
HAL Id: hal-02436855
https://univ-pau.hal.science/hal-02436855

Submitted on 13 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

One App to Rule Them All Collaborative Injection of
Situations in an Adaptable Context-Aware Application

Riadh Karchoud, Philippe Roose, Marc Dalmau, Arantza Illarramendi, Sergio
Ilarri

To cite this version:
Riadh Karchoud, Philippe Roose, Marc Dalmau, Arantza Illarramendi, Sergio Ilarri. One App to Rule
Them All Collaborative Injection of Situations in an Adaptable Context-Aware Application. Journal
of Ambient Intelligence and Humanized Computing, 2018, 10 (12), pp.4679-4692. �hal-02436855�

https://univ-pau.hal.science/hal-02436855
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

One App to Rule Them All

Collaborative Injection of Situations in an Adaptable
Context-Aware Application

Riadh Karchoud · Philippe Roose ·
Marc Dalmau · Arantza Illarramendi ·
Sergio Ilarri

Received: date / Accepted: date

Abstract Currently, we are living in the era of ubiquitous computing, that
introduces the possibility to have an increasing number of mobile applications
on different types of devices with ever-growing capabilities. Consequently, the
continuous rise of mobile applications opens the door for an unmatched number
of diverse possibilities of what users can do and expect to do. Due to the high
demand for apps and the unstoppable growth of app stores, the computing
world is slowly shifting towards an interconnected, distributed, and context-
aware digital ecosystem. With so many possible use cases and such diverse
user needs, is it desirable to have one single application that does it all? Has
it become a necessity to have one application able to understand users and
eliminate the need for other applications?

Our vision of this single application is a context-aware distributed mobile
application dedicated to everyday users. This app needs to offer to the users a
high level of comfort and a better-customized user experience by replying both
re-actively and pro-actively to the users’ needs without confusing them with
the large diversity of apps and devices available. Nonetheless, no predefined
application can predict or autonomously handle all the possible situations that
could happen to the user in all different areas (shopping, work, travel, etc.),
due to the infinite possibilities. Therefore, our proposal allows to dynamically

Riadh Karchoud
E-mail: karchoud.riadh@gmail.com

Philippe Roose
E-mail: Philippe.Roose@iutbayonne.univ-pau.fr

Marc Dalmau
E-mail: dalmau@iutbayonne.univ-pau.fr

Arantza Illarramendi
E-mail: a.illarramendi@ehu.eus

Sergio Ilarri
E-mail: silarri@unizar.es

2 Riadh Karchoud et al.

add new use cases, by both non-experts (e.g., everyday users) and domain
experts (e.g., a travel agent), into the user’s application.

Keywords Context-aware mobile applications, pervasive applications,
situation awareness, reactive systems.

1 Introduction

Nowadays, devices are packed with a large amount of applications for multiple
purposes. These applications try, in their own categories (social, work, enter-
tainment, etc.), to fulfill the needs of the users. However, the diversity of those
needs makes it a challenge for mobile applications to accurately understand
their users and respond to them by managing adequately their daily situations
regardless of their nature or categories.

The interest for this kind of applications comes from the fact that users
have repetitive habits, that they perform on a regular basis, and evolving
needs, that continuously change and shift according to their physical and social
environment. Those reasons raise the issue of the relevance of services that can
be automatically offered by context-aware applications in order to respond to
certain situations.

In the specialized literature, we can find different proposals in the area of
context-aware applications. However, in general, they only partially cover the
needs of users, due to three main reasons:

– Firstly, they focus their work on understanding the context of the user
under a specific limited area of expertise (museum guided tours (Chen
and Huang, 2012), context-aware health-care, tourism (Basiri et al., 2017),
smart transportation, etc.) in which users and developers, with no expertise
in those domains, could not either improve or adapt the application to
behave according to the actual requirements of the user.

– Secondly, they cannot be either extended to cover wider use cases or en-
riched to handle more precisely specific personal situations, due to the lack
of dynamicity in the predefined rule-based models that they support.

– Finally, most of the context-aware applications focus either solely on one
device (on which they are installed) or on a complex network of sen-
sors (Sang-Seok et al., 2017) that should be pre-installed all around the
user in order for them to run correctly.

Therefore, in the considered scenario, with a large variety of use cases,
diversity of needs, and multiplicity of devices, it becomes a necessity to have
a solution that handles them properly. In this sense, we propose a Long Life
Application (LLA) or Eternal Application, as it runs ubiquitously and evolves
constantly by changing its behavior and offering a variety of services according
to the user’s needs.

One main novelty of the proposed LLA is an injection mechanism (Kar-
choud et al., 2017b) that enables users and other external sources to continu-
ously and proactively introduce new potential situations into the user’s LLA

One App to Rule Them All 3

application, in order to improve its understanding about the user’s situations
and overcome the lack of dynamicity in current existing applications.

The objective of this paper is first to present briefly how our LLA proposal
is able to create/inject/detect everyday situations and react to them dynami-
cally, thus providing the appropriate services for the users. Next, to show the
details of the main contribution of the paper, that is the injection mechanism
that enables users and other external sources to continuously and proactively
introduce new scenarios and services into the user’s application, in order to
overcome the fact that only 25% of users return to any given application after
the first use (Grennan, 2016). This paper is an extended version of (Karchoud
et al., 2017b); specifically, we provide a more detailed description of both the
situation injection mechanism and the prototype developed, besides including
a description of the injected situation model.

This paper starts in Section 2 by presenting related work on mobile ap-
plications focused on context awareness dedicated to mobile end users. Then,
Section 3 presents the global idea behind our LLA proposal and Section 4
summarizes the basics of the situation-based contextual modeling proposed.
After that, Section 5 is focused on the context injection mechanism used to
enrich the application dynamically. The way in which the matching among
services and situations is handled is presented in Section 6. Then, Section 7
shows a real-life scenario and we compare our proposal with a classical one
based on the use of app stores. The paper finishes with some conclusions about
the proposal and some prospective lines of future work.

2 Related work

The final goal of our work is proposing an end-user dynamic context-aware
application. After studying all the areas that lead to building and running
this kind of applications, we collected information about both commercial
and research applications providing the wanted features for common usage on
mobile devices. So, in the following, we present a set of existing applications
that provide similar features to what we want to achieve. First, we describe
some commercial apps created by companies; afterwards, our focus turns to
research works tackling this area.

Compared to the works described in this section, our novel contribution
is illustrated by our detailed contextual situation model which is able to be
enriched continuously from a variety of sources. Although some works propose
injecting context information (by using rules, natural language, or voice com-
mands), they are usually restricted to predefined rules or simple commands.

2.1 Commercial apps

Google is one of the biggest companies putting an effort to aim their work
at the area of dynamic applications able to detect the context and offer cus-
tomized services to their users. Its Google Now application (Martin, 2017) is

4 Riadh Karchoud et al.

triggered by contextual changes or voice commands. It detects/gathers rel-
evant data (home location, work location, calendar events, Google+, etc.)
about users and saves their Google searches using the Google Knowledge
Graph (Google, 2017). It uses other Google services (Google Maps, Google
Images, Google Alert, etc.) to provide features like getting updates on sports,
movies, and events.

Google also took another interesting initiative with context-aware applica-
tions, but in a different format, with Google Instant Apps (Lardinois, 2017).
They offer the possibility for developers to decompose their applications into
smaller apps (activities) dedicated to specific needs and triggered by clicking
on a web link or by using NFC (Near Field Communication). For example, to
buy an item on Amazon, the user reaches the item by using Google and then,
when he/she is about to pay, the Amazon payment instant app is launched with
no installation required. Another use case that Google presents is a parking
micro-app that is only launched when the user faces a parking meter machine
and places his/her phone on it to trigger the parking app. It uses an approach
similar to micro-apps (Syer et al., 2011). The strength of these solutions comes
from the fact that they are built on the multiple services of Google. Nonethe-
less, Google focuses their applications on predictive recommendations that
may be interesting to the user only in a limited range of situations.

EasilyDo (Edison, 2017), 24me (24me, 2016) and Tempo (Rodgers, 2013)
are all personal assistants solutions for productivity planning and scheduling.
Tempo is based on an AI (Artificial Intelligence) approach able to pull user
contextual information and predict meeting places and attendees. 24me inte-
grates the user’s calendar, tasks, notes and personal accounts together, in order
to customize the application and have automated reminders about paying bills,
sending gifts, going to doctor appointments, etc. EasilyDo offers some prede-
fined smart features like auto-dialing conference calls and viewing attendees
LinkedIn profiles, getting bad weather alerts, accessing boarding passes, and
getting flight status. The problem of these applications comes from their limi-
tations (redundancy of recommendations/features, lack of dynamicity, control
out of the user’s hands, etc.) and the lack of diversity of the services they offer
(limited to notifications, recommendations, etc.).

IFTTT (IF This Then That) (Ovadia, 2014) is another interesting solution.
It considers the user domain (devices) and exploits it by using web services able
to communicate, link and control remote devices (such as connected lamps).
Although its contextual model is poor, it offers pertinent useful scenarios (e.g.,
turn on the lights automatically at 7 pm). The issue is that IFTTT is depen-
dent on those services, which makes it repetitive and not convenient for the
dynamic nature of context-awareness.

2.2 Research works

SECE (Sense Everything, Control Everything) (Boyaci et al., 2010) is an ap-
plication for context-aware service composition offering a rule-based approach

One App to Rule Them All 5

in a more user-friendly way, enabling users to define the expected behavior of
a set of web-based services under certain situations. These situations are used
to trigger the composed service execution. They are based on basic contextual
information like the location and time. Even though SECE is user-friendly, in-
serting rules in a written manner is always considered a boring task by mobile
end users.

DoTT (Do This on That) (Chihani et al., 2013) is another rule-based sys-
tem using context providers in order to be aware of the user’s situations in-
stantly. It is built over a reasoning engine able to comprehend the adaptation
rules and react to the user’s context changes by following those rules. As out-
put, it has an interactive interface that can host the services provided by the
system. The difference between this approach and other rule-based systems is
that the rules in this work are presented in natural language, following a spe-
cific grammar (sentences). The drawback is the limitations of its basic services
(messaging, calls, calendar, and social aspects). Moreover, Natural Language
Processing (NLP) has limitations and issues when it comes to languages like
Arabic (Farghaly and Shaalan, 2009).

Dig-Event (Zhao et al., 2011) is a mashup service that allows the users to
define and sort activities such as trips and meetings (considering an optimized
order according to the time and location), obtaining recommendations of a
diversity of relevant services for performing those activities. Recommendation
systems rely on context-based selection criteria including the time, type of ac-
tivity, budget, etc. These technologies are equipped with applications that can
help their owners to navigate in the surrounding areas by proposing different
activities, such as restaurants where to eat, shopping centers to buy from, or
museums to visit, based on the preferences and the profile of the owner. Never-
theless, this system lacks flexibility in context acquisition (Basiri et al., 2017).
In Dig-Event, the user’s context is the result of the manually-entered informa-
tion when declaring an activity, but it does not consider context changes that
occur when doing that activity.

The last type of context-aware applications are the so-called trail-based
applications (Clarke and Driver, 2004). A trail is a contextually-scheduled col-
lection of activities and represents a generic model that can be used to satisfy
the activity management requirements of a wide range of context-based time
management applications. Combining the trails concept with mobile devices,
context-aware technology creates opportunities for innovative activity-based
application development. As an example, Hermes (Driver and Clarke, 2004)
is a software framework for mobile, context-aware trails-based applications,
which supports developers by providing generic components containing struc-
ture and behavior common to all trails-based applications. It organizes, using
a mathematical model, the activities of the user according to his/her previous
trails. The problem with this approach is that it is too much focused on travel
scenarios, rather than in everyday situations that can happen also indoors.

6 Riadh Karchoud et al.

3 Proposed approach

From the perspective of the user, our front-end application is the result of the
combination of software components deployed on the user’s device (or devices)
when needed. Nevertheless, behind what the user sees, there is a combination
of processes and modules working simultaneously to offer the wanted results to
him/her. The approach starts by collecting contextual information that helps
the framework (back-end) to deploy the adequate components through the
middleware. These components will form the visible part of the application
(front-end) in the user domain (list of available connected devices owned by
the user).

LLA differs from the classical approach where the user needs to look for
the applications; instead, it makes the services come to the user when needed.
The application is based on a modular architecture that is able to detect,
understand, and react to the user by offering services related to his/her needs.
Both the deployed services and the main architecture are built based on the
Kalimucho middleware (Da et al., 2014), in order to manage the distribution
aspect of the proposal.

The general process of LLA (see Figure 1) starts by extracting contex-
tual information from the user domain and then inputting it into the core
architecture in order to animate it (i.e., active its reaction). Inside the core of
our proposal, we implement a process respecting the Event Condition Action
(ECA) approach (Nakagawa et al., 2012).

Fig. 1 LLA’s overall workflow

When fed to the core, this contextual information helps to construct an
event, to verify if conditions surrounding that event are met and, finally, to
deploy services as an action for that event. Through this process, the con-
textual information respects a defined situation-based contextual model that
structures and represents the data extracted from the devices in order to build
an entity (situation), which can be understood by both the application and
the users.

After defining the main components of our proposal and describing the
workflow process, we evaluated the proposal by comparing it to existing solu-

One App to Rule Them All 7

tions (see Section 2). This comparison shows that our solution improves the
limitations of existing applications by providing a number of novel contribu-
tions on the theoretical and technical level. In order to build this proposal, the
first step was to formulate the situation-based contextual model, which is the
focus of the next section.

4 Situation model

Situation awareness is commonly defined as the perception of environmental
elements with respect to time or space, the comprehension of their meaning,
and the projection of their future behavior (e.g., see (Endsley, 1995)).

The situation is the key component in our system (Karchoud et al., 2016).
According to the Cambridge dictionary, a situation is “The set of things that
are happening and the conditions that exist at a particular time and place”:

– The set of things = Activity – What are you doing?
– Time – When?
– Location – Where?
– Conditions = Exceptions – What are the exceptions?

Besides, for the context-awareness to be effective, we need to answer an-
other question, in order to know what the user expects when a specific situation
happens:

– Service – What do you expect to happen?

Figure 2 represents the building blocks of the situation representation
model in our application.

Fig. 2 Situation representation model

In our proposal, a situation is represented on two different levels. The first
level is the abstract modeling level where the information that builds any
situation is defined. The second level is the service level, where the reaction
strategy to the situation is defined. This representation model is the core of

8 Riadh Karchoud et al.

our proposal. In (Karchoud et al., 2017a), we presented a clear representation
of this model and we described the way LLA is able to use the model in
order to detect the context across multiple devices, which was the more novel
contribution of that part of our solution. In this paper, we focus on the problem
of dynamic situation injection into LLA.

5 The situation injector

A major issue with mobile applications in general, and context-aware appli-
cations in particular, is their repetitiveness and their usual limitation to re-
stricted application domains or closed spaces equipped with sensors (Harter
et al., 2002).

With the aim of overcoming that issue, LLA handles a semi-automatic,
collaborative, open injection mechanism that continuously provides the user
with richer contextual awareness and more suitable services. In this way, we
ensure the continuous growth of LLA by making it able to enhance and enrich
the user experience by managing (adding, deleting, or modifying) new situa-
tions introduced through the injection mechanism. This mechanism is based
on a user-friendly situation model in order to make the injection an easy and
understandable procedure that can be performed even by end users with no
understanding of technical requirements. The injection mechanism has multi-
ple sources of injection and communicates directly with the user’s application.

5.1 The injector’s workflow

The injector acts as an input (inserter) dedicated to enriching the context
awareness considered for the user, based on diverse sources. It can be used
to inject/modify/delete/update situations and/or services without having to
access directly the devices of the user. Various sources can inject the situation’s
description into the user’s app. The data of this layer is stored in cloud storage
and is shared among all the user’s devices. This solution avoids redundancies
and inconsistencies among the user devices regarding the considered situations,
in order to keep the coherence of LLA.

One benefit of using this high-level contextual injection mechanism, which
extracts context data from multiple sources, is its capability to provide a way
of increasing continuously the repository of monitored situations, which allows
LLA to be more customized to the user along time.

LLA needs to be aware of the user’s habits, needs, and social environment.
Three main categories of context injection sources are considered by the ap-
plication: the user, social media, and external providers, as described in the
next subsections. Each main source of injection uses a different process to col-
laboratively update the application of the user in a transparent way that does
not require any unnecessary downloads.

The advantage of this mechanism resides in eliminating the time and net-
work usage usually needed by current existing applications to do regular heavy

One App to Rule Them All 9

Fig. 3 The injector’s workflow

updates, for even the simpler changes in their code base. Using our approach,
the updates will be occasional and probably affect only the situation file or the
mapping file by using already-stored components. Even at the service level,
developers will be able to modify components separately and therefore have
fewer and lighter updates.

5.2 User’s injection process

The first source of situations is the user himself/herself, and more precisely
his/her needs and habits. What motivated us to propose this is the repetitive-
ness that users feel while they set their alarm every night or while they open
their emails every morning. These habits can be automated in order to help
the user to have the same experiences without having to always perform those
same tasks again and again.

To do so, the user has the possibility to use either the injector’s UI, which is
accessible from his/her LLA’s Manager UI (mobile version) or the Web Injec-
tor. In the first case (see Figure 3 “Uses (2)”), the mobile injector is dedicated
to building simple and fast situations by working on only one projection (a
projection is a specific representation of the contextual information) and three
axes (conceptual directions, like the time and location, that represent the evo-
lution of context) per situation. In the second case (see Figure 3 “Uses (3)”),
a web application allows a more precise and rich description of situations and
services by using multiple projections and six axes.

In both cases, the user can either create, delete or modify a situation by
inserting/modifying the required values (like the time, location, and activity)
and then update or create a matching by selecting a service or a set of services
to be deployed when that situation is detected. The user can also decide to
share these situations with other users.

10 Riadh Karchoud et al.

After selecting the required service/s, the user verifies if the components
composing the selected service/s exist/s in his/her repository. A possible ex-
tension of this could be to have a store for services instead of applications,
where users can select services to download into their local or cloud storage
in order to use them willingly when needed. Nonetheless, if the user wishes
for the required service that it does not stay in the storage space of his/her
device, he/she could specify to trigger the download only when the situation
is detected and ask to be deleted when that situation finishes.

Finally, the user has the possibility to subscribe to, or unsubscribe from,
other injection sources freely, giving those sources the possibility to provide
him/her with new situations, mappings, and services.

5.3 Collaborative social environment’s injection process

Social media has become the largest source of information about users’ activi-
ties, preferences, etc. Moreover, we live nowadays in the age of media sharing.
In this scope, the injector incorporates into the LLA’s architecture a com-
ponent running transparently in the background, which monitors the user’s
social media (if the user subscribes to it and allows this monitoring) in order
to suggest/recommend new situations.

In order to build these suggestions, the injector follows a specific process
(see Figure 3 “Monitors (4)”). After extracting events and birthdays from
Facebook, tasks from Google Calendar, etc., the injector mechanism asks the
user to specify the tolerance and the expected reaction to these potential
situations. The user can select services from the Services Repository to be
deployed automatically when the situation is detected.

If the monitor detects a new shared situation coming from another user,
it suggests it to the user and allows him/her to choose whether to download
the services that other users recommend for that specific situation or simply
select his/her own services. Otherwise, if the user does not specify any reaction
strategy, the application creates a situation and assigns a reminder service by
default. This widens the applicability of contextual engagement by giving the
user the possibility to create/share his/her own situations or extract them
automatically from his/her social environment (using data from Facebook,
Google Calendar, Twitter, etc.).

For example, if the user received an invitation to a concert event on Face-
book and he/she chooses to participate, the injector’s recommendation com-
ponent, which is monitoring the user’s social media, detects this event, builds
a situation, and proposes adding it to the user’s own situations; then, the user
accepts this situation; finally, he/she also selects a ticket provider service and
a video streaming service that he/she wishes to use when the concert situation
happens.

One App to Rule Them All 11

5.4 External providers’ injection process

External providers are a very important source of injection in this proposal,
as it completes the mechanism with an open system that can provide endless
possibilities to the user by continuously proposing new situations and services.
Whereas the other sources of injection (the user and social media) handle
private and social situations, this source covers a wider range of situations
related to a variety of domains that otherwise could not be considered. The
providers are external sources that the user can subscribe to in order to allow
them to inject his/her application with situations and provide him/her with
services.

For these sources, the process of injecting situations (see Figure 3 “Uses
(1)”) is done with the help of a web application. Providers can create situa-
tions (like users), and then select among their subscribers the ones that are
concerned by that specific situation. Nonetheless, they should implement their
own services and components using the Kalimucho framework (Da et al., 2014),
to enable their easy management in the proposed framework. Finally, the in-
jector broadcasts those situations, mappings, and services, to the concerned
users.

The situations and mappings are described via a web application and then
injected to the subscribers of the provider along with the appropriate services
(software components). The external providers are classified into three main
categories, as described in the next subsections.

5.4.1 Government providers

The first category is formed by government organisms and services (univer-
sities, hospitals, the police, etc.). If the user subscribes to these organisms,
he/she allows them to inject situations.

For example, if the police decide to close some borders due to an emergency,
it injects that situation to all the users in the vicinity, in order to notify them
and propose another road when the user gets close to the borders on that
specific date.

5.4.2 Businesses and private companies

Any business (McDonalds, Carrefour, a gas station, etc.) can offer its situ-
ations and allow users to subscribe and use its services. Considering other
applications that use context awareness to aim advertisements at users, our
proposal provides a new way to engage those users, not limited to texts and
notifications but enhanced by the possibility to offer dedicated customizable
services instead.

For example, a parking company can construct and inject a situation into
the users’ situation repository that, upon detecting that the user entered one
of its parking areas, deploys a parking service to help the user to find the

12 Riadh Karchoud et al.

closest empty space and remind him/her where he/she parked when he/she
comes back to leave.

5.4.3 Institutions/organizations/associations

These providers represent non-governmental entities but that, as opposed to
business and private companies, do not necessarily obtain a financial gain from
the user.

An example of this would be a football club that injects training sessions
situations to its players’ applications. When the defined primitives are veri-
fied and service hardware requirements are met, LLA can deploy a Biometric
Monitor Service to track the performance of the players.

6 Matching the context to services

LLA uses a cloud layer as a medium between users and providers, where it acts
as an application store. This means that this layer synchronizes the situations,
services, and mappings for the user, and allows providers to enrich them. The
injected data reflect our situation model and allows LLA to understand what
is happening and how to react.

6.1 Abstract level

At the abstract modeling level, the situation is represented by a combination
of data and concepts. A situation, in LLA, is a combination of multiple projec-
tions on different axes. Each projection is a combination of times, locations,
and activities projected using binary describers (primitives). Besides, there
may be exceptions, based on the same axes and primitives (for more details,
see (Karchoud et al., 2017a)). The situation’s abstract model is represented as
follows:

– Graphically: Using operations and variables, a situation is represented
through the defined concepts. The graphical representation is used to have
a clearer understanding of the situations.

– Textually: A situation S is presented textually in the following format,
where P is a projection:

S : Tag ; Pn [Axis(Primitive(values, tolerance)...); ...] [...] ... EXCEPT
[Situation/Axis(...)]

In LLA, these textual representations are translated into XML and injected
into the user’s application (situation repository) in order to define his/her sit-
uations.

One App to Rule Them All 13

For example, we present a situation S1 (House Alarm Situation) that hap-
pens when the time is between 10pm and 6am with a 20 minutes tolerance
(Projection1) and inside his/her house, or, when the user is outside his/her
home with a 20 meters tolerance value (Projection2). The exception to this is
being on Sunday. For our example, the graphical representation is shown in
Figure 4. Textually it is presented as indicated in the following:

S1: Projection1[Time(A(22,20) B(6,20)); Location(I(Home,5))] OR
Projection2 [Location(O(Home,20))] EXCEPT [(Time(Sunday))]

Fig. 4 House alarm situation representation

6.2 Service level

At this level, our model allows describing the behavior expected when LLA
detects situations. In order to react properly to these situations, the applica-
tion needs to find the appropriate services. In LLA, a service is a composition
of mobile software components controlled by Kalimucho middleware to en-
sure their communication and sustainability. Each component is defined by its
specific requirements (needs of hardware).

The service composition and requirements are specified by the developer of
the service and added in the description of the service in a ‘Services description
& requirements’ file in LLA. The description is presented, both textually and
graphically, as follows:

– Graphically: The graphical representation is used to have a clearer under-
standing of the composition strategy for the service.

– Textually: A description for a service is presented textually in the following
format:

Service: [Input [Component (Component requirements &,||...); ...]; Core
[...]; Output [...] |Links (ComponentN ->ComponentN+1;...)]

In the textual representation, the S! prefix is used to represent a static
requirement, that cannot be changed, whereas the D! prefix represents a re-
quirement over a dynamic resource. For example, “S!RAM > 4 GB” means

14 Riadh Karchoud et al.

that the RAM should have more than 4 GB of physical memory, whereas
“D!RAM > 4 GB” means that there should be more than 4 GB of RAM avail-
able at that moment. The use of a D! or S! prefix is optional. In our context,
the “!” character means the need of a resource and not the opposite (e.g.,
“!Display” means that the device needs to have a screen).

For example, a video chat service that uses our modular composition would
contain five components: Picture feed component, Sound feed component, Text
feed component, Video chat core component, and Video chat UI component.
Textually, this service is presented in Figure 5 and graphically in Figure 6

Video chat service: [Input [Picture feed component (!Camera); Sound feed component (!Mi-
crophone); Text feed component ((!Keyboard)||(!Display))]; Core [Video chat core component
(D!RAM>1GB)]; Output [Video chat UI component (S!Display>10inches);] |Links (Pic-
ture feed component ->Video chat core component; Sound feed component ->Video chat
core component; Text feed component ->Video chat core component; Video chat component
->Video chat UI component;)]

Fig. 5 Video chat service description

Fig. 6 Video chat service composition using the graphical representation

These components are linked to each other via Kalimucho connectors (Da
et al., 2014), yet work separately on their specific tasks in order to define the
overall behavior of the service. Naturally, these components have hardware
requirements that the devices need to provide in order for the service to be
executed in a functional state. LLA orchestrates these components inside the
user domain by considering their requirements in order to ensure the sustain-
ability and correct functioning of the service.

One App to Rule Them All 15

6.3 Matching services to situations

In LLA, for each situation, a mapping is considered. The mapping matches sit-
uations to services in order to respond to contextual changes when needed. Us-
ing the service composition and component requirement concepts, the match-
ing defines clearly the needs of the service in terms of the optimal distribution.
A mapping M is presented textually in the following format, where P is a pro-
jection and Sn is a situation:

M : Sn [P(1..n) [Service; ...]]

These textual representations are translated into XML and injected into
the user’s application in order to define the required responses to the detected
situations. Having defined the service layer, we have the full description of the
situation (context and service).

For example, in Figure 7, a full graphical description is shown. This repre-
sentation illustrates an example of an important monthly work meeting situ-
ation done remotely by using a video chat service.

Fig. 7 Monthly work meeting – full representation

Using the same video chat service example (see Figure 6), the textual
representation of the mapping is as follows:

M1: Monthly work meeting [Projection1 [Video chat service]]

This indicates that, when the monthly work meeting situation is detected
and is about to start, LLA will deploy the video chat service. If the situation
is ending, LLA stops the service by stopping all its components.

16 Riadh Karchoud et al.

7 Use case and prototype

In this section, we show the interest of the proposed solution from two differ-
ent perspectives. The first one implies assessing the benefits of the situation
model; for that purpose, we apply the solution to a real-life use case, in order
to prove the richness and dynamicity of the proposed situation model. The
second one implies comparing it with the currently-used approaches based on
app stores (downloading multiple apps from an application store manually, on
demand), to show its robustness and the improvements that it provides over
those traditional alternatives.

7.1 Real-life use case

As an example, five situations that could occur daily to any user are considered.
For that, the first step is to inject these situations into his/her situation base. In
Figure 8, we show how the user’s situations are represented textually. A, B, and
W represent primitives on the Time axis meaning After, Before, and While,
respectively. So, for example, A (22,20) means After the hour 22 (10 pm)
with a 20 minutes tolerance. O and I represent the Location’s axis primitives
Outside and Inside, respectively. Finally, PT means Planned Task. Pn refers
to the name/number of a projection.

*Home Security Alarm situation (S0): P0[Time(A(22,20)B(6,20)); Loca-
tion(I(Home,5))] OR P1[Location(O(Home,20))] EXCEPT (Time(Sunday))
At Home situation (S1): P0[Location(I(Home,5))]
At lunch situation (S2): P0[Time(A(12,0)B(14,0)); Location(I(Home,10))] EXCEPT
(Location(Home))
Meeting situation (S3): P0[Time(A(15,0)B(17,0)); Location(I(MeetingRoom,2))]
Work Situation (S4): P0[Location(I(Office,5); Activity(PT(“OfficeWork”))] EX-
CEPT (Situation(holidays))

Fig. 8 Five situations in a real-life use case

The next step consists of injecting mappings in order to link the situations
to the services (see Figure 9).

*M0: Home Security Alarm Situation (S0) [P0 [Security Alarm Service]; P1 [Distant
Security Alarm Service]]
*M1: At Home Situation (S1) [P0 [Home Control Service]
*M2: At lunch Situation (S2) [P0 [Restaurant Service, Social Feed Service]]
*M3: Meeting Situation (S3) [P0 [Meeting Service]]
*M4: Work Situation (S4) [P0 [Work Service]]

Fig. 9 Mappings injected to link the situations with services in the real-life use case

Then, the injected services must be described. Those descriptions (see Fig-
ure 10) enable LLA to scan the user’s devices in order to find which one/s

One App to Rule Them All 17

has/have the required capabilities to host the components of the service. The
executables (Java jar files) of the services are downloaded into the LLA of the
user. Finally, in Figure 11, we show the generated situations, mappings and
the provided services for the examples described in Figure 8.

*Meeting Service: [(Input [Picture feed component (!Camera); Sound feed compo-
nent (!Microphone); Text feed component ((!Keyboard)||(!Display))]; Core [Meeting core
component (D!RAM>2.5GB)]; Output [Image output component (S!Display>16inches);
Text UI component (S!Display>10inches); Sound output component (S!Audio<40dB)]
|Links (Picture feed component ->Meeting core component; Sound feed component -
>Meeting core component; Text feed component ->Meeting core component; Meeting
core component ->Image output component; Meeting core component ->Sound output
component; Meeting core component ->Text UI component;)]
*Security Alarm Service: [Input [Video Surveillance component ((!Cam-
era)& (S!Network=“Wifi”); Fire detector component(!Smoke-sensor)]; Core [Secu-
rity monitoring component (D!RAM>1GB)]; Output [Security status component
(S!Display<5inches)] |Links (Video Surveillance component ->Security monitoring com-
ponent; Fire detector component ->Security monitoring component; Security monitoring
component ->Security status component;)]
*Restaurant Service: [Output [Menu component (!Display)]]
*Social Feed Service: [Output [Feed Wall component (!Display)]]
*Work Service: [Output [Work component (!Display)]]
*Home Control Service: [Input [Remote Control component ((S!Display>=5inches)&
(S!Network=“Infrared”||“Bluetooth”||“Wifi”))]; Output [Status component
(S!Display>28inches)) |Links [Remote Control component ->Status component]

Fig. 10 Description of the services in the real-life use case

Fig. 11 Generated files and provided services for the real-life use case

The management of the described scenario involves many different mech-
anisms. Thus, we present in this section the results obtained after implement-
ing the proposed architecture (Karchoud et al., 2017a) and testing it on an
Android device (Samsung Galaxy S4 running Android 5.0.1 on an ARMv7

18 Riadh Karchoud et al.

processor and 2 GB RAM). As a proof of concept, we present a video of the
LLA’s functioning prototype available at https://www.youtube.com/watch?
v=GRVv_bsiB_s&t=15.

For scalability evaluation purposes, in the developed prototype, we have
included also a generator that can create situations for testing. We injected the
considered scenario described above into the situation generator, and we ran
the application while simulating the location, time and activity of the user.
Specifically, for this experiment, we set up a time-frequency for contextual
data extraction of 20 seconds and a location frequency of 10 meters (i.e., the
data extraction is triggered when 20 seconds have passed or when the user has
moved at least 10 meters). On the user’s device, all the other apps (except
the mock location app) were disabled, the GPS was activated, the Wi-Fi was
activated, and the battery was plugged.

Then, we performed a scalability experiment for different numbers of sit-
uations (using the generator). The results obtained show that our solution
(LLA) is able to handle and monitor between 1000 at 10000 situations si-
multaneously. The device on which we performed this experiment logged the
following metrics: the average CPU usage when the app was launched and
while it was running later, the average memory usage while the app was run-
ning, and the response time value until the app crashed (for more details,
see (Karchoud et al., 2017a)). The results obtained showed that our proposal
is stable overall. When the number of considered situations increases, a critical
point is not reached until having a very large number of situations to detect (in
our experiments, above 103), which is highly-improbable for everyday normal
usage.

7.2 Comparison with a classical approach

Using LLA, users do not have to download applications on all the devices that
they own. Instead, the injection mechanism allows the application to download
or synchronize (between the cloud and the user’s devices) only the required
functionalities, by automatically installing, updating, deleting, and organizing
the injected files and the required services. This implies a considerable amount
of data and memory gain compared to the classic approach of downloading
applications on all the devices, just in case they are needed. This means that,
for example, without LLA, if the user wants to use Google Maps on any of
his/her devices at any given time, then he/she has to download/install it on
all his/her devices. With this old approach (based on the use of app stores),
the apps must be updated also on all the devices, in order to keep the different
instances of the apps running the same up-to-date version, even for the slightest
change in code. On the contrary, in LLA, component-based services require
updates to be done regardless of the device. Moreover, an update targets only
one specific component separately (the one that changed), without touching
the rest of the components composing the service. This is performed in a

https://www.youtube.com/watch?v=GRVv_bsiB_s&t=15
https://www.youtube.com/watch?v=GRVv_bsiB_s&t=15

One App to Rule Them All 19

centralized way, inside the user’s cloud persistence layer (as it was illustrated
in Figure 3).

To prove this, we considered two users: User 1 and User 2. User 1 made
use of LLA and User 2 followed the current approach of mobile stores and
standalone applications. We considered that both users possessed 10 devices
each. Even though 10 devices per user may seem a large number nowadays,
the number of personal mobile devices that a user owns (mobile phone, lap-
top computer, tablet, smart-watch, Smart TV, etc.) is expected to increase
considerably in the next few years. Indeed, according to (Evans, 2011), with
the growth of IoT, it is estimated that by 2020 the average will be already 6.5
devices per user.

We compared the behaviour of both users by using an estimation of the
storage size and time required for the different operations that they both had
to perform (install/update/delete). We considered the situations of Figure 10
for both users. User 1 followed the LLA’s workflow (shown previously in Fig-
ure 1) to handle those situations; therefore, this user was actually using the
LLA’s services (see Section 6.2). User 2 relied on the current traditional ap-
proach and therefore used standalone applications (downloaded from a store)
that provide similar functionalities to the services described in Figure 10 (e.g.,
Meeting service = Skype). This means that, in order to perform a fair compar-
ison, the LLA’s services will be considered equal in storage size to the similar
standalone applications that were selected. In Table 1, we show the list of se-
lected apps and their sizes. We considered the average sizes of the apps across
different operating systems, since the size of an app varies according to the op-
erating system on which it is installed; for example, Skype on iOS requires an
estimated size of 103 MB but it requires 70 MB for a Debian GNU/Linux
distribution. The apps considered were: Skype (https://www.skype.com),
the Reolink app (https://reolink.com/software-and-manual/), the Mc-
Donalds’s app (https://www.mcdonalds.com), the Twitter app (https://
twitter.com/download), Microsoft Excel (https://products.office.com/
en/excel), and Nest (https://nest.com/app/).

Table 1 LLA’s services and the equivalent apps, along with their average sizes

LLA Service Standalone app Average size
Meeting service Skype 143.5 MB

House alarm service Reolink app 4.5 MB
Restaurant service McDonalds’s app 110 MB
Social feed service Twitter app 84 MB

Work service Microsoft Excel 1037 MB
Home control service Nest 202 MB

Total 1581 MB

These calculations were done on March 3, 2018, by considering the latest
versions of the selected standalone apps. For LLA, the total storage size really
used was calculated by adding the size of the basic LLA application (in our
current prototype, the size of the core components of LLA is 10 MB) to the

https://www.skype.com
https://reolink.com/software-and-manual/
https://www.mcdonalds.com
https://twitter.com/download
https://twitter.com/download
https://products.office.com/en/excel
https://products.office.com/en/excel
https://nest.com/app/

20 Riadh Karchoud et al.

size of the services. This is needed because the core of LLA has to exist on all
the devices at all times, in order to ensure the continuity and management of
the services (stored in the cloud layer), that is, to support the required LLA’s
functionality. Therefore, this core is duplicated on all the devices of User 1 (10
devices, in total)

Overall storage size using LLA = (Size of the LLA’s core components *
Number of devices) + Size of the services = (10 MB * 10 devices) + 1581 MB
= 1681 MB

For the Classical Store Approach (CSA), User 2 has to download all the
applications on all the devices to ensure the continuity of usage (e.g., to con-
tinue a video call after leaving his/her house, the user has to install Skype on
his/her computer, portable TV receiver, smart car, etc.).

Overall storage size using the classical approach = Number of devices *
Average size of the applications = 10 devices * 1581 MB = 15810 MB

Besides the storage size needed, we have also to consider the time invested
by the user with both approaches. For the LLA approach, this is the time taken
by User 1 to download and install LLA, configure it, update it, and delete it
(in case the user decides in the future to stop using it). For the classical store
approach, it represents the time that User 2 requires to download, install,
update, and delete all the different applications on all the devices (in our
example, 10 devices in total). For these calculations, the tests were done using
the Samsung Galaxy S4 device, mentioned before, with an average Internet
download speed of 4.29 MB/s. The results are shown in Table 2 and the basic
computations performed are shown in the following:

– Total download time (LLA and CSA) = Overall size / Internet average
speed

– Total installation time (LLA) = Installation time of LLA * Number of
devices

– Total installation time (CSA) = Installation time of each standalone app
* Number of standalone apps * Number of devices

– Total delete time (LLA) = Delete time of LLA * Number of devices
– Total delete time (CSA) = Delete time of each standalone app * Number

of standalone apps * Number of devices
– Total update time (LLA and CSA) = Total delete time + Total download

time + Total installation time

The update is always the heaviest process. Although we consider the same
formula for the update time in LLA and CSA, in our approach this is the worst-
case scenario because in LLA the updates could be performed separately in
a centralized way (cloud) targeting only the affected components. To perform
a fair comparison, we have not considering the potential cost of component
migration with LLA (components can be transferred between devices when

One App to Rule Them All 21

needed). The reason is that no existing app offers this migrating feature. It
should be noted that with the traditional approach (CSA) an app will not be
able to offer a certain functionality (e.g., a functionality that requires access to
a microphone) if it is not enabled (e.g., there is no microphone) on the device
where the app is executing. This situation would be equivalent in LLA if we
disable the possibility of migrations. In the worst case, with LLA, if all the
components need to migrate to all the devices of the user, then the cost of
migrations would approximate the total download time cost of the CSA ap-
proach, but this is highly unlikely; besides, a device has a local repository that
stores components locally and can transfer them via local networks, which is
most of the time considerably faster and more reliable than using the Internet.

Table 2 Comparison of LLA (Long-Life Application) and CSA (Classical Store Approach)

User 1 (LLA) User 2 (CSA)
Overall size 1.681 GB 15.81 GB
Total download time 06m:32s 28m:05s
Total installation time 03m:50s 33m12s
Total delete time 00m:20s 01m:24s
Total update time
(delete+download+install)

10m:42s 1h:02m:41s

Notice that the LLA’s services are downloaded into the user’s local reposi-
tory, but they are not installed. They are dynamically deployed and they join
the main execution thread of LLA dynamically while it is running. Overall,
the results described in this section show that using the LLA approach can
lead to a considerable amount of time and storage gain. Our approach is able
to provide these results by using the collaborative injection mechanism that
centralizes and contextualizes the user’s services across his/her devices.

8 Conclusions and future work

Proposing only ONE application per user, to perform all his/her tasks and
manage transparently all the functionalities, is an ideal solution not available
nowadays. Nevertheless, a future where mobile apps will know what we need,
even before we interact with them, is approaching. In this sense, many research
works are oriented to the development of those future apps and they found out
that contextual awareness is essential to the survival of mobile applications.

Our proposal for this is called Long-life Application (LLA), a name that
reflects the nature of the continuity and evolution that is needed. This ap-
plication will evolve while running according to the users’ needs (considering
his/her personal and/or professional requirements), and will continuously pro-
vide relevant context-adapted services.

In this paper, we focused on the problem of dynamic situation injection.
LLA incorporates a dynamic injection mechanism that allows users, develop-
ers, and other entities, to expand the application and customize it according

22 Riadh Karchoud et al.

to the user’s specific needs. This contribution represents one main novelty
of our proposal in the current mobile context-aware world. Compared to the
currently-used mobile store system of multiple standalone applications, our
solution targets specific services towards the users only when they need them.
These changes will push developers to think in terms of context awareness,
and therefore to provide a more personalized user experience. From the point
of view of the user, LLA gives the possibility to have a richer, open, and
hands-free experience.

An aspect that could be considered to improve the dynamicity of the
LLA approach would be to integrate an intelligent situation recommender
(e.g., based on machine learning techniques, such as deep learning approaches
trained with large amounts of data) that digs deeper into the personality of
the user in order to recommend more customized situations.

Acknowledgment

This work was supported by the Embassy of France in Spain and by the
projects TIN2013-46238-C(1/4)-4-R, FEDER/TIN2016-78011-C4-(2/3)-R (AE-
I/FEDER, UE), FEDER/TCVPYR, and DGA-FSE (COS2MOS group).

References

24me (2016) 24me. https://www.twentyfour.me, [Online; accessed 5-March-
2018]

Basiri A, Amirian P, Winstanley A, Moore T (2017) Making tourist guidance
systems more intelligent, adaptive and personalized using crowd sourced
movement data. Journal of Ambient Intelligence and Humanized Computing
pp 1–15

Boyaci O, Beltran V, Schulzrinne H (2010) Bridging communications and the
physical world: Sense Everything, Control Everything. In: GLOBECOM
Workshops, IEEE, pp 1735–1740

Chen CC, Huang TC (2012) Learning in a u-museum: Developing a context-
aware ubiquitous learning environment. Computers & Education 59(3):873–
883

Chihani B, Bertin E, Crespi N (2013) A user-centric context-aware mobile as-
sistant. In: 17th International Conference on Intelligence in Next Generation
Networks (ICIN), IEEE, pp 110–117

Clarke S, Driver C (2004) Context-aware trails [mobile computing]. Computer
37(8):97–99

Da K, Dalmau M, Roose P (2014) Kalimucho: middleware for mobile appli-
cations. In: 29th Annual ACM Symposium on Applied Computing (SAC),
ACM, pp 413–419

Driver C, Clarke S (2004) Hermes: generic designs for mobile, context-aware
trails-based applications. In: Workshop on Context Awareness at MobiSys

https://www.twentyfour.me

One App to Rule Them All 23

Edison (2017) Easilydo. https://play.google.com/store/apps/details?

id=com.easilydo, [Online; accessed 5-March-2018]
Endsley MR (1995) Toward a theory of situation awareness in dynamic sys-

tems. Human factors 37(1):32–64
Evans D (2011) The Internet of Things: how the next evolution of the internet

is changing everything. White Paper by Cisco Internet Business Solutions
Group (IBSG)

Farghaly A, Shaalan K (2009) Arabic natural language processing: Challenges
and solutions. ACM Transactions on Asian Language Information Process-
ing (TALIP) 8(4):14

Google (2017) Google Inside Search. https://www.google.com/intl/es419/
insidesearch/features/search/knowledge.html, [Online; accessed 5-
March-2018]

Grennan T (2016) Spring 2016 mobile customer retention report an analysis
of retention by day. Tech. rep., Appboy

Harter A, Hopper A, Steggles P, Ward A, Webster P (2002) The anatomy of
a context-aware application. Wireless Networks 8(2/3):187–197

Karchoud R, Roose P, Dalmau M, Illarramendi A, Ilarri S (2016) Long Life
Application: Approach for user context management and situation under-
standing. In: International Conference on Ubiquitous Computing and Com-
munications and 2016 International Symposium on Cyberspace and Security
(IUCC-CSS), IEEE, pp 45–53

Karchoud R, Illarramendi A, Ilarri S, Roose P, Dalmau M (2017a) Long-life
application – situation detection in a context-aware all-in-one application.
Personal and Ubiquitous Computing 21(6):1025–1037

Karchoud R, Roose P, Dalmau M, Illarramendi A, Ilarri S (2017b) All for one
and one for all: Dynamic injection of situations in a generic context-aware
application. Procedia Computer Science (IUCC-CSS) 113:17–24

Lardinois F (2017) Google starts testing Instant Apps
in the wild. https://techcrunch.com/2017/01/23/

google-starts-testing-instant-apps-in-the-wild, [Online; accessed
5-March-2018]

Martin C (2017) How to use Google Assistant. http:

//www.pcadvisor.co.uk/feature/google-android/

how-use-google-assistant-google-now-3574727, [Online; accessed
5-March-2018]

Nakagawa T, Doi C, Ohta K, Inamura H (2012) Customizable context detec-
tion for ECA rule-based context-aware applications. In: Sixth International
Conference on Mobile Computing and Ubiquitous Networking (ICMU), In-
formation Processing Society of Japan, vol 30, pp 98–105

Ovadia S (2014) Automate the Internet with If This Then That (IFTTT).
Behavioral & Social Sciences Librarian 33(4):208–211

Rodgers E (2013) Tempo for iPhone uses AI to fold maps, contacts, and
files into your calendar. http://www.theverge.com/2013/2/13/3982656/
tempo-intelligent-calendar-for-iphone, [Online; accessed 5-March-
2018]

https://play.google.com/store/apps/details?id=com.easilydo
https://play.google.com/store/apps/details?id=com.easilydo
https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html
https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html
https://techcrunch.com/2017/01/23/google-starts-testing-instant-apps-in-the-wild
https://techcrunch.com/2017/01/23/google-starts-testing-instant-apps-in-the-wild
http://www.pcadvisor.co.uk/feature/google-android/how-use-google-assistant-google-now-3574727
http://www.pcadvisor.co.uk/feature/google-android/how-use-google-assistant-google-now-3574727
http://www.pcadvisor.co.uk/feature/google-android/how-use-google-assistant-google-now-3574727
http://www.theverge.com/2013/2/13/3982656/tempo-intelligent-calendar-for-iphone
http://www.theverge.com/2013/2/13/3982656/tempo-intelligent-calendar-for-iphone

24 Riadh Karchoud et al.

Sang-Seok Y, Quang N, JongSuk C (2017) Recognition of emergency situations
using audiovisual perception sensor network for ambient assistive living.
Journal of Ambient Intelligence and Humanized Computing pp 1–15

Syer MD, Adams B, Zou Y, Hassan AE (2011) Exploring the development
of micro-apps: A case study on the Blackberry and Android platforms. In:
11th IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM), IEEE, pp 55–64

Zhao Z, Liu J, Crespi N (2011) The design of activity-oriented social network-
ing: Dig-Event. In: 13th International Conference on Information Integration
and Web-based Applications and Services (iiWAS), ACM, pp 420–425

	Introduction
	Related work
	Proposed approach
	Situation model
	The situation injector
	Matching the context to services
	Use case and prototype
	Conclusions and future work

