
HAL Id: hal-02417557
https://univ-pau.hal.science/hal-02417557

Submitted on 10 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal modelling and verifying elasticity strategies in
cloud systems

Khaled Khebbeb, Nabil Hameurlain, Faiza Belala, Hamza Sahli

To cite this version:
Khaled Khebbeb, Nabil Hameurlain, Faiza Belala, Hamza Sahli. Formal modelling and verifying elas-
ticity strategies in cloud systems. IET Software, 2019, 13 (1), pp.25-35. �10.1049/iet-sen.2018.5030�.
�hal-02417557�

https://univ-pau.hal.science/hal-02417557
https://hal.archives-ouvertes.fr

1

Formal Modeling and Verifying Elasticity Strategies in Cloud Systems

Khaled Khebbeb1,2*, Nabil Hameurlain2, Faiza Belala1, Hamza Sahli1

1 LIRE Laboratory, Constantine 2 University – Abdelhamid Mehri, Constantine, Algeria
2 LIUPPA Laboratory, University of Pau, Pau, France
*khaled.khebbeb@{univ-constantine2.dz, univ-pau.fr}

Abstract: Elasticity property allows cloud systems to adapt to their input workload by provisioning and deprovisioning
resources as the demand grows and drops. However, due to the unpredictable nature of workload, providing accurate action
plans to manage a cloud system’s elasticity is a particularly challenging task. In this paper, we propose a BRS (short for
Bigraphical Reactive Systems) based approach to provide a formal modeling of cloud systems’ structure using bigraphs, and
their elastic behaviors using bigraphical reaction rules. We introduce elasticity strategies to describe cloud systems’ auto-
adaptation behaviors. One step further, we encode the bigraphical specifications into Maude language to enable an
autonomic executability of the elastic behaviors and verify their correctness. Finally, we propose a queuing-based approach
to discuss and analyze elasticity strategies in cloud systems through different simulated scenarios.

1. Introduction

Cloud computing is a novel paradigm [1] that has

gained a great interest in both industrial and academic sectors.

It consists of providing a set of virtualized resources (servers,

virtual machines, services, etc.) as on-demand services. These

resources are offered by cloud providers according to three

fundamental service models: infrastructure as a service (IaaS),

platform as a service (PaaS), and software as a service (SaaS).

A cloud system has many characteristics that make it very

attractive such as high availability, flexibility and cost

effectiveness. However, the most appealing feature for cloud

users, and what distinguishes cloud computing from other

models is elasticity property. Elasticity was defined as:

“The degree to which a system is able to adapt to

workload changes by provisioning and deprovisioning

resources in an autonomic manner such that at each point in

time the available resources match the current demand as

closely as possible” [2].

Elastic behaviors are implemented by an elasticity

controller, an entity usually based on a closed control loop [3].

It autonomically decides of different adaptation actions to be

triggered aiming at efficiently control cloud resources

provisioning according to workload fluctuations.

The adaptations (horizontal, vertical, etc.) [4] consist of

provisioning and deprovisioning resources in order to

maintain an adequate quality of service (QoS) while

minimizing operating costs [5].

Controlling a system’s elasticity rely on many

overlapping factors such as the available resources, current

workload, etc. Besides, defining desired elastic behaviors and

checking their correctness, considering their hard-to-

determine effects on the system’s behavior, rise important

concerns. Managing these dependencies significantly

increases the difficulty of specifying and verifying cloud

systems’ elasticity. Thus, designing such behaviors can be a

particularly challenging task. To address this challenge,

formal methods characterized by their efficiency, reliability

and precision present an effective solution to deal with all of

these aspects.

In the last few years, some researches like [6–8]

proposed formal modeling approaches of elasticity in cloud

systems. They relied on different formalisms and theories

such as Petri nets, Markov Chains, Temporal logic or

Queuing Theory. These approaches globally proposed partial

solutions for modeling elastic behaviors of cloud systems (i.e.,

specification, execution, verification and evaluation phases

weren't fully covered). Precisely, most of these works focused

on one single cloud layer (service or infrastructure) and didn't

address cross-layer elasticity (at both levels). Most

importantly, they lacked providing an autonomic

executability of the introduced behaviors and globally relied

on simulations for the verification and evaluation phases of

the model. Finally, none of these works addressed modeling

cloud systems' structures in the specification phase.

In this paper, we take a first step towards these

directions. We contribute by providing a complete formal

modeling approach that reduces the complexity of specifying,

executing, verifying and evaluating cloud systems and their

elastic behaviors. We adopt Bigraphical Reactive Systems

(BRS) [9, 10] as a semantic framework for specifying

structural and behavioral aspects of elastic cloud systems. We

use bigraphs and bigraphical reaction rules to address both

aspects. Bigraphs are used to model structures of cloud

systems and the elasticity controller. We use bigraphical

reaction rules to describe elastic behaviors of a cloud system.

Precisely, we propose elasticity strategies for horizontal-scale

(de)provisioning of cloud resources at service and

infrastructure scopes (i.e., in a cross-layered manner).

One step further, we encode the BRS specifications

into Maude language to provide an autonomic executability

of the elastic behaviors and to formally verify their

correctness. We proceed to a state-based model-checking [11]

of elastic behaviors relying on Linear Temporal Logic (LTL).

Focusing on the definition of elasticity, some key

concepts are important to consider. Witnessing workload

changes (i.e., the demand) and estimating the available

resources are significant in capturing the global system state

regarding its elasticity. These tasks require Monitoring the

system during its evolution in order to determine its

performance, its elasticity and the correctness of the latter

which is determined by the accuracy of the adaptations [12].

Actually, the analysis of performance in elastic cloud systems

remains a notably challenging task due to the fluctuating and

This paper is a preprint of a paper accepted by IET Software and is subject to Institution of Engineering and Technology

Copyright. When the final version is published, the copy of record will be available at IET Digital Library.

DOI: 10.1049/iet-sen.2018.5030

mailto:khaled.khebbeb@%7buniv-pau.fr

2

unpredictable nature of input workload [13]. Researchers

have been using mathematical methods like Queuing Theory

[14] and Markov Chains [15] to model input workload and its

impact over the system’s behavior.

Another contribution of this paper consists of

providing an experimental analysis of cloud systems’

elasticity strategies basing on a queuing approach. We study

the system’s adaptation capabilities according to different

execution scenarios. We study and discuss the ability of a

cloud system to adapt to its varying workload by

(de)provisioning resources when needed, according to the

adaptation strategies we introduced. To this purpose, we

designed a tool to simulate and monitor these behaviors.

The remainder of the paper is structured as follows. In

Section 2, we introduce the elasticity controller and explain

its role in cloud elasticity management. In Section 3, we

briefly give an overview of BRS formalism and detail our

BRS-based approach to specify cloud systems and their

elastic behaviors. In Section 4, we encode the bigraphical

specifications into Maude language and provide a formal

verification of the introduced behaviors’ correctness. In

Section 5, we introduce a queuing-based model to analyze

elasticity and propose an experimental analysis and

discussion of cloud systems elasticity. In Section 6, we

review the state of art on formal specification and verification

of elastic cloud systems. Finally, we summarize and conclude

the paper in Section 7.

2. Elasticity Controller and the Elastic Behavior

In elastic cloud systems, resource provisioning can be

adjusted by an elasticity controller. This entity decides of the

adaptation rules to be triggered in order to scale the cloud

system in such a way that resource provisioning matches the

minimum requirements as closely as possible. This is done

with taking into account many factors as the available

resources, current workload, system state, etc. [2]. The

elasticity controller is usually considered to operate according

to a closed control loop derived from IBM’s autonomic

control loop known as MAPE for Monitor, Analyze, Plan and

Execute [3]. In [16, 17], the controller is considered to be

constituted by different entities that interact with each other

to implement the main phases of the control loop. Monitoring

and Execution phases are usually considered to be handled by

entities that monitor the system (by means of sensors) and

apply actions (using effectors) that Planning decides, in

response to the flaws identified at Analysis phase.

At a high level of abstraction, the elastic behavior of a

cloud system takes the form of a closed loop architecture as

shown in Figure 1. A cloud system receives end-users’

requests through its front-end interface. The intensity of

received requests (i.e., input workload) might oscillate in an

unpredictable manner. The growing workload, thus the

system’s load can result in a degradation of users Quality of

Experience (QoE) (e.g. performance drop). Thus, more

resources need to be provisioned to cope with the demand.

The controlled system (i.e., cloud hosting environment) is

hosted by the cloud infrastructure provider who provides

costs to the cloud service provider proportionally to the

provisioned resources (i.e., according to a pay-per-use

policy). When input workload drops, the eventual

unnecessarily allocated resources are still billed and need to

be disposed.

To ensure these behaviors, the elasticity controller

periodically monitors the controlled system and determines

its adaptation (i.e., its elastic behavior). Adaptation actions

(i.e., (de)provision cloud resources) are triggered to satisfy

high-level policies that are set by the service provider such as

minimize costs, maximize performance, etc. The challenging

part here is how to implement a logic that enables the

elasticity controller to ensure auto-adaptation behaviors over

a managed cloud system. This is accomplished by triggering

adaptation rules according to particular conditions that

represent elasticity anomalies to resolve. To tackle this

challenge, we adopt a bigraphical approach to model both

structural and behavioral aspects of the cloud back-end part

and the elasticity controller.

In [17], authors provide a cloud systems’ design

structured in three parts: the front-end, the back-end and the

elasticity controller. In this paper, we focus on the elasticity

controller and the managed back-end part. Besides, we extend

their work by introducing elasticity strategies that describe an

elastic behavior by means of bigraphical reaction rules. In

addition, we provide an executability and correctness

verification of the defined elastic behaviors. Thus, we endow

the elasticity controller with autonomic management of the

controlled cloud system’s elasticity. Finally, we provide a

quantitative analysis of elastic behavior using a queuing

model.

Fig. 1. Top view of the elastic behavior loop

3

3. A BRS Model for Elastic Cloud Systems

3.1. Bigraphical Reactive Systems Overview

Bigraphical reactive systems (BRS) are a recent

formalism introduced by Milner [10] for modeling the

temporal and spatial evolution of computation. It provides a

graphical model that emphasizes both connectivity and

locality. A BRS consists of a set of bigraphs and a set of

reaction rules that define the dynamic evolution of the system

by specifying how the set of bigraphs can be reconfigured.

Graphical notation and interface: Figure 2 depicts an

example of a bigraph representation. Dashed rectangles

denote regions describing separate parts of the system. Nodes

are depicted by circles and represent the physical or logical

components of the system. Each node has a type, called

control, denoted by labels A and B. A signature is the set of

controls of a bigraphs. A node can have zero, one or many

ports which represent possible connections. Ports are

depicted by bullets. In the example, connections are

represented as links, depicted by curvy lines, which may

connect ports and names (x, y and z). These links, also called

hyperedges, indicate the bigraph’s connectivity (e.g., they can

be considered as (potential) links to other bigraphs). Sites,

modeled with grey squares, encode parts of the model that

have been abstracted away. A bigraph possibilities to interact

with its external environment are visible through its interface.

For example, B: 0 → <2, {x, y}> indicates that bigraph B has

zero sites, two regions and its names are x and y.

Note that a bigraph also has algebraic notations that

are equivalent to graphical ones. For instance, merge product

F | G denotes the juxtaposition of bigraphs F and G which is

then placed inside a single region. Nesting operation F.G

allows to place bigraph G inside F and parallel product (||)

term may be used to compose bigraphs by juxtaposing their

roots and merging their common names. More details about

bigraphs can be found in [9].

Bigraphs Sorting: Classification of controls and links for

a bigraph is performed using sorts. A sorting discipline is a

triple Σ = {Θ, Κ, Φ}, where Θ is a non-empty set of sorts, K is

a signature, and Φ is a set of formation rules. A formation

rule is a set of properties a bigraph has to satisfy. Disjunctive

sorts are written as 𝑎𝑏̂, expressing that a node can either be of

sort a or sort b.

Bigraphical Reactive Systems: A Bigraphical Reactive

System (BRS) consists of a set of bigraphs representing the

state of the system and a set of reaction rules defining how

the system evolves (by going from one configuration to

another). A reaction rule Ri is a pair (R, R’), where redex R

and reactum R’ are bigraphs that have the same interface. The

evolution of a system St is derived by checking if R is a match

[18] in St and by substituting it with R’ to obtain a new system

St’. The evolution is noted St
𝑅𝑖
→ St’.

Concrete and Abstract Bigraphs: A bigraph is defined

by a place graph and a link graph on the same set of nodes.

The difference between concrete and abstract bigraphs lies on

a simple subtility [18]: concrete bigraphs are represented with

named nodes and internal edges (i.e., that connect nodes only)

thus providing an exhaustive cliché of a system configuration.

Abstract bigraphs, equivalence class of the concrete ones,

represent nodes with their controls only and omit internal

edges’ names. This allows the specification of more general

system configurations. In this paper, we use abstract bigraphs

in order to provide a generic modeling approach.

3.2. Modeling Cloud Structures

An elastic cloud system is represented by a bigraph CS

involving all cloud architectural elements. Bigraph CS is

composed of two regions, noted 0 and 1 that respectively

represent the hosting environment and the elasticity controller

parts of the elastic cloud system. This configuration is

obtained by the parallel composition of hosting environment

(back-end) and elasticity controller bigraphs as shown in [17].

The introduced sorting logic defines mapping rules and

expresses all constraints and formation rules, that CS satisfies

to ensure proper and precise encoding of cloud semantics into

BRS concepts. Formal definitions are given in what follows.

Definition 1: Formally, a bigraph 𝐶𝑆 modeling an elastic

cloud system is defined as follows.

𝐶𝑆 = (𝑉𝐶𝑆 , 𝐸𝐶𝑆 , 𝑐𝑡𝑟𝑙𝐶𝑆 , 𝐶𝑆𝑃, 𝐶𝑆𝐿): 𝐼𝐶𝑆 → 𝐽𝐶𝑆

− 𝑉𝐶𝑆 𝑎𝑛𝑑 𝐸𝐶𝑆 are sets of nodes and edges of the bigraph CS.

− 𝑐𝑡𝑟𝑙𝐶𝑆 ∶ 𝑉𝐶𝑆 → 𝐾𝐶𝑆 a control map that assigns each node

𝑣 ∈ 𝑉𝑐𝑠 with a control 𝑘 ∈ 𝐾𝑐𝑠 .

− 𝐶𝑆𝑃 = (𝑉𝐶𝑆 , 𝑐𝑡𝑟𝑙𝐶𝑆 , 𝑝𝑟𝑛𝑡𝐶𝑆): 𝑚𝐶𝑆 → 𝑛𝐶𝑆 is the place

graph of CS where 𝑝𝑟𝑛𝑡𝐶𝑆: 𝑚𝐶𝑆⨄ 𝑉𝐶𝑆 → 𝑉𝐶𝑆⨄ 𝑛𝐶𝑆 is a

parent map. mCS and nCS are the number of sites and

regions of bigraph CS.

− 𝐶𝑆𝐿 = (𝑉𝐶𝑆, 𝐸𝐶𝑆 , 𝑐𝑡𝑟𝑙𝐶𝑆 , 𝑙𝑖𝑛𝑘𝐶𝑆): 𝑋𝐶𝑆 → 𝑌𝐶𝑆 represents

link graph of CS, where 𝑙𝑖𝑛𝑘𝐶𝑆: 𝑋𝐶𝑆 ⨄ 𝑃𝐶𝑆 → 𝐸𝐶𝑆 ⨄ 𝑌𝐶𝑆 is

a link map, XCS and YCS are respectively inner and outer

names and 𝑃𝐶𝑆is the set of ports of CS.

− 𝐼𝐶𝑆 = < 𝑚𝐶𝑆, 𝑋𝐶𝑆 > 𝑎𝑛𝑑 𝐽𝐶𝑆 = < 𝑛𝐶𝑆, 𝑌𝐶𝑆 > are the inner

and outer interfaces of CS.

Definition 2: The sorting discipline associated to CS is a

triple Σ𝐶𝑆 = {Θ𝐶𝑆 , Κ𝐶𝑆 , Φ𝐶𝑆}.

Where Θ𝐶𝑆 is a non-empty set of sorts. KCS is its

signature, and Φ𝐶𝑆 is a set of formation rules associated to the

bigraph.

Table 1 gives for each cloud concept, mapping rules

for BRS equivalence. This consists of the control associated

to the entity, its arity (number of ports) and its associated sort.

Sorts are used to distinguish node types for structural

purposes and constraints while controls identify states and

parameters a node can have. For instance, a server noted SE

has control SEL when it is overloaded and SEU when unused.

However, all nodes representing servers are of sort 𝑒.

Table 2 gives the formation rules Φ0-12 that bring

construction constraints over the BRS specification.

Formation rules give structural constraints over the BRS

model.

Fig. 2. Example of a bigraph

4

Rule Φ0 specifies that servers are at the top of the

hierarchical order of deployed entities in the back-end region.

Rules Φ1-3 give the structural disposition of a hosting

environment where a server hosts VMs, a VM runs service

instances and a service instance handles requests. All

connections are port-to-port or port-to-name links to illustrate

possible communication capabilities between the different

cloud entities. In Φ6-7, we use name w, for workload, to

illustrate the connections the cloud system has with its

abstracted front-end part. A server is linked to its hosted

entities, that represent resources virtualization (VMs). A VM

is linked to service instances it is running. The back-end is

managed by the elasticity controller through c-name edge for

control (Φ6 and Φ11). In Φ8, we structurally represent MAPE

phases with nodes and consider that Evaluator node regroups

Analysis and Planning phases. Φ12 states that monitor,

effector and evaluator entities are always linked. In Rules Φ4

and Φ9, active elements may take part is reactions while

passive ones won’t. In Φ5 and Φ10, atomic nodes do not have

children.

Bigraphical Example of a Cloud System: Consider an

online voting service S running on a cloud system 𝑉𝑆. In its

hosting environment part, as an initial configuration, the

service is deployed on one single online server SE. The server

hosts one virtual machine instance VM which is running one

instance of the service S. Figure 3 shows a bigraphical

representation of the cloud system 𝑉𝑆 . Its algebraic form

focusing on its locality (i.e., place graph) is given with:

𝑉𝑆 ≝ ((SE. (VM. (S. q|𝑑3)|𝑑2)|𝑑1)|𝑑0) || (MO|EV|E|𝑑4).

Elasticity controller bigraph is connected to hosting

environment part by parallel composition and merging on

name c (which is abstracted as we are using abstract bigraphs).

Notice that the shown bigraph respects our defined

construction rules.

3.3. Modeling Elastic Behaviors with BRS

The behavior of elasticity controller is given as

bigraphical reactive rules that express dynamicity of an

elastic cloud system. In this Section, we define a set of

reaction rules that model horizontal actions over the cloud

hosting environment (servers, VMs and service instances). In

addition, we introduce two elasticity strategies that elasticity

controller uses to manage a cloud’s elasticity.

Table 3 gives the defined reaction rules Ri expressing

a set of possible actions that can be applied over a cloud

system’s back-end part.

A reaction is applied by replacing the redex bigraph

(left-hand side) with the reactum bigraph (right-hand side of

the reaction). As both redex and reactum bigraphs respect the

formation rules ΦCS, the reaction rules always produce

configurations that are structurally correct by definition.

Table 1 Controls and sorts for bigraph CS

Cloud element Control Arity Sort

Hosting environment part (region 0)

Server SE 3 e

Overloaded Server SEL 3 e

Unused Server SEU 3 e

Virtual Machine VM 2 v

Overloaded VM VML 2 v

Unused VM VMU 2 v

Service instance S 1 s

Overloaded service instance SL 1 s

Unused service instance SU 1 s

Request q 0 q
Elasticity controller part (region 1)

Evaluator EV 1 o

Monitor MO 2 m

Effector E 2 f

Table 2 Conditions of formation rules ΦCS for bigraph

CS

Rule description

Φ0 All children of a 0-region (back-end part) have sort e

Φ1 All children of an e-node have sort v

Φ2 All children of a v-node have sort s

Φ3 All children of an s-node have sort q

Φ4 All evŝ-nodes are active

Φ5 All q-nodes are atomic

Φ6 In a e-node, one port is always linked to a w-name,

another port is always linked to a c-name and the other

may be linked to v-nodes

Φ7 In a v-node, one port may be linked to e-nodes and the

other may be linked to s-nodes

Φ8 All children of a 1-region (elasticity controller part) have

sort in {o, m, f}

Φ9 omf̂ -nodes are passive

Φ10 omf̂ -nodes are atomic

Φ11 mf̂-nodes are always linked to a c-name

Φ12 An o-node is linked to mf̂-nodes, a m-node is linked to

of̂-nodes and a f-node is linked to om̂-nodes

Fig. 3. Example of a cloud-based system bigraph CS

Table 3 Reaction rules modeling elasticity actions in

cloud bigraph

Reaction rule Algebraic form

Deploy a new service

instance
𝑅1 ≝ (SE. (VM. 𝑑1)|𝑑0)│id

→ (SE. (VM. (S. 𝑑2)|𝑑1)|𝑑0)│id

Deploy a new VM

instance
𝑅2 ≝ (SE. 𝑑0)│id

→ (SE. (VM. 𝑑1)|𝑑0)│id

Turn on a new server 𝑅3 ≝ id → (SE. 𝑑0)│id

Consolidate a service

instance
𝑅4 ≝ (SE. (VM. (SU. 𝑑2)|𝑑1)|𝑑0)│id

→ (SE. (VM. 𝑑1)|𝑑0)│id

Consolidate a VM

instance
𝑅5 ≝ (SE. (VMU . 𝑑1)|𝑑0)│id

→ (SE. 𝑑0)│id

Turn off a server 𝑅6 ≝ (SEU. 𝑑0)│id → id

5

Reactions won’t execute if either bigraphs are malformed.

The specified rules define horizontal scale elasticity actions

for provisioning (R1-3) and de-provisioning (R4-6) resources

by scaling-out and scaling-in the hosting environment at

service, VM and server scopes.

Sites (expressed with 𝑑) nested in different entities

(servers, VMs and services) are used to abstract elements that

are not included in the reactions. Expression “id” stands for

the identity bigraph (i.e., bigraph with one site inside one

region) [19]. Note that using abstract bigraphs together with

the notions of sites and id allow providing a generic

description of reaction rules. It enables matching and

rewriting a sub-configuration of the general context.

However, the introduced rules describe instantaneous

rewrites (i.e., rules are instantaneously triggered when redex

matches in the context) [20]. This is not sufficient to express

a logic which describes our desired elastic behavior (i.e.,

triggering reaction rules only when needed). In this paper, we

provide this logic through elasticity strategies that describe a

reasoning for the elasticity controller.

Elasticity Strategies: A strategy describes a behavior to

be adopted to manage elastic adaptations in the system. It

consists of a set of actions that are triggered in case the

specified triggering conditions are fulfilled. We introduce

two reactive elasticity strategies of the form [4]:

𝐼𝐹 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑠) 𝑇𝐻𝐸𝑁 𝑎𝑐𝑡𝑖𝑜𝑛𝑠(𝑠).

A strategy that reacts to a condition (𝐶𝑆 ⊨ φ) is

expressed: 𝑠𝑡𝑟𝑎𝑡: 𝑖𝑓 𝐶𝑆 ⊨ φ 𝑡ℎ𝑒𝑛 𝑅𝑖 . 𝐶𝑆 ⊨ φ is true iff

∃ a bigraph 𝐵φ, encoding the predicate φ, that is a match in

the context of 𝐶𝑆. The triggered actions 𝑅𝑖 are modelled as

bigraphical reaction rules and the triggering conditions are

encoded into predicates logic.

Strategy 1 - hosting environment provisioning:
When input workload increases by receiving growing number

of client requests, the hosting environment needs to scale-out

in a way to ensure availability along with performance.

Strategy 1 can be expressed with three complementary

actions that operate at service and infrastructure level as

shown in Table 4. Predicates φ1 − 3 express universal

quantifying on services, VMs and servers to determine the

system’s state. The predicates respectively stand for “all

services/VMs/servers are overloaded” and need to scale-out

at the equivalent level.

In the context of the voting cloud-based system

example 𝑉𝑆 , bigraph A ≝ (SE. (VM. (SL. 𝑑3)|𝑑2)|𝑑1)|𝑑0)

expresses the back-end part of the system if the voting service

instance is overloaded during its runtime (i.e., condition

𝑉𝑆 ⊨ φ1 is satisfied). Hence, reaction rule 𝑅1 is triggered to

create a new instance of service S. The produced bigraph is

given with A′ ≝ (SE. (VM. (S. 𝑑4)|(SL. 𝑑3)|𝑑2)|𝑑1)|𝑑0) .

Figure 4 represents this adaptation graphically. Note that site

𝑑3 abstracts all the handled requests to avoid overloading the

graphical representation.

Strategy 2 - hosting environment de-provisioning:
When workload drops, the hosting environment is likely to be

overprovisioned and has to scale-in. The elasticity controller

enables this behavior at service and infrastructure levels by

applying Strategy 2 as defined in Table 5. The predicates

φ4 − 6 express existential quantifying over the entities

(services instances, VMs, servers) to check their idleness.

The predicates respectively express “there exists a

service/VM/server that is unused”.

When workload drops in the context of the system 𝑉𝑆,

bigraph B ≝ (SE. (VM. (S. 𝑑4)|(SU. 𝑑3)|𝑑2)|𝑑1)|𝑑0) is one

expression of the back-end part when an instance of the

voting service is unused (i.e., condition 𝑉𝑆 ⊨ φ4 is satisfied).

Reaction rule 𝑅4 is then applied to destroy the idle instance.

After adapting, the produced bigraph is given with
B′ ≝ (SE. (VM. (S. 𝑑3)|𝑑2)|𝑑1)|𝑑0). Figure 5 represents this

adaptation graphically. Notice that the system goes back to its

initial configuration.

Table 4 Strategy 1 definition

Level Condition Action

Service
All service instances are overloaded

φ1 ≡ ∀𝑠 ∈ 𝑉𝐶𝑆 𝑐𝑡𝑟𝑙𝐶𝑆(𝑠) = SL

𝑅1

Infrastructure

All VMs are overloaded

φ2 ≡ ∀𝑣 ∈ 𝑉𝐶𝑆 𝑐𝑡𝑟𝑙𝐶𝑆(𝑣) = VML

𝑅2

All Servers are overloaded

φ3 ≡ ∀𝑒 ∈ 𝑉𝐶𝑆 𝑐𝑡𝑟𝑙𝐶𝑆(𝑒) = SEL

𝑅3

Fig. 4. Triggering reaction rule R1

Table 5 Strategy 2 definition

Level Condition Action

Service
A Service instance is unused

φ4 ≡ ∃𝑠 ∈ 𝑉𝐶𝑆 𝑐𝑡𝑟𝑙𝐶𝑆(𝑠) = SU

𝑅4

Infrastructure

A VM is unused

φ5 ≡ ∃𝑣 ∈ 𝑉𝐶𝑆 𝑐𝑡𝑟𝑙𝐶𝑆(𝑣) = VMU

𝑅5

A Server is unused

φ6 ≡ ∃𝑒 ∈ 𝑉𝐶𝑆 𝑐𝑡𝑟𝑙𝐶𝑆(𝑒) = SEU

𝑅6

Fig. 5. Triggering reaction rule R4

6

In the introduced elasticity strategies, we express

triggering conditions in predicates logic. These conditions

reason on sets of cloud resources (i.e., servers, VMs and

service instances) that are well-defined and which state

(overloaded, unused) is known at every moment of the

system’s evolution. By quantifying elements in the sets to

check their states, we enable capturing (and monitoring) the

system’s global state almost instantaneously (thus tackling

monitoring concerns). Moreover, the introduced elastic auto-

adaptations (scaling-out/in in this paper) are triggered when

the specified conditions are fulfilled. As these conditions

reason on the system’s global state, the managed cloud

system is considered self-aware [21] in terms of its elasticity.

4. Executability and Formal Verification of Elastic
Behaviors

To verify and validate the correctness of the proposed

elasticity strategies and to watch the desired elastic behaviors,

we provide an executable solution for the proposed BRS

specification. In theory, Bigraphical Reactive Systems

provide good meta-modeling bases to specify cloud systems’

structure and their elastic behaviors. As for their executable

capabilities, providing a generic bigraphical solution requires

designing generic and parametric reaction rules that can

consider more aspects than those allowed by Bilog predicates

[22–24]. To the best of our knowledge, there exists no tool

built around BRS that enables to: (1) quantitatively reason

about the system’s global state (e.g. whether a threshold has

been reached) and to (2) express predicate-based universal

and existential conditions in order to trigger the reaction rules.

Besides, to the best of our knowledge, classical bigraphs do

not allow to define additional quantitative data over nodes

(e.g. setting variable attributes to nodes such as thresholds)

[25]. Furthermore, the few existing tools built around BRS

such as BigraphER [19] and BPL Tool [26] are limited and

only suitable for some specific application domains. BRS

model-checker BigMC [27] that was for example used in [28],

allows formal verification of safety properties. However,

possible verifications rely on very limited predefined

predicates. Globally, these tools lack of providing an

autonomic executability of the specified BRS models. In this

paper, we turn to Maude language to tackle these limitations

in terms of encoding (strategies’ triggering conditions) and

executing in order to provide a generic executable solution of

elasticity strategies together with verifying their correctness.

4.1. Motivating the relevance of Maude

Maude is a high-level formal specification language

based on equational and rewriting logics. A Maude program

defines a logical theory and a Maude computation

implements a logical deduction which uses axioms specified

in the program/theory. A Maude specification is structured in

two parts [29]:

1. A functional module which specifies a theory in

membership equational logic. Such a theory is a pair

(𝛴, 𝐸 ∪ 𝐴), where signature 𝛴 specifies the type structure

(sorts, subsorts, operators etc.). 𝐸 is the collection of

possibly conditional equations declared in the functional

module, and 𝐴 is the collection of equational attributes

declared for the operators (associative, commutative, etc.).

2. A system module that specifies a rewrite theory as a triple

(𝛴, 𝐸 ∪ 𝐴, 𝑅) . Where (𝛴, 𝐸 ∪ 𝐴) is the module’s

equational theory part, and 𝑅 is a collection of possibly

conditional rewrite rules.

The defined bigraphical specifications for cloud

systems’ structure can be encoded in a functional module,

where the declared operations and equations define

constructors that build the system’s elements. Similarly, the

specified BRS dynamics describing the elasticity controller’s

behavior can be encoded in a system module. Where elasticity

strategies are described as conditional rewrite rules. The set

of rewrite rules 𝑅 express bigraphical reaction rules. The

strategies’ triggering conditions (predicates) can be expressed

as equations from the functional module.

4.2. Principles of BRS encoding into Maude

To enable a generic executability of the introduced

elastic behaviors, we encode the BRS-based specifications

into Maude language as shown in Table 6.

Table 6 Mapping the bigraphical cloud model into Maude

Bigraphical model Maude specification

Functional module

Sorting discipline sorts CS SE VM S SEL VML SL gstate state . subsort SE < SEL . subsort VM <

VML . subsort S < SL .

op CS<_/_:_> : Nat SEL gstate -> CS [ctor] .

op SE<_,_,_/_:_> : Nat Nat Nat VML state -> SE [ctor] .

op VM{_,_:_} : Nat SL state -> VM [ctor] .

op S[_,_:_] : Nat Nat state -> S [ctor] .

ops gstable underprovisioned overprovisioned : -> gstate [ctor] .

ops stable overloaded unused ... : -> state [ctor] .

op nilse : -> SEL [ctor] . op _*_ : SEL SEL -> SEL [ctor assoc comm id: nilse] .
op nilv : -> VML [ctor] . op _|_ : VML VML -> VML [ctor assoc comm id: nilv] .
op nils : -> SL [ctor] . op _+_ : SL SL -> SL [ctor assoc comm id: nils] .
...

System state

predicates

ops isStable(_) isUnderprovisioned(_) isOverprovisioned(_) AoverSE(_)

EunSE(_) AoverV(_) EunV(_) AoverS(_) EunS(_): CS -> Bool .

...

System module

Elasticity

strategies

Conditional rewrite rules of the form:
crl [rewrite-rule-name] : term => term' if condition(s) .

7

Encoding Cloud Structures: In the functional module,

bigraph sorts e, v and s (i.e., server, VM and service) are built

according to their associated Maude constructors (ctor). We

map bigraphical sorts as SE, VM and S and we introduce

sort CS to define a cloud system. Notice that we enrich sorts

with additional information in Maude to consider maximum

hosting thresholds and entities states. For instance, a cloud

system is defined by constructor CS<m/SEL:gstate>.

And SE<x,y,z/VML:state> defines a cloud server.

Parameters x, y and z are naturals that encode upper hosting

thresholds at server, VM and service levels. m gives a

maximum number of possible online servers. SEL is a list of

servers and VML is a list of VMs (hosted by a server). These

relationships are expressed by declaring sorts SE and VM as

subsorts of SEL and VML respectively. state gives a

symbolic elastic state for each element out of constructors

overloaded, unused and stable. Term gstate

gives a global state to the cloud system out of constructors

underprovisioned, overprovisioned and

gstable for “globally stable”.

Encoding System State Predicates: In the functional

module, we define a set of predicates that describe a global

elastic state of the system. For instance, AoverSE() is a

predicate that stands for “all servers are overloaded”.

Predicate EunVM() stands for “there exists an unused VM

instance”. Typically, predicates of the form Aover(SE/VM/S)

and Eun(SE/VM/S) encode our strategies’ triggering

predicates φ1 − φ3 and φ4 − φ6 respectively. We also

encode system global state predicates isStable(),

isUnderprovisioned() and isOverprovisioned() that are true

when the system is Stable, Underprovisioned and Underused.

Encoding Elasticity Strategies: In the system module,

we encode elasticity strategies as conditional rewrite rules.

Their triggering conditions are state predicates encoded

above and their triggered actions (mapped from the introduce

bigraphical reaction rules) are encoded as Maude functional

computation. For instance, Strategy 1 at service level is

specified as follows: crl[S1-service]:cs =>

addService(cs) if AoverS(cs) . Where cs is a

cloud system, AoverS(cs) is a predicate that is true if all

service instances in the system are overloaded (φ1). Function

addService(cs) is an equation that rewrites the term cs

in such a way to deploy a new service instance (rule R1). This

function is defined as an equation in the functional module.

4.3. Formal Verification of Elastic Behaviors

To verify their correctness, we model our defined

elastic behaviors with Linear Temporal Logic (LTL). To

proceed, we first define a model of temporal logic with a

Kripke structure 𝐀𝑪𝑺 [30] as follows.

Definition 3: Given a set 𝐴𝑃𝐶𝑆 of atomic propositions, we

consider the Kripke structure 𝐀𝑪𝑺 = (𝐴, →𝐀, 𝐿𝐶𝑆). Where 𝐴

is the set of states, →𝐀 is the transition relation, and 𝐿𝐶𝑆: 𝐴 →
𝐴𝑃𝐶𝑆 is the labeling function associating to each state 𝑎 ∈ 𝐴,

the set 𝐿𝐶𝑆(𝑎) of the atomic propositions in 𝐴𝑃𝐶𝑆 that hold in

the state 𝑎 . 𝐿𝑇𝐿(𝐴𝑃𝐶𝑆) denotes the formulas of the

propositional linear temporal logic. The semantics of

𝐿𝑇𝐿(𝐴𝑃𝐶𝑆) is defined by a satisfaction relation: 𝐀𝑪𝑺 , 𝑎 ⊨ ϕ ,

where ϕ ∈ 𝐿𝑇𝐿(𝐴𝑃𝐶𝑆).

Setting up the Kripke Structure: We consider the set of

atomic propositions 𝐴𝑃𝐶𝑆 = {φ1, φ2, φ3, φ4, φ5, φ6}.
These propositions are indicative of our elasticity strategies’

triggering conditions (i.e., proposition φi holds when

predicate φi is satisfied, with 𝑖 ∈ [1. .6]). Knowing that a

cloud system evolves in a highly dynamic environment,

multiple adaptations can be triggered during its runtime

according to our specified elasticity strategies. Thus, the set

of possible structural states of the system (i.e., configurations

defined by a cloud system cs) is theoretically infinite. For

this reason, we consider three symbolic states: Stable,

Underprovisioned and Overprovisioned, respectively

denoted in the set of states 𝐴 = {S, U, O} . The considered

symbolic states express classes of equivalence with respect to

the global elastic state of the cloud system (i.e., different

structural configurations can have the same elastic symbolic

state). Precisely, a cloud system has Stable state when no

proposition in φ1 − φ6 holds (i.e., 𝐿𝐶𝑆(S) = ∅). The system

is Underprovisioned when one or more propositions in

φ1 − φ3 hold (i.e., 𝐿𝐶𝑆(U) ⊆ {φ1, φ2, φ3}). It is

Overprovisioned when one or more propositions in φ4 − φ6

hold (i.e. 𝐿𝐶𝑆(O) ⊆ {φ4, φ5, φ6}). In other terms, the system

is Underprovisioned or Overprovisioned when scaling-out or

scaling-in actions are required, and it is Stable when no

adaptation is needed.

Representing Transitions: We use Labeled Transition

Systems [31] to represent transition relations between the

considered states. For the sake of clarity, we give for each

state the set of propositions that hold in it. Besides, we label

the transition relations using adaption actions R1 − R6 and

with two actions in and out that stand for input/output (i.e.,

receiving and satisfying an end-user’s request). We split the

graph into two parts to improve the readability of the

transitions. The first part, shown in Figure 6, focuses on a

view of system’s evolution when it is Underprovisioned (i.e.,

mainly managed with Strategy 1). The second part, shown in

Figure 7, gives a view of system’s evolution when is it

Overprovisioned (i.e., managed with Strategy 2). To facilitate

the comprehension and the linking of the two parts, we

represent edge states (i.e., that represent the connection

between the two views) in red. Notice that most of these states

are denoted U/O. They describe states where parts of the

system are overloaded while others are unused. This leads to

an “instable” state where the system is Overprovisioned and

Underprovisioned at the same time. For example, it is

possible to have an empty VM while all available service

instances (deployed in other VMs) are overloaded (i.e.,

propositions φ1 and φ5 hold together). This perfectly

depicts the impact of workload fluctuations on the system

resources management’s efficiency. Moreover, it shows that

the two specified strategies are complementary. In addition,

other “instable” states are possible to occur during the

system’s evolution as a direct result of workload traffic.

However, besides the obvious readability concern, we don’t

show all possible states as they globally represent

intermediate states. Some other states are impossible to occur.

For example, it is impossible that the propositions pair

(φ1, φ4) hold at the same moment. The propositions

respectively stand for “all service instances are overloaded”

and “a service instance is unused” and are therefore

contradictory. Idem for pairs (φ2, φ5) and (φ3, φ6) for the

same reason.

8

Finally, the transition system shows the cross-layered

behavior of the system. When workload grows, scaling-out at

service level might result in overloading the system at VM

level. Scaling-out at VM level is then necessary and could

overload the system at server level. Inversely, when workload

drops, scaling-in at service level could result in unused VMs

then to unused servers when scaling-in at VM level. This

behavior shows the importance of designing strategies than

can be applied at service, VM and server levels of a cloud

system in order to provide a complete management of

horizontal elasticity.

Defining LTL propositional Formulas: We introduce

𝐿𝑇𝐿(𝐴𝑃) = {𝑆𝑐𝑎𝑙𝑒˗𝑂𝑢𝑡, 𝑆𝑐𝑎𝑙𝑒˗𝐼𝑛, 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒} the set of the

propositional formulas in Linear Temporal Logic as follows.

− 𝑆𝑐𝑎𝑙𝑒˗𝑂𝑢𝑡 ≡ 𝑮 (𝑈𝑛𝑑𝑒𝑟𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑→ 𝑭 𝑆𝑡𝑎𝑏𝑙𝑒)

− 𝑆𝑐𝑎𝑙𝑒˗𝐼𝑛 ≡ 𝑮 (𝑂𝑣𝑒𝑟𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑→ 𝑭 𝑆𝑡𝑎𝑏𝑙𝑒)

− 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒 ≡ 𝑮 (Underprovisioned ∧
 𝑂𝑣𝑒𝑟𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑 → 𝑭 𝑆𝑡𝑎𝑏𝑙𝑒)

Where formulas Scale-Out / Scale-In specify that the

managed cloud system that is Underprovisioned /

Overprovisioned will eventually end up by reaching its Stable

state. Formula Stabilize is applied when the system is in an

“instable” state, as explained before, making it reach its

Stable state eventually. Symbols 𝑮 and 𝑭 are LTL operators

that stand for “always” and “eventually”. Note that every

state can be initial since it is determined by monitoring.

Nevertheless, the graphs show that every possible state is

accessible, that it has a successor and that the stable state S is

always accessible from any other state during system’s

evolution. We represented the system’s transitions with the

Stable state as initial state to show that regardless its evolution,

there is always a path that leads back to its (initial) Stable state.

This shows the non-plasticity [6] and safety properties of the

system’s auto-adaptation behaviors. The specified formulas

are used to ensure reachability property of the managed

elastic cloud system’s Stable state, thus the correctness of our

introduced elasticity strategies.

Encoding Kripke Structure into Maude: Maude allows

associating Kripke structures to the specified rewrite theory

(in system module) to define a module for property

specification. Precisely, the introduced Kripke structure

(Definition 3) enables conducting generic LTL state-based

model checking that can reason on any system configuration.

For instance, determining that a cloud configuration is Stable

in terms of elasticity is specified with a conditional equation:

ceq cs ⊨ Stable = true if isStable(cs) ==
true. Where cs is a given cloud system, Stable is a

proposition in 𝐴𝑃𝐶𝑆 representing the symbolic elastic state

Stable. isStable(cs)is a predicate for “the cloud system

cs is stable” defined in the functional module.

Formulas in 𝐿𝑇𝐿(𝐴𝑃) are also encoded into the

property specification module. For instance, Scale-Out

formula is specified with an equation: eq Scale-Out =

[] (Underprovisioned -> <> Stable). Where

Underprovisioned is a proposition in 𝐴𝑃𝐶𝑆. []and <>

encode LTL operators 𝑮 and 𝑭.

Running Model-Checking: Maude LTL model-checker is

executed with, as parameters: (1) a cloud configuration cs as

initial state and (2) a property formula in 𝐿𝑇𝐿(𝐴𝑃𝐶𝑆) to verify.

Figure 8 gives an execution trace of a model-checked

cloud configuration example for a violation of the formula

Scale-Out (given with its negation through symbol ~).

The model-checker gives a counter example showing a

succession of different executed rewrite rules that are applied

on the given cloud system.

The trace shows that strategies 1 and 2 are triggered at

service level (rules R1 and R4) when propositions φ1 and

φ4 are satisfied during the system’s evolution which is

impacted by workload fluctuations. Notice that newly

deployed service instance has new as state. As it is unused

when deployed, new state enables not considering this fact

during the elasticity evaluation of its state. This can be

interpreted as a cool-down period and ensures resources

thrashing i.e., avoiding opposite adaptations (deploying an

instance than disposing it right after). These notions were

defined in [6]. We also apply this reasoning at VM and server

scopes. Besides, we define marking rules for understanding

and clarity purposes. These rules update each entity state as

well as the global state of the system if it changes during its

execution. The reached deadlock state doesn’t stand for some

critical error, it genuinely means that no further adaptation is

needed.

Fig. 6. A view of system transitions for Strategy 1

Fig. 7. A view of system transitions for Strategy 2

9

Finally, the trace shows that the adaptations in response of

workload changes make the system reach its stable state.

This allows verifying the effectiveness of our introduced

elastic behaviors, thus confirming the assumptions we made

at design time regarding their correctness and their ensured

non-functional properties.

5. Quantitative Analysis of Cloud Elasticity

In this Section, we proceed to an analysis of the

introduced strategies using Queuing Theory [14], a

mathematical method of analyzing congestions and delays in

waiting in line. Generally, a queuing process consists of

customers arriving at a system to receive some service. If the

servers (which offer the service) are busy, the customers wait

in line in a queue until they are served, then leave the system.
This kind of systems (that work according to a queuing

process) can be described by a queuing model.

5.1. A Queuing Model for Cloud Elasticity

We advocate that a queuing model is a suitable support

for analyzing an elastic system. In such systems that adapt to

their incoming workload by provisioning computational

resources, these available resources, at every moment, are not

always sufficient to cope with the growing throughput. This

makes congestions to appear in the system resulting in

waiting queues that impact its quality of service (QoS). The

main goal of our analysis is to watch the ability of a cloud

system to adapt to its varying input workload. This implies

provisioning and deprovisioning resources when workload

rises and drops, using the two adaptation strategies that we

introduced.

A queuing model introduces a set of parameters using

the Kendall notation: A/S/C/Q/N/D [32]. These parameters

are defined as follows. A system provides one or more servers,

or more generally, a number C of resources (offering a

service). The customers arriving at the system according to

an arriving process A, join the queue to get a service from a

server following some serving discipline D, e.g., they get

served one by one, generally with FCFS (First Come First

Served) law or in batches. The amount of time required to

serve the customers is given by a service process S. The

system capacity Q gives the maximum number of customers

that the system can hold. It includes the customers that are

waiting in the queue to be served and those being served.

Finally, the size of the arriving population N gives the number

of customers expected to arrive in the system.

Setting-up a Queuing Model: Applying a queuing

reasoning over an elastic cloud system, we can consider that

the queuing relationship customers/servers corresponds to the

cloud concept of requests/service instances. In other words,

in a queuing point of view, the servers of a cloud system (that

offer a service) are in fact service instances that are deployed

to serve requests (customers) arriving into the system. It is

interesting here to notice that service instances’ availability

depends on cloud infrastructure deployment (provisioned

virtual machines, etc.). This allows to easily understand how

input workload impacts cloud hosting environment as it

adapts by (de)provisioning resources, at service and

infrastructure levels (i.e., in a cross-layered manner)
To conduct quantitative evaluation, we will assume

that the system hosting capacity Q = ∞ and the size of arriving

population N = ∞. Requests’ arrivals A is given by a Poisson

process which gives an exponential distribution of received

requests at each time unit, with an average value λ. The

service process S also follows an exponential law with an

average value µ to give the number of requests that are

processed by every service instance. The essence of our work

being adaptation behaviors, we inspire from a queuing model

with on-demand number of servers C, as presented in [33], to

adjust the number of provisioned resources at different levels

of the cloud hosting environment by applying the strategies

we introduced. The serving discipline D follows a batching

principle as proposed in [34].

5.2. Experimentation

To study the introduced elastic behaviors, we run

simulations where inputs are: (1) a requests arrival rate λ, (2)

a service rate µ, (3) an initial configuration of the cloud

system and (4) constant values of hosting thresholds x, y, z

and m (introduced in Section 4). To evaluate performance and

cost efficiency of elasticity, we consider the following metrics:

• Average number of deployed service instances and VMs.

• Avg. usage rate of hosting environment.

• Avg. rate of successfully processed requests.

• Avg. requests processing delay (processing/waiting ratio).

The system’s performance is indicated by the rate of

treated requests and processing delay. The system’s load is

given by the average amount of handled requests at each unit

of time (not to be confused with workload or received

requests). Processing delay indicates the proportion in which

requests are waiting to be processed. The number of deployed

service and VM instances gives the accuracy of adaptations

in response to workload variations. The system’s cost

Fig. 8. Maude LTL model-checker counter-example

10

effectiveness is given by analyzing the relationship between

treated requests rate and the average hosting environment

usage rate (in function of its maximum provisioning capacity).

Note that introducing thresholds over the hosting

environment makes the system bounded in terms of resources

that can be deployed (e.g., when x = 2 and y = 2, the maximum

amount of service instances that can be deployed is x × y = 4),

this makes the model more realistic regarding its physical

resources limitations. To estimate the correctness of

resources’ provisioning, we compare the average number of

service instances in our simulations with results of the

Erlang-C formula [35] that calculates the minimum and

sufficient number of servers for a given arrival and service

rates λ and µ. Erlang model states that the customers are

impatient and can leave the system if their tolerance threshold

in terms of waiting time is reached. Since our model does not

consider requests timeout, we will only consider the

minimum number of servers as a pertinent result of Erlang-C

formula.

The Analyzed Cloud System: We use the introduced

example of an online cloud-based voting system in Section 3.

We keep the same initial configuration (i.e., one online server,

one deployed VM and one running instance of the service).

Hosting thresholds’ values are defined as follows: maximum

number of VMs running in the server is given by x = 2,

maximum amount of service instances running in each VM is

y = 2, and maximum number of requests a service instance

can hold is z = 30. We run simulations on a single physical

server (i.e., m = 1). For the same initial deployment and same

values of thresholds, we analyze how the system behaves and

adapts to different arrival and process rates patterns. We study

the simulations execution traces within 50 units of time

according to the following two scenarios.

Scenario 1 (λ = 50, µ = 25): In this scenario, we assume

that input workload is generated with an average value λ = 50.

The service process is given with the average value of µ = 25

(every service instance process around 25 requests per time

unit). Within the simulation time, monitoring shows that 100%

of the received requests are successfully processed with an

average delay of 6,7%. As for the hosting environment’s

provisioning, the system achieves almost 100% of its capacity

in terms of deployed VM instances (x = 2), and 65,5% of its

maximum capacity of service instances with an average

number of 2,6 deployed service instances out of 4 (i.e., x × y

= 4). This result is coherent with Erlang-C formula which

states, for λ = 50 and µ = 25, that at least 3 servers (service

instances in a cloud point of view) are required to achieve full

level of service (i.e., processing all received requests).

Scenario 2 (λ = 35, µ = 25): In this scenario, we assume

that input workload is around 35 arriving requests per time

unit and that service processing is around 25 treated requests

per unit of time. As the arrival rate λ is dropped from 50 to 35

comparing to Scenario 1, monitoring shows that less

resources are provisioned overall. During this simulation,

100% of the requests are successfully processed with an

average delay of 7,2%. The system only provisions 50% of

its service instances capacity with an average number of 2

deployed service instances out of 4. However, around 93% of

VM instances capacity is achieved with an average number

of 1,86 deployed VMs out of 2. These results nonetheless

correspond to Erlang-C formula which states that at least 2

servers are required for the same values of λ=35 and µ=25.

Figure 9 summarizes the obtained results for both

scenarios 1 and 2. Overall, the system shows better

performance in Scenario 1 than in Scenario 2 with 6,71%

processing delay versus 7,18%. Besides, more important

resource provisioning is recorded in Scenario 1 as input

workload intensity is bigger. However, the obtained service

instances’ provisioning in both scenarios was coherent with

the results given by Erlang-C formula.

5.3. Discussion

The conducted experiment shows that the elastic

behaviors, described by the strategies we introduced, are

pertinent and in accordance with our expectations during

design phase. The results given by simulation are globally

convincing as the minimum required number of service

instances always corresponds to results given by Erlang-C

formula. Nevertheless, we think that scaling capabilities can

be improved by introducing another strategy for load

balancing (i.e., uniformizing hosting environment entities’

load to maximize deployment efficiency). In fact, the

simulations showed that the average service instances load

was about 63% in Scenario 1 and around 60% in Scenario 2.

Maximizing efficiency could lead to deploy less cloud

resources (VMs) and consequently, to provide less expensive

cloud deployments. It is important to keep in mind that this

task is tedious regarding the fluctuating nature of input

workload and the unpredictable congestions it could cause,

even around a known average value λ.

In addition, one could consider a “good” strategy as

one that brings good compromise between performance and

cost (i.e., minimum infrastructure deployment for maximum

processing rate and minimum delay). However, finding a

right compromise between performances and cost efficiency

might imply to scarify some performance. In Scenario 2,

monitoring recorded 50% of the system’s usage of service

instances while it reached almost full VM capacity. This

Fig. 9. Experimentation quantitative results summary

11

means that VM usage is not optimized as the deployed VMs

were averagely half used. Threshold x (maximum deployed

VMs) can be dropped to its half to avoid overprovisioning the

system, thus avoiding unnecessary operating costs. However,

this often implies to have bigger processing delays at high

workload peaks. For instance, authors in [36] show that it is

very challenging to give a definition to what should a “good”

strategy be. Resources’ consumption depended on the

fluctuating nature of input workload that was the main

parameter for describing a good elastic behavior.

Furthermore, we consider that the concept of strategy

can be enlarged. In fact, our experiment showed that not only

adaptations policies can affect the system’s behavior. In terms

of modeling, thresholds (x, y, z, m) are very important and can

give implicit yet pertinent details about the system. Indeed,

the number x of VMs that can be deployed, could be

significative of a cloud service provider’s financial ability to

afford deploying VMs. The number y of maximum running

service instances, can indicate the VM hardware profile [37]

(allocated physical resources). The maximum processing

requests threshold z can describe the service’s nature (e.g., a

light task could handle more requests at a time than a complex

time consuming one). To illustrate, Scenario 1 showed 65,5%

of service instances usage rate for full capacity (x = 2) of

deployed VMs. This indicates that one of the two deployed

VMs is always half used at the best. One could set x to 1 and

y to 3 to maximize system’s efficiency whilst reducing

operating costs. For example, these values could mean that

provisioning one Amazon EC2 Medium VM instance is more

efficient than provisioning two Small VM instances.

Moreover, the system’s initial deployment could be

considered as a strategy. Having a suitable initial

configuration could lead to minimize processing delays and

the need to adapt. It enables the system to efficiently absorb

its input workload.

In conclusion, the experiment shows that simulating a

cloud system’s elastic behavior with multiple parameters

enables a cloud administrator to plan for optimal effort (cloud

resources) that should be allocated to a cloud-based service to

provide an optimal compromise between cost and

performance.

6. Related Work

There have been multiple research studies in the

literature using formal methods to specify elastic behaviors in

cloud systems. In [6], authors proposed a formalization based

on CLTLtD) temporal logic of several concepts and

properties related to elastic behaviors of cloud systems.

Qualitative properties of elastic cloud systems have been

formally introduced and detailed, such as elasticity and

resources management. Authors validate their approach using

an offline SAT and SMT-solvers based verification tool. The

tool checks the elasticity mechanisms’ (scale-in/out)

correctness by reasoning on execution traces obtained by

online simulation. Different input workload patterns are

generated in the process to trigger elastic behaviors. In terms

of modeling, precise cloud cross-layered composition has

been abstracted to only address resources at infrastructure

level. Precisely represented by a number of virtual machines.

Authors in [7] adopted a Petri nets formalization to

describe cloud-based business processes’ elastic behaviors.

Elasticity strategies for routing, duplicating and

consolidating cloud components at service level were

defined. Strategies are compared in terms of reliability and

performance (resources consumption). In their work, authors

focus on the application layer of a cloud configuration and

infrastructure details are not addressed in the model. Besides,

the formal approach is verified using a verification-based

evaluation. Authors use SNAKES, a Petri nets-based

reachability graph which verifies the correctness of the

introduced strategies that are simulated at design time.

In [17], authors introduced a formal approach based

on Bigraphical Reactive Systems for modeling both structural

and behavioral aspects of elastic cloud systems. Cloud elastic

behaviors are represented in terms of client/application

interaction. Elasticity methods at service, platform and

infrastructure levels are modeled with bigraphical reaction

rules to define a range of adaptation actions that describe

horizontal, vertical and migration scales elasticity. However,

no elasticity strategies are presented to describe a logic that

governs the autonomic management of the adaptations.

Besides, no verification of elasticity mechanisms is provided.

In [8], authors proposed an analytical model based on

a queuing approach with variable number of servers. They

represented service-based business processes adaptation to

workload variations and evaluate elasticity strategies (scale-

Table 7 Comparison of elastic cloud systems formal modeling approaches

Approach
Formalism /

formal model

Modeling elastic cloud systems Verification and evaluation

System

structures

Elastic

behaviors

Elasticity

strategies

Qualitative verification

technique

Quantitative

evaluation

[6] CLTLt(D) - Infrastructure

Horizontal

scale

SAT and SMT solvers

Simulation
[7] Petri nets -

Service

Reachability graph

[8]
Markov Chains,

Queuing Theory
- - Queuing model

[17] BRS

Bigraphs
Service and

Infrastructure

- - -

Our approach
BRS,

Queuing Theory

Horizontal

scale

LTL state-based model-

checking

Simulation,

Queuing model

12

out/in) that operate at service level. In this work, authors

modeled input workload as a Poisson process and the queuing

system as a Markov Chain. The Markov Chain describes the

system’s state with the size of the waiting queue. Metrics as

number of servers and average response time are then

calculated using probabilistic formulas. Authors provided a

quantitative evaluation based on conceptual scenarios to

validate their approach. However, no formal qualitative

verification is provided.

In this paper, we extend [17] by defining two elasticity

strategies for scaling-out/in cloud systems at service and

infrastructure levels. These strategies are reactive to

conditions (designed in predicates logic) that reason on the

global state of the system. When triggered, the strategies

apply adaptation actions that we modeled using bigraphical

reaction rules. In our approach, BRS modeling enabled us to

consider a complex global state of an elastic cloud system

which is determined by the jointure of all states of hosting

environment elements. These elements (services, VMs,

servers) are expressed as sets of nodes that are linked by a

hosting relationship representing dependencies between the

three considered scopes. Reasoning over the elements’ states

at different levels, thus capturing the system global state

ensures providing accurate adaptation capabilities to cope

with the varying demand. To the best of our knowledge, there

have not been published works that addressed the question of

cloud systems’ state in the way we propose it. The other

approaches, based on Markov Chains, Petri nets or

CLTLt(D), allow considering the system state at a very high

level of abstraction. Using these formalisms, the cited works

respectively considered the size of the queue, number of

requests and number of VMs as main variable impacting

adaptation decisions. Therefore, both [7, 8] propose

horizontal-scale elasticity strategies that operate at service

level and [6] address it at infrastructure level. In our model,

we address horizontal scaling in a cross-layered manner (i.e.,

at both service and infrastructure levels). We show how

managing elastic adaptations at service scope impacts the

system’s state at VM scope (idem for VM and server scopes).

To validate our contributions, we formally verify our

approach using LTL state-based model-checking technique

[11]. We encode the BRS specifications into Maude language

to enable their autonomic executability and verify the

correctness of the elastic behaviors. The cited papers do not

provide an executable autonomic support for their modeling

approaches. One step further, we designed a queuing-based

simulation tool to provide a quantitative evaluation and

analysis of elastic adaptations.

Table 7 summarizes this Section by comparing our

approach with the referenced papers. As comparison criteria,

we consider (1) the used formalism or formal model, (2) the

provided modeling features in terms of cloud structures,

elastic behavior and elasticity strategies and (3) the provided

qualitative verification and quantitative evaluation of the

modeling approach.

7. Conclusion

In this paper, we provided a view of cloud systems’

hosting environment including all cloud components that are

involved in elastic behaviors. Structural and behavioral

aspects of elastic cloud systems have been modeled using the

Bigraphical Reactive Systems formalism. Precisely, we use

bigraphs and bigraphical reactive rules to express both

aspects respectively. These behaviors implement an elasticity

controller and are described by elasticity strategies. We

propose two horizontal scale strategies for (de)provisioning

cloud system resources at service and infrastructure levels.

They describe a logic that enables the elasticity controller to

reason over the entire cloud system state. Precisely, a strategy

specifies conditions expressed as predicates. When satisfied,

the conditions trigger adaptation actions that we expressed as

bigraphical reaction rules.

One step further, we encoded our BRS specifications

into Maude language in order to enable their autonomic

executability. We also verify the correctness of the proposed

elastic behaviors according to a state-based model-checking,

relying on Linear Temporal Logic (LTL). Besides, we

adopted a queuing approach as a support for an analysis of

adaptation capabilities of elastic cloud systems. Clearly, we

designed a tool that enables simulating and monitoring a

cloud system’s execution. Moreover, we provided an

experimental analysis over two different execution scenarios.

Finally, we discussed and analyzed elasticity strategies

aiming at giving a deeper comprehension of cloud systems’

elastic adaptation.

In this present work, we attempt to take a first step

towards the formalization of cloud systems elastic behaviors.

In the next step, we plan to enlarge our specifications to

provide more adaptation capabilities by introducing strategies

for load balancing and vertical scaling. Finally, our objective

is to provide a complete executable and verifiable

formalization of cloud systems’ elastic behaviors.

8. References

1 Mell, P., Grance, T.: ‘The NIST Definition of Cloud

Computing’2011, p. 7.

2 Herbst, N.R., Kounev, S., Reussner, R.: ‘Elasticity in Cloud

Computing: What It Is, and What It Is Not’, in ‘Proceedings of

the 10th International Conference on Autonomic Computing

(ICAC 13)’ (USENIX, 2013), pp. 23–27

3 Kephart, J.O., Chess, D.M.: ‘The vision of autonomic

computing’Computer, 2003, 36, (1), pp. 41–50.

4 Galante, G., Bona, L.C.E. de: ‘A Survey on Cloud Computing

Elasticity’, in ‘Proceedings of the 2012 IEEE/ACM Fifth

International Conference on Utility and Cloud Computing’

(IEEE Computer Society, 2012), pp. 263–270

5 Dustdar, S., Guo, Y., Satzger, B., Truong, H.-L.: ‘Principles of

Elastic Processes’IEEE Internet Computing, 2011, 15, (5), pp.

66–71.

6 Bersani, M.M., Bianculli, D., Dustdar, S., Gambi, A., Ghezzi,

C., Krstić, S.: ‘Towards the Formalization of Properties of

Cloud-based Elastic Systems’, in ‘Proceedings of the 6th

International Workshop on Principles of Engineering Service-

Oriented and Cloud Systems’ (ACM, 2014), pp. 38–47

7 Amziani, M.: ‘Modeling, evaluation and provisioning of elastic

service-based business processes in the cloud’. phdthesis,

Institut National des Télécommunications, 2015

8 Yataghene, L., Ioualalen, M., Amziani, M., Tata, S.: ‘Using

Formal Model for Evaluation of Business Processes Elasticity

13

in the Cloud’, in ‘Service-Oriented Computing – ICSOC 2016

Workshops’ International Conference on Service-Oriented

Computing, (Springer, Cham, 2016), pp. 33–44

9 Milner, R.: ‘Bigraphs and Their Algebra’Electronic Notes in

Theoretical Computer Science, 2008, 209, pp. 5–19.

10 Milner, R.: ‘The Space and Motion of Communicating Agents’

(Cambridge University Press, 2009, 1st edn.)

11 Souri, A., Navimipour, N.J., Rahmani, A.M.: ‘Formal

verification approaches and standards in the cloud computing:

A comprehensive and systematic review’Computer Standards

& Interfaces, 2018, 58, pp. 1–22.

12 Aceto, G., Botta, A., de Donato, W., Pescapè, A.: ‘Cloud

monitoring: A survey’Computer Networks, 2013, 57, (9), pp.

2093–2115.

13 Roy, N., Dubey, A., Gokhale, A.: ‘Efficient Autoscaling in the

Cloud Using Predictive Models for Workload Forecasting’, in

2011 IEEE 4th International Conference on Cloud Computing,

(2011), pp. 500–507

14 Stern, G.J.A., Kleinrock, L.: ‘Queueing Systems, Volume 2:

Computer Applications.’Applied Statistics, 1978, 27, (2), p.

186.

15 Meyn, S.P., Tweedie, R.L.: ‘Markov Chains and Stochastic

Stability’ (Springer-Verlag, 1993)

16 Letondeur, L.: ‘Planification pour la gestion autonomique de

l’élasticité d’applications dans le cloud’ (Grenoble, 2014)

17 Sahli, H., Hameurlain, N., Belala, F.: ‘A bigraphical model for

specifying cloud-based elastic systems and their

behaviour’International Journal of Parallel, Emergent and

Distributed Systems, 2017, 32, (6), pp. 593–616.

18 Birkedal, L., Damgaard, T.C., Glenstrup, A.J., Milner, R.:

‘Matching of Bigraphs’Electronic Notes in Theoretical

Computer Science, 2007, 175, (4), pp. 3–19.

19 Sevegnani, M., Calder, M.: ‘BigraphER: Rewriting and

Analysis Engine for Bigraphs’, in Chaudhuri, S., Farzan, A.

(Eds.): ‘Computer Aided Verification’ (Springer International

Publishing, 2016), pp. 494–501

20 Calder, M., Sevegnani, M.: ‘Modelling IEEE 802.11

CSMA/CA RTS/CTS with stochastic bigraphs with

sharing’Form Asp Comp, 2014, 26, (3), pp. 537–561.

21 Chen, T., Bahsoon, R., Yao, X.: ‘A Survey and Taxonomy of

Self-Aware and Self-Adaptive Cloud Autoscaling

Systems’ACM Comput. Surv., 2018, 51, (3), pp. 61:1–61:40.

22 Mansutti, A., Miculan, M., Peressotti, M.: ‘Multi-agent

Systems Design and Prototyping with Bigraphical Reactive

Systems’, in ‘Distributed Applications and Interoperable

Systems’ IFIP International Conference on Distributed

Applications and Interoperable Systems, (Springer, Berlin,

Heidelberg, 2014), pp. 201–208

23 Conforti, G., Macedonio, D., Sassone, V.: ‘Spatial Logics for

Bigraphs’, in ‘Automata, Languages and Programming’

International Colloquium on Automata, Languages, and

Programming, (Springer, Berlin, Heidelberg, 2005), pp. 766–

778

24 Faithfull, A.J., Perrone, G., Hildebrandt, T.T.: ‘Big Red: A

Development Environment for Bigraphs’Electronic

Communications of the EASST, 2013, 61, (0).

25 Krivine, J., Milner, R., Troina, A.: ‘Stochastic

Bigraphs’Electronic Notes in Theoretical Computer Science,

2008, 218, pp. 73–96.

26 Glenstrup, A.J., Damgaard, T.C., Birkedal, L., Højsgaard, E.:

‘An Implementation of Bigraph Matching’no date, p. 22.

27 Perrone, G., Debois, S., Hildebrandt, T.T.: ‘A Model Checker

for Bigraphs’, in ‘Proceedings of the 27th Annual ACM

Symposium on Applied Computing’ (ACM, 2012), pp. 1320–

1325

28 Sahli, H., Belala, F., Bouanaka, C.: ‘Model-Checking Cloud

Systems Using BigMC’, in Proceedings of the 8th International

Workshop on Verification and Evaluation of Computer and

Communication Systems (VECOS 2014), (2014), pp. 25–33

29 Clavel, M., Duran, F., Eker, S., et al.: ‘Maude Manual (Version

2.7.1)’2017, p. 521.

30 Baier, C., Katoen, J.-P.: ‘Principles of model checking’ (The

MIT Press, 2008)

31 Schoren, R.: ‘Correspondence between Kripke Structures and

Labeled Transition Systems for Model Minimization’ (2011)

32 Baynat, B.: ‘Théorie des files d’attente: des chaînes de Markov

aux réseaux à forme produit’ (Hermes Science Publications,

2000)

33 Mazalov, V., Gurtov, A.: ‘Queueing System with On-Demand

Number of Servers’Mathematica Applicanda, 2012, 40, (2), pp.

1–12.

34 Dragović, B., Park, N.-K., Zrnić, N.Đ., Meštrović, R.:

‘Mathematical Models of Multiserver Queuing System for

Dynamic Performance Evaluation in Port’Mathematical

Problems in Engineering, 2012.

35 Firdhous, M., Ghazali, O., Hassan, S.: ‘Modeling of cloud

system using Erlang formulas’, in The 17th Asia Pacific

Conference on Communications, (2011), pp. 411–416

36 Netto, M.A.S., Cardonha, C., Cunha, R.L.F., Assuncao, M.D.:

‘Evaluating Auto-scaling Strategies for Cloud Computing

Environments’, in ‘Proceedings of the 2014 IEEE 22Nd

International Symposium on Modelling, Analysis & Simulation

of Computer and Telecommunication Systems’ (IEEE

Computer Society, 2014), pp. 187–196

37 ‘Amazon EC2 Instance Types – Amazon Web Services

(AWS)’, https://aws.amazon.com/ec2/instance-types/, accessed

September 2018

