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Abstract: Elasticity property allows cloud systems to adapt to their input workload by provisioning and deprovisioning 
resources as the demand grows and drops. However, due to the unpredictable nature of workload, providing accurate action 
plans to manage a cloud system’s elasticity is a particularly challenging task. In this paper, we propose a BRS (short for 
Bigraphical Reactive Systems) based approach to provide a formal modeling of cloud systems’ structure using bigraphs, and 
their elastic behaviors using bigraphical reaction rules. We introduce elasticity strategies to describe cloud systems’ auto-
adaptation behaviors. One step further, we encode the bigraphical specifications into Maude language to enable an 
autonomic executability of the elastic behaviors and verify their correctness. Finally, we propose a queuing-based approach 
to discuss and analyze elasticity strategies in cloud systems through different simulated scenarios. 
 

1. Introduction 

Cloud computing is a novel paradigm [1] that has 

gained a great interest in both industrial and academic sectors. 

It consists of providing a set of virtualized resources (servers, 

virtual machines, services, etc.) as on-demand services. These 

resources are offered by cloud providers according to three 

fundamental service models: infrastructure as a service (IaaS), 

platform as a service (PaaS), and software as a service (SaaS). 

A cloud system has many characteristics that make it very 

attractive such as high availability, flexibility and cost 

effectiveness. However, the most appealing feature for cloud 

users, and what distinguishes cloud computing from other 

models is elasticity property. Elasticity was defined as: 

“The degree to which a system is able to adapt to 

workload changes by provisioning and deprovisioning 

resources in an autonomic manner such that at each point in 

time the available resources match the current demand as 

closely as possible” [2]. 

Elastic behaviors are implemented by an elasticity 

controller, an entity usually based on a closed control loop [3]. 

It autonomically decides of different adaptation actions to be 

triggered aiming at efficiently control cloud resources 

provisioning according to workload fluctuations. 

The adaptations (horizontal, vertical, etc.)  [4]  consist of 

provisioning and deprovisioning resources in order to 

maintain an adequate quality of service (QoS) while 

minimizing operating costs [5].  

Controlling a system’s elasticity rely on many 

overlapping factors such as the available resources, current 

workload, etc. Besides, defining desired elastic behaviors and 

checking their correctness, considering their hard-to-

determine effects on the system’s behavior, rise important 

concerns. Managing these dependencies significantly 

increases the difficulty of specifying and verifying cloud 

systems’ elasticity. Thus, designing such behaviors can be a 

particularly challenging task. To address this challenge, 

formal methods characterized by their efficiency, reliability 

and precision present an effective solution to deal with all of 

these aspects. 

In the last few years, some researches like [6–8] 

proposed formal modeling approaches of elasticity in cloud 

systems. They relied on different formalisms and theories 

such as Petri nets, Markov Chains, Temporal logic or 

Queuing Theory. These approaches globally proposed partial 

solutions for modeling elastic behaviors of cloud systems (i.e., 

specification, execution, verification and evaluation phases 

weren't fully covered). Precisely, most of these works focused 

on one single cloud layer (service or infrastructure) and didn't 

address cross-layer elasticity (at both levels). Most 

importantly, they lacked providing an autonomic 

executability of the introduced behaviors and globally relied 

on simulations for the verification and evaluation phases of 

the model. Finally, none of these works addressed modeling 

cloud systems' structures in the specification phase. 

In this paper, we take a first step towards these 

directions. We contribute by providing a complete formal 

modeling approach that reduces the complexity of specifying, 

executing, verifying and evaluating cloud systems and their 

elastic behaviors. We adopt Bigraphical Reactive Systems 

(BRS) [9, 10] as a semantic framework for specifying 

structural and behavioral aspects of elastic cloud systems. We 

use bigraphs and bigraphical reaction rules to address both 

aspects. Bigraphs are used to model structures of cloud 

systems and the elasticity controller. We use bigraphical 

reaction rules to describe elastic behaviors of a cloud system. 

Precisely, we propose elasticity strategies for horizontal-scale 

(de)provisioning of cloud resources at service and 

infrastructure scopes (i.e., in a cross-layered manner).  

One step further, we encode the BRS specifications 

into Maude language to provide an autonomic executability 

of the elastic behaviors and to formally verify their 

correctness. We proceed to a state-based model-checking [11] 

of elastic behaviors relying on Linear Temporal Logic (LTL).  

Focusing on the definition of elasticity, some key 

concepts are important to consider. Witnessing workload 

changes (i.e., the demand) and estimating the available 

resources are significant in capturing the global system state 

regarding its elasticity. These tasks require Monitoring the 

system during its evolution in order to determine its 

performance, its elasticity and the correctness of the latter 

which is determined by the accuracy of the adaptations [12]. 

Actually, the analysis of performance in elastic cloud systems 

remains a notably challenging task due to the fluctuating and 
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unpredictable nature of input workload [13]. Researchers 

have been using mathematical methods like Queuing Theory 

[14] and Markov Chains [15] to model input workload and its 

impact over the system’s behavior. 

Another contribution of this paper consists of 

providing an experimental analysis of cloud systems’ 

elasticity strategies basing on a queuing approach. We study 

the system’s adaptation capabilities according to different 

execution scenarios. We study and discuss the ability of a 

cloud system to adapt to its varying workload by 

(de)provisioning resources when needed, according to the 

adaptation strategies we introduced. To this purpose, we 

designed a tool to simulate and monitor these behaviors. 

The remainder of the paper is structured as follows. In 

Section 2, we introduce the elasticity controller and explain 

its role in cloud elasticity management. In Section 3, we 

briefly give an overview of BRS formalism and detail our 

BRS-based approach to specify cloud systems and their 

elastic behaviors. In Section 4, we encode the bigraphical 

specifications into Maude language and provide a formal 

verification of the introduced behaviors’ correctness. In 

Section 5, we introduce a queuing-based model to analyze 

elasticity and propose an experimental analysis and 

discussion of cloud systems elasticity. In Section 6, we 

review the state of art on formal specification and verification 

of elastic cloud systems. Finally, we summarize and conclude 

the paper in Section 7. 

2. Elasticity Controller and the Elastic Behavior 

In elastic cloud systems, resource provisioning can be 

adjusted by an elasticity controller. This entity decides of the 

adaptation rules to be triggered in order to scale the cloud 

system in such a way that resource provisioning matches the 

minimum requirements as closely as possible. This is done 

with taking into account many factors as the available 

resources, current workload, system state, etc. [2]. The 

elasticity controller is usually considered to operate according 

to a closed control loop derived from IBM’s autonomic 

control loop known as MAPE for Monitor, Analyze, Plan and 

Execute [3]. In [16, 17], the controller is considered to be 

constituted by different entities that interact with each other 

to implement the main phases of the control loop. Monitoring 

and Execution phases are usually considered to be handled by 

entities that monitor the system (by means of sensors) and 

apply actions (using effectors) that Planning decides, in 

response to the flaws identified at Analysis phase. 

At a high level of abstraction, the elastic behavior of a 

cloud system takes the form of a closed loop architecture as 

shown in Figure 1. A cloud system receives end-users’ 

requests through its front-end interface. The intensity of 

received requests (i.e., input workload) might oscillate in an 

unpredictable manner. The growing workload, thus the 

system’s load can result in a degradation of users Quality of 

Experience (QoE) (e.g. performance drop). Thus, more 

resources need to be provisioned to cope with the demand.  

The controlled system (i.e., cloud hosting environment) is 

hosted by the cloud infrastructure provider who provides 

costs to the cloud service provider proportionally to the 

provisioned resources (i.e., according to a pay-per-use 

policy). When input workload drops, the eventual 

unnecessarily allocated resources are still billed and need to 

be disposed.  

To ensure these behaviors, the elasticity controller 

periodically monitors the controlled system and determines 

its adaptation (i.e., its elastic behavior). Adaptation actions 

(i.e., (de)provision cloud resources) are triggered to satisfy 

high-level policies that are set by the service provider such as 

minimize costs, maximize performance, etc. The challenging 

part here is how to implement a logic that enables the 

elasticity controller to ensure auto-adaptation behaviors over 

a managed cloud system. This is accomplished by triggering 

adaptation rules according to particular conditions that 

represent elasticity anomalies to resolve. To tackle this 

challenge, we adopt a bigraphical approach to model both 

structural and behavioral aspects of the cloud back-end part 

and the elasticity controller. 

In [17], authors provide a cloud systems’ design 

structured in three parts: the front-end, the back-end and the 

elasticity controller. In this paper, we focus on the elasticity 

controller and the managed back-end part. Besides, we extend 

their work by introducing elasticity strategies that describe an 

elastic behavior by means of bigraphical reaction rules. In 

addition, we provide an executability and correctness 

verification of the defined elastic behaviors. Thus, we endow 

the elasticity controller with autonomic management of the 

controlled cloud system’s elasticity. Finally, we provide a 

quantitative analysis of elastic behavior using a queuing 

model. 

 
 

Fig. 1.  Top view of the elastic behavior loop 
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3. A BRS Model for Elastic Cloud Systems 

3.1. Bigraphical Reactive Systems Overview 

Bigraphical reactive systems (BRS) are a recent 

formalism introduced by Milner [10] for modeling the 

temporal and spatial evolution of computation. It provides a 

graphical model that emphasizes both connectivity and 

locality. A BRS consists of a set of bigraphs and a set of 

reaction rules that define the dynamic evolution of the system 

by specifying how the set of bigraphs can be reconfigured. 

Graphical notation and interface: Figure 2 depicts an 

example of a bigraph representation. Dashed rectangles 

denote regions describing separate parts of the system. Nodes 

are depicted by circles and represent the physical or logical 

components of the system. Each node has a type, called 

control, denoted by labels A and B. A signature is the set of 

controls of a bigraphs. A node can have zero, one or many 

ports which represent possible connections. Ports are 

depicted by bullets. In the example, connections are 

represented as links, depicted by curvy lines, which may 

connect ports and names (x, y and z). These links, also called 

hyperedges, indicate the bigraph’s connectivity (e.g., they can 

be considered as (potential) links to other bigraphs). Sites, 

modeled with grey squares, encode parts of the model that 

have been abstracted away. A bigraph possibilities to interact 

with its external environment are visible through its interface. 

For example, B: 0 → <2, {x, y}> indicates that bigraph B has 

zero sites, two regions and its names are x and y. 

Note that a bigraph also has algebraic notations that 

are equivalent to graphical ones. For instance, merge product 

F | G denotes the juxtaposition of bigraphs F and G which is 

then placed inside a single region. Nesting operation F.G 

allows to place bigraph G inside F and parallel product (||) 

term may be used to compose bigraphs by juxtaposing their 

roots and merging their common names. More details about 

bigraphs can be found in [9]. 

 

Bigraphs Sorting: Classification of controls and links for 

a bigraph is performed using sorts. A sorting discipline is a 

triple Σ = {Θ, Κ, Φ}, where Θ is a non-empty set of sorts, K is 

a signature, and Φ is a set of formation rules. A formation 

rule is a set of properties a bigraph has to satisfy. Disjunctive 

sorts are written as 𝑎𝑏̂, expressing that a node can either be of 

sort a or sort b. 

Bigraphical Reactive Systems: A Bigraphical Reactive 

System (BRS) consists of a set of bigraphs representing the 

state of the system and a set of reaction rules defining how 

the system evolves (by going from one configuration to 

another). A reaction rule Ri is a pair (R, R’), where redex R 

and reactum R’ are bigraphs that have the same interface. The 

evolution of a system St is derived by checking if R is a match 

[18] in St and by substituting it with R’ to obtain a new system 

St’. The evolution is noted St 
𝑅𝑖
→ St’. 

Concrete and Abstract Bigraphs: A bigraph is defined 

by a place graph and a link graph on the same set of nodes. 

The difference between concrete and abstract bigraphs lies on 

a simple subtility [18]: concrete bigraphs are represented with 

named nodes and internal edges (i.e., that connect nodes only) 

thus providing an exhaustive cliché of a system configuration. 

Abstract bigraphs, equivalence class of the concrete ones, 

represent nodes with their controls only and omit internal 

edges’ names. This allows the specification of more general 

system configurations. In this paper, we use abstract bigraphs 

in order to provide a generic modeling approach. 

3.2. Modeling Cloud Structures 

An elastic cloud system is represented by a bigraph CS 

involving all cloud architectural elements. Bigraph CS is 

composed of two regions, noted 0 and 1 that respectively 

represent the hosting environment and the elasticity controller 

parts of the elastic cloud system. This configuration is 

obtained by the parallel composition of hosting environment 

(back-end) and elasticity controller bigraphs as shown in [17]. 

The introduced sorting logic defines mapping rules and 

expresses all constraints and formation rules, that CS satisfies 

to ensure proper and precise encoding of cloud semantics into 

BRS concepts. Formal definitions are given in what follows. 

Definition 1: Formally, a bigraph 𝐶𝑆 modeling an elastic 

cloud system is defined as follows. 

𝐶𝑆 = (𝑉𝐶𝑆 , 𝐸𝐶𝑆 , 𝑐𝑡𝑟𝑙𝐶𝑆 , 𝐶𝑆𝑃, 𝐶𝑆𝐿): 𝐼𝐶𝑆 →  𝐽𝐶𝑆 

− 𝑉𝐶𝑆 𝑎𝑛𝑑 𝐸𝐶𝑆 are sets of nodes and edges of the bigraph CS. 

− 𝑐𝑡𝑟𝑙𝐶𝑆 ∶  𝑉𝐶𝑆 →  𝐾𝐶𝑆 a control map that assigns each node 

𝑣 ∈ 𝑉𝑐𝑠 with a control 𝑘 ∈ 𝐾𝑐𝑠 . 

− 𝐶𝑆𝑃 = (𝑉𝐶𝑆 , 𝑐𝑡𝑟𝑙𝐶𝑆 , 𝑝𝑟𝑛𝑡𝐶𝑆): 𝑚𝐶𝑆 → 𝑛𝐶𝑆  is the place 

graph of CS where 𝑝𝑟𝑛𝑡𝐶𝑆: 𝑚𝐶𝑆⨄ 𝑉𝐶𝑆 → 𝑉𝐶𝑆⨄ 𝑛𝐶𝑆 is a 

parent map. mCS and nCS are the number of sites and 

regions of bigraph CS. 

− 𝐶𝑆𝐿 = (𝑉𝐶𝑆, 𝐸𝐶𝑆 , 𝑐𝑡𝑟𝑙𝐶𝑆 , 𝑙𝑖𝑛𝑘𝐶𝑆): 𝑋𝐶𝑆  → 𝑌𝐶𝑆 represents 

link graph of CS, where 𝑙𝑖𝑛𝑘𝐶𝑆: 𝑋𝐶𝑆  ⨄ 𝑃𝐶𝑆 →  𝐸𝐶𝑆 ⨄ 𝑌𝐶𝑆 is 

a link map, XCS and YCS are respectively inner and outer 

names and 𝑃𝐶𝑆is the set of ports of CS. 

− 𝐼𝐶𝑆 = < 𝑚𝐶𝑆, 𝑋𝐶𝑆 > 𝑎𝑛𝑑 𝐽𝐶𝑆 = < 𝑛𝐶𝑆, 𝑌𝐶𝑆 > are the inner 

and outer interfaces of CS. 

Definition 2: The sorting discipline associated to CS is a 

triple Σ𝐶𝑆 = {Θ𝐶𝑆 , Κ𝐶𝑆 , Φ𝐶𝑆}.  

Where Θ𝐶𝑆  is a non-empty set of sorts. KCS is its 

signature, and Φ𝐶𝑆 is a set of formation rules associated to the 

bigraph.  

Table 1 gives for each cloud concept, mapping rules 

for BRS equivalence. This consists of the control associated 

to the entity, its arity (number of ports) and its associated sort. 

Sorts are used to distinguish node types for structural 

purposes and constraints while controls identify states and 

parameters a node can have. For instance, a server noted SE 

has control SEL when it is overloaded and SEU when unused. 

However, all nodes representing servers are of sort 𝑒. 

Table 2 gives the formation rules Φ0-12 that bring 

construction constraints over the BRS specification. 

Formation rules give structural constraints over the BRS 

model. 

 
 

 

 

 

 

Fig. 2.  Example of a bigraph 
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Rule Φ0 specifies that servers are at the top of the 

hierarchical order of deployed entities in the back-end region. 

Rules Φ1-3 give the structural disposition of a hosting 

environment where a server hosts VMs, a VM runs service 

instances and a service instance handles requests. All 

connections are port-to-port or port-to-name links to illustrate 

possible communication capabilities between the different 

cloud entities. In Φ6-7, we use name w, for workload, to 

illustrate the connections the cloud system has with its 

abstracted front-end part. A server is linked to its hosted 

entities, that represent resources virtualization (VMs). A VM 

is linked to service instances it is running. The back-end is 

managed by the elasticity controller through c-name edge for 

control (Φ6 and Φ11). In Φ8, we structurally represent MAPE 

phases with nodes and consider that Evaluator node regroups 

Analysis and Planning phases. Φ12 states that monitor, 

effector and evaluator entities are always linked. In Rules Φ4 

and Φ9, active elements may take part is reactions while 

passive ones won’t. In Φ5 and Φ10, atomic nodes do not have 

children. 

 

Bigraphical Example of a Cloud System: Consider an 

online voting service S running on a cloud system 𝑉𝑆. In its 

hosting environment part, as an initial configuration, the 

service is deployed on one single online server SE. The server 

hosts one virtual machine instance VM which is running one 

instance of the service S. Figure 3 shows a bigraphical 

representation of the cloud system 𝑉𝑆 . Its algebraic form 

focusing on its locality (i.e., place graph) is given with: 

𝑉𝑆 ≝ ((SE. (VM. (S. q|𝑑3)|𝑑2)|𝑑1)|𝑑0) || (MO|EV|E|𝑑4). 

 
Elasticity controller bigraph is connected to hosting 

environment part by parallel composition and merging on 

name c (which is abstracted as we are using abstract bigraphs). 

Notice that the shown bigraph respects our defined 

construction rules. 

3.3. Modeling Elastic Behaviors with BRS 

The behavior of elasticity controller is given as 

bigraphical reactive rules that express dynamicity of an 

elastic cloud system. In this Section, we define a set of 

reaction rules that model horizontal actions over the cloud 

hosting environment (servers, VMs and service instances). In 

addition, we introduce two elasticity strategies that elasticity 

controller uses to manage a cloud’s elasticity.  

Table 3 gives the defined reaction rules Ri expressing 

a set of possible actions that can be applied over a cloud 

system’s back-end part.  

 
A reaction is applied by replacing the redex bigraph 

(left-hand side) with the reactum bigraph (right-hand side of 

the reaction). As both redex and reactum bigraphs respect the 

formation rules ΦCS, the reaction rules always produce 

configurations that are structurally correct by definition. 

Table 1 Controls and sorts for bigraph CS 

Cloud element Control Arity Sort 

Hosting environment part (region 0) 

Server SE 3 e 

Overloaded Server  SEL 3 e 

Unused Server SEU 3 e 

Virtual Machine VM 2 v 

Overloaded VM VML 2 v 

Unused VM VMU 2 v 

Service instance S 1 s 

Overloaded service instance SL 1 s 

Unused service instance SU 1 s 

Request q 0 q 
Elasticity controller part (region 1) 

Evaluator EV 1 o 

Monitor MO 2 m 

Effector E 2         f 

 

Table 2 Conditions of formation rules ΦCS for bigraph 

CS 

Rule description 

Φ0 All children of a 0-region (back-end part) have sort e 

Φ1 All children of an e-node have sort v 

Φ2 All children of a v-node have sort s 

Φ3 All children of an s-node have sort q 

Φ4 All evŝ-nodes are active 

Φ5 All q-nodes are atomic 

Φ6 In a e-node, one port is always linked to a w-name, 

another port is always linked to a c-name and the other 

may be linked to v-nodes  

Φ7 In a v-node, one port may be linked to e-nodes and the 

other may be linked to s-nodes 

Φ8 All children of a 1-region (elasticity controller part) have 

sort in {o, m, f} 

Φ9 omf̂ -nodes are passive 

Φ10 omf̂ -nodes are atomic 

Φ11 mf̂-nodes are always linked to a c-name 

Φ12 An o-node is linked to mf̂-nodes, a m-node is linked to 

of̂-nodes and a f-node is linked to om̂-nodes 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Example of a cloud-based system bigraph CS 

Table 3 Reaction rules modeling elasticity actions in 

cloud bigraph 

Reaction rule Algebraic form 

Deploy a new service 

instance 
𝑅1 ≝ (SE. (VM. 𝑑1)|𝑑0)│id 

→ (SE. (VM. (S. 𝑑2)|𝑑1)|𝑑0)│id 

Deploy a new VM 

instance 
𝑅2 ≝ (SE. 𝑑0)│id 

→ (SE. (VM. 𝑑1)|𝑑0)│id 

Turn on a new server 𝑅3 ≝ id → (SE. 𝑑0)│id 

Consolidate a service 

instance 
𝑅4 ≝ (SE. (VM. (SU. 𝑑2)|𝑑1)|𝑑0)│id 

→ (SE. (VM. 𝑑1)|𝑑0)│id 

Consolidate a VM 

instance 
𝑅5 ≝ (SE. (VMU . 𝑑1)|𝑑0)│id 

→ (SE. 𝑑0)│id 

Turn off a server 𝑅6 ≝ (SEU. 𝑑0)│id →  id 
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Reactions won’t execute if either bigraphs are malformed. 

The specified rules define horizontal scale elasticity actions 

for provisioning (R1-3) and de-provisioning (R4-6) resources 

by scaling-out and scaling-in the hosting environment at 

service, VM and server scopes. 

Sites (expressed with 𝑑) nested in different entities 

(servers, VMs and services) are used to abstract elements that 

are not included in the reactions. Expression “id” stands for 

the identity bigraph (i.e., bigraph with one site inside one 

region) [19]. Note that using abstract bigraphs together with 

the notions of sites and id allow providing a generic 

description of reaction rules. It enables matching and 

rewriting a sub-configuration of the general context. 

However, the introduced rules describe instantaneous 

rewrites (i.e., rules are instantaneously triggered when redex 

matches in the context) [20]. This is not sufficient to express 

a logic which describes our desired elastic behavior (i.e., 

triggering reaction rules only when needed). In this paper, we 

provide this logic through elasticity strategies that describe a 

reasoning for the elasticity controller. 

Elasticity Strategies: A strategy describes a behavior to 

be adopted to manage elastic adaptations in the system. It 

consists of a set of actions that are triggered in case the 

specified triggering conditions are fulfilled. We introduce 

two reactive elasticity strategies of the form [4]: 

𝐼𝐹 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑠) 𝑇𝐻𝐸𝑁 𝑎𝑐𝑡𝑖𝑜𝑛𝑠(𝑠).  

A strategy that reacts to a condition ( 𝐶𝑆 ⊨ φ ) is 

expressed: 𝑠𝑡𝑟𝑎𝑡: 𝑖𝑓 𝐶𝑆 ⊨ φ 𝑡ℎ𝑒𝑛 𝑅𝑖 . 𝐶𝑆 ⊨ φ  is true iff 

∃ a bigraph 𝐵φ, encoding the predicate φ, that is a match in 

the context of 𝐶𝑆. The triggered actions 𝑅𝑖 are modelled as 

bigraphical reaction rules and the triggering conditions are 

encoded into predicates logic. 

Strategy 1 - hosting environment provisioning: 
When input workload increases by receiving growing number 

of client requests, the hosting environment needs to scale-out 

in a way to ensure availability along with performance. 

Strategy 1 can be expressed with three complementary 

actions that operate at service and infrastructure level as 

shown in Table 4. Predicates φ1 − 3  express universal 

quantifying on services, VMs and servers to determine the 

system’s state. The predicates respectively stand for “all 

services/VMs/servers are overloaded” and need to scale-out 

at the equivalent level. 

 

In the context of the voting cloud-based system 

example 𝑉𝑆 , bigraph A ≝ (SE. (VM. (SL. 𝑑3)|𝑑2)|𝑑1)|𝑑0) 

expresses the back-end part of the system if the voting service 

instance is overloaded during its runtime (i.e., condition 

𝑉𝑆 ⊨ φ1 is satisfied). Hence, reaction rule 𝑅1 is triggered to 

create a new instance of service S. The produced bigraph is 

given with A′ ≝ (SE. (VM. (S. 𝑑4)|(SL. 𝑑3)|𝑑2)|𝑑1)|𝑑0) . 

Figure 4 represents this adaptation graphically. Note that site 

𝑑3 abstracts all the handled requests to avoid overloading the 

graphical representation. 

 

Strategy 2 - hosting environment de-provisioning: 
When workload drops, the hosting environment is likely to be 

overprovisioned and has to scale-in. The elasticity controller 

enables this behavior at service and infrastructure levels by 

applying Strategy 2 as defined in Table 5. The predicates  

φ4 − 6  express existential quantifying over the entities 

(services instances, VMs, servers) to check their idleness.  

The predicates respectively express “there exists a 

service/VM/server that is unused”.  

 

When workload drops in the context of the system 𝑉𝑆,  

bigraph B ≝ (SE. (VM. (S. 𝑑4)|(SU. 𝑑3)|𝑑2)|𝑑1)|𝑑0) is one 

expression of the back-end part when an instance of the 

voting service is unused (i.e., condition 𝑉𝑆 ⊨ φ4 is satisfied). 

Reaction rule 𝑅4 is then applied to destroy the idle instance. 

After adapting, the produced bigraph is given with  
B′ ≝ (SE. (VM. (S. 𝑑3)|𝑑2)|𝑑1)|𝑑0). Figure 5 represents this 

adaptation graphically. Notice that the system goes back to its 

initial configuration. 

 

Table 4 Strategy 1 definition 

Level Condition Action 

 

Service 
All service instances are overloaded 

φ1 ≡ ∀𝑠 ∈ 𝑉𝐶𝑆 𝑐𝑡𝑟𝑙𝐶𝑆(𝑠) = SL 
 

𝑅1 

 
 

Infrastructure 

All VMs are overloaded 

φ2 ≡ ∀𝑣 ∈ 𝑉𝐶𝑆  𝑐𝑡𝑟𝑙𝐶𝑆(𝑣) = VML 
 

𝑅2 

All Servers are overloaded 

φ3 ≡ ∀𝑒 ∈ 𝑉𝐶𝑆 𝑐𝑡𝑟𝑙𝐶𝑆(𝑒) = SEL 
 

 

𝑅3 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  Triggering reaction rule R1 

 

Table 5 Strategy 2 definition 

Level Condition Action 

 

Service 
A Service instance is unused 

φ4 ≡ ∃𝑠 ∈ 𝑉𝐶𝑆  𝑐𝑡𝑟𝑙𝐶𝑆(𝑠) = SU 
 

𝑅4 

 
 

Infrastructure 

A VM is unused 

φ5 ≡ ∃𝑣 ∈ 𝑉𝐶𝑆 𝑐𝑡𝑟𝑙𝐶𝑆(𝑣) = VMU 
 

𝑅5 

A Server is unused 

φ6 ≡ ∃𝑒 ∈ 𝑉𝐶𝑆  𝑐𝑡𝑟𝑙𝐶𝑆(𝑒) = SEU 
 

 

𝑅6 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  Triggering reaction rule R4 
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In the introduced elasticity strategies, we express 

triggering conditions in predicates logic. These conditions 

reason on sets of cloud resources (i.e., servers, VMs and 

service instances) that are well-defined and which state 

(overloaded, unused) is known at every moment of the 

system’s evolution. By quantifying elements in the sets to 

check their states, we enable capturing (and monitoring) the 

system’s global state almost instantaneously (thus tackling 

monitoring concerns). Moreover, the introduced elastic auto-

adaptations (scaling-out/in in this paper) are triggered when 

the specified conditions are fulfilled. As these conditions 

reason on the system’s global state, the managed cloud 

system is considered self-aware [21] in terms of its elasticity. 

4. Executability and Formal Verification of Elastic 
Behaviors 

To verify and validate the correctness of the proposed 

elasticity strategies and to watch the desired elastic behaviors, 

we provide an executable solution for the proposed BRS 

specification. In theory, Bigraphical Reactive Systems 

provide good meta-modeling bases to specify cloud systems’ 

structure and their elastic behaviors. As for their executable 

capabilities, providing a generic bigraphical solution requires 

designing generic and parametric reaction rules that can 

consider more aspects than those allowed by Bilog predicates 

[22–24]. To the best of our knowledge, there exists no tool 

built around BRS that enables to: (1) quantitatively reason 

about the system’s global state (e.g. whether a threshold has 

been reached) and to (2) express predicate-based universal 

and existential conditions in order to trigger the reaction rules. 

Besides, to the best of our knowledge, classical bigraphs do 

not allow to define additional quantitative data over nodes 

(e.g. setting variable attributes to nodes such as thresholds) 

[25]. Furthermore, the few existing tools built around BRS 

such as BigraphER [19] and BPL Tool [26] are limited and 

only suitable for some specific application domains. BRS 

model-checker BigMC [27] that was for example used in [28], 

allows formal verification of safety properties. However, 

possible verifications rely on very limited predefined 

predicates. Globally, these tools lack of providing an 

autonomic executability of the specified BRS models. In this 

paper, we turn to Maude language to tackle these limitations 

in terms of encoding (strategies’ triggering conditions) and 

executing in order to provide a generic executable solution of 

elasticity strategies together with verifying their correctness.  

4.1. Motivating the relevance of Maude 

Maude is a high-level formal specification language 

based on equational and rewriting logics. A Maude program 

defines a logical theory and a Maude computation 

implements a logical deduction which uses axioms specified 

in the program/theory. A Maude specification is structured in 

two parts [29]: 

1. A functional module which specifies a theory in 

membership equational logic. Such a theory is a pair 

(𝛴, 𝐸 ∪ 𝐴), where signature 𝛴 specifies the type structure 

(sorts, subsorts, operators etc.). 𝐸  is the collection of 

possibly conditional equations declared in the functional 

module, and 𝐴 is the collection of equational attributes 

declared for the operators (associative, commutative, etc.).  

2. A system module that specifies a rewrite theory as a triple 

(𝛴, 𝐸 ∪ 𝐴, 𝑅) . Where (𝛴, 𝐸 ∪ 𝐴)  is the module’s 

equational theory part, and 𝑅 is a collection of possibly 

conditional rewrite rules. 

The defined bigraphical specifications for cloud 

systems’ structure can be encoded in a functional module, 

where the declared operations and equations define 

constructors that build the system’s elements. Similarly, the 

specified BRS dynamics describing the elasticity controller’s 

behavior can be encoded in a system module. Where elasticity 

strategies are described as conditional rewrite rules. The set 

of rewrite rules 𝑅  express bigraphical reaction rules. The 

strategies’ triggering conditions (predicates) can be expressed 

as equations from the functional module. 

4.2. Principles of BRS encoding into Maude 

To enable a generic executability of the introduced 

elastic behaviors, we encode the BRS-based specifications 

into Maude language as shown in Table 6. 

Table 6 Mapping the bigraphical cloud model into Maude 

Bigraphical model Maude specification 

Functional module 

Sorting discipline sorts CS SE VM S SEL VML SL gstate state . subsort SE < SEL . subsort VM < 

VML . subsort S < SL . 

op CS<_/_:_> : Nat SEL gstate -> CS [ctor] . 

op SE<_,_,_/_:_> : Nat Nat Nat VML state -> SE [ctor] . 

op VM{_,_:_} : Nat SL state -> VM [ctor] . 

op S[_,_:_] : Nat Nat state -> S [ctor] . 

ops gstable underprovisioned overprovisioned : -> gstate [ctor] . 

ops stable overloaded unused ... : -> state [ctor] . 

op nilse : -> SEL [ctor] . op _*_ : SEL SEL -> SEL [ctor assoc comm id: nilse] . 
op nilv : -> VML [ctor] . op _|_ : VML VML -> VML [ctor assoc comm id: nilv] . 
op nils : -> SL [ctor] . op _+_ : SL SL -> SL [ctor assoc comm id: nils] . 
... 

System state 

predicates 

ops isStable(_) isUnderprovisioned(_) isOverprovisioned(_) AoverSE(_) 

EunSE(_) AoverV(_) EunV(_) AoverS(_) EunS(_): CS -> Bool . 

... 

System module 

Elasticity 

strategies 

Conditional rewrite rules of the form:  
crl [rewrite-rule-name] : term => term' if condition(s) . 
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Encoding Cloud Structures: In the functional module, 

bigraph sorts e, v and s (i.e., server, VM and service) are built 

according to their associated Maude constructors (ctor). We 

map bigraphical sorts as SE, VM and S and we introduce 

sort CS to define a cloud system. Notice that we enrich sorts 

with additional information in Maude to consider maximum 

hosting thresholds and entities states. For instance, a cloud 

system is defined by constructor CS<m/SEL:gstate>. 

And SE<x,y,z/VML:state> defines a cloud server. 

Parameters x, y and z are naturals that encode upper hosting 

thresholds at server, VM and service levels. m gives a 

maximum number of possible online servers. SEL is a list of 

servers and VML is a list of VMs (hosted by a server). These 

relationships are expressed by declaring sorts SE and VM as 

subsorts of SEL and VML respectively. state gives a 

symbolic elastic state for each element out of constructors 

overloaded, unused and stable. Term gstate 

gives a global state to the cloud system out of constructors 

underprovisioned, overprovisioned and 

gstable for “globally stable”. 

Encoding System State Predicates: In the functional 

module, we define a set of predicates that describe a global 

elastic state of the system. For instance, AoverSE() is a 

predicate that stands for “all servers are overloaded”. 

Predicate EunVM() stands for “there exists an unused VM 

instance”. Typically, predicates of the form Aover(SE/VM/S) 

and Eun(SE/VM/S) encode our strategies’ triggering 

predicates φ1 − φ3  and φ4 − φ6  respectively. We also 

encode system global state predicates isStable(), 

isUnderprovisioned() and isOverprovisioned() that are true 

when the system is Stable, Underprovisioned and Underused. 

Encoding Elasticity Strategies: In the system module, 

we encode elasticity strategies as conditional rewrite rules. 

Their triggering conditions are state predicates encoded 

above and their triggered actions (mapped from the introduce 

bigraphical reaction rules) are encoded as Maude functional 

computation. For instance, Strategy 1 at service level is 

specified as follows: crl[S1-service]:cs => 

addService(cs) if AoverS(cs) . Where cs is a 

cloud system, AoverS(cs) is a predicate that is true if all 

service instances in the system are overloaded (φ1). Function 

addService(cs) is an equation that rewrites the term cs 

in such a way to deploy a new service instance (rule R1). This 

function is defined as an equation in the functional module. 

4.3. Formal Verification of Elastic Behaviors 

To verify their correctness, we model our defined 

elastic behaviors with Linear Temporal Logic (LTL). To 

proceed, we first define a model of temporal logic with a 

Kripke structure 𝐀𝑪𝑺 [30] as follows. 

Definition 3: Given a set 𝐴𝑃𝐶𝑆 of atomic propositions, we 

consider the Kripke structure 𝐀𝑪𝑺 = (𝐴, →𝐀, 𝐿𝐶𝑆). Where 𝐴 

is the set of states, →𝐀 is the transition relation, and 𝐿𝐶𝑆: 𝐴 →
𝐴𝑃𝐶𝑆 is the labeling function associating to each state 𝑎 ∈ 𝐴, 

the set 𝐿𝐶𝑆(𝑎) of the atomic propositions in 𝐴𝑃𝐶𝑆 that hold in 

the state 𝑎 . 𝐿𝑇𝐿(𝐴𝑃𝐶𝑆)  denotes the formulas of the 

propositional linear temporal logic. The semantics of 

𝐿𝑇𝐿(𝐴𝑃𝐶𝑆) is defined by a satisfaction relation: 𝐀𝑪𝑺 , 𝑎 ⊨ ϕ , 

where ϕ ∈ 𝐿𝑇𝐿(𝐴𝑃𝐶𝑆). 

Setting up the Kripke Structure: We consider the set of 

atomic propositions 𝐴𝑃𝐶𝑆 = {φ1, φ2, φ3, φ4, φ5, φ6}. 
These propositions are indicative of our elasticity strategies’ 

triggering conditions (i.e., proposition φi  holds when 

predicate φi  is satisfied, with 𝑖 ∈ [1. .6] ). Knowing that a 

cloud system evolves in a highly dynamic environment, 

multiple adaptations can be triggered during its runtime 

according to our specified elasticity strategies. Thus, the set 

of possible structural states of the system (i.e., configurations 

defined by a cloud system cs) is theoretically infinite. For 

this reason, we consider three symbolic states: Stable, 

Underprovisioned and Overprovisioned, respectively 

denoted in the set of states 𝐴 =  {S, U, O} . The considered 

symbolic states express classes of equivalence with respect to 

the global elastic state of the cloud system (i.e., different 

structural configurations can have the same elastic symbolic 

state). Precisely, a cloud system has Stable state when no 

proposition in φ1 − φ6 holds (i.e., 𝐿𝐶𝑆(S) = ∅). The system 

is Underprovisioned when one or more propositions in  

φ1 − φ3  hold (i.e., 𝐿𝐶𝑆(U) ⊆ {φ1, φ2, φ3} ). It is 

Overprovisioned when one or more propositions in φ4 − φ6 

hold (i.e. 𝐿𝐶𝑆(O) ⊆ {φ4, φ5, φ6}). In other terms, the system 

is Underprovisioned or Overprovisioned when scaling-out or 

scaling-in actions are required, and it is Stable when no 

adaptation is needed. 

Representing Transitions: We use Labeled Transition 

Systems [31] to represent transition relations between the 

considered states. For the sake of clarity, we give for each 

state the set of propositions that hold in it. Besides, we label 

the transition relations using adaption actions R1 − R6 and 

with two actions in and out that stand for input/output (i.e., 

receiving and satisfying an end-user’s request). We split the 

graph into two parts to improve the readability of the 

transitions. The first part, shown in Figure 6, focuses on a 

view of system’s evolution when it is Underprovisioned (i.e., 

mainly managed with Strategy 1). The second part, shown in 

Figure 7, gives a view of system’s evolution when is it 

Overprovisioned (i.e., managed with Strategy 2). To facilitate 

the comprehension and the linking of the two parts, we 

represent edge states (i.e., that represent the connection 

between the two views) in red. Notice that most of these states 

are denoted U/O. They describe states where parts of the 

system are overloaded while others are unused. This leads to 

an “instable” state where the system is Overprovisioned and 

Underprovisioned at the same time. For example, it is 

possible to have an empty VM while all available service 

instances (deployed in other VMs) are overloaded (i.e., 

propositions φ1  and φ5  hold together). This perfectly 

depicts the impact of workload fluctuations on the system 

resources management’s efficiency. Moreover, it shows that 

the two specified strategies are complementary. In addition, 

other “instable” states are possible to occur during the 

system’s evolution as a direct result of workload traffic. 

However, besides the obvious readability concern, we don’t 

show all possible states as they globally represent 

intermediate states. Some other states are impossible to occur. 

For example, it is impossible that the propositions pair 

(φ1, φ4)  hold at the same moment. The propositions 

respectively stand for “all service instances are overloaded” 

and “a service instance is unused” and are therefore 

contradictory. Idem for pairs (φ2, φ5) and (φ3, φ6) for the 

same reason. 
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Finally, the transition system shows the cross-layered 

behavior of the system. When workload grows, scaling-out at 

service level might result in overloading the system at VM 

level. Scaling-out at VM level is then necessary and could 

overload the system at server level. Inversely, when workload 

drops, scaling-in at service level could result in unused VMs 

then to unused servers when scaling-in at VM level. This 

behavior shows the importance of designing strategies than 

can be applied at service, VM and server levels of a cloud 

system in order to provide a complete management of 

horizontal elasticity. 

 

 

Defining LTL propositional Formulas: We introduce 

𝐿𝑇𝐿(𝐴𝑃) = {𝑆𝑐𝑎𝑙𝑒˗𝑂𝑢𝑡, 𝑆𝑐𝑎𝑙𝑒˗𝐼𝑛, 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒} the set of the 

propositional formulas in Linear Temporal Logic as follows. 

− 𝑆𝑐𝑎𝑙𝑒˗𝑂𝑢𝑡 ≡  𝑮 (𝑈𝑛𝑑𝑒𝑟𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑→ 𝑭 𝑆𝑡𝑎𝑏𝑙𝑒) 

− 𝑆𝑐𝑎𝑙𝑒˗𝐼𝑛 ≡  𝑮 (𝑂𝑣𝑒𝑟𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑→ 𝑭 𝑆𝑡𝑎𝑏𝑙𝑒) 

− 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒 ≡  𝑮 (Underprovisioned ∧
                                𝑂𝑣𝑒𝑟𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑 → 𝑭 𝑆𝑡𝑎𝑏𝑙𝑒) 

Where formulas Scale-Out / Scale-In specify that the 

managed cloud system that is Underprovisioned / 

Overprovisioned will eventually end up by reaching its Stable 

state. Formula Stabilize is applied when the system is in an 

“instable” state, as explained before, making it reach its 

Stable state eventually. Symbols 𝑮 and 𝑭 are LTL operators 

that stand for “always” and “eventually”. Note that every 

state can be initial since it is determined by monitoring. 

Nevertheless, the graphs show that every possible state is 

accessible, that it has a successor and that the stable state S is 

always accessible from any other state during system’s 

evolution. We represented the system’s transitions with the 

Stable state as initial state to show that regardless its evolution, 

there is always a path that leads back to its (initial) Stable state. 

This shows the non-plasticity [6] and safety properties of the 

system’s auto-adaptation behaviors. The specified formulas 

are used to ensure reachability property of the managed 

elastic cloud system’s Stable state, thus the correctness of our 

introduced elasticity strategies. 

Encoding Kripke Structure into Maude: Maude allows 

associating Kripke structures to the specified rewrite theory 

(in system module) to define a module for property 

specification. Precisely, the introduced Kripke structure 

(Definition 3) enables conducting generic LTL state-based 

model checking that can reason on any system configuration.  

For instance, determining that a cloud configuration is Stable 

in terms of elasticity is specified with a conditional equation: 

ceq cs ⊨ Stable = true if isStable(cs) == 
true. Where cs is a given cloud system, Stable is a 

proposition in 𝐴𝑃𝐶𝑆  representing the symbolic elastic state 

Stable. isStable(cs)is a predicate for “the cloud system 

cs is stable” defined in the functional module.  

Formulas in 𝐿𝑇𝐿(𝐴𝑃)  are also encoded into the 

property specification module. For instance, Scale-Out 

formula is specified with an equation: eq Scale-Out = 

[] (Underprovisioned -> <> Stable). Where 

Underprovisioned is a proposition in 𝐴𝑃𝐶𝑆. []and <> 

encode LTL operators 𝑮 and 𝑭. 

Running Model-Checking: Maude LTL model-checker is 

executed with, as parameters: (1) a cloud configuration cs as 

initial state and (2) a property formula in 𝐿𝑇𝐿(𝐴𝑃𝐶𝑆) to verify. 

Figure 8 gives an execution trace of a model-checked 

cloud configuration example for a violation of the formula  

Scale-Out (given with its negation through symbol ~).  

The model-checker gives a counter example showing a 

succession of different executed rewrite rules that are applied 

on the given cloud system.  

The trace shows that strategies 1 and 2 are triggered at 

service level (rules R1 and R4) when propositions φ1 and 

φ4  are satisfied during the system’s evolution which is 

impacted by workload fluctuations. Notice that newly 

deployed service instance has new as state. As it is unused 

when deployed, new state enables not considering this fact 

during the elasticity evaluation of its state. This can be 

interpreted as a cool-down period and ensures resources 

thrashing i.e., avoiding opposite adaptations (deploying an 

instance than disposing it right after). These notions were 

defined in [6]. We also apply this reasoning at VM and server 

scopes. Besides, we define marking rules for understanding 

and clarity purposes. These rules update each entity state as 

well as the global state of the system if it changes during its 

execution. The reached deadlock state doesn’t stand for some 

critical error, it genuinely means that no further adaptation is 

needed. 

 
Fig. 6.  A view of system transitions for Strategy 1 

 
Fig. 7.  A view of system transitions for Strategy 2 
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Finally, the trace shows that the adaptations in response of 

workload changes make the system reach its stable state. 

This allows verifying the effectiveness of our introduced 

elastic behaviors, thus confirming the assumptions we made 

at design time regarding their correctness and their ensured 

non-functional properties.  

5. Quantitative Analysis of Cloud Elasticity 

In this Section, we proceed to an analysis of the 

introduced strategies using Queuing Theory [14], a 

mathematical method of analyzing congestions and delays in 

waiting in line. Generally, a queuing process consists of 

customers arriving at a system to receive some service. If the 

servers (which offer the service) are busy, the customers wait 

in line in a queue until they are served, then leave the system. 
This kind of systems (that work according to a queuing 

process) can be described by a queuing model.  

5.1. A Queuing Model for Cloud Elasticity 

We advocate that a queuing model is a suitable support 

for analyzing an elastic system. In such systems that adapt to 

their incoming workload by provisioning computational 

resources, these available resources, at every moment, are not 

always sufficient to cope with the growing throughput. This 

makes congestions to appear in the system resulting in 

waiting queues that impact its quality of service (QoS). The 

main goal of our analysis is to watch the ability of a cloud 

system to adapt to its varying input workload. This implies 

provisioning and deprovisioning resources when workload 

rises and drops, using the two adaptation strategies that we 

introduced. 

A queuing model introduces a set of parameters using 

the Kendall notation: A/S/C/Q/N/D [32]. These parameters 

are defined as follows. A system provides one or more servers, 

or more generally, a number C of resources (offering a 

service). The customers arriving at the system according to 

an arriving process A, join the queue to get a service from a 

server following some serving discipline D, e.g., they get 

served one by one, generally with FCFS (First Come First 

Served) law or in batches. The amount of time required to 

serve the customers is given by a service process S. The 

system capacity Q gives the maximum number of customers 

that the system can hold. It includes the customers that are 

waiting in the queue to be served and those being served. 

Finally, the size of the arriving population N gives the number 

of customers expected to arrive in the system.  

Setting-up a Queuing Model: Applying a queuing 

reasoning over an elastic cloud system, we can consider that 

the queuing relationship customers/servers corresponds to the 

cloud concept of requests/service instances. In other words, 

in a queuing point of view, the servers of a cloud system (that 

offer a service) are in fact service instances that are deployed 

to serve requests (customers) arriving into the system. It is 

interesting here to notice that service instances’ availability 

depends on cloud infrastructure deployment (provisioned 

virtual machines, etc.). This allows to easily understand how 

input workload impacts cloud hosting environment as it 

adapts by (de)provisioning resources, at service and 

infrastructure levels (i.e., in a cross-layered manner) 
To conduct quantitative evaluation, we will assume 

that the system hosting capacity Q = ∞ and the size of arriving 

population N = ∞. Requests’ arrivals A is given by a Poisson 

process which gives an exponential distribution of received 

requests at each time unit, with an average value λ. The 

service process S also follows an exponential law with an 

average value µ to give the number of requests that are 

processed by every service instance. The essence of our work 

being adaptation behaviors, we inspire from a queuing model 

with on-demand number of servers C, as presented in [33], to 

adjust the number of provisioned resources at different levels 

of the cloud hosting environment by applying the strategies 

we introduced. The serving discipline D follows a batching 

principle as proposed in [34].  

5.2. Experimentation 

To study the introduced elastic behaviors, we run 

simulations where inputs are: (1) a requests arrival rate λ, (2) 

a service rate µ, (3) an initial configuration of the cloud 

system and (4) constant values of hosting thresholds x, y, z 

and m (introduced in Section 4). To evaluate performance and 

cost efficiency of elasticity, we consider the following metrics: 

• Average number of deployed service instances and VMs. 

• Avg. usage rate of hosting environment. 

• Avg. rate of successfully processed requests. 

• Avg. requests processing delay (processing/waiting ratio). 

The system’s performance is indicated by the rate of 

treated requests and processing delay. The system’s load is 

given by the average amount of handled requests at each unit 

of time (not to be confused with workload or received 

requests). Processing delay indicates the proportion in which 

requests are waiting to be processed. The number of deployed 

service and VM instances gives the accuracy of adaptations 

in response to workload variations. The system’s cost 

 

 
 

Fig. 8.  Maude LTL model-checker counter-example 
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effectiveness is given by analyzing the relationship between 

treated requests rate and the average hosting environment 

usage rate (in function of its maximum provisioning capacity). 

Note that introducing thresholds over the hosting 

environment makes the system bounded in terms of resources 

that can be deployed (e.g., when x = 2 and y = 2, the maximum 

amount of service instances that can be deployed is x × y = 4), 

this makes the model more realistic regarding its physical 

resources limitations. To estimate the correctness of 

resources’ provisioning, we compare the average number of 

service instances in our simulations with results of the 

Erlang-C formula [35] that calculates the minimum and 

sufficient number of servers for a given arrival and service 

rates λ and µ. Erlang model states that the customers are 

impatient and can leave the system if their tolerance threshold 

in terms of waiting time is reached. Since our model does not 

consider requests timeout, we will only consider the 

minimum number of servers as a pertinent result of Erlang-C 

formula.  

The Analyzed Cloud System: We use the introduced 

example of an online cloud-based voting system in Section 3. 

We keep the same initial configuration (i.e., one online server, 

one deployed VM and one running instance of the service).  

Hosting thresholds’ values are defined as follows: maximum 

number of VMs running in the server is given by x = 2, 

maximum amount of service instances running in each VM is 

y = 2, and maximum number of requests a service instance 

can hold is z = 30. We run simulations on a single physical 

server (i.e., m = 1). For the same initial deployment and same 

values of thresholds, we analyze how the system behaves and 

adapts to different arrival and process rates patterns. We study 

the simulations execution traces within 50 units of time 

according to the following two scenarios. 

Scenario 1 (λ = 50, µ = 25): In this scenario, we assume 

that input workload is generated with an average value λ = 50. 

The service process is given with the average value of µ = 25 

(every service instance process around 25 requests per time 

unit). Within the simulation time, monitoring shows that 100% 

of the received requests are successfully processed with an 

average delay of 6,7%. As for the hosting environment’s 

provisioning, the system achieves almost 100% of its capacity 

in terms of deployed VM instances (x = 2), and 65,5% of its 

maximum capacity of service instances with an average 

number of 2,6 deployed service instances out of 4 (i.e., x × y 

= 4). This result is coherent with Erlang-C formula which 

states, for λ = 50 and µ = 25, that at least 3 servers (service 

instances in a cloud point of view) are required to achieve full 

level of service (i.e., processing all received requests). 

Scenario 2 (λ = 35, µ = 25): In this scenario, we assume 

that input workload is around 35 arriving requests per time 

unit and that service processing is around 25 treated requests 

per unit of time. As the arrival rate λ is dropped from 50 to 35 

comparing to Scenario 1, monitoring shows that less 

resources are provisioned overall. During this simulation,  

100% of the requests are successfully processed with an 

average delay of 7,2%. The system only provisions 50% of 

its service instances capacity with an average number of 2 

deployed service instances out of 4. However, around 93% of 

VM instances capacity is achieved with an average number 

of 1,86 deployed VMs out of 2. These results nonetheless 

correspond to Erlang-C formula which states that at least 2 

servers are required for the same values of λ=35 and µ=25. 

Figure 9 summarizes the obtained results for both 

scenarios 1 and 2. Overall, the system shows better 

performance in Scenario 1 than in Scenario 2 with 6,71% 

processing delay versus 7,18%. Besides, more important 

resource provisioning is recorded in Scenario 1 as input 

workload intensity is bigger. However, the obtained service 

instances’ provisioning in both scenarios was coherent with 

the results given by Erlang-C formula. 

 

5.3. Discussion 

The conducted experiment shows that the elastic 

behaviors, described by the strategies we introduced, are 

pertinent and in accordance with our expectations during 

design phase. The results given by simulation are globally 

convincing as the minimum required number of service 

instances always corresponds to results given by Erlang-C 

formula. Nevertheless, we think that scaling capabilities can 

be improved by introducing another strategy for load 

balancing (i.e., uniformizing hosting environment entities’ 

load to maximize deployment efficiency). In fact, the 

simulations showed that the average service instances load 

was about 63% in Scenario 1 and around 60% in Scenario 2. 

Maximizing efficiency could lead to deploy less cloud 

resources (VMs) and consequently, to provide less expensive 

cloud deployments. It is important to keep in mind that this 

task is tedious regarding the fluctuating nature of input 

workload and the unpredictable congestions it could cause, 

even around a known average value λ. 

In addition, one could consider a “good” strategy as 

one that brings good compromise between performance and 

cost (i.e., minimum infrastructure deployment for maximum 

processing rate and minimum delay). However, finding a 

right compromise between performances and cost efficiency 

might imply to scarify some performance.  In Scenario 2, 

monitoring recorded 50% of the system’s usage of service 

instances while it reached almost full VM capacity. This 

 
 

Fig. 9.  Experimentation quantitative results summary 
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means that VM usage is not optimized as the deployed VMs 

were averagely half used. Threshold x (maximum deployed 

VMs) can be dropped to its half to avoid overprovisioning the 

system, thus avoiding unnecessary operating costs. However, 

this often implies to have bigger processing delays at high 

workload peaks. For instance, authors in [36] show that it is 

very challenging to give a definition to what should a “good” 

strategy be. Resources’ consumption depended on the 

fluctuating nature of input workload that was the main 

parameter for describing a good elastic behavior. 

Furthermore, we consider that the concept of strategy 

can be enlarged. In fact, our experiment showed that not only 

adaptations policies can affect the system’s behavior. In terms 

of modeling, thresholds (x, y, z, m) are very important and can 

give implicit yet pertinent details about the system. Indeed, 

the number x of VMs that can be deployed, could be 

significative of a cloud service provider’s financial ability to 

afford deploying VMs. The number y of maximum running 

service instances, can indicate the VM hardware profile [37] 

(allocated physical resources). The maximum processing 

requests threshold z can describe the service’s nature (e.g., a 

light task could handle more requests at a time than a complex 

time consuming one). To illustrate, Scenario 1 showed 65,5% 

of service instances usage rate for full capacity (x = 2) of 

deployed VMs. This indicates that one of the two deployed 

VMs is always half used at the best. One could set x to 1 and 

y to 3 to maximize system’s efficiency whilst reducing 

operating costs. For example, these values could mean that 

provisioning one Amazon EC2 Medium VM instance is more 

efficient than provisioning two Small VM instances.  

Moreover, the system’s initial deployment could be 

considered as a strategy. Having a suitable initial 

configuration could lead to minimize processing delays and 

the need to adapt. It enables the system to efficiently absorb 

its input workload. 

In conclusion, the experiment shows that simulating a 

cloud system’s elastic behavior with multiple parameters 

enables a cloud administrator to plan for optimal effort (cloud 

resources) that should be allocated to a cloud-based service to 

provide an optimal compromise between cost and 

performance. 

 

6. Related Work 

There have been multiple research studies in the 

literature using formal methods to specify elastic behaviors in 

cloud systems. In [6], authors proposed a formalization based 

on CLTLtD) temporal logic of several concepts and 

properties related to elastic behaviors of cloud systems. 

Qualitative properties of elastic cloud systems have been 

formally introduced and detailed, such as elasticity and 

resources management. Authors validate their approach using 

an offline SAT and SMT-solvers based verification tool. The 

tool checks the elasticity mechanisms’ (scale-in/out) 

correctness by reasoning on execution traces obtained by 

online simulation. Different input workload patterns are 

generated in the process to trigger elastic behaviors. In terms 

of modeling, precise cloud cross-layered composition has 

been abstracted to only address resources at infrastructure 

level. Precisely represented by a number of virtual machines.  

Authors in [7] adopted a Petri nets formalization to 

describe cloud-based business processes’ elastic behaviors. 

Elasticity strategies for routing, duplicating and 

consolidating cloud components at service level were 

defined. Strategies are compared in terms of reliability and 

performance (resources consumption). In their work, authors 

focus on the application layer of a cloud configuration and 

infrastructure details are not addressed in the model. Besides, 

the formal approach is verified using a verification-based 

evaluation. Authors use SNAKES, a Petri nets-based 

reachability graph which verifies the correctness of the 

introduced strategies that are simulated at design time. 

In [17], authors introduced a formal approach based 

on Bigraphical Reactive Systems for modeling both structural 

and behavioral aspects of elastic cloud systems. Cloud elastic 

behaviors are represented in terms of client/application 

interaction. Elasticity methods at service, platform and 

infrastructure levels are modeled with bigraphical reaction 

rules to define a range of adaptation actions that describe 

horizontal, vertical and migration scales elasticity. However, 

no elasticity strategies are presented to describe a logic that 

governs the autonomic management of the adaptations. 

Besides, no verification of elasticity mechanisms is provided. 

In [8], authors proposed an analytical model based on 

a queuing approach with variable number of servers. They 

represented service-based business processes adaptation to 

workload variations and evaluate elasticity strategies (scale-

Table 7 Comparison of elastic cloud systems formal modeling approaches 

Approach 
Formalism / 

formal model 

Modeling elastic cloud systems Verification and evaluation 

System 

structures 

Elastic 

behaviors 

Elasticity 

strategies 

Qualitative verification 

technique 

Quantitative 

evaluation 

[6] CLTLt(D) - Infrastructure 

Horizontal 

scale 

SAT and SMT solvers 

Simulation 
[7] Petri nets - 

Service 

Reachability graph 

[8] 
Markov Chains, 

Queuing Theory 
- - Queuing model 

[17] BRS 

Bigraphs 
Service and 

Infrastructure 

- - - 

Our approach 
BRS,  

Queuing Theory 

Horizontal 

scale 

LTL state-based model-

checking 

Simulation, 

Queuing model 
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out/in) that operate at service level. In this work, authors 

modeled input workload as a Poisson process and the queuing 

system as a Markov Chain. The Markov Chain describes the 

system’s state with the size of the waiting queue. Metrics as 

number of servers and average response time are then 

calculated using probabilistic formulas. Authors provided a 

quantitative evaluation based on conceptual scenarios to 

validate their approach. However, no formal qualitative 

verification is provided. 

In this paper, we extend [17] by defining two elasticity 

strategies for scaling-out/in cloud systems at service and 

infrastructure levels. These strategies are reactive to 

conditions (designed in predicates logic) that reason on the 

global state of the system. When triggered, the strategies 

apply adaptation actions that we modeled using bigraphical 

reaction rules.  In our approach, BRS modeling enabled us to 

consider a complex global state of an elastic cloud system 

which is determined by the jointure of all states of hosting 

environment elements. These elements (services, VMs, 

servers) are expressed as sets of nodes that are linked by a 

hosting relationship representing dependencies between the 

three considered scopes. Reasoning over the elements’ states 

at different levels, thus capturing the system global state 

ensures providing accurate adaptation capabilities to cope 

with the varying demand. To the best of our knowledge, there 

have not been published works that addressed the question of 

cloud systems’ state in the way we propose it. The other 

approaches, based on Markov Chains, Petri nets or 

CLTLt(D), allow considering the system state at a very high 

level of abstraction. Using these formalisms, the cited works 

respectively considered the size of the queue, number of 

requests and number of VMs as main variable impacting 

adaptation decisions. Therefore, both [7, 8] propose 

horizontal-scale elasticity strategies that operate at service 

level and [6] address it at infrastructure level. In our model, 

we address horizontal scaling in a cross-layered manner (i.e., 

at both service and infrastructure levels). We show how 

managing elastic adaptations at service scope impacts the 

system’s state at VM scope (idem for VM and server scopes). 

To validate our contributions, we formally verify our 

approach using LTL state-based model-checking technique 

[11]. We encode the BRS specifications into Maude language 

to enable their autonomic executability and verify the 

correctness of the elastic behaviors. The cited papers do not 

provide an executable autonomic support for their modeling 

approaches. One step further, we designed a queuing-based 

simulation tool to provide a quantitative evaluation and 

analysis of elastic adaptations.  

Table 7 summarizes this Section by comparing our 

approach with the referenced papers. As comparison criteria, 

we consider (1) the used formalism or formal model, (2) the 

provided modeling features in terms of cloud structures, 

elastic behavior and elasticity strategies and (3) the provided 

qualitative verification and quantitative evaluation of the 

modeling approach. 

7. Conclusion 

In this paper, we provided a view of cloud systems’ 

hosting environment including all cloud components that are 

involved in elastic behaviors. Structural and behavioral 

aspects of elastic cloud systems have been modeled using the 

Bigraphical Reactive Systems formalism. Precisely, we use 

bigraphs and bigraphical reactive rules to express both 

aspects respectively. These behaviors implement an elasticity 

controller and are described by elasticity strategies. We 

propose two horizontal scale strategies for (de)provisioning 

cloud system resources at service and infrastructure levels. 

They describe a logic that enables the elasticity controller to 

reason over the entire cloud system state. Precisely, a strategy 

specifies conditions expressed as predicates. When satisfied, 

the conditions trigger adaptation actions that we expressed as 

bigraphical reaction rules.  

One step further, we encoded our BRS specifications 

into Maude language in order to enable their autonomic 

executability. We also verify the correctness of the proposed 

elastic behaviors according to a state-based model-checking, 

relying on Linear Temporal Logic (LTL). Besides, we 

adopted a queuing approach as a support for an analysis of 

adaptation capabilities of elastic cloud systems. Clearly, we 

designed a tool that enables simulating and monitoring a 

cloud system’s execution. Moreover, we provided an 

experimental analysis over two different execution scenarios. 

Finally, we discussed and analyzed elasticity strategies 

aiming at giving a deeper comprehension of cloud systems’ 

elastic adaptation. 

In this present work, we attempt to take a first step 

towards the formalization of cloud systems elastic behaviors. 

In the next step, we plan to enlarge our specifications to 

provide more adaptation capabilities by introducing strategies 

for load balancing and vertical scaling. Finally, our objective 

is to provide a complete executable and verifiable 

formalization of cloud systems’ elastic behaviors. 
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