcome the
encountered heterogeneity issues.

In our research work we consider that a software entity
refers to an abstract action which takes as input a set of
necessary parameters for its functioning and returns as
output the desired result. This action should be executed
according to a set of conditions that we have gathered in an
execution profile. By way of example, a software entity X
needs GPS service so it can function properly and 5 MB of
capacity storage for correct deployment on the mobile
device to be used. Therefore, we define a software entity as
a quadruplet: the function to be carried-out, input data,
output data and an execution profile which contains all
necessary conditions for its execution.

Figure 1 shows the proposed metamodel. A mobile
application (A) consists of a set of software entities (A1)
connected together via connectors (A2). A software entity
may be a component (A3), a service (A4), or a composite
entity (A5). A software entity has input data (A6), output
data (A7), and an execution profile (A8). Data exchange
between the related entities is done via provided ports (A9)
and required ports (A10) for entities of component type and
through provided services (A11) and required services
(A12) concerning entities of service type. The different
composition relations (A2) between the constituent software
entities are represented by precedence links (A13) and uses
links (A14), where these connectors will be attached with

endogenous mediators (A15) or exogenous mediators (A16)
in the case of heterogeneous coordination.

The precedence links indicate the invocation sequence of
the identified software entities while the use links serve to
define the collaboration schema of the exchanged data
between them. Exogenous mediators will be attached to the
precedence links, because they carry on the constituent
objects of the application, whose objective is to overcome the
heterogeneity between related software entities that don’t
have the same implementation type; while endogenous
mediators will be attached to the use links, because they carry
on the data exchanged between the heterogeneity between
two software entities of different nature that cannot
communicate directly.

Furthermore, the proposed formalism for defining the
architectural model of the heterogeneous mobile application
is dedicated to be refined in order to integrate the
functioning of the proposed adaptation mediators and
therefore to get a detailed architectural model (see Figure 1,
classes in grey). Each exogenous mediator indicated in the
architectural model will be replaced by an entity of
component type labelled component-of-services (B1) which
aims to encapsulate entities of service type in order to
eliminate the heterogeneity between related entities of
different types by constructing common communication
interfaces. Each endogenous mediator becomes a mediation
connector (B2) which is dedicated to ensure the
compatibility of exchanged data. Therefore, the proposed
architecture description language relies on the integration of
mediators and the description of their functioning to remedy
the heterogeneity problems arising during the composition.

Figure 1 HMA-AD metamodel

 A. Djeddar et al.

3.2 Adaptation mediators’ specification

After defining the architectural model for the desired
heterogeneous mobile application, our paradigm intended to
specify more precisely the role of integrated adaptation
mediators.

On the one hand, exogenous mediators (see Figure 2)
are designed to ensure communication between two
software entities of different types. Given that the software
entities cannot communicate by reason of their
heterogeneous implementation forms, exogenous mediators
are intended to encapsulate these interconnected entities in
such a way that they can interact with each other. This kind
of adaptation mediators aims to build common and well-
formed interfaces for heterogeneous software entities to take
advantage of their services but just by manipulating the
necessary inputs and outputs regardless of their
implementation details. Specifically, in the case of an
exogenous coordination between a component and a service,
the service will be encapsulated (B3, Figure 1) within the
new entity component-of-services (see Figure 2). This latter
may encapsulate one or more cooperated services where he
plays the role of the engine defined in services
orchestration. Initially, it aims to trigger the execution of
the service that he includes by providing required data
received through its required port by means of a triggered
request (B4, Figure 1). After, it releases the obtained result
using its provided port by triggering another request of
response (B5, Figure 1). This ensures the communication
between the source and target entities using compatible
interfaces.

On the other hand, endogenous mediators (see Figure 3)
reflect the mediation services to be selected for the
processing of the exchanged data which are heterogeneous.
In this case, each composition relation attached with this
type of mediators will be connectors having complex
interactions. These mediation connectors are designed to
convert the exchanged data by calling the appropriate
transformation services, while using his required roles (B6,
Figure 1) to receive the heterogeneous data and his provided
role (B7, Figure 1) to disseminate the transformed data.

Our paradigm represents this connector as glue that
defines tow functions. The first one serves to search the
appropriate mediation service (Search-MD: Searching a
Mediation Service) based on the types of the exchanged
data Input-data Type (B8, Figure 1) and Output-data Type
(B9, Figure 1) in the mediation services’ library; while the
second function aims to call the found transformation
service (Call-MD: Calling a Mediation Service) to ensure
the compatibility of the heterogeneous exchanged data.

Owing to the fact that exogenous mediators will eliminate
the heterogeneity between two software entities of different
types by encapsulating services in a specific software
component, the use links will connect only (component/
component) or (component/component-of-services).

Figure 2 Exogenous mediator’ structure

Figure 3 Endogenous mediator’ structure

3.3 Types of composition treated by our
multi-paradigm

The proposed multi-paradigm treats four types of
composition:

a. Exogenous composition: composing software entities of
different type (i.e. haven’t the same implementation
forms).

b. Endogenous composition: composing software entities
of the same type.

c. Heterogeneous composition: composing software entities
which do not have the same nature (i.e. handle
heterogeneous data).

d. Homogeneous composition: composing software
entities which have the same nature.

Each exogenous or heterogeneous composition requires
attaching specific adaptation mediator in accordance with
the type of this composition relation. Our paradigm allows
performing endogenous homogenous composition without
any adaptation and thus obtaining homogeneous mobile
applications. We have previously indicated that a
composition relation between two software entities is
represented by a precedence link to indicate the order of
invocation and/or a use link to express the flow of
exchanged data between them. For this purpose, the
different combinations between software bricks of the
desired mobile application can take the following forms (see
Table 1).

 An emerging multi-paradigm

Table 1 Possible composition relations

Possible
composition

Heterogeneity
problems

Necessary
mediators

Exogenous
heterogeneous
composition

Entities of different
type/ entities of
different nature

Exogenous
mediator/endogenous
mediator

Exogenous
homogeneous
composition

Entities of different
type

Exogenous mediator

Endogenous
heterogeneous
composition

Entities of different
nature

Endogenous mediator

Endogenous
homogeneous
composition

Any heterogeneity
Problems

Any mediators

4 Implementation

4.1 Implementing the proposed metamodel HMA-AD

Eclipse platform provides graphical tools to facilitate
editing EMF models (Eclipse Modelling Framework). EMF
aims to describe the domain model (metamodel) under the
extension *.ecore. We have relied on this technology to
implement the proposed metamodel HMA-AD as shown in
Figure 4.

The metamodel shown in Figure 1 reflects just a general
vision on the proposed description language to design the
architectural model of the desired mobile application. That is
why we have used EMF technology to provide the detailed
definition of the grammar of this language including all
necessary concepts expressed by classes and all composition
relations between these classes in accordance with notations
presented by UML as indicated in Figure 4.

The architecture of the desired mobile application includes
a set of concrete software entities defined in the abstract level
(Concrete-Entity class). A software entity can be either a
component (Component class) or a service (Service Class) or
other (Application class) while the Composite-CE class reflects
a composite software entity. Each concrete software entity
must be attached by its required data (Input-Data class)
through the relation represented by CE2Input-Relation class
and its provided data (Output-Data class) using the relation
represented by CE2Output-Relation class.

The required data of a software component will be
represented by required ports (Required-Port class) while the
provided data will be represented by provided ports (Provided-
Port class). As well as, the provided and required data for a
concrete entity of service or application type will be
represented respectively via Provided-Service class, Required-
Service class, OutputData-App class, and InputData-App class.

The precedence link (Precedence-Link class) which
connects two entities of different types will be attached by
exogenous mediator (Exogenous-Mediator class) through
the relation expressed by PL2ExMed-Relation class. The
use link (Use-Link class) which connects two entities of
different nature will be attached by endogenous mediators
(Endogenous-Mediator class) through the relation expressed

by UL2EnMed-Relation class. Each entity is associated with
its execution profile (Execution-Profile class) through the
relation expressed by ExProfile2CE-Relation class as well
as the desired heterogeneous mobile application must be
attached to its own execution profile via the relation
expressed by ExProfile2CMA-Relation class.

These architectural elements (white classes) are dedicated
to define the architecture of the desired heterogeneous mobile
application. The obtained architectural model is dedicated to be
refined in order to specify the roles of the integrated mediators
and thus obtain an architecture that describes the detailed
specification for the implementation of the concrete mobile
application. The classes in grey illustrated in the HMA-
AD.ecore metamodel denote the architectural elements that
will be used to replace the endogenous and exogenous
mediators that are indicated in the architectural model.

An endogenous mediator that aims to ensure the
compatibility of the exchanged data will be replaced by a
mediation connector (MediationConnector class). This
connector has a required role (RequiredRole class) and
another provided (ProvidedRole class). The required role is
dedicated to support the data to be transformed which is
provided by the source entity whereas the provided role
aims to support the transformed data extracted from this
mediation connector with the objective to transfer this
obtained result to the target entity.

As we have stated previously, this connector needs to
know the type of data in transforming and the required type
in which the data must be transformed in order to call the
appropriate mediation service (i.e. to perform the necessary
transformations). These informations will be represented via
InputDataType class and OutputDataType class. A
mediation connector aims to compare these types of data in
order to execute, in the case of non-compatibility, two
methods named respectively Search-MD and Call-MD. The
first method is used to search the necessary mediation
service to ensure the compatibility of heterogeneous data
and the second one to execute it.

An exogenous mediator aims to provide well-formed
and compatible interfaces in order to ensure the
communication between exogenous concrete entities. It will
be replaced by a new software entity that is represented by
Component-of-services class. This architectural element
encapsulates entities of service type that are connected with
software components (see the composition relation between
Service class and Component-of-services class). Therefore,
this new entity is regarded itself as a software component
(parent entity) which includes a set of services and has
provided ports (ProvidedPort class) and required ports
(RequiredPort class). The required and provided services
(RequiredService class and ProvidedService class) of the
encapsulated service entity will be transformed respectively
into required and provided ports for the parent entity. The
input data represented by the required port will be
transferred via a request (Request class) to trigger the
appropriate service.

Consequently, a response (ResponseRequest class) for
this request will be retrieved and transmitted to a provided
port of the parent entity.

 A. Djeddar et al.

4.2 Graphical modelling of architectural elements

After defining the architectural description language of
heterogeneous mobile applications, we now aim to provide
a graphical representation for the instances of this language.
The instantiation of an architectural model reflects the
operation of creating a model conforms to the metamodel
defined in EMF technology which can be done in two ways:

a. Instantiate the proposed metamodel and have a model
in XMI format.

b. Generate a graphical editor from the proposed metamodel
using GMF technology (Graphical Modelling Language)
(Biermann et al., 2006)[AQ2] to allow the creation of
graphical models that conform to this metamodel.

In this research work, we adopted GMF technology to
generate specific description palette which allows drawing
graphically the architectural model for any mobile
application. Figure 5 shows the proposed graphical
palette that defines all necessary graphical elements to
describe the architectural model of the desired mobile
application. The graphic syntax proposed to express the
different architectural elements introduced in the HMA-
AD.ecore metamodel is indicated in Section 4.4 by
Figures 6 and 7.

Therefore, each concept defined in the HMA-AD.ecore
metamodel has its equivalence in graphic architectural
elements that are dedicated to graphically define the
heterogeneous mobile application’s architecture.

Figure 4 HMA-AD metamodel.ecore

AQ2: Reference “Biermann et al., 2006” is not included
in the reference list. Please provide the reference details
to be included in the reference list, or delete the citation
if not required.

 An emerging multi-paradigm

Figure 5 Generated graphic palette

4.3 Crossing algorithm to obtain detailed
architectural description

The passage from the architectural model to the detailed
architectural description reflects a substitute operation which
is performed by running a sequence of transformation rules
defined in a specific order while respecting a set of
composition constraints. This passage is done through the

algorithm shown in Table 2. The proposed algorithm defines
an execution strategy of necessary passage rules respecting all
composition constraints to have the detailed architectural
model. These constraints reflect the specifications that we
have proposed to represent the endogenous and exogenous
mediators. The proposed algorithm designed to manage
precedence links and use links with the objective of detecting
those that are associated with mediators where:

 Whenever an endogenous mediator is found, it triggers
a set of rules to replace it with a mediation connector;
and

 Whenever an exogenous mediator is found, it triggers a
set of rules to replace it with a Component-of-service
entity. After encapsulated the service entity, our
algorithm must perform a test to check if the service
entity is linked with another entity of the same type. So
it designed to encapsulate all related entities that are of
service type until it comes to a composition relation
between service/component.

Table 2 Proposed crossing algorithm

																																					
															 Pseudo code Comments

01	
02		
03	
04	
05	
06	
07	
08	
	
09	
	
	
10	
	
11	
	
12	
	
	
13	
14	
15	
16	
17	
	
18	
19	
	
20	
	
21	
22	
	
23	
24	
25	
26	
	
27	
28	
29	
30	
	
31	
	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
	
46	
47	
	
48	
49	
	

For	each	PL	do	{	
If	(PLi	attachedwith	ExMed)	then	{		
If	(cibleSE	is	Service)	then	{					
				Execute	Delete	ExMed	Rule	;		
				Execute	Delete	PL(SourceSE,	CibleSE)	Rule;	
				Execute	Add‐ComOfSer	Rule;			
				Execute	EncapsuleSer	(CibleSE)	Rule	;	
				Execute	AddPL‐Link	(SourceSE,	ComOfSer);		
	
For	each	UL	(SourceSE,	CibleSE){		
	
	
					ComOfSer‐ReqPort	:=ReqSer	(CibleSE)	;		
	
		Execute	AddReqPort	(ComOfSer‐ReqPort,	ComOfSer)	Rule;		
	
		Execute	AddRequest	(ComOfSer‐ReqPort,	CibleSE)	Rule;		
	
	
		Execute	Add‐UL	(Source‐ProPort,	ComOfSer‐ReqPort)	Rule;		
	
				Execute	Delete‐UL	;																																													
				Execute	Delete‐	ReqSer	(CibleSE)	;	}	
While	(CibleSE.Cible	is	Service)	do	{			
									
							SourceSE	:=	CibleSE	;	CibleSE:=	CibleSE.Cible	;	
							Encapsule	(CibleSE)	;				
																						
							Execute	AddPL‐Link	(SourceSE,	CibleSE)	;	
	
For	each	UL	(SourceSE,	CibleSE){	
							ComOfSer‐ProPort	:=ProSer	(SourceSE)	;		
											
			Execute	AddProPort	(ComOfSer‐ProPort,	ComOfSer)	Rule;											
		Execute	AddResponseRequest	(SourceSE,ComOfSer‐	
ProPort)	Rule;		
							ComOfSer‐ReqPort	:=ReqSer	(CibleSE)	;								
					
		Execute	AddReqPort	(ComOfSer‐ReqPort,	ComOfSer)	Rule;	
		Execute	AddRequest	(ComOfSer‐ReqPort,	CibleSE)	Rule;	
		Execute	AddUL	(ComOfSer.ProPort,	ComOfSer‐ReqPort)				
		Rule;																														
	
							Execute	Delete‐UL	Rule	;		
	
							Execute	Delete‐ProSer	(SourceSE)	Rule;	
							Execute	Delete‐ReqSer	(CibleSE)	Rule;}	
							Execute	Add‐PL	(ComOfSer,	CibleSE);																	
For	each	UL	(SourceSE,	CibleSE)	{	
		ComOfSer‐ProPort	:=ProSer	(CibleSE)	;												
		Execute	AddProPort	(ComOfSer‐ProPort,	ComOfSer)	Rule;		
		Execute	AddUL	(ComOfSer.ProPort,	CibleSE.ReqPort)	Rule;		
						Delete	UL;	Delete	ProSer	(SourceSE);	}}}	
For	each	UL	do	{		
						If	(ULi	attachedwith	EnMed)	then	
									{Execute	Delete‐UL	(SourceSE.ProPort,		
CibleSE.ReqPort)	Rule;	
								Execute	Delete‐EnMed	Rule;	
								Execute	Add‐MedConnector	Rule;							
	
								Execute	Add‐UL					
								(SourceSE.ProPort,	MedConnector.ReqRole)	Rule;	
	
			Execute	Add‐UL	(MedConnector.ProRole,CibleSE.ReqPort		
)	Rule;	}}	
	

//	Managing	Precedence	Links	(PL)	
//	If	we	find	an	exogenous	mediator	(Ex‐Med)	
//	If	the	target	entity	of	the	PL	of	service	type	
//	Delete	the	Ex‐Med	
//	Delete	this	PL		
//	Add	a	new	entity	(ComponentOfService)	
//	Encapsulate	the	service	entity	in	the	added	parent	entity		
//	 Restore	 the	 PL	 between	 the	 source	 entity	 and	 the	 added	 parent	
entity		
//	Restore	the	use	links	(ULs)	that	were	between	the	component	entity	
and	 the	 service	 entity	 for	 that	 will	 be	 ULs	 between	 the	 component	
entity	and	the	new	added	entity	
//	Transforming	the	required	service	(Req‐Ser)	of	the	service	entity	to	
a	required	port	(Req‐Por)	for	the	parent	entity	
//	 Executing	 a	 transformation	 rule	 to	 add	 the	 Req‐Por	 to	 the	 new	
entity.	
//	 Adding	 a	 request	 between	 the	 Req‐Por	 and	 the	 service	 entity	 in	
order	 to	 trigger	 the	 service	 and	 transfer	 the	 required	 data	 for	 its	
execution																
//	Add	UL	between	 the	provided	port	 (Prov‐Por)	of	 the	 source	entity	
(component	type)	and	the	new	Req‐Por	of	the	parent	entity	
//	Remove	the	previous	UL		
//	Remove	the	Req‐Ser	of	the	target	service	entity	
//	Check	if	the	target	entity	which	connects	the	service	entity	is	also	of	
service	type	
…………..	
//	 Encapsulating	 the	 target	 entity	 of	 the	 encapsulated	 service	 entity	
because	it	is	also	of	service	type	
//	Add	 a	PL	 between	 the	 source	 service	 entity	 and	 the	 target	 service	
entity		
//	Managing	UL	between	these	two	entities	
//	The	provided	service	(Prov‐Ser)	of	the	source	service	entity	becomes	
a	Prov‐Por	for	the	parent	entity	
//	Execute	the	rule	that	adds	this	Prov‐Por		
//	Add	a	response	request	between	the	added	Prov‐Por	
of	the	parent	entity	and	the	source	service	entity		
//	The	Req‐Ser	of	 the	target	service	entity	becomes	a	Req‐Por	 for	the	
parent	entity		
…………..	
…………..	
//	Adding	a	UL	between	the	Req‐Por	(which	was	a	Req‐Ser	of	the	target	
service	entity)	of	the	parent	entity	and	the	Prov‐Por	(that	was	a	Prov‐
Ser	of	the	entity	service	source)	
//Delete	old	LPs	and	PLs	and	add	them	again	according	to	
the	new	representation	
…………..	
…………..	
…………..	
…………..	
…………..	
…………..	
…………..	
…………..	
//	Managing	ULs		
//	Check	if	UL	is	attached	with	an	End‐Med	
…………..	
…………..	
…………..	
//	Replace	the	End‐Med	with	a	mediation	connector	

//	Connect	the	Req‐Role	of	the	mediation connector	with	the		Prov‐Por
of	the	source	service	entity

//	Connect	the	Prov‐Role	of	the	mediation	connector	with	the	Req‐Por
of	the	target	service	entity	

 A. Djeddar et al.

ATL language (Atlas Transformation Language) represents our
technological choice to define the different passage rules and
Java technology to invoke and execute them. Our algorithm is
based-on XML structures of the architectural models defined
by the designer in order to choose suitable ATL rules and
trigger them in a specific order for generating the appropriate
target models (i.e. detailed architecture). Thus, it aims to extract
the necessary information from these XML structures (i.e.
browse the architectural model) to perform various tests in
order to identify the type of rule to trigger.

4.4 Applicability: describing ShopReview mobile
application architecture

Initially, the proposed multi-paradigm gives the hand to the
designer to model its mobile application through
homogeneous or heterogeneous software entities and to
identify, if exist, the various heterogeneous points raised by
the coordination of entities of different types and/or
manipulate not-compatible data. Figure 6 shows an example
of an architectural model of heterogeneous mobile application
called ShopReview. This application is used to provide the
nearby shopping where the same product, that user wants to
buy, is sold at a better price (i.e. suitable price). Also, it
allows the user to publish the price of the product that he
found in some shops selected from those that are close to its
current geographic situation (Cugola et al., 2014).

Our multi-paradigm allows firstly describing the
architecture of the application by specifying the constituent
entities, their invocation orders, and exchanged data
between them and also attaching adaptation mediators to the
heterogeneous composition relations using the proposed

graphic palette shown previously. Table 3 introduces the
composition scenario that we proposed to construct the
ShopReview mobile application.

Owing to the heterogeneity presented by the connected
concrete entities and the data exchanged between them, the
corresponding composition relations need to be associated
with mediators to deal with these problems of heterogeneity.

In our example, the different precedence links that
connect the entity Acquire Photo and the entity Read
Barcode, Get Product-Name and Input Price, Input Price
and Search Price, Search Price and Get Position, Get
Position and Search the Neighbrhood must be attached with
exogenous mediators, while there is one problem of data
exchange which is between the entity Acquire Photo and the
entity Read Barcode (jpg≠WebP) and therefore the
corresponding use link must be attached with an
endogenous mediator.

After obtaining the architectural model of the desired
application, our proposed paradigm aims to automatically
generate a detailed specification for this application by
integrating the functioning of attached adaptations
mediators (i.e. resolve encountered heterogeneity problems).

Thereby, our paradigm intended to refine the designed
architectural model whose objective is to provide a more
detailed description facilitating thereafter the generation of
the concrete mobile application. Figure 7 shows the
generated detailed architectural model for the mobile
application ShopReview. We must also draw attention that
each composition relation will be attached by the type of
treated composition. As an example, we read the
composition between the entity Acquire Photo and Read
Barcode an exogenous heterogeneous composition.

Table 3 Composition scenario description

Constituent software entities

Functionality Impl-Type Required data Provided data

Acquire Photo Component – Photo of jpg type

Read Barcode Service Photo of WebP type Barcode of integer type

Get Product-Name Service Barcode of integer type Name of string type

Input Price Component Name of string type Price of integer type

Search Price Service Price of integer type
Name of string type

Convenient price of
integer type

Get Position Component – Position of string type

Search the
Neighbrhood

Service Position of string type
Convenient price of integer
type

Nearby Shops of string
type

Share Price Service Nearby shops of string type
Convenient price of integer
type

–

Invocation orders Acquire Photo  Read Barcode  Get Product-Name  Input Price  Search Price  Get
Position  Search the Neighbrhood  Share Price.

Collaboration schema of
exchanged data

Read Barcode needs Photo of WebP type, Get Product-Name needs Barcode of integer type, Input
Price needs Name of the product of String type, Search Price needs Price of Integer type and Name
of the product of String type, Search the Neighbrhood needs Position of String type and Convenient
Price of Integer type, Share Price needs Convenient Price of Integer type and Nearby Shops of
String Type.

 An emerging multi-paradigm

Figure 6 Architectural model of the ShopReview mobile application (see online version for colours)

Figure 7 Detailed architectural model of ShopReview mobile application (see online version for colours)

 A. Djeddar et al.

5 Conclusion

In this paper, we proposed a new multi-paradigm to facilitate
for designers the modelling of heterogeneous mobile
applications in order to meet user’s needs and to cope with the
mobile devices heterogeneity (i.e. obtaining adaptive mobile
applications).

Firstly, we proposed a metamodel called HMA-AD
which allows modelling the functional core of any mobile
application using heterogeneous conceptual bricks. After, a
detailed specification for the implementation of the concrete
application will be obtained through an algorithm. This
latter performs a set of passage rules in a specific order in
accordance with the proposed specifications for adaptation
mediators required to eliminate heterogeneity problems.

Therefore, we presented in this paper a conceptual
regard for the heterogeneous mobile applications including
their conception and the specification of the necessary
adaptation mediators.

We plan in our future work to realise the proposed
exogenous and endogenous mediators by providing the
concrete structure of the new entity component-of-services
as well as the mediation connector based on the conceptual
structures proposed in this paper.

Reference

Allen, R.J., Garlan, D. and Ivers, J. (1998) ‘Formal modeling
and analysis of the HLA component integration standard’,
ACM SIGSOFT Software Engineering Notes, Vol. 23, No. 6,
pp.70–79.

Amirat, A., Hock-Koon, A. and Oussalah, M.C. (2014) ‘Object-
oriented, component-based, agent-oriented and service-
oriented paradigms in software architectures’, in Oussalah, M.C.
(Ed.): Software Architecture 1, Wiley Online Library, New
York, pp.1–53.

Beisiegel, M. (2007) Service Component Architecture
Specification, Technical Report.

Beisiegel, M., Bloom, H., Booz, D., Dubray, J.J., Colyer, A. and
Edwards, M. (2005) ‘Service component architecture:
building systems using a service oriented architecture’,
Whitepaper, Vol. 1, 31pp. Available online at: http://www.
iona.com/devcenter/sca/SCAWhitePaper109.pdf

Blanc, X. and Salvatori, O. (2011) MDA en action: Ingénierie
logicielle guidée par les modéles, Editions Eyrolles, Paris,
292pp. [In French]

Brel, C. (2013) Composition d'applications multi-modéles dirigée
par la composition des interfaces graphiques, Doctoral Thesis
in Computer Science, 28 June, Université Nice Sophia,
Antipolis, 204pp. [In French]

Brown, A.W. and Wallnau, K.C. (1998) ‘The current state of
CBSE’, IEEE Software, Vol. 15, No. 5, pp.37–46.

Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V. and Stefani,
J-B. (2006) ‘The FRACTAL component model and its
support in java’, Software: Practice and Experience, Vol. 36,
No. 11, pp.1257–1284.

Cai, X., Lyu, M.R., Wong, K-F. and Ko, R. (2000) ‘Component-
based software engineering: technologies, development
frameworks, and quality assurance schemes’, APSEC ’00
Proceedings of the Seventh Asia-Pacific Software
Engineering Conference, IEEE, IEEE Computer Society,
Washington, DC, pp.372–379.

Cavallaro, L., Di Nitto, E. and Pradella, M. (2009) ‘An automatic
approach to enable replacement of conversational services’, in
Baresi, L., Chi, C. and Suzuki, J. (Eds): Service-Oriented
Computing, Springer, Berlin, pp.159–174.

Chemaa, S., Bouarioua, M. and Chaoui, A. (2015) ‘A high-level
Petri net based model for web services composition and
verification’, International Journal of Computer Applications
in Technology, Vol. 51, No. 4, pp.306–323.

Chen, D., Zhu, X., Dai, W. and Zhang, R. (2014) ‘Socially aware
mobile application integrations in heterogeneous
environments’, International Journal of High Performance
Computing and Networking, Vol. 8, No. 1, pp.61–70.

Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S.
(2001) Web Services Description Language (WSDL) 1.1,
W3C Note 15 Marsh. Available online at: Http:// www.
w3.org/TR/wsdl

Cugola, G., Ghezzi, C., Pinto, L.S. and Tamburrelli, G. (2014)
‘SelfMotion: a declarative approach for adaptive service-
oriented mobile applications’, Journal of Systems and
Software, Vol. 92, pp.32–44.

Dashofy, E.M. and Van Der Hoek, A. (2002) ‘Representing product
family architectures in an extensible architecture description
language’, in van der Linden, F.J. (Ed.): Software Product-
Family Engineering, Springer, Bilbao, Spain, pp.330–341.

Derdour, M., Dalmau, M., Roose, P. and Ghoualmi-Zine, N.
(2010) ‘Typing of adaptation connectors in MMSA approach
case study: sending MMS’, International Journal of Research
and Reviews in Computer Science, Vol. 1, No. 4, pp.39–49.

Derdour, M., Roose, P., Dalmau, M., Ghoualmi-Zine, N. and Alti, A.
(2010) ‘MMSA: metamodel multimedia software architecture’,
Advances in Multimedia, Vol. 2010, Article ID 386035, 17pp.

Desertot, M., Cervantes, H. and Donsez, D. (2006) ‘FROGi: fractal
components deployment over OSGi’, in Löwe, W. and
Südholt, M. (Eds): Software Composition, Springer, Berlin,
Heidelberg, pp.275–290.

Diaw, S., Lbath, R. and Coulette, B. (2010) ‘Etat de l'art sur le
développement logiciel basé sur les transformations de
modéles’, Technique et Science Informatiques, Vol. 29,
Nos. 4–5, pp.505–536. [In French]

Garlan, D. and Perry, D.E. (1995) ‘Introduction to the special issue
on software architecture’, IEEE Transactions on Software
Engineering, Vol. 21, No. 4, pp.269–274.

Geebelen, K., Michiels, S. and Joosen, W. (2008) ‘Dynamic
reconfiguration using template based web service composition’,
Proceedings of the 3rd Workshop on Middleware for Service
Oriented Computing, ACM, Leuven, Belgium, pp.49–54.

Hock-Koon, A. (2011) Contribution à la compréhension et à la
modélisation de la composition et du couplage faible de
services dans les architectures orientées services, Doctoral
Thesis in Computer Science: Software Engineering, 28 April,
University of Nantes, 205pp. [In French]

Hock-Koon, A. and Oussalah, M. (2010) ‘Composite service
metamodel and auto composition’, Journal of Computational
Methods in Sciences and Engineering, Vol. 10, No. 1-2S2,
pp.215–229.

Hourdin, V., Tigli, J-Y., Lavirotte, S., Rey, G. and Riveill, M. (2008)
‘SLCA, composite services for ubiquitous computing’, Mobility
’08 Proceedings of the International Conference on Mobile
Technology, Applications and Systems, ACM, Singapore, pp.1–8.

Ickin, S., Wac, K., Fiedler, M., Janowski, L., Hong, J.H. and Dey,
A.K. (2012) ‘Factors influencing quality of experience of
commonly used mobile applications’, Communications
Magazine, Vol. 50, No. 4, pp.48–56.

 An emerging multi-paradigm

Jones, M. (2013) ‘Developing mobile apps for your users can help
them be more productive, but before you start building apps,
learn about the different kinds’, Everything You Need to
Know about Developing Mobile Apps, TechTarget. Available
online at: http://searchmobilecomputing.techtarget.com/
feature/ Everything-you-need-to-know-about-developing-
mobile-apps (Accessed on 25 May 2015).

Kalamegam, P. and Zayaraz, G. (2016) ‘Requirements driven test
prioritisation approach for web service composition’,
International Journal of Computer Applications in
Technology, Vol. 54, No. 4, pp.362–370.

Kalasapur, S., Kumar, M. and Shirazi, B.A. (2007) ‘Dynamic service
composition in pervasive computing’, IEEE Transactions on
Parallel and Distributed Systems, Vol. 18, No. 7, pp.907–918.

Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D.
and Mann, W. (1995) ‘Specification and analysis of system
architecture using Rapide’, IEEE Transactions on Software
Engineering, Vol. 21, No. 4, pp.336–354.

Luckham, D.C. and Vera, J. (1995) ‘An event-based architecture
definition language’, IEEE Transactions on Software
Engineering, Vol. 21, No. 9, pp.717–734.

Maheswari, S. and Karpagam, G. (2015) ‘Enhancing fuzzy Topsis
for web service selection’, International Journal of Computer
Applications in Technology, Vol. 51, No. 4, pp.344–351.

Martin, D., Burstein, M., Lassila, O., Paolucci, M., Payne, T. and
McIlraith, S. (2004) Describing Web Services Using OWL-S
and WSDL, Release 1.2 of OWL-S. Available online at:
http://www.daml.org/services/owl-s/1.2/owl-s-wsdl.html

Medvidovic, N., Rosenblum, D.S. and Taylor, R.N. (1999) ‘A
language and environment for architecture-based software
development and evolution’, Proceedings of the 1999
International Conference on Software Engineering, IEEE,
Los Angeles, CA, USA, pp.44–53.

Medvidovic, N. and Taylor, R.N. (2000) ‘A classification and
comparison framework for software architecture description
languages’, IEEE Transactions on Software Engineering,
Vol. 26, No. 1, pp.70–93.

Papazoglou, M.P., Traverse, P., Dustdar, S. and Leymann, F.
(2007) ‘Service-oriented computing: state of the art and
research challenges’, Computer, Vol. 40, No. 11, pp.38–45.

Papazoglou, M.P. and Van Den Heuvel, W-J. (2007) ‘Service
oriented architectures: approaches, technologies and research
issues’, International Journal on Very Large Data Bases
(VLDB), Vol. 16, No. 3, pp.389–415.

Soucé, J-M. and Duchien, L. (2002) Etat de l'art sur les langages
de description d'architecture, Technical Report, June 2002,
Livrable1.1-2 du Projet RNTL ACCORD, 62pp. [In French]

Srinivasan, L. and Treadwell, J. (2005) ‘An overview of service-
oriented architecture, web services and grid computing’, HP
Software Global Business Unit, 3 November. Available online
at: http://h71028.www7.hp.com/ERC/downloads/SOA-
GridHP-WhitePaper.pdf (Accessed on 7 June 2016).

Statista (2015) Number of Mobile App Downloads Worldwide from
2009 to 2017, Firme de Recherche Statista, Statistique sur les
Applications mobiles téléchargées. Available online at:
http://www.statista.com/statistics/266488/forecast-of-mobile-
app-downloads/ (Accessed on 22 January 2016).

Stojanovic, Z. and Dahanayake, A. (2005) ‘Service-oriented
software system engineering: challenges and practices’,
Journal of Digital Information Management, Digital
Information Research Foundation, Vol. 3, No. 3, p.210.

Weinreich, R. and Sametinger, J. (2001) ‘Component models and
component services: concepts and principles’, in Heineman,
G.T. and Councill, W.T. (Eds): Component-based Software
Engineering: Putting the Pieces Together, 1st ed., Addison-
Wesley Professional, Reading, MA, pp.33–48.

