
HAL Id: hal-02433568
https://univ-pau.hal.science/hal-02433568

Submitted on 27 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards the internet of everything: Deployment
scenarios for a QoO-aware integration platform

Antoine Auger, Ernesto Expósito, Emmanuel Lochin

To cite this version:
Antoine Auger, Ernesto Expósito, Emmanuel Lochin. Towards the internet of everything: Deployment
scenarios for a QoO-aware integration platform. 2018 IEEE 4th World Forum on Internet of Things
(WF-IoT), Feb 2018, Singapore, France. pp.499-504, �10.1109/WF-IoT.2018.8355113�. �hal-02433568�

https://univ-pau.hal.science/hal-02433568
https://hal.archives-ouvertes.fr

Towards the Internet of Everything: Deployment
Scenarios for a QoO-aware Integration Platform

Antoine Auger†, Ernesto Exposito‡ and Emmanuel Lochin†
†Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO),

Université de Toulouse, 31055 Toulouse Cedex 4, France
{antoine.auger, emmanuel.lochin}@isae-supaero.fr

‡Université de Pau et des Pays de l’Adour, LIUPPA, France
ernesto.exposito@univ-pau.fr

Abstract—Built upon the Internet of Things (IoT), the Internet
of Everything (IoE) acknowledges the importance of data quality
within sensor-based systems, alongside with people, processes
and Things. Nevertheless, the impact of many technologies and
paradigms that pertain to the IoE is still unknown regarding
Quality of Observation (QoO).

This paper proposes to study experimental results from three
IoE-related deployment scenarios in order to promote the QoO
notion and raise awareness about the need for characterizing
observation quality within sensor-based systems. We specifically
tailor the definition of QoO attributes to each use case, assessing
observation accuracy within Smart Cities, observation rate for
virtual sensors and observation freshness within post-disaster
areas. To emulate these different experiments, we rely on a
custom-developed integration platform for the assessment of QoO
as a service called iQAS.

We show that QoO attributes should be used to specify what is
an observation of “good quality”, that virtual sensors may have
specific and limiting capabilities impacting QoO and that network
QoS and QoO are two complementary quality dimensions that
should be used together to improve the overall service provided
to end-users.

Keywords-Internet of Everything; sensors; observations; qual-
ity; Quality of Observation; platform; integration

I. INTRODUCTION

Over numerous integration platforms that have been devel-
oped for the Internet of Things (IoT), network Quality of
Service (QoS) [1] has shown to be unsuitable for assessing
the actual value of observations [2]. Basically, within data-
centric systems, Quality of Observation (QoO) mainly depends
on consumer needs and the specific context in which he/she
consumes it. Therefore, we believe that QoO is a critical issue
to address in the forthcoming Internet of Everything (IoE) [3]
as more and more decisions will be based on services derived
from received observations.

Built on the IoT, the IoE paradigm mostly acknowledges
the importance of data (and therefore of data quality) within
systems, alongside with people, processes and Things. Due
to its wide scope, the IoE encompasses many use cases that
may bring as much challenges regarding QoO. Among these
use cases, Smart Cities, Web of Things and peer-to-peer
connections between sensing Things have already become a

reality, waiting for bigger scale adoption. However, each of
these uses also brings specific QoO challenges to address.

By introducing three deployment scenarios for a custom
QoO-aware integration platform, the goal of our study is
to promote the QoO notion and the need for characterizing
observation quality (QoO assessment as a service). In or-
der to draw more insightful lessons, we focus on specific
attributes specifically tailored for each use case: observation
accuracy within Smart Cities, observation rate for virtual
sensors pertaining to the Web of Things and, finally, freshness
when observations are collected in a peer-to-peer decentralized
fashion as within post-disaster areas.

The rest of this paper is structured as follows: Section II
introduces the required background and the related work.
Section III presents the integration platform that we used
to obtain the experimental results, with a focus on initial
requirements and concrete implementation choices that have
been made. Then, Section IV, V and VI presents the three IoE-
related deployment scenarios. Finally, Section VII concludes
and describes further perspectives.

II. BACKGROUND AND RELATED WORK

This section describes several notions required to fully
understand the three deployment scenarios. From Things to
people, many enablers will be needed to pursue IoT and IoE
paradigms.

A. Internet of Things (IoT) and Internet of Everything (IoE)

The Internet of Things (IoT) [4] can be defined as a
paradigm that envisions pervasive and inter-connected ob-
jects (also called Things) that can be uniquely addressed,
generally through the Internet. Some examples of these Things
can be found with Radio-Frequency IDentification (RFID)
tags, sensors, actuators, mobile phones, etc. Within the IoT
ecosystem, Things generally produce data that needs to be
collected and processed by gateways or IoT platforms. De-
pending on the use case considered, these platforms may
provide enhanced services to end users based on received data.

Built upon the IoT which mainly refers to the deployment
and the interconnection of smarter communication-capable
Things, the Internet of Everything (IoE) extends this paradigm
by going beyond Things to also integrate societal impacts, risks

and economic benefits of a more interconnected World. This
relatively new paradigm has been introduced by Cisco in an
official report dated 2013 [3]. In this report, Cisco has defined
the IoE as “the networked connection of people, process, data,
and things”. Compared to the IoT that was mainly driven by
technology, the IoE has been coined to rather envision business
and deep changes in society. We believe that the IoE vision is
particularly appropriate as we are witnessing the emergence of
more and more sensor-based data-centric systems. Indeed, this
paradigm acknowledges the importance of data (and therefore
of data quality) within sensor-based IoT systems.

B. Observations and Quality of Observation (QoO)

Like many researchers before us, and in particular Perera et
al. in [5], we distinguish several kinds of sensors: physical
sensors are the most common kind consisting in concrete
devices often used for environmental monitoring use cases;
virtual sensors are generally Web-based services that can be
queried through APIs; finally, logical sensors may combine
information coming from both physical and virtual sensors.
Regardless of their type, all these sensors generate observa-
tions, which may be seen as the representation of an observed
phenomenon (e.g., the temperature of a place) or an event (e.g.,
availability of a new software update) at different granularity
levels [6].

Several quality dimensions have been envisioned in order
to characterize observations. Among them, we can cite Qual-
ity of Service (QoS) [1], Quality of Information (QoI) [7]
or even Context annotation [8]. Such quality dimensions
generally define quality attributes that aim at characterizing
how fit-for-use is an observation for a specific use by an
application (specific context). Table I gives five examples of
quality attributes that may be used to characterize sensors or
observations. For instance, using both latency (network QoS)
and timeliness (QoI), an application may better understand
if some outdated observations are the result of poor network
performances or due to a sensor sampling rate too low. Recent
related work includes the CityPulse framework [9], which also
considers QoI (with the computation of collection point-related
Key Performance Indicators) and QoI inspection (with tools
such as the CityPulse QoI Explorer). However, this frame-
work mainly aims at providing large-scale stream processing
solutions for Smart City applications.

In this paper, we consider Quality of Observation (QoO)
as “the actual observation value for a specific consumer
given a specific Context”. To remain compliant with previous
definitions, we acknowledge the fact that QoO can be impacted
by network QoS and we consider QoS as the assembly of
network QoS and QoO.

C. Semantics and Ontologies

Ontologies have proven to be suitable for addressing het-
erogeneity within sensor-based systems. They are mainly used
to 1) abstract sensors and their capabilities and 2) annotate
observations according to common concepts to enable their
sharing and understanding by other systems. The most popular

Attribute
name Common definition Mentioned

in

Accuracy Distance between reported observations and
the corresponding phenomenon/event.

[7], [2]

Provenance Sensor or mechanism that has output the
observation.

[7]

Reputation Publicly held opinion of a sensor or interme-
diary mechanism.

[7]

Latency Duration to retrieve an observation (including
network transport time).

[7]

Timeliness Time horizon over which an observation is
considered as valid.

[7], [2]

TABLE I: Examples of quality attributes used for observation
and sensor characterization. For more metrics, see [7].

ontology for sensors and observations is without any doubt
the Semantic Sensor Network (SSN) ontology developed by
the W3C [10], [11]. Regarding sensor abstraction, integra-
tion platforms generally use ontologies to describe sensor
capabilities (what are their type, their sampling rate, their
units, etc.). This mechanism allows to consider sensors as
abstract observation providers, enhancing their reusability and
the global interoperability of the solution.

III. THE IQAS PLATFORM

Before diving into results, we kindly remind the reader
that iQAS is a prototype of an integration platform for QoO
Assessment as a Service [12]. iQAS is interoperable, exten-
sible, configurable and usable by stakeholders with different
skills and interests. In this paper, we present new unpublished
material by detailing 1) concrete implementation choices that
we made during the development of our platform and 2) ex-
perimental results for the three deployment scenarios. Please
note that the source code of any iQAS component presented
in this paper is available upon simple request.

A. Reminder of iQAS Requirements

In [12], initial functional (F) and non-functional (NF)
requirements for the iQAS platform were expressed as follows:
F1 Users should be able to submit queries with QoO con-

straints about a couple topic/location;
F2 Users should be able to monitor QoO attributes in real-

time according to several granularity levels;
F3 Users should be able to develop their own mechanisms

to provide QoO guarantees;
F4 Users should be able to express the impact of these

mechanisms on QoO attributes;
NF1 The platform should be usable and configurable by stake-

holders with different skills;
NF2 The platform should be extensible by supporting integra-

tion of new protocols and observation sources;
NF3 The platform should be interoperable;
NF4 The platform should be scalable.

B. The QoOnto ontology

Extensibility (NF2) and interoperability (NF3) requirements
have led to the development of the QoOnto ontology (see
Figure 1). This ontology, which makes the link between

qoo:isAbout

qu:QuantityKind

qu:Unit

qoo:QoOIntrinsicValueqoo:QoOValue
- qooStrValue : String

qoo:QualityOfObservation qoo:QoOPipeline

qoo:QoOCustomizableParameter
- qoo:documentation : String
- qoo:paramType : String
- qoo:paramMinValue : String
- qoo:paramMaxValue : String
- qoo:paramInitialValue : String

qoo:QoOAttribute
- qoo:shouldBe : Variation...

ssn:ObservationValue
- qoo:obsDateValue : String
- qoo:obsTimestampsValue : String
- qoo:obsLevelValue : ObservationLevel
- qoo:obsStrValue : String

qoo:QoOEffect
- qoo:paramVariation : String
- qoo:qooAttributeVariation : String

ssn:Measurement
Range

ssn:MeasurementCapability

ssn:MeasurementProperty
- qoo:hasExactValue : String
- qoo:hasMinValue : String
- qoo:hasMaxValue : String

qoo:hasQuantityKind

1

qoo:hasUnit

1

qoo:hasQoOValue
1

1

qoo:hasQoO
0..*

qoo:increases
qoo:decreases
qoo:neutralFor

0..*

qoo:allowsToSet
0..*

qoo:has

0..*
qoo:impacts
0..*

qoo:has
0..*

ssn:hasMeasurementProperty
0..*

Fig. 1: Overview of main classes and relationships for the
QoOnto ontology used by our iQAS platform

people, process, data and things (as envisioned by the IoE),
reuses the existing to not reinvent the wheel. In compliance
with Linked Data1 best practices, it imports parts of the
W3C SSN, IoT-Lite and Quantity Kinds & Units ontologies.
More concretely, the QoOnto ontology allows users to express
existing relationships between several concepts used within
the iQAS platform. For instance, as shown by Figure 1, an
ObservationValue may have a QoOIntrinsicValue, which is
related to a QoOAttribute (e.g., accuracy) and consists in
a QoOValue (e.g., 100%). Besides, within iQAS, domain-
specific experts (e.g., meteorologists) may use their knowl-
edge in order to develop a new QoOPipeline, which is the
succession of several transformation functions (called QoO
mechanisms) successively applied on observations that flow
throughout the iQAS platform.

For the experiments that we performed in this paper, we
instantiated the QoOnto ontology by defining three instances
of the QoOAttribute class:

• OBS_ACCURACY is the distance between a reported
observation and its corresponding phenomenon or event.
For a given observation, we assumed that its accuracy
was equal to 100% when its value was within the sensor
measurement range and 0% otherwise.

• OBS_FRESHNESS is defined as the age of an observation
when it becomes available for final consumers. Annotated
to each observation, it measures the additional latency
due to 1) transport time over the collection network and
2) iQAS processing time.

• OBS_RATE refers to the number of observations that
the platform effectively delivers by unit of time for a
given request (e.g., 3/second). On the contrary of the two
previous attributes, this metric refers to an observation
flow rather than a single observation.

C. Implementation and Deployment

1) Implementation: we developed iQAS following a data-
flow component-based architecture (see Figure 2 for an

1http://linkeddata.org

overview). Main iQAS components have been implemented
according to the Actor model, thanks to the Akka toolkit2.
iQAS enables adaptation (with both auto-(re)configuration
and QoO-based adaptation) by implementing an adaptation
control loop (denoted as the “MAPE-K3 loop” in Figure 2).
Adaptation is continuously performed by monitoring the QoO
provided by iQAS to its different consumers. When possible,
the platform can try to “heal” a request by deploying a set
of mechanisms chained to form a “QoO Pipeline”. In order
to make such a decision, the platform should reason on the
QoOnto ontology, performing inference to select a suitable
QoOPipeline candidate, when available.

2) Deployment: for this experimentation campaign, we
locally deployed the different iQAS components on a Mac Pro
server 2013 with 3.7 GHz Quad-Core Intel Xeon E5 processor
and 32 GB RAM.

D. The iQAS ecosystem

As part of the iQAS ecosystem, two additional tools have
been developed to specifically evaluate functional require-
ments F1, F2 and F4 of the platform. The first tool is a Virtual
Sensor Container (VSC) image, which allows to create virtual
sensors that may generate observations at random, from file or
by first retrieving them from other observation sources (such
as the Web) as a transparent proxy. The second tool is a
Virtual Application Consumer (VAC) image, which allows
to emulate fake consumers that submit iQAS requests and
then consume observations while reporting back the perceived
QoO to the iQAS platform in real-time. Both these tools are
two Docker4 container images. We chose to use the Docker
virtualization for its great modularity and reusability: once a
Docker image has been defined, it is easy to deploy several
container instances that may accept custom parameters at run-
time. Besides, since virtualization is performed at application
level, containers are less resource demanding than common
Virtual Machines.

IV. SCENARIO 1: SMART CITIES

A. Motivation and Scenario considered

The motivation to envision QoO within Smart Cities has
already been extensively described in the original paper that
introduced the iQAS platform [12]. In the same paper, we have
also shown the benefits to apply some QoO Pipeline (such
as observation filtering) on observation streams to cope with
systematic errors of sensors.

For this first use case, let us consider two stakeholders:
Matt, the first one, is a city employee in charge of the
sensor maintenance; Maggie is a meteorologist for a private
weather forecast company. Let us imagine that Matt is asked
to check the good working of all visibility sensors across the
city. In parallel, Maggie is interested in collecting visibility
measurements to release a weather report for an upcoming

2http://akka.io
3Monitor, Analyze, Plan, Execute according to a Knowledge base
4https://www.docker.com

MAPE-K
loop

QoO
report

Obs.
rate

report

appli1_58d39df

temperature,
visibility,

humidity, etc.

appli1

Physical, Logical or Virtual
sensors

Ingest
pipeline #1

Ingest
pipeline #2

QoO Pipeline
#1

Ingest
pipeline #3

appli2

appli3

appli4

appli2_46d69df

appli3_95d39df

appli4_aad39df

Output
pipeline #1

Output
pipeline #3

Output
pipeline #4

Output
pipeline #2

iQAS
storage

Ontology
triple store

GUI

API

Heal Pipeline
#3

Fig. 2: iQAS: an integration platform for QoO Assessment as a Service

airshow that will take place on the same day. In this case,
both stakeholders are interested in visibility for the same
spatiotemporal context, but with different QoO needs. As a
domain-expert, Maggie only wants to retrieve accurate obser-
vations, which will help her to write her weather report and
make accurate forecasts. For physical sensors, this requirement
mainly translates into selecting records that have a consistent
value regarding their sensor’s measurement range. As visibility
is a distance measurement, Maggie specifies that she only
wants to retrieve positive observation values. Matt’s needs are
different: even if he surely also knows that visibility sensors
only output positive measurements, he wants to identify the
defective ones in order to replace or repair them. Therefore,
he decides to submit a query with no specific thresholds.
He could also had limited the received observations to the
interval]−∞, 0[.

To emulate this Smart City use case, we created two
VACs for our stakeholders Matt and Maggie. Each VAC
submitted a representative request to our iQAS platform.
In response, iQAS auto-configured itself by creating two
observation pipelines, reusing the first pipeline to construct
the second one. Then, we created a VSC to emit observations
corresponding to a raw visibility dataset recorded in the city
of Aarhus in Denmark5 from February 2014 to June 2014 at
the sensing rate of 2 measurements per second. This dataset
was chosen specifically since we were aware that it contained
some systematic measurement errors (with some values equal
to −9999 km). As soon as we started the VSC, observations
started to flow throughout iQAS and were delivered to the
two VACs. While consuming the visibility observations, the
VACs reported to iQAS the QoO for the received observations,
enabling real-time visualization (see Figure 3 for the first
500 seconds of the simulation).

B. Results and Analysis

As expected, Figure 3a shows several visibility values equal
to −9999 km, which have been annotated as “not accurate”

5http://iot.ee.surrey.ac.uk:8080/datasets.html#weather

by the iQAS platform (0% for OBS_ACCURACY, as defined
in Section III-B). In comparison, the QoO visualization for
Maggie the meteorologist only contains accurate visibility
observations (OBS_ACCURACY = 100%) according to the
iQAS platform. The first lesson learned from this deployment
scenario is that QoO can be significantly improved by the
deployment of intermediary transformation functions such as
filtering. The second lesson learned is that QoO needs are
best expressed by the final consumers who will consume
observations. For instance, if iQAS had automatically filtered
inaccurate visibility observations, Matt could not have iden-
tified and replaced faulty sensors. As a result, developers
should avoid to implement default behaviors, especially when
it comes to QoO. Finally, inaccurate observations may some-
times represent high-quality observations and actually worth
something for some consumers. Therefore, the expression of
some QoO constraints may help to precise the definition of a
“good-quality observation”.

V. SCENARIO 2: WEB OF THINGS

A. Motivation and Scenario considered

The Web of Things (WoT) [13] is another paradigm en-
compassed by the IoE. The WoT is generally defined as a set
of practices, architectures and programming patterns used in
order to expose sensors to the World Wide Web. For instance,
a real-world physical sensor that can be remotely accessed
through the Internet using main HTTP verbs (GET, POST, etc.)
can be considered as being part of the WoT. Current trends
regarding the number of connected Things show that more and
more physical sensors will continue to be abstracted as virtual
sensors in the next years. This second deployment scenario
gives us the opportunity to study some QoO-related challenges
that can be raised by the integration of third-party observation
sources. First, we created a free account on the OpenWeath-
erMap website6 in order to use the “current weather data” API
that it provides. We only applied for a free plan that allows no
more than 60 API calls per minute. API documentation says

6http://openweathermap.org/api

(a) QoO visualization for the maintenance request (b) QoO visualization for the meteorologist request

Fig. 3: Visibility measurements with OBS_ACCURACY assessment for two different iQAS requests

that “current weather is frequently updated based on global
models and data from more than 40000 weather stations”.
In order to integrate this virtual sensor to iQAS, we used a
new VSC as a proxy that we configured to retrieve the current
temperature in the city of London from this API at a rate
of 2 observations per second. Then, we submitted an iQAS
request for temperature measurements with a QoO constraint
regarding OBS_RATE (guaranteed minimum of 2 observation
per second). Finally, we counted the number of observations
received by grouping them based on 10-second windows.

B. Results and Analysis

Despite the QoO needs and the guaranteed Service Level
Agreement (SLA) submitted to iQAS, Figure 4 shows that the
platform was only able to retrieve 60 temperature records per
minute maximum (for the intervals [0, 60[, [60, 120[, [120, 180[
and so on). This result is consistent with the fact that the
free plan of OpenWeatherMap only allows 60 calls per minute
maximum for a same API key. Integration platforms (such as
iQAS) are systems of systems. As a consequence, their ability
to meet SLAs is often conditioned by other resources (such
as external observation sources, Cloud-based infrastructure for
commercial platforms, etc.). In fact, the OpenWeatherMap API
could be seen as a virtual sensor that has a maximum sensing
rate of 1 observation per second. Furthermore, its capabilities
are also conditioned by the ones of the sensors (physical or
virtual) that it uses in turn. The main lesson to be learned
from this deployment scenario is that ensuring QoO guarantees
requires a deep knowledge of the available resources as well
as their characteristics. As a result, capabilities of third-party
observation sources should always be carefully identified and
described. In that way, semantics can help to make the link
between an observed symptom (e.g., sensor unavailability)
and its cause (e.g., battery drained for a physical sensor; API
call limit reached for a virtual sensor). To provide finer QoO
guarantees, we strongly believe that more research is required
to better describe sensor capabilities (according to their type,
as they evolve over time, etc.).

Fig. 4: OBS_RATE assessment for a Virtual Sensor Con-
sumer (VSC) that retrieves temperature for the city of London
through the OpenWeatherMap API (free plan allowing no
more than 60 API calls per minute)

VI. SCENARIO 3: CHALLENGING ENVIRONMENTS

A. Motivation and Scenario considered

So far, we only considered scenarios where sensors had
permanent connection to the Internet. The objective of this
deployment scenario consists in assessing the impact of post-
disaster areas on QoO. We define as “post-disaster” the envi-
ronments where sensors could have intermittent connection to
the Internet. To emulate such environments, we envision Delay
Tolerant Networks (DTNs) [14] where observation collection
is performed in a decentralized peer-to-peer manner according
to the store-and-forward paradigm. To that end, we reused
HINT [15], which is a self-developed hybrid emulation system
for opportunistic networks where nodes can be either Android
phones or virtual ones. For more details on our HINT emulator,
the interested reader can refer to the associated publication.
First, we developed a specific asynchronous adapter Python
class to poll observations from HINT as soon as they arrive.
We used this adapter to configure a new VSC that acts as a
transparent proxy between the HINT emulator and the iQAS
platform. Then, we submitted a request without any QoO

Fig. 5: CCDF for the OBS_FRESHNESS for observations
generated by a single HINT node and consumed by a single
iQAS consumer (log-log scale)

constraints to retrieve all observations coming from the HINT
emulator. Finally, within HINT, we generated 200 observations
from a real node to a gateway node. Each message had
to be first internally exchanged within HINT in a peer-to-
peer manner before reaching the gateway node where it was
consumed by our VSC. Once that all messages were delivered
to iQAS consumers, we computed offline the freshness (the
age) of the observations when 1) they arrived at the HINT
gateway node (HINT viewpoint) and 2) they were delivered
by iQAS to consumers (iQAS viewpoint).

B. Results and Analysis

Figure 5 depicts the Complementary Cumulative Distribu-
tion Function (CCDF) that represents the age of the observa-
tions from both HINT and iQAS perspectives. For example,
this figure shows that, in more than 10% of time, observations
that are effectively consumed by iQAS consumers are, at least,
15-second old. Beyond freshness’ order of magnitude that may
vary depending on the HINT configuration, the main lesson to
retain from this deployment scenario is that the overhead intro-
duced by the iQAS platform in terms of delay can be negligible
compared to the routing overhead introduced when observation
collection is achieved in a peer-to-peer decentralized way.
Therefore, in order to significantly improve the overall service
provided to their end-users, IoE platforms should consider
both network QoS (e.g., latency) and QoO (e.g., freshness)
as complimentary quality dimensions.

VII. CONCLUSIONS AND PERSPECTIVES

Our research work aims at raising awareness about the QoO
notion and promoting the characterization of observation qual-
ity within sensor-based systems. The challenge is considerable
as providing QoO guarantees is an ambitious task that depends
on many parameters including use cases, software used and
configuration.

In this paper, we envisioned three IoE-related deployment
scenarios for a QoO-aware integration platform. For each of

them, we presented experimental results obtained with the help
of iQAS, a custom integration platform for QoO assessment as
a service. To better understand results, we briefly recalled the
main requirements for iQAS, as well as the main implemen-
tation choices that we made during its development. Then, by
introducing specific QoO attributes tailored for each use case,
we managed to draw some QoO-related lessons that integration
platforms should take into account in order to correctly fulfill
the IoE. Hence, the study of observation accuracy within Smart
Cities confirmed that there might be several definitions of a
“good-quality observation”; the analyze of observation rate
allowed us to identify limiting capabilities for virtual sensors;
finally, the study of freshness for observations reported in a
decentralized way demonstrated that network QoS and QoO
are two complementary quality dimensions that should be used
together in order to improve the overall service provided to
end-users, especially within post-disaster areas.

As future work, we plan to pursue the study of the QoO
notion and perform more complex deployment scenarios with
iQAS. We also plan to conduct an extended performance
evaluation campaign of the platform.

ACKNOWLEDGEMENT

This research was supported in part by the French Ministry
of Defense through financial support of the Direction Générale
de l’Armement (DGA).

REFERENCES

[1] ITU-T, “E.800: Definitions of terms related to QoS,” Sep. 2008.
[2] P. Barnaghi et al., “Challenges for Quality of Data in Smart Cities,” J.

Data and Information Quality, vol. 6, no. 2-3, pp. 6:1–6:4, 2015.
[3] J. Bradley et al., “Internet of Everything: A $4.6 Trillion Public-Sector

Opportunity,” Cisco, White Paper, 2013.
[4] L. Atzori et al., “The Internet of Things: A survey,” Computer Networks,

vol. 54, no. 15, pp. 2787–2805, Oct. 2010.
[5] C. Perera et al., “Context Aware Computing for The Internet of Things:

A Survey,” IEEE Communications Surveys Tutorials, vol. 16, no. 1, pp.
414–454, 2014.

[6] A. Sheth, “Internet of Things to Smart IoT Through Semantic, Cognitive,
and Perceptual Computing,” IEEE Intelligent Systems, vol. 31, no. 2, pp.
108–112, 2016.

[7] C. Bisdikian et al., “On the Quality and Value of Information in Sensor
Networks,” ACM Trans. Sen. Netw., vol. 9, no. 4, pp. 48:1–48:26, 2013.

[8] A. K. Dey, “Understanding and Using Context,” Personal and ubiquitous
computing, vol. 5, no. 1, pp. 4–7, 2001.

[9] D. Puiu et al., “Citypulse: Large scale data analytics framework for
smart cities,” IEEE Access, vol. 4, pp. 1086–1108, 2016.

[10] M. Compton et al., “The SSN ontology of the W3c semantic sensor
network incubator group,” Web Semantics: Science, Services and Agents
on the World Wide Web, vol. 17, pp. 25–32, 2012.

[11] “Semantic Sensor Network Ontology,” W3C Editor’s Draft, 2017.
[Online]. Available: http://w3c.github.io/sdw/ssn/

[12] A. Auger et al., “iQAS: An Integration Platform for QoI Assessment as
a Service for Smart Cities,” in IEEE World Forum on Internet of Things
2016, Reston, VA, USA, 2017, pp. 88–93.

[13] D. Guinard and V. Trifa, “Towards the Web of Things: Web Mashups for
Embedded Devices,” in WWW MEM 2009, Madrid, Spain, Apr. 2009.

[14] K. Fall and S. Farrell, “DTN: an architectural retrospective,” IEEE
Journal on Selected areas in communications, vol. 26, no. 5, 2008.

[15] G. Baudic et al., “HINT: from network characterization to opportunistic
applications,” in ACM CHANTS, 2016, pp. 13–18.

