
HAL Id: hal-02436863
https://univ-pau.hal.science/hal-02436863

Submitted on 13 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporal Pattern Specifications for Self-Adaptive
Requirements

Ayoub Yahiaoui, Hakim Bendjenna, Philippe Roose, Lawrence Chung,
Mohamed Amroune

To cite this version:
Ayoub Yahiaoui, Hakim Bendjenna, Philippe Roose, Lawrence Chung, Mohamed Amroune. Temporal
Pattern Specifications for Self-Adaptive Requirements. Recent Patents on Computer Science, 2018,
11, pp.1 - 11. �10.2174/2213275911666181019115744�. �hal-02436863�

https://univ-pau.hal.science/hal-02436863
https://hal.archives-ouvertes.fr

Send Orders for Reprints to reprints@benthamscience.ae

 Recent Patents on Computer Science 2018, 11, 1-11 1

RESEARCH ARTICLE

 2213-2759/18 $58.00+.00 © 2018 Bentham Science Publishers

Temporal Pattern Specifications for Self-Adaptive Requirements

Ayoub Yahiaouia,*, Hakim Bendjennaa, Philippe Rooseb, Lawrence Chungc and Mohamed Amrounea

aDepartment of Computer Science, Faculty of Science, University Larbi Tebessi, Tebessa, Algeria; bIUT de Ba-
yonne/LIUPPA-T2I, France, cUniversity of Texas at Dallas, US

 Abstract: Background: Systems whose requirements change at a rate that necessitates adaptation
without human intervention are called self-adaptive systems, and they have the ability to adjust their
behavior autonomously at run-time in response to their environment’s evolution. Samples of appli-
cations that require self-adaptation include Smart home systems and environmental monitoring.
However, self-adaptivity is often constructed in an ad-hoc manner.

Method: In this paper, the authors present a pattern-based specification language for self-adaptive sys-
tems. Its semantics are presented in terms of fuzzy logic. Thus, enabling a meticulous processing of re-
quirements, in order to permit the formulation of self-adaptive requirements accurately, thereby facili-
tates the design of systems that are flexible and responsive to adaptation in a systematic manner.

Results: To show the applicability and effectiveness of our language, the authors apply it to two
case studies. One case study reviews the Smart fridge in ambient assisted living and the second case
study is focused on an ambulance dispatching system using a developed support tool.

A R T I C L E H I S T O R Y

Received: July 16, 2018
Revised: September 25, 2018
Accepted: October 11, 2018

DOI:
10.2174/2213275911666181019115744

Keywords: Adaptive requirements, specification patterns, formal specification, fuzzy logic, metric temporal logic, self-
adaptive system, fuzzy metric temporal logic.

1. INTRODUCTION

Technology applications have become increasingly large
and even more heterogeneous and complex. In some particu-
lar tasks where environmental data cannot be defined during
the design phase, a system must adapt itself dynamically. For
example, in a Smart Office system, devices must have the
same data all of the time, so the duration of the synchroniza-
tion process is not well known, due to the changeable num-
ber of devices. Therefore, it becomes crucial for such sys-
tems to self-adapt dynamically in order to change according
to what is occurring in the environment, such as synchroni-
zation time in the previous example. These systems are
called SAS (self-adaptive system). However, SASs need
flexible specifications, whereas specifications must be for-
mal, hence, the necessity to apply a flexible logic. The au-
thors chose fuzzy logic [1] in order to handle situations
where the environment contains uncertainties.

The application of fuzzy logic, in many real-world sys-
tems with uncertainty, provided very fruitful outcomes. Re-
sults of over three decades of studies in the domain of formal
specification and verification offer many advantages for
practitioners, but they have not been well adopted [2] due to
the wide distance between the low-level of formalisms em-
ployed by the tools of model checking and the natural

*Address correspondence to this author at the Department of Computer
Science, Faculty of Science, University Larbi Tebessi, Tebessa, Algeria;
Tel: +213552419087; E-mail: yahiaoui.ayoub.2015@gmail.com

language used in requirements specifications [3]. This limita-
tion involves the expression of properties at a high abstrac-
tion level using the structured English language.

Moreover, the smooth functioning of an SAS can be
compromised by two key sources [4]. The first source is be-
havioral. It invokes situations where the requirements need
to be changed. For example, the requirements of a telecom-
munication network protocol that needs to change its config-
uration in order to recover its convergence in case of router a
failure. The second source is environmental changes that
occur, such as sensor failures and unexpected input (human
interaction). It is complex to predict all requirement changes
at design time and it may not be possible to enumerate all
possible alternatives.

Thus, this paper presents a new pattern-based require-
ments language for SASs. The authors introduce some con-
cepts to specify self-adaptation in requirements. The self-
adaptive patterns used are relaxed versions of existing pat-
terns. In other words, they can be seen as a self-adaptive
extension of previous works on specification patterns [2, 5,
6]. A specification language must be, first, natural to allow
the engineer to freely and easily express requirements, and
second, it must be based on a formalism that enables auto-
matic verification. For this purpose, the researchers’ pro-
posed PSAS (Pattern Specification for SAS), a language that
relies on SE (Structured English) with a mapping in FMTL
(Fuzzy Metric Temporal Logic). [2]. Also, in order to facili-
tate the use of the language, researchers developed a PSAS-
tool, an application that allows for the automation of struc-

2 Recent Patents on Computer Science, 2018, Vol. 11, No. 3 Yahiaoui et al.

tured English grammar expressions to be translated into
fuzzy metric temporal logic formulas.

The remainder of the paper is organized in the following
manner: the authors describe related works conducted in this
domain. In the third section, the authors define notations for
their patterns semantics, focus on the proposed patterns, their
syntax, and semantics, and then justify the efficiency of the
language via real-world instances. The authors also strength-
en their proposal by providing an empirical evaluation.

2. RELATED WORKS

Authors in some studies [7, 8] talked about state-of-the-
art self-adaptive systems and challenges in this area. Dealing
with uncertainty is one of the important challenges nominat-
ed for requirements in the engineering domain; it can be ma-
terialized in a new language for specifying requirements [9].
A similar work is RELAX [4], Whittle et al. aimed, through
their language, to handle uncertainty in a declarative fashion
using temporal, ordinal, and modal operators. They chose
fuzzy branching temporal logic for their mapping [10]. Now,
the authors propose a pattern-based language with structured
English grammar [6] to deal with ambiguity in the require-
ments specification. Furthermore, this language allows ex-
pression of all RELAX operators. Similar to RELAX, the
authors’ language also aims to support unexpected adapta-
tions. In an ulterior paper [11], RELAX was used with goal
modeling to specify the uncertainty in other sources. They
first build the goal trellis and then use it in a bottom-up man-
ner to search for sources of uncertainty, which are the ele-
ments of domain/environment and can jeopardize goals satis-
faction.

Baresi, Pasquale, and Spoletini deal with the uncertainty
of the objectives via FLAGS (Fuzzy Live Adaptive Goals for
Self-adaptive systems) [12]. Analogous to RELAX, the ob-
jective of FLAGS is to achieve the main goal of adaptive
systems at the requirements level: mitigation of the uncer-
tainty attached to environment needs by incorporating adapt-
ability in the software system as early as requirement elicita-
tion. FLAGS special requirements are called adaptive goals.
They allow the prevention strategies that must be performed
if some goals are not satisfied as expected. FLAGS also
deals with another source of uncertainty, which is the uncer-
tainty in the goals themselves. FLAGS is based on fuzzy
goals for which properties are not completely known. The
complete specification is not available, and small temporary
violations are tolerated. Thus, FLAGS finishes by two sets of
goals: crisp and fuzzy goals. It formalizes goals using fuzzy
temporal language for fuzzy ones and Linear Temporal Log-
ic for the others. FLAGS also relies on an ambiguous gram-
mar, which makes it hard to handle by less experienced en-
gineers [6].

Souza [13] presented two new requirements categories;
awareness requirements for monitoring a system and evolu-
tion requirements dedicated to representation of adaptation
plans in order to address changes in requirements models
[14]. Ahmad, Belloir, and Bruel [15], employed both declar-
ative and goal-based approaches.

They used RELAX [4] to specify non-functional re-
quirements and the GORE (Goal-Oriented Requirements

Engineering) notions to elicit and model the requirements of
self-adaptive systems. Hinchey and Vassev [16] proposed an
approach for ARE (Autonomy Requirements Engineering).
This approach, based on GORE and GAR (Generic Autono-
my Requirements), has the objective for eliciting, specific
autonomy requirements, and defines assistive and possible
alternative objectives for self-adaptive systems. Other ap-
proaches were proposed, such as goal-based like FLAGS
[12] and Tropos4AS (Tropos for Adaptive System) [17], a
recent agent-based approach.

Recently, Didac Gil De La Iglesia and Danny Weyns
[18] proposed a set of formal MAPE-K (Monitoring Analyse
Planning Execution and Knowledge) templates for a specific
family of self-adaptive systems. They comprise behavior and
property specification templates based on networks of timed
automata and timed computation tree logic that support au-
tomated verification of the correctness. This approach has
some similarities with the one presented in this paper, they
used timed temporal logic for formalism. Carlos Eduardo da
Silva et al. [19], also presented an approach for dynamic
reconfiguration of role-based access control for business
processes, they relied on probabilistic computation tree logic
for specifying properties. However, this approach doesn’t
give a clear support for uncertainty.

The works discussed above held a special interest in un-
certainty problems. Dealing with uncertainty in the early
phases of development is necessary. However, some prob-
lems in the specification language must be handled. For ex-
ample, language grammar must be unambiguous. Therefore,
using natural language in specifications is limited due to its
ambiguity. The authors’ work processes, both natural lan-
guage and grammar ambiguity via a patterns catalog and
structured English grammar. Table 1 summarizes similar
approaches.

Table 1. Self-adaptation languages overview.

Language
Uncertainty

Handling
Structured
Grammar

Pattern-
Based

Mapping

RELAX Yes No No FBTL1

FLAGS Yes No No FTL2

MAPE-K FT Yes No Yes TCTL3
1Fuzzy Branching Temporal Logic
2Fuzzy Temporal Language
3Timed computational tree logic

3. BACKGROUND

Before beginning the presentation of the researchers’
language, some technical definitions are necessary.

3.1. Self-Adaptive Systems

A self-adaptive system evaluates its own behavior and
changes its own performance when the evaluation indicates
that it is not accomplishing what the software is intended to
do, or when better functionality or performance is possible
[20].

Temporal Pattern Specifications for Self-Adaptive Requirements Recent Patents on Computer Science, 2018, Vol. 11, No. 3 3

3.2. Specification Pattern

A specification pattern is a common representation of a
set of commonly occurring requirements on the allowed
event/state succession in a system model (scopes). It furnish-
es expressions of a system’s behavior in common formalisms
and describes the basic structure of some sides of a system’s
behavior. For each pattern, a scope must be coupled with it;
the scope represents a part of the system execution over
which the pattern must hold. There are five basic kinds of
scopes: globally, before, after, between and after-until. The
scope is defined by indicating a start and an ending point for
the pattern. Table 2 provides definitions of scopes presented
in [2]. Fig. (1), from [2], offers an overview of how scopes
work.

Table 2. Patterns scopes.

Scope Pattern can hold

Globally In any point of system run-time.

After {A} Only after the occurrence of A.

Before {A} Only before the occurrence of A.

Between {A} and
{B}

Only between A and B.

After {A} until {B}
Only after the occurrence of A until B is true

(B is not required)

Fig. (1). Pattern scopes: present allowed timeline of a specific pat-
tern, delimited by events A and B [2](Dwyer, Avrunin, & Corbett,
1999).

Patterns are grouped into three families: Qualitative pat-
terns presented in a study (Dwyer, Avrunin, & Corbett,
1999), describe the materialization of events; real-time pat-
terns [5] extend the first family by adding time constraint
and probabilistic patterns [21] that also extend qualitative
patterns by adding the probabilistic constraint. The authors
also proposed mapping to temporal logics, including CTL
(Computation Tree Logic), MTL (Metric Temporal Logic),
and PCTL (Probabilistic Computation Tree Logic), as they
represent formal expressions of patterns.

Works presented above focus on qualitative, real-time,
and probabilistic properties. They do not give any support
for self-adaptation. Table 3 presents a brief comparative de-
scription of existing patterns. Patterns in this work rely main-
ly on those recently presented by Autili et al. [6]. They can
be seen as self-adaptive extensions. A specification pattern
must be mapped in a temporal logic formula so that it brings
formal meaning to the pattern. Thus, on one hand, a pattern
plays the role of an interface for a temporal logic formula.
On the other hand, the patterns catalog relies on [6] that pro-
vides mapping in MTL. That leads the authors to propose
mapping in terms of FMTL (Fuzzy Metric Temporal Logic).
Because of limits imposed by the formalism used in this pa-
per, only related patterns are presented.

Table 3. Overview on patterns catalogs.

Catalog Qualitative Real-time Probabilistic

[2] Yes No No

[5] Yes Yes No

[21] Yes No Yes

3.3. Fuzzy Metric Temporal Logic (FMTL)

Yi Zhou and Tadao Murata [22] have proposed FMTL; it
allows the expression of fuzzy-timing in real-time applica-
tions. It includes the references of explicit time that can be
translated into time sequences.

FMTL grammar: Given a set of atomic propositions AP.
An FMTL formula is as follows:
! ∶= ! ¬! !! → !! !! ∩ !! Ο! ! ! !!!!!

Ο~!! ~!! ~!! | !!!~!!! (1)
Where p ∈ AP, and ∼∈{ ≤, =, ≥ } and d is a fuzzy dura-

tion.
Using FMTL provides interesting results concerning the

precision of time expression. It allows for specifying the
time in such a way that it does not take a specific value.

4. LANGUAGE OVERVIEW

This section presents the pattern-based language that al-
lows analysts to express system properties in a versatile
manner. The patterns conception was created to enable ana-
lysts to know what requirement must be changed during run-
time when an environmental change occurs. The system
might be able to ignore noncritical requirements, temporari-
ly, in order to ensure that vital requirements can be satisfied.
The researcher's pattern-based language supports the
specification of multiple sources of uncertainty in a declara-
tive way rather than listing possible alternatives [23], where-
as, possible alternatives can always be expressed via an al-
ternative pattern.

The researchers’ language presents several assets. The
first one is the possibility of requirements becoming relaxed
due to pattern flexibility or via alternatives, in multiple forms
according to the degree of relaxation (alternative and recur-
rence-alternative patterns) in order to ensure that regular

4 Recent Patents on Computer Science, 2018, Vol. 11, No. 3 Yahiaoui et al.

functioning of the system holds as long as it can. The second
asset is the fact that the language relies on structured English
grammar [5] to provide an unambiguous language.

4.1. Self-Adaptive Patterns Catalog

Qualitative and real-time patterns are organized into two
categories: occurrence and order. The first one presents event
materialization while the second captures a sequence of
events. The authors propose a complete set of self-adaptive
patterns. For example, “TheLongestPossible” pattern can be
considered as a relaxation of the “Universality” pattern [6].
The classification of proposed patterns is similar to that pro-
posed in another study [5].
4.1.1. Self-Adaptive-Occurrence Patterns

These patterns are employed to state that some configura-
tion of properties must always take place eventually, or they
do not occur in a versatile way.
o The{Longest|Shortest}Possible: In order to handle situa-

tions where property must hold as long (short) as possi-
ble.

o The{Earliest|Latest}Possible: This pattern has as an
objective to make property happen as early (late) as pos-
sible.

o SA-{Min|Max}Duration: This pattern implies property to
hold for a min (max) time, but this threshold is relaxed to
allow the property to hold around it.

o TheClosestPossibleTo-q: It i-s used to express quantity
(q) in a versatile manner, where values around it can be
tolerated.

o As {many| few} as possible: This phrase is used to ex-
press, as close as possible, an undetermined and ideal
quantity.

o SA-Recurrence: It is analogous to “The Closest-
PossibleTo-q.” This pattern presents the frequency of
property holding, i.e. property holds as possible every t (t
is a duration).

o Alternative: It is used to specify alternatives for a particu-
lar event/state, this pattern is useful for system reconfigu-
ration specification.

o Alternative-SA-recurrence: This is a hybrid pattern used
to express relaxed versions of a temporal state.

4.1.2. Self-Adaptive-Order Patterns

 These patterns are used to specify the order in which
some properties must occur. This kind of pattern includes
two families: recurrence and response patterns. In this paper,
the authors propose a self-adaptive version for ”Until” and
“Response” family patterns.
o SA-Until: “Until” pattern is native in most of the tem-

poral logics; it was extended in a study [24], in order to
handle timed properties. The authors propose a relaxed
version of the latter, where the time bound is fuzzy.

o The{Earliest|Latest}Possible-Response (1-N | N-1): This
pattern means that every time, a property X (stimulus)
holds, it must be pursued (caused) by the chain of proper-
ty Yi 1≤ i ≤ n (responses), as early (late) as possible.

The patterns catalog presented above aims to bring more
expressiveness during the phase of specification. It is gener-
ated from the grammar presented in the earlier text along; its
semantics are also presented.

4.2. Language Syntax

Pattern generations follow the structured English gram-
mar presented below:

Table 4 illustrates the first step in the process of
specification. Each property is formed of two pieces, a scope
and a pattern, for the first part, we choose one of following
keywords: "Globally", "After", "Before", "Between", or "Af-
ter-Until". Concerning pattern part, it is generated via a Self-
Adaptive-Pattern non-terminal (replaceable part in a gram-
mar). The latter generates two non-terminals, Self-Adaptive-
Occurrence or Self-Adaptive-Order, depending on what one
is seeking to express. For example, if a specific sequence of
events is desired, the Self-Adaptive-Order is used. Whatever
the choice, it generates pattern non-terminal, the last step
before structured English. Table 5 presents structured Eng-
lish (generated from pattern non-terminal). It contains fixed
sentences such as, “it is the case that,” optional parts be-
tween brackets like “[Time(A)]” and original requirement
parts between “{ }”, ex: {Terrestrial Photovoltaics (PV) sys-
tems face the sun}. Table 6 details time and quantity defini-
tions.

4.3. Language Semantics

The authors present a mapping for their patterns in tem-
poral logic in order to bring meaning to the language. The
fuzzy metric temporal logic was selected to provide
formalism for the language. Fuzzy logic is well adopted to
handle uncertainty due to its flexibility. Table 7 presents
TheEarliestPossible pattern translation in FMTL. The com-
plete mapping of the catalog is presented in Appendix 1. In
this section, the patterns catalog is presented to deal with
self-adaptation expression in the requirements specifications.
A grammar, based on structured English is also specified,
from a pattern type selection to detail the core of the pattern.
Then, language semantics are presented in terms of fuzzy
logic. However, the efficiency of language must be tested via
real-world instances and empirical case studies.

In order to explain how a pattern can be verified, the au-
thors provide the example: Giving the property P = “Global-
ly, it is the case that {Communications networks working }
holds as long as possible”, with truth threshold of 0.99. we
check the validity of the property P over the part of the sys-
tem shown in Fig. (2), which is an exclusion sample, where a
common resource F is shared between two properties X and
Y. There are the following two possible firing sequences to
achieve the goal that both places ¬! and E get a token.

s1 : M0 [TB> M1 [TC> M2 [TD> M3 [TE> M4
s2 : M0 [TD> M5 [TE> M6 [TA> M7 [TB> M8

!!! ! = 1,3,3,5 , !!! ! = 3,5,5,7 , !!! ! =
0,0,0,0

Mx : stat of fuzzy petri net.
Tx : petri net transition.

Temporal Pattern Specifications for Self-Adaptive Requirements Recent Patents on Computer Science, 2018, Vol. 11, No. 3 5

Table 4. Pattern generation.

Property ::= Scope, Self-Adaptive-Pattern

Scope ::= Globally| Before {B} | After {C} | Between {C} and {B} | After {C} until {B}

Self-Adaptive-Pattern ::= Self-adaptive-Occurrence | Self-adaptive-Order

Self-Adaptive-

Occurrence
::=

TheLongestPossible | TheShortestPossible | TheEarliestPossible | TheLatestPossible | SA-MinDuration | SA-
MaxDuration

Self-Adaptive-Order ::= SA-Until | TheEarliestPossibleResponse

Table 5. Structured English for self-adaptive patterns.

TheLongestPossible ::= It is the case that {A} [holds] [as long] as possible [Time (A)].

TheShortestPossible ::= It is the case that {A} [holds] [as short] as possible [Time (A)].

TheEarliestPossible ::= It is the case that {A} [holds] [as early] as possible [Time (A)].

TheLatestPossible ::= It is the case that {A} [holds] [as late] as possible [Time (A)].

SA-MinDuration ::= Once {A} [becomes satisfied] it remains as possible up to !!!TimeUnits.

SA-MaxDuration ::= Once {A} [becomes satisfied] it remains as possible less than !!!TimeUnits.

SA-Recurrence ::= {A} [holds] repeatedly almost every !!!TimeUnits.

Alternative ::= May {A0} [holds] or May {A1} [holds] or May {Ai}

Alternative-recurrence
::=

May {A0} [holds] or May {A1} [holds] or May {Aj}, where Aj [holds] repeatedly almost every
!!TimeUnits.

TheClosestPossibleTo-q ::= {A} is as close as possible to q QuantityUnits.

As many as possible ::= {A} [holds] as many as possible.

As few as possible ::= {A} [holds] as few as possible.

SA-Until ::= {A} [holds] without interruption almost until {D} [holds] [Time(A)] / A holds even D doesn’t.

TheEarliestPossible-Response (1-N)
::=

If {A} [has occurred] then in response {D} [holds] as early as possible
[Time (D)] followed by ({Ti} [Time (Ti)])(1≤i≤N-1;”,”)[eventually hold].

TheEarliestPossible-Response (N-1)
::=

If {S} followed by ({Ti} [Time(Ti)])(1≤i≤N-1;”,”)[have occurred] then in response {A} [holds] as early as
possible [Time(A)]

TheLatestPossible-Response (1-N)
::=

If {A} [has occurred] then in response {D} [holds] as late as possible
[Time (D)] followed by ({Ti} [Time (Ti)])(1≤i≤N-1;”,”) [eventually hold]

TheLatestPossible-Response (N-1)
::=

If {D} followed by ({Ti} [Time (Ti)])(1≤i≤N-1;”,”) [have occurred] then in response {A} [holds] as late as
possible [Time(A)]

6 Recent Patents on Computer Science, 2018, Vol. 11, No. 3 Yahiaoui et al.

Table 6. Time and quantity definitions.

Time (A) ::= UpperTimeBound (A) | LowerTimeBound (A) | Interval (A)

UpperTimeBound (A) ::= Within !!!TimeUnits

LowerTimeBound (A) ::= After !!!TimeUnits

Interval (A) ::= Between !!!and !!!TimeUnits

TimeUnits ::= Any denomination of time (e.g., seconds, minutes, hours, days, or years)

QuantityUnits ::= Any denomination of quantity (e.g., number of connected devices)

Table 7. Mapping of “TheEarliestPossible” in FMTL.

The Earliest Possible

Globally O! !"_! !

Before B ! !"_! ! → !U !"#$_! ! ∨ O! !"_! !

Between C and B  ! ∧ ! !"_! ¬! ∧ ! !"_! ! → !U !"#$(!) ! ∨ O! !"_! !

After C until B  ! ∧ ! !"_! ¬! → O! !"_! !W !"#$_! !

Fig. (2). Exclusion sample model.

!!! ! : initial trapezoidal fuzzy timing function.
Suppose that the duration of running system is 10 days so

P becomes
 !,!" {!"##$%&'()&"%* !"#$%&'(!"#$%&' } ∧

 !,!" ¬{!"##$%&'()&"%* !"#$%&'(!"#$%&' } .
We check whether P is satisfied or not on the two possi-

ble sequences (s1, s2). By applying Model checking algo-
rithm from [6], we find that s1 gives 63,6 % degree of satis-
faction and 22,2 % for s2. In other words, ¬! place can be
reached by 0.636 or 0.222 possibility value, which is not
accepted because of threshold 0.01 (1 – 0.99 = 0.01). So P is
satisfied on this model.

5. VALIDATION

In this section, researchers present a validation for their
proposal by providing some examples from real-world appli-

cations. Also presented are two sets of specifications from
the Smart Living and ambulance dispatching systems. Before
that, the authors introduce a developed support tool. The
choice of case studies is supported by the need for a high
level of flexibility in such systems. Therefore, specifications
must be highly versatile.

5.1. The PSAS-Tool

The authors designed a new support tool in order to facil-
itate engineering work, which is similar to the PSPFrame-
work presented in a study [6]. The main objective of the
PSAS-tool is to automate the structured English grammar
expressions translation to fuzzy metric temporal logic formu-
las. The PSAS-tool’s main process is as follows: First, selec-
tion of a pattern in the left side bar menu (Fig. 3) is made
and a modal window appears by selecting a pattern (Fig. 4).
Second, text areas are filled with original requirement con-

Temporal Pattern Specifications for Self-Adaptive Requirements Recent Patents on Computer Science, 2018, Vol. 11, No. 3 7

tent. After clicking the “ADD” button, the specification is
inserted into the main document and the mapping in FMTL
is automatically generated. Finally, a specifications list can
be exported into multiple formats (JSON, xml).

The example in Fig. (4) shows the “TheEarliest-Possible”
pattern. First, scope (1) is selected, the PSAS-tool adds au-
tomatically a Textarea to enter the event (2). Next, textarea
that depicts the original requirement is fulfilled (3). Next, it
is checked optionally “holds” to express clearly requirement
(4). Next, time interval definition is selected (within, at least)
(5), finally, fulfilling pattern-holding duration and select
time unit (6, 7).

Fig. (3). PSAS-tool overview.

Fig. (4). Pattern selection and property creation.

The PSAS-tool conception allows requirement engineers
to specify system properties in a versatile way with no need
to use logic symbols (generated automatically). The PSAS-
tool is a web application; this choice implies various bene-
fits. First, web applications are centralized, therefore, they
avoid deploying on each client, and updates are easier. Sec-
ondly, they enable accessibility from any place with Internet
access. Third, web applications are platform independent.

The PSAS-tool also offers the advantage of mobile adapta-
bility via its responsive design, by applying PSAS using the
PSAS-tool on a set of requirements taken from various ap-
plications from the real world.

5.2. Self-Adaptive Pattern Samples

All specifications must conform to the rule: “Scope, pat-
tern.” The scope is the interval of time in which a pattern can
be handled. The second part depicts the core of the pattern.
In the first example below, the scope is “Globally,” which
means the pattern is valid for the whole system run-time.
The pattern here is “TheLongestPossible,” following the
researchers’ grammar. It will be replaced by “It is the case
that {A} holds as long as possible;” parts in bold remain
unchangeable, while “A” will be replaced by the original
requirement.

Globally, it is the case that {Terrestrial Photovoltaics
(PV) systems face the sun} holds as long as possible. (It is
hard to determine the sun-facing time because there is no
fixed duration, even during the same day or season.).

After {the satellite is stable on the orbit}, it is the case
that {all control parameters need to be consistent between
the primary and backup system for the three-year mission
time} holds as early as possible (Source: satellite control
system).

Globally, {barley hydroponics system temperature} is as
close as possible to 18◦ (barley fodder hydroponics system).

After {Wi-Fi activation}, {smartphone detects device}
holds as many as possible (Smartphone Operating System).

Due to the lack of space, only a subset of patterns was in-
stantiated. In the following section, a concrete case study is
provided to illustrate how the authors chosen language adds
flexibility to requirements.

5.3. Empirical Evaluation

In order to demonstrate whether the discovered specifica-
tion patterns deal with current problems of industrial specifi-
cations, two case studies are presented. The first one is the
Smart Fridge from an assisted living home [4]; the second is
an ADS (Ambulance Dispatch System) [13]. In the follow-
ing, the authors present a set of self-adaptation specifications
using our proposed catalog for self-adaptive requirements.

6. DISCUSSION

PSAS is a first-class adaptive language, all patterns are
relaxed using operators like “as possible” (Fig. 5), this
means that property can be relaxed if it cannot be satisfied in
a certain state of the system at runtime. On the other hand,
each pattern is represented with a formula generated using
fuzzy metric temporal logic grammar which can be verified
automatically on a fuzzy timed Petri net model. Learning
curve is really easy when it comes to PSAS, patterns ap-
proaches are proven ones (500 requirements expressed using
only 20 patterns [2]), in our cases studies 14 requirements
expressed using only 7 patterns. Another interesting ad-
vantage, with the use of patterns, is the improved readability
of document specification because of reduced number of
used patterns.

8 Recent Patents on Computer Science, 2018, Vol. 11, No. 3 Yahiaoui et al.

Fig. (5). Requirement processing with PSAS.

Table 8. Smart fridge specifications (RELAX vs PSAS).

 RELAX PSAS

R1
The fridge SHALL detect and communicate information

with AS MANY AS POSSIBLE food packages.
Globally, it is the case that {The fridge detects and communicate information

with food package} as many as possible.

R2
The fridge SHALL suggest a diet plan with total calories
AS CLOSE AS POSSIBLE TO the daily ideal calories.

Globally, it is the case that {The fridge suggests a diet plan with total calories}
as close as possible to q / q = the daily ideal calories.

R3 The system SHALL consume AS FEW units of energy
AS POSSIBLE during normal operation.

Globally, it is the case that {The fridge detects and communicates information
with food package} as few as possible.

Fig. (6). Number of operators vs cases studies (PSAS and others).

Temporal Pattern Specifications for Self-Adaptive Requirements Recent Patents on Computer Science, 2018, Vol. 11, No. 3 9

Table 9. ADS specifications.

 Requirement Description PSAS Pattern

R4 Input emergency information should never fail. Globally, it is the case that {Input emergency information} holds as long as possible.

R5 Communications networks working should have 99%
success rate.

Globally, it is the case that {Communications networks working should have 99% success
rate } holds as long as possible.

R6 Search call database should have a 95% success rate
over 1-week periods.

Globally, {Search call database should have a 95% success rate} holds repeatedly almost
every 1 week.

R7 Dispatch ambulance should fail at most once a week. Globally, {Dispatch ambulance} holds repeatedly almost every 1 week.

R8 Ambulance arrives in 10 minutes; should succeed 60%
of the time.

Globally, it is the case that {Ambulance arrives should succeed 60% of the time} holds as
possible within 10 minutes.

R9 Ambulance arrives in 15 minutes; should succeed
80%, measured daily.

Globally, it is the case that {Ambulance arrives should succeed 80%} holds as possible
within 15 minutes.

Globally, {Ambulance arrives should succeed 80%} holds repeatedly almost every 1 day.

R10 Update automatically should succeed 100 times more
than the task Update manually.

Globally, it is the case that {Automatic update should succeed 100 times more than man-
ual update} holds as long as possible.

R11 The success rate of No unnecessary extra ambulances
for a month should not decrease, compared to the
previous month, two times consecutively.

Globally, May {The success rate of No unnecessary extra ambulances should not de-
crease, compared to the previous month} or May {The success rate of No unnecessary
extra ambulances decreases one time compared to the previous month } or May {The
success rate of No unnecessary extra ambulances decreases two times compared to the
previous month}, repeatedly almost every 1 month.

R12 Update arrival at the site should be successfully exe-
cuted within 10 minutes of the successful execution of
Inform driver, for the same emergency call.

After {successful execution of Inform driver}, it is the case that {update arrival at site}
holds as early as possible within 10 minutes.

R13 Mark as unique or duplicate should be decided within
5 minutes.

Globally, it is the case that {Mark as unique or duplicate should be decided} as early as
possible within 5 minutes.

R14 (Search call database should have a 95% success rate
over 1-week periods); should have 75% success rate
over 1-month periods.

Globally, {Search call database should succeed} holds repeatedly almost every 1 month.

The specifications above illustrate the ease of use of
PSAS, which is one of its best advantages. The authors have
found that it is easier to handle because of the well-defined
structure of pattern. Table 8 presents specifications ex-
pressed using RELAX [4] and PSAS; the approaches are
similar in terms of simplicity. However, PSAS has the ad-
vantage of non-recursive grammar that makes the language
easier for less experienced engineers. As mentioned in sec-
tion 3, each pattern is coupled with one of the five scopes so
the seventeen patterns can made up to eighty five different
properties. Fig. (6) illustrates the number of operators avail-
able in PSAS and three reference works, versus the number
of case studies applied to them. The chart shows that PSAS
is the richest language in terms of vocabulary (17 patterns),
13 for RELAX [4], 3 for MAPE-K-FT [18], and only the
operator “as possible” for FLAGS [12]. In regard to applica-
bility of language, MAPE-K-FT takes the throne with four
cases studies, two for PSAS and one for the others. Never-
theless, PSAS is a general propose language that can be ap-
plied in any self-adaptation context.

In Table 9, requirements must be relaxed, but this relaxa-
tion is limited at a certain threshold. For example, “Ambu-
lance arrives in 10 minutes should succeed 60% of the time,”
60% of success defines the minimum tolerated success de-
gree, and the pattern must have a true value of one in 60% of
the time. The remaining 40% has a true value of less than
one. So PSAS not only handles the minimum success degree,
but also the rest that can result in a true value of less than
one, which can be useful in the reasoning level at run-time.

The researchers’ approach is designed to be used during
the design phase, so by permitting the engineers to specify
self-adaptation at the requirements level, it guides designers’
reasoning about self-adaptation in the specification phase.
PSAS can also be useful at run-time. Speaking about the
feedback loop MAPE (Monitoring Analyse Planning Execu-
tion) [25], the truth value of specification can be very helpful
during run-time (monitoring and planning phases). However,
the researchers’ approach does not give an explicit run-time
solution. Thanks to fuzzy logic, proposed patterns in the ex-
amples presented above are more flexible than the existing

10 Recent Patents on Computer Science, 2018, Vol. 11, No. 3 Yahiaoui et al.

ones for non-adaptive systems. On the other hand, existing
languages for self-adaptive systems like RELAX provided
the required flexibility, but PSAS offers an advantage by two
major things. First, specifications generated are simple in
PSAS due to its non-recursive grammar. Second, the re-
searchers’ language offers a way to handle specification exe-
cution interval via scopes.

CONCLUSION

This paper aimed to present a new specification language
for self-adaptive systems. The main objective of this lan-
guage is to deal with run-time changes including uncertainty,
for indicating the behavior of a self-adaptive system. In re-
sponse to the unexpected changes that occur in the execution
environment, system behavior needs to be changed. The lack
of sufficient information about the applications intended
behavior could occasionally cause behavioral uncertainty
during the development stage, so it still requires run-time
adaptation. In this work, we introduced a pattern catalog to
the non-invariant requirements.

This language is based on two major pillars, fuzzy logic,
and specification patterns; the former has as objective to
handle both temporal and ordinal uncertainties due to fuzzy
logic flexibility. The latter is for handling natural language
ambiguities through the Structured English language. The
authors gave a set of examples to bring meaning to our pro-
posal. The authors also presented two case studies from am-
bient assisted living and ambulance dispatch system domains
those are active areas in self-adaptation.

CONSENT FOR PUBLICATION

Not applicable.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or
otherwise.

ACKNOWLEDGEMENTS

Declared none.

APPENDIX 1

PSAS Semantics in Terms of FMTL

In the following, the truth value of each formula is a possibility value ∈ [0,1]. The threshold of truth can be defined accord-
ing to need in [0,1].

!"#$_! t!!, t!!

!"#_! t!! − t!!

tl_A t!!

tu_A t!!

!"#_! !"#$_! + !"#$%"&$(!)

Self-Adaptive-Occurrence Family

The Longest Possible (Universality pattern mapping (Autili et al., 2015) with truth value in [0,1])

Globally  !"#$_! ! ∧! !"#_! ¬!

Before B ! !"_! ! → ! ∧! !"#_! ¬! U !"#$_! ! ∨  !"#$_! ! ∧! !"#_! ¬!

After C  ! →  !"#$_! ! ∧! !"#_! ¬!

Between C and B  ! ∧ ! !"_! ¬! ∧ ! !"_! ! → ! ∧! !"#_! ¬! U !"#$_! ! ∨  !"#$_! ! ∧! !"#_! ¬!

After C until B  ! ∧ ! !�_! ¬! → ! ∧! !"#_! ¬! W !"#$_! !

Where : !"#_! = ∞

The Shortest Possible (Absence pattern mapping (Autili et al., 2015) with truth value in [0,1])

Globally  !"#$_! ! ∧! !"#_! ¬!

Before B ¬! W !"#$_! ! ∧! !"#_! ¬! ∧ ¬!

After C ¬C ∨ C ∧ !"#$_! ! ∧! !"#_! ¬!

Between C and B  ! ∧ ! !"_! ¬! ∧ ! !"_! ! → ¬! W !"#$_! ! ∧! !"#_! ¬! ∧ ¬!

After C until B  ! ∧ ! !"_! ¬! → ¬!U !"#$_! ! ∧! !"#_! ¬! ∧ ¬!

Where: !"#_! = !

The complete mapping is available on: https://zerone-01.com/psas/mapping.pdf

Temporal Pattern Specifications for Self-Adaptive Requirements Recent Patents on Computer Science, 2018, Vol. 11, No. 3 11

REFERENCES
[1] L. A. Zadeh, "Fuzzy sets," Information and control, vol. 8, no. 3,

1965.
[2] M. B. Dwyer, G. S. Avrunin and J. C. Corbett, "Patterns in

property specifications for finite-state verification," in Proceedings
of the 21st international conference on Software engineering, Los
Angeles, 1999.

[3] N. Abid, S. Dal Zilio and D. Le Botlan, "A Real-Time
Specification Patterns Language," 2011.

[4] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng and J.-M. Bruel,
"RELAX: a language to address uncertainty in self-adaptive
systems requirement," Requirements Engineering, pp. 177-196,
2010.

[5] S. Konrad and B. H. Cheng, "Real-time specification patterns," in
Proceedings of the 27th international conference on Software
engineering, St. Louis, MO, USA, 2005.

[6] M. Autili, L. Grunske, M. Lumpe, P. Pelliccione and A. Tang,
"Aligning qualitative, real-time, and probabilistic property
specification patterns using a structured english grammar," IEEE
Transactions on Software Engineering, vol. 41, no. 7, pp. 620-638,
2015.

[7] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele and C. Becker,
"A survey on engineering approaches for self-adaptive systems,"
Pervasive and Mobile Computing, vol. 17, pp. 184-206, 2015.

[8] D. Weyns, "Software engineering of self-adaptive systems: an
organised tour and future challenges," Chapter in Handbook of
Software Engineering, 2017.

[9] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M.
Litoiu and D. Weyns, "Software engineering for self-adaptive
systems: A second research roadmap," in Software Engineering for
Self-Adaptive Systems II, Berlin, Heidelberg, 2013.

[10] S.-i. Moon, K. H. Lee and D. Lee, "Fuzzy branching temporal
logic," IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), vol. 34, no. 2, pp. 1045-1055, 2004.

[11] B. H. Cheng, P. Sawyer, N. Bencomo and J. Whittle, "A goal-based
modeling approach to develop requirements of an adaptive system
with environmental uncertainty," in International Conference on
Model Driven Engineering Languages and Systems, Berlin,
Heidelberg, 2009.

[12] L. Baresi, L. Pasquale and P. Spoletini, "Fuzzy goals for
requirements-driven adaptation," in 2010 18th IEEE International
Requirements Engineering Conference, Sydney, NSW, Australia,
2010.

[13] V. E. Silva Souza, A. Lapouchnian, W. N. Robinson and J.
Mylopoulos, "Awareness requirements for adaptive systems," in
Proceedings of the 6th international symposium on Software
engineering for adaptive and self-managing systems, Waikiki,
Honolulu, HI, USA, 2011.

[14] V. E. S. Souza, A. Lapouchnian and J. Mylopoulos,
"(Requirement) evolution requirements for adaptive systems," in
Proceedings of the 7th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, Zurich,
Switzerland, 2012.

[15] M. Ahmad, N. Belloir and J.-M. Bruel, "Modeling and Verification
of Functional and Non-Functional Requirements of Ambient Self-
Adaptive Systems," Journal of Systems and Software, vol. 107, pp.
50-70, 2015.

[16] E. Vassev and M. Hinchey, "Engineering Requirements for
Autonomy Features," in Software Engineering for Collective
Autonomic Systems, Cham, 2015.

[17] M. Morandini, L. Penserini, A. Perini and A. Marchetto,
"Engineering requirements for adaptive systems," Requirements
Engineering, vol. 22, no. 1, pp. 77-103, 2017.

[18] D. G. D. L. Iglesia and D. Weyns, "MAPE-K formal templates to
rigorously design behaviors for self-adaptive systems," ACM
Transactions on Autonomous and Adaptive Systems (TAAS), vol.
10, no. 3, p. 15, 2015.

[19] C. E. da Silva, J. D. S. da Silva, C. Paterson and R. Calinescu,
"Self-adaptive role-based access control for business processes," in
Proceedings of the 12th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, Buenos
Aires, Argentina, 2017.

[20] M. Salehie and L. Tahvildari, "Autonomic computing: emerging
trends and open problems," in DEAS '05 Proceedings of the 2005
workshop on Design and evolution of autonomic application
software, St. Louis, Missouri, USA, 2005.

[21] L. Grunske, "Specification patterns for probabilistic quality
properties," in 2008 ACM/IEEE 30th International Conference on
Software Engineering, Leipzig, Germany, 2008.

[22] Y. Zhou and T. Murata, "Petri net model with fuzzy timing and
fuzzy-metric temporal logic," International Journal of Intelligent
Systems, vol. 14, no. 8, pp. 719-745, 1999.

[23] N. Esfahani and S. Malek, "Uncertainty in self-adaptive software
systems," in Software Engineering for Self-Adaptive Systems II,
Berlin, Heidelberg, 2013.

[24] V. Gruhn and R. Laue, "Patterns for timed property specifications,"
Electronic Notes in Theoretical Computer Science, vol. 153, no. 2,
pp. 117-133, 2006.

[25] J. O. Kephart and D. M. Chess, "The vision of autonomic
computing," Computer, vol. 36, no. 1, pp. 41-50, 2003.

[26] M. U. Iftikhar and D. Weyns, "A case study on formal verification
of self-adaptive behaviors in a decentralized system," arXiv
preprint arXiv:1208.4635, 2012.

[27] D. Weyns, M. U. Iftikhar, S. Malek and J. Andersson, "Claims and
supporting evidence for self-adaptive systems: A literature study,"
in Proceedings of the 7th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, Zurich,
Switzerland, 2012.

[28] F. D. Macias-Escriva, R. Haber, R. del Toro and V. Hernandez,
"Self-adaptive systems: A survey of current approaches, research
challenges and applications," Expert Systems with Applications,
vol. 40, no. 18, pp. 7267-7279, 2013.

[29] R. Koymans, "Specifying real-time properties with metric temporal
logic," Real-time systems, vol. 2, no. 4, pp. 255-299, 1990.

[30] A. Capozucca, N. Guelfi and P. Pelliccione, "The fault-tolerant
insulin pump therapy," in Rigorous Development of Complex
Fault-Tolerant Systems, Berlin, Heidelberg, 2006.

[31] J. Coleman and C. Jones, "Examples of how to determine the
specifications of control systems," Technical Report Series-
University of Newcastle Upon Tyne Computing Science, vol. 915,
p. 65, 2005.

[32] E. S. Yu, "Towards modelling and reasoning support for early-
phase requirements engineering," in Proceedings of ISRE '97: 3rd
IEEE International Symposium on Requirements Engineering,
Annapolis, MD, USA, USA, 1997.

[33] A. Dardenne, A. Van Lamsweerde and S. Fickas, "Goal-directed
requirements acquisition," Science of computer programming, vol.
20, no. 1-2, pp. 3-50, 1993.

[34] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia and J.
Mylopoulos, "Tropos: An agent-oriented software development
methodology," Autonomous Agents and Multi-Agent Systems, vol.
8, no. 3, pp. 203-236, 2004.

[35] I. Suzuki and H. Lu, "Temporal Petri nets and their application to
modeling and analysis of a handshake daisy chain arbiter," IEEE
Transactions on Computers, vol. 38, no. 5, pp. 696-704, 1989.

