
HAL Id: hal-02417551
https://univ-pau.hal.science/hal-02417551

Submitted on 16 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and Evaluating Cross-layer Elasticity
Strategies in Cloud Systems

Khaled Khebbeb, Nabil Hameurlain, Faiza Belala

To cite this version:
Khaled Khebbeb, Nabil Hameurlain, Faiza Belala. Modeling and Evaluating Cross-layer Elasticity
Strategies in Cloud Systems. Abdelwahed E., Bellatreche L., Golfarelli M., Méry D., Ordonez C.
(eds) Model and Data Engineering. MEDI 2018. Lecture Notes in Computer Science, vol 11163.,
pp.168-183, 2018, �10.1007/978-3-030-00856-7_11�. �hal-02417551�

https://univ-pau.hal.science/hal-02417551
https://hal.archives-ouvertes.fr

Modeling and Evaluating Cross-Layer Elasticity

Strategies in Cloud Systems

Khaled KHEBBEB1, 2, Nabil HAMEURLAIN2, Faiza BELALA1

1LIRE Laboratory, Constantine 2 University – Abdelhamid Mehri, Constantine, Algeria
{khaled.khebbeb, faiza.belala}@univ-constantine2.dz

2LIUPPA Laboratory, University of Pau, Pau, France
{khaled.khebbeb, nabil.hameurlain}@univ-pau.fr

Abstract: Clouds are complex systems that provide computing resources in an
elastic way. Elasticity property allows their adaptation to input workload by
(de)provisioning resources as the demand rises and drops. However, due to the
numerous overlapping factors that impact their elasticity and the unpredictable
nature of the workload, providing accurate action plans to manage cloud systems’
elastic adaptations is a particularly challenging task. In this paper, we propose an
approach based on Bigraphical Reactive Systems (BRS) to model cloud struc-
tures and their elastic behavior. We design elasticity strategies that operate at
service and infrastructure cloud levels to manage the elastic adaptations. Besides,
we provide a Maude encoding to permit generic executability and formal verifi-
cation of the elastic behaviors. One step ahead, we show how the strategies can
be combined at both levels to provide different high-level elastic behaviors. Fi-
nally, we evaluate the different cross-layer combinations using Queuing Theory.

Keywords. Cloud Computing, Elasticity, Cross-Layer Elastic Behavior, Model-
ing, Bigraphical Reactive Systems, Maude.

1 Introduction

Cloud computing [25] is a recent paradigm that has known a great interest in both in-
dustrial and academic sectors. It consists of providing a pool of virtualized resources
(servers, virtual machines, etc.) as on-demand services. These resources are offered by
cloud providers according to three fundamental service models: infrastructure as a ser-
vice (IaaS), platform as a service (PaaS), and software as a service (SaaS). The most
appealing feature that distinguishes the cloud from other models is the elasticity prop-
erty [16]. Elasticity [11] allows to efficiently control resources provisioning according
to workload fluctuation in a way to maintain an adequate quality of service (QoS) while
minimizing operating cost. Such a behavior is implemented by an elasticity controller:
an entity usually based on a closed control loop [18] that decides of the elasticity actions
to be triggered to adapt to the demand. In fact, managing a cloud system’s elasticity can
be particularly challenging. Elastic behaviors rely on many overlapping factors such as
the available resources, current workload, etc. Managing these dependencies signifi-
cantly increases the difficulty of modeling cloud systems’ elasticity controller. To

Khaled
Machine à écrire
Khaled Khebbeb, Nabil Hameurlain, Faiza Belala"Modeling and evaluating cross-layer elasticity strategies in Cloud systems"In 8th International Conference on Model and Data Engineering (MEDI 2018).24 - 26 October 2018, Marrakesh, Morocco.Published in: Lecture Notes in Computer Science (LNCS), vol 11163, pp. 168-183.Publisher: Springer, ChamDOI: https://doi.org/10.1007/978-3-030-32213-7_5

address this challenge, formal methods characterized by their efficiency, reliability and
precision, present an effective solution to deal with these numerous factors.

In this paper, we provide a formal modeling approach that reduces the complexity
of designing cloud systems and the elasticity controller behavior. We adopt Bigraphical
Reactive Systems (BRS) [26] as a meta-model for specifying structural and behavioral
aspects of elastic cloud systems. Bigraphs are used to model the structure of cloud sys-
tems and the elasticity controller. Bigraphical reaction rules describe the elastic behav-
ior of a cloud system. We focus on the infrastructure (IaaS) and service (SaaS) levels
to define reactive elasticity strategies for provisioning and deprovisioning cloud re-
sources in a cross-layered way. A strategy provides the logic that governs resources
provisioning. It enables the elasticity controller to manage the cloud system’s elastic
behavior. It consists of a set of actions (bigraphical reaction rules) that are triggered
according to the specified conditions (i.e., reactive strategies take the form: if condi-
tion(s) then action(s)).

Furthermore, we turn to Maude [23] as a semantic framework to encode the BRS
modeling approach and to provide a generic executable solution of cloud elastic behav-
ior. Maude is a formal tool environment based on rewriting logic. It can be used as a
declarative and executable formal specification language, and as a formal verification
system. It provides good representation and verification capabilities for a wide range of
systems including models for concurrency. This enables us to easily map the BRS spec-
ifications into Maude modules and to manage the non-determinism that characterizes
cloud systems’ elastic behavior.

Finally, we present a way to combine different strategies at both infrastructure and
service levels to enable different high level elastic behaviors. We propose a queuing-
based approach as an analytical support for the elastic behavior. Precisely, we conduct
experimental simulations of different execution scenarios to provide a quantitative eval-
uation of the multiple cross-layer elasticity strategies combinations.

The remainder of the paper is structured as follows. In Section 2, we present our
vision of cloud systems and explain how their elastic behavior is managed by the elas-
ticity controller. In Section 3, we introduce and use BRS formalism to provide a mod-
eling approach for cloud systems. We model the elasticity controller and define elastic-
ity strategies. In Section 4, we encode the bigraphical specifications of elastic cloud
systems into Maude. We provide a quantitative evaluation of the elasticity strategies
combinations using a queuing approach in Section 5. In Section 6, we review the state
of art on elasticity and formal specification of elastic cloud systems. Finally, Section 7
summarizes and concludes the paper.

2 Cloud Systems and Elasticity

At a high level of abstraction, an elastic cloud system can be divided in three parts: the
front-end part, the back-end part and the elasticity controller. The front-end represents
the client interface that is used to access the cloud system and to interact with it. The
back-end part refers to the cloud system’s hosting environment, i.e., the set of compu-
ting resources (servers, virtual machines, service instances, etc.) that are deployed in
the system and that are provided to satisfy its incoming workload. Cloud systems offer

their computing resources in an elastic way. Elasticity is property that was defined as
“the degree in which a system is able to adapt to workload changes by provisioning
and deprovisioning resources in an autonomic manner such that at each point in time
the available resources match the current demand as closely as possible.” [13].

Elastic cloud systems usually work according to the closed-loop architecture shown
in Figure 1, where the elastic cloud system receives end-users’ requests through its
client interface. The amount of received requests (i.e., the input workload) can oscillate
in an unpredictable manner. The growing workload, thus the system’s load can cause
users Quality of Experience (QoE) degradations (e.g. performance drop). The cloud
infrastructure provider hosts the controlled system (i.e., the cloud hosting environ-
ment). It provides costs to the cloud service provider according to the provisioned re-
sources (that are allocated to the service provider’s running applications). When the
input workload drops, the eventually unnecessarily allocated resources are still billed.
The elasticity controller monitors the controlled system and determines its adaptation
(i.e., its elastic behavior). The adaptation actions (i.e., (de)provision cloud resources)
are triggered to satisfy high-level policies that are set by the service provider such as
minimize costs, maximize performance, etc.

The behavior of an elastic system can be intuitively described as follows. During its
runtime, the system’s load can increase. Which might lead to overload the provisioned
resources. To avoid the saturation, an elastic system stretches, i.e., it scales by provi-
sioning more computing resources. Conversely, when the system load decreases, some
resources might become underused. To reduce costs, the elastic system contracts, i.e.,
it scales by deprovisioning the unnecessarily allocated resources [4]. However, due to
the complexity of cloud systems and the multiplicity of the overlapping factors that
impact their elasticity, specifying and implementing the elastic behavior is a particu-
larly tedious task. Elasticity is specified by strategies that are designed to satisfy the
high-level policies in an autonomic way. In this paper, we address this challenge by
relying on formal methods. We provide a BRS based modeling of cloud systems’ struc-
ture and the elasticity controller’s behavior. Then we encode the proposed specification
into Maude language to provide an executable solution of the elastic behaviors.

Fig. 1. High level view of cloud systems’ elastic behavior

3 BRS Based Specification of Elastic Cloud Systems

Bigraphical reactive systems (BRS) are a recent formalism introduced by Milner [26,
27], for modeling the temporal and spatial evolution of computation. It provides an
algebraical model that emphasize both connectivity and locality via a link graph and a
place graph respectively. A BRS consists of a set of bigraphs and a set of reaction
rules, which define the dynamic evolution of the system by specifying how the set of
bigraphs can be reconfigured.

3.1 Bigraphical Modeling of Cloud Systems

A cloud system is represented by a bigraph CS including all cloud architectural ele-
ments. The sorting logic introduces mapping rules and expresses all the constraints and
formation rules, that CS needs to satisfy, to ensure proper and accurate encoding of the
cloud semantics into BRS concepts. Formal definitions are given in what follows.

Definition 1. Formally, a cloud system is defined by a bigraph ��, where:

�� = (���, ���, ������, ���, ���): ��� → ���

─ ��� ��� ��� are sets of nodes and edges of the bigraph CS.
─ ������ ∶ ��� → ��� a control map that assigns each node � ∈ ��� with a con-

trol � ∈ ��� .
─ ��� = (���, ������, ������): ��� → ��� is the place graph of CS where

������: ���⨄ ��� → ���⨄ ��� is a parent map. mCS and nCS are the number of sites
and regions of the bigraph CS.

─ ��� = (���, ���, ������, ������): ��� → ��� represents link graph of CS,
where ������: ��� ⨄ ��� → ��� ⨄ ��� is a link map, XCS and YCS are respectively
inner and outer names and ���is the set of ports of CS.

─ ��� = < ���, ��� > ��� ��� = < ���, ��� > are the inner and outer interfaces of the
cloud system bigraph CS.

Nodes ��� represent the physical (servers) or logical (VM and service instances) el-
ements of the cloud system. Edges ��� represent the links (e.g. communication canals)
that connect the nodes via their ports ���. Control map ������ associate semantics to
the nodes. The place graph ���gives the hierarchical construction of the system basing
on the parent map ������ for nodes and regions (e.g. a server node is a parent for a VM
node, or hosts is). Regions represent the different parts of the system (e.g. the hosting
environment). Sites are used to neglect parts of the system that are not included in the
model. The link graph ��� gives the link map ������ that show all the connections
between ports and names. Inner and outer interfaces ��� and ��� give the openness of
the system to its external environment (other bigraphs). Inner and outer names ��� and
��� give labels to different parts of the system for interfacing purposes.

Definition 2. The sorting discipline associated to CS is a triple Σ�� = {Θ��, Κ��, Φ��}.

Where Θ�� is a non-empty set of sorts. KCS is its signature, and Φ�� is a set of for-
mation rules associated to the bigraph. Table 1 gives for each cloud concept the

mapping rules for BRS equivalence. It consists of the control associated to the entity,
its arity (number of ports) and its associated sort. Sorts are used to distinguish node
types for structural constraints while controls identify states and parameters a node can
have. For instance, a server noted SE has control SE� when it is overloaded and SE�
when unused but all nodes representing servers are of sort �.

Table 1. The sorting discipline of the bigraph CS

Cloud element Control Arity Sort

Server SE 2 e
Overloaded server SE� 2 e
Unused server SE� 2 e
Virtual machine �� 2 v
Overloaded VM VM� 2 v
Unused VM VM� 2 v
Service instance S 1 s
Overloaded service instance S� 1 s
Unused service instance S� 1 s
Request q 0 r

Table 2 gives the formation rules that define construction constraints over the bi-
graphical model. Rule Φ0 specifies that servers are at the top of the hierarchical order
of the deployed entities in the bigraph. Rules Φ1-3 give the structural disposition of the
hosting environment where a server hosts VMs, a VM runs service instances and a
service instance handles requests. All connections are port-to-port links to illustrate
possible links between the different cloud entities. In Φ5-6, we use the name w (for
workload) to illustrate the connection the cloud system has with its abstracted front-end
part. A server is linked to its hosted VMs and a VM is linked to the service instances it
is running [19]. Rule Φ4 gives the active elements, i.e., that may take part in reactions.

Table 2. Construction constraints ΦCS of the bigraph CS

 Rule description
Φ0 All children of a 0-region (hosting environment) have sort e
Φ1 All children of a e-node have sort v
Φ2 All children of a v-node have sort s
Φ3 All children of a s-node have sort q
Φ4 All evsq�-nodes are active
Φ5 In an e-node, one port is always linked to a w-name and the other may be linked to v-nodes
Φ6 In a v-node, one port is always linked to a e-node and the other may be linked to s-nodes

3.2 The Elasticity Controller as a Behavioral Entity

The elasticity controller determines the adaptations of the cloud system’s hosting envi-
ronment. In our modeling approach, we consider this entity as the set of reaction rules
that describe the system’s behavior and the logic that governs the rules’ triggering. This
logic is implemented as strategies that describe different adaptations of the cloud sys-
tem in a cross-layered manner (i.e., at infrastructure and service cloud levels).

Reaction Rules. A reaction rule Ri is a pair (�, �’), where redex � and reactum �’ are
bigraphs that have the same interface. The evolution of the cloud bigraph �� is derived
by checking if � is a match in �� and by substituting it with �’ to obtain a new system
��’. This is made with triggering the suitable reaction rule Ri. The evolution is noted

��
��
→ ��′.
Table 3 gives the algebraic description of the different reaction rules that implement

the adaptation actions of the elasticity controller. Sites (expressed as �) are used to
neglect the elements that are not included in the reaction. The specified rules define the
horizontal scale elasticity actions at different cloud levels. Reaction rules are applied
for provisioning (R1-2) and deprovisioning (R3-4) resources by scaling-out and scal-
ing-in the hosting environment. Rules R5-6 specify migration actions for service in-
stances and requests, which are used to balance the system’s load.

Table 3. Reaction rules describing adaptation actions

Adaptation action Reaction rule algebraic form
Scale-Out

Replicate service instance R1 ≝ SE. �(VM. (S. d2)|d1)�d0 ��id → SE. �(VM. (S. d2)|S)�d1 ��d0)|id

Replicate VM instance R2 ≝ SE. �(VM. (S. d2)|d1)�d0 �|id → SE. (((VM. (S. d2)|d1)|(VM))|d0)|id

Scale-In
Consolidate service instance R3 ≝ SE. ((VM. (S. d3)|(S. d2)|d1)|d0)|id → SE. ((VM. (S. d2)|d1)|d0)|id

Consolidate VM instance R4 ≝ SE. (((VM. (S. d3)|d2)|(VM. d1))|d0)|id → SE. ((VM. (S. d2)|d1)|d0)|id
Load Balancing

Migrate service instance R5 ≝ SE. (((VM. (S. d3)|d2)|(VM. d1))|d0)|id
→ SE. (((VM|d2)|(VM. (S. d3)))|d0)|id

Transfer request R6 ≝ SE. �(VM. (S. q|d4)|d3)|(VM. (S. d2)|d1)|d0 �|id

→ SE. �(VM. (S. d4)|d3)|(VM. (S. q|d2)|d1)|d0 �|id

Elasticity Strategies. As explained before, the specified strategies define the logic that
governs the elastic behavior of the controlled cloud system. We use reactive strategies
to make decisions about the elastic adaptations of the deployed entities by reasoning on
their states. A reactive strategy takes the form: IF Condition(s) THEN Action(s) where
conditions are expressed in predicates logic and actions are reaction rules. Table 4 de-
fines the scaling (out/in) policies at both service and infrastructure levels.

Infrastructure Level. We introduce two strategies to express different provisioning pol-
icies for VM instances, as follows.

─ Strategy V1: ensures VM instances’ high availability. It states that the system scales
out, i.e., provision a new VM instance, by executing rule R2 when at least one VM
is overloaded, i.e., when it reaches its upper threshold of hosted service instances. In
other terms, when it has control VM�.

─ Strategy V2: is designed to ensure the limited availability in terms of VM instances.
It states that scale-out adaptations (provisioning VM instances) are triggered when
all available VMs are overloaded.

─ Both V1 and V2 specify that the system scales-in, i.e., deprovisions an empty VM
instance (of control VM�) by executing rule R4, if one is detected and no overloaded
VM is available. This choice prevents having contradictory adaptation loops.

Service Level. We define two strategies to describe the system’s service instances pro-
visioning behaviors, as follows.

─ Strategy S1: ensures service instances’ high availability. It states that a new instance
of service is provisioned by executing rule R1, when at least one available instance
is overloaded (when it has control S�).

─ Strategy S2: defines service instances’ limited availability. It states that scale-out
adaptations (provisioning service instances) are triggered when all available service
instances are overloaded.

─ Strategies S1 and S2 specify that the system scales in, i.e., deprovisions an empty
service instance (which has control S�) by executing rule R3, when one is detected,
and no overloaded instance is available.

Table 4. Scaling strategies at service and infrastructure levels

Strategy Scale-Out Scale-In
 Infrastructure level

V1 �� ∃� ∈ ��� ������(�) = VM� ���� �2 �� ∀� ∈ ��� ∃�� ∈ ��� ������(�) ≠ VM�
∧ ������(��) = VM� ���� �4 V2 �� ∀� ∈ ��� ������(�) = VM� ���� �2

 Service level

S1 �� ∃� ∈ ��� ������(�) = S� ���� �1 �� ∀� ∈ ��� ∃�� ∈ ��� ������(�) ≠ S�
∧ ������(��) = S� ���� �3 S2 �� ∀� ∈ ��� ������(�) = S� ���� �1

In addition, we define two strategies for the system’s load balancing at both service
and infrastructure levels as follows.

─ Strategy LB-V: describes the system load balancing at infrastructure level, it states
that service instances are migrated from loaded VMs to less loaded ones (executing
rule R5) to reach a VMs load equilibrium.

─ Strategy LB-S: states that requests are transferred from loaded service instances to
less loaded ones (by applying rule R6) to achieve load balancing at service level.

Modeling the Elastic Behavior with LTL. Modeling the introduced elastic behavior
with Linear Temporal Logic allows the specification of formulas to verify the system’s
elastic adaptations. To this purpose, we define a model of temporal logic with a Kripke
structure ���, as follows.

Definition 3. Given a set ���� of atomic propositions, we consider the Kripke structure
��� = (�, →�, ���). Where � is the set of states, →� is the transition relation, and
���: � → ���� is the labeling function associating to each state � ∈ �, the set ���(�)
of the atomic propositions in ���� that hold in the state �. ���(����) denotes the for-
mulas of the propositional linear temporal logic. The semantics of ���(����) is de-
fined by a satisfaction relation: ���, � ⊨ φ , where φ ∈ ���(����).

We consider the set ���� = {������, ����������, ���������, ������, M} of the
atomic propositions that describe the hosting environment’s states. For the sake of sim-
plicity, these states are symbolic and relate to the elastic behavior of the system. The
system is considered Overloaded/Underused when at least one entity (VM, Service) is
overloaded/unused. It is Stable otherwise. LBTrue is a non-exclusive proposition that

can hold together with Stable, Overloaded or Underused (that are exclusive) when load
balancing at VM or Service levels is applicable. M holds when the system is being
monitored. In other terms, different structural states of the system in � (i.e., configura-
tions) can be gathered (i.e., labeled) in the same class of equivalence with respect to the
global symbolic state of the system in ����.

The non-deterministic finite-state automaton in Figure 2 shows the transitions Scale-
Out, Scale-In and LB (for Load Balancing) that represent the adaptation actions that are
executed by the elasticity controller. The transitions Input and Output stand for receiv-
ing and releasing end-users’ requests. Initially, the controlled system is in the monitor-
ing phase. When monitored, it can be at any elastic state.

Note that the evolution of the system’s state depends on its elastic constraints
(bounded resources capacity introduced by thresholds, triggering predicates, etc.).
Thus, reaching the stable state is not always possible (i.e., all elastic states can be final).

Fig. 2. Elastic behavior non-deterministic finite-state automaton

To describe the elastic behaviors that are triggered by the elasticity controller in LTL,
we introduce the set ���(��) = {�����˗���, �����˗��, �����������} of the proposi-
tional formulas, as follows.

─ �����˗��� ≡ � (���������� à � ������)
─ �����˗�� ≡ � (��������� à � ������)
─ ����������� ≡ � (������ à � ~������)

Where the formulas Scale-Out and Scale-In state that a given system that is Over-
loaded/Underused will eventually reach its Stable state. LoadBalance formula ensures
that the system will eventually apply load balancing as long as it is possible. We use
the symbol ~ for negation. The symbols � and � are LTL operators that respectively
stand for “always” and “eventually”.

4 Principles of Maude Encoding and Property Verification

To verify the correctness of the introduced elasticity strategies and to watch the aimed
cross-layered elasticity, it is important to provide an executable solution for the

specified elastic behaviors. Theoretically, BRS provide good meta-modeling bases to
specify cloud systems’ structure and their elastic behavior. As for their executable ca-
pabilities, the few existing tools built around BRS as BigraphER [5] and BPL Tool [14]
are limited and only suitable for some specific application domains. Furthermore, the
BRS model-checker BigMC [30] that was used in [32], allows formal verification of
safety properties. However, the possible verifications rely on very limited predefined
predicates. These tools lack of providing concurrent and autonomic executability of the
specified BRS models. In this paper, we turn to Maude language to tackle these limita-
tions and to provide a generic executable solution of elasticity strategies together with
their verification.

4.1 Motivating the Use of Maude

Maude [9] is a high-level formal specification language based on equational and rewrit-
ing logics. A Maude program is a logical theory and a Maude computation is logical
deduction which uses the axioms specified in the program/theory. A Maude specifica-
tion is structured in two parts. (1) A functional module that specifies a theory in mem-
bership equational logic. Such a theory is a pair (Σ, E ∪ A), where the signature Σ spec-
ifies the type structure (sorts, subsorts, operators etc.). E is the collection of the (possi-
bly conditional) equations declared in the functional module, and A is the collection of
equational attributes (associative, commutative, etc.) declared for the operators. (2) And
a system module that specifies a rewrite theory as a triple (Σ, E ∪ A, R). Where (Σ, E ∪
A) is the module’s equational theory part, and R is a collection of (possibly conditional)
rewrite rules.

The Bigraphical specifications for cloud systems’ structure (in Section 3.1) can be
encoded in a functional module. Where the declared operations and equations define
the constructors that build the system’s elements. Similarly, BRS dynamics (in Section
3.2) that describe the elasticity controller’s behavior can be encoded in a system mod-
ule. Where the elasticity strategies are described as conditional rewrite rules. The set of
rewrite rules R express the bigraphical reaction rules. Their triggering conditions ex-
pressed as equations from the functional module encode the strategies’ predicates.

4.2 Setting Up Elastic Cloud Systems

To encode the BRS modeling approach for cloud structures and their elastic behavior
in Maude, we first map the BRS model into Maude language as shown in Table 5.

Structure Encoding. In the functional module, the bigraph sorts e, v and s (i.e., server,
VM and service) are defined as CS, VM and S. Note that we enriched Maude sorts with
additional information as the maximum hosting thresholds and the entities states. A sort
is built according to its associated constructor. For instance, a cloud server is built by
the term CS<x,y,z/VML:state>, where x, y and z are naturals that encode upper
hosting thresholds at server, VM and service levels. VML is a list of VMs, this relation-

ship is expressed by the declaration of sort VM as a subsort of sort VML. The element
state gives a state out of the constructors (overloaded, unused, stable, etc.). To enable

horizontal scale strategies according to configurable preferences, we define the sort

HSCALE(V i, S j) :: cs. Where the parameters �, � ∈ [1,2] indicate which

strategies are applied at infrastructure (V1 or V2) and service (S1 or S2) levels of the
cloud system cs.

Table 5. Encoding the BRS cloud model into Maude

Bigraphical model Maude specification
Functional module

Sorting discipline
(structure construction)

sorts HSCALE CS VM S VML SL state . subsort VM < VML . subsort S < SL .
op HSCALE (V_ , S_) :: _ : Nat Nat CS -> HSCALE [ctor] .
op CS<_,_,_/_:_> : Nat Nat Nat VML state -> CS [ctor] .
op VM{_,_:_} : Nat SL state -> VM [ctor] .
op S[_,_:_] : Nat Nat state -> S [ctor] .
ops stable over under idle : -> state [ctor] .
op nilv : -> VML [ctor] . op _|_ : VML VML -> VML [ctor assoc comm id: nilv] .
op nils : -> SL [ctor] . op _+_ : SL SL -> SL [ctor assoc comm id: nils] .

…

System state predicates
(self-aware property)

ops isStable(_) isOverloaded(_) isUnderused(_) AoverV(_) EoverV(_) EunV(_)
AoverS(_) EoverS(_) EunS(_) LBVpred(_) LBSpred(_) : CS -> Bool .

…
System module

Reaction rules and
elasticity strategies

(self-adaptive property)

Conditional rewrite rules of the form:
crl [rewrite-rule-name] : term => term' if condition(s) .

System State Predicates Encoding. We define a set of system predicates in the func-
tional module that give information about the managed cloud system configuration (that
we express as a cloud server in Maude). For instance, AoverV() is a predicate for “all
VMs are overloaded” and EunS() is a predicate for “there exists an unused service in-
stance”. We also encode system state predicates isStable(), isOverloaded() and isUn-
derused() that are true if the cloud system is stable, overloaded or underused.

Elasticity Strategies Encoding. Strategies are encoded as conditional rewrite rules in
the system module. Their conditions are the states and monitoring predicates and their
actions (bigraph reaction rules) are encoded as Maude functional computation. For in-
stance, load-balancing strategy at VM level is specified as the following rewrite rule:
crl[LB-VM-level]:cs => LBV(cs) if LBVpred(cs). Where cs is a
given cloud system, LBV(cs) is an equation that reduces the term cs in such a way
to apply load-balancing at VM level and LBVpred(cs) is a predicate that is true if
load-balancing at VM level in cs is possible. LBV() and LBVpred() are defined as equa-

tions in the functional module.

Formal Verification of Elasticity. To verify the elastic behavior of the system as en-
coded in the system module, we define a Maude property specification based on Linear
Temporal Logic. Maude allows associating Kripke structures to the rewrite theory spec-
ified in the system module. The semantics introduced by the Kripke structure ��� in
Section 3.2 allowed us to define a generic LTL model checking that can reason on any
system configuration. For instance, determining that a cloud configuration is stable in
terms of elasticity is specified with: cs ⊨ Stable = true if isStable(cs)

== true. Where cs is a given cloud configuration. Stable is a proposition ∈ ����
that represent the symbolic elastic state “stable”. And isStable(cs) is a predicate

for “the cloud system cs is stable” which is defined in the functional module.

We execute Maude’s LTL model-checker with, as parameters, a cloud configuration
as an initial state and a property formula in ���(����) to verify. The model-checker
can give counter examples showing the succession of the triggered rewrite rules that
are applied on the initial state of the system, in such a way to verify the given property
according to the specified elasticity strategies.

5 A Queuing Approach for Quantitative Evaluation

As its input workload rises, the congestions that may result in a system are in fact wait-
ing queues that indicate the insufficiency of the provisioned resources. For this reason,
we advocate that a queuing approach is a relevant support to study the elastic behavior
of a system and to evaluate the performance of elasticity strategies. To proceed to a
quantitative evaluation of the introduced strategies, we perform queuing-based offline
simulations of elastic cloud systems.

Queuing Model. We consider a queuing model, defined by a set of parameters as in-
troduced by the Kendall notation: A/S/C/Q/N/D [3], where C is the number of service
instances. A is the arriving process describing how the requests arrive into the system.
D is the serving discipline describing how the requests are processed (e.g., first come
first served). The service process S gives the amount of time required to process the
requests. Q is the maximum number of requests that the system can hold, and N is the
number of requests expected to arrive into the system. In our evaluation, we consider
that Q and N = ∞. We consider that A is a Poisson process which gives an exponential
distribution of the received requests (at each time unit) with the average value of λ. S
also follows an exponential law with the average value of µ to give the number of re-
quests that are processed by service instances. The essence of elasticity being the adap-
tations, we use a queuing model with on-demand number C of service instances, in-
spired from [15], to show how the system adapts to its varying input workload by
(de)provisioning resources at service and infrastructure levels.

Experiment. To evaluate elasticity, we consider the example of a cloud-based voting
service where initially one VM is provisioned in which one service instance is de-
ployed. We define the upper-bound hosting thresholds � = 2 , � = 2 and � = 40 , for
the cloud system, the VMs and the service instances respectively in terms of VMs,
service instances and requests. We simulate the execution of a cloud system from the
same initial configuration according to the defined strategies, for both infrastructure
(V1, V2) and service (S1, S2) levels. The simulations are performed within 50 time units
over a scenario where � = 50 and µ = 35. The results give the system’s average re-
sources provisioning, performance and efficiency. Introducing thresholds makes the
systems bounded in terms of hosting capabilities. Thus, the displayed rates are given in
function of the maximum capacity of service/VM instances and their average recorded
deployment. Idem for the system load (i.e., the processed requests per time unit). The
delay represents the ratio between the pending requests and those being served.

Knowing that load balancing (LB-V, LB-S) is applied when possible, the graphs in
Figure 3 show the cross-layer behaviors resulting from combining the scaling strategies
introduced in Section 3.2.

Intuitively, combining high availability for both infrastructure and service levels
(V1, S1) leads to high-performance, i.e., low processing delay (1%), but also brings
high provisioning costs, i.e., high hosting environment deployment (93% service and
100% VM instances capacity).

Inversely, applying limited availability at both levels (V2, S2) implies low costs i.e.,
high economy but also low performance, i.e., high processing delay (28%).

The combination (V2, S1) ensures infrastructure costs optimization, i.e., new VMs
are provisioned only when the available ones are fully loaded (by scaling-out at service
level). It brings better overall optimization than (V1, S1) with less average service de-
ployment and better average system load (with respectively 73% and 44% service in-
stances provisioning and usage rate for combination (VS, S1) versus 93% and 32% for
combination (V1, S1)), yet with lower performance (i.e., higher delay).

The combination (V1, S2) doesn’t seem to describe a specific behavior (labeled “x”)
in this simulation. It leads to mediocre rentability of the VMs and to consequent delay
regarding the recorded usage rate of the Service instances.

Fig. 3. Evaluation of cross-layer elasticity strategies

To conclude this evaluation, we want to emphasize the fact that the concept of
“good” strategy is not absolute. It depends on the case study (i.e., the system configu-
ration, workload tendencies, available resources, etc.) and on the preferences set by the
cloud service provider [29]. Indeed, having strategies that describe different high-level
behaviors gives a certain range of possibilities to endow the managed cloud system with
the desirable elastic behaviors.

6 Related Work

There have been several researches in the literature about cloud systems’ elasticity such
as [21, 7, 1, 10, 33]. However, only a few works like [12, 20, 22, 28] were proposed to
study elasticity property using formal methods.

In the context of modeling cloud systems and their elastic behaviors, authors in [4]
adopted the temporal logic named CLTLt(D) (Timed Constraint LTL) to model some
properties related to cloud systems such as elasticity, resource management and quality
of service. In their work, they considered cloud resources as virtual machines and did
not address service level. In [2] authors proposed a Petri Nets based formalization to

describe cloud-based business processes’ elastic behaviors. They introduced elasticity
strategies for routing, duplicating and consolidating cloud components at service level.
They focused on the application layer of a cloud configuration but did not address the
cloud infrastructure in their model. As for our adopted formalism, BRS were proven
useful in the specification of ubiquitous, context aware and distributed systems [24, 17]
and in other domains [6]. BRS were used in [31] to provide a generic model of elastic
cloud systems. Authors modeled cloud structures with bigraphs in three parts: the front-
end part, the back-end part and the elasticity controller. They relied on bigraphical re-
action rules to express the front/back-end interactions along with the adaptation actions
of cloud configurations at service and infrastructure levels. However, they lacked
providing elasticity strategies that operate in an autonomic manner.

In our previous work [19], we proposed a BRS modeling for elastic cloud systems
in two parts. First, we defined a bigraphical specification for the hosting environment
and the elasticity controller structures. And second, we used bigraphical reaction rules
to model the adaptation actions, which describe the elasticity controller’s behavior.

In this present paper, we propose a different approach. We use a bigraphical model-
ing to describe the structural aspect of a cloud system’s hosting environment only; and
we model the elasticity controller as a behavioral entity. The controller is modeled using
bigraphical reaction rules alongside with the logic that triggers the reactions. This logic
is represented by elasticity strategies that specify the elastic behavior of the cloud sys-
tem in a cross-layered manner (i.e., at service and infrastructure levels). This new ap-
proach enables seeing the elasticity controller as an intrinsic entity of the cloud system.
Therefore, monitoring tasks over the controlled cloud system enables considering it as
“self-aware”; and the adaptation actions that are triggered in function of its state enables
considering it as “self-adaptive” [8]. In addition, we propose a way to combine the
different designed strategies to provide multiple cross-layer elastic patterns. We evalu-
ate the combinations to highlight the resulting high-level elastic behaviors.

Besides, Control Theory was used for resources management in distributed [35] and
cloud [34] systems. One of the main limitations of this approach is the non-linearity of
most inter-relationships in computing systems [36]. This requires designing nonlinear
and adaptive controllers that are difficult to understand and implement. In this paper,
we inspire from closed-loop based approaches to design our elasticity controller. It aims
at having the controlled cloud system reach a “stable” global state (which is defined in
predicates logic) by relying on elasticity strategies we specified using BRS. Maude en-
coding of these behaviors ensures autonomic and concurrent execution of the elastic
adaptations. And Maude’s LTL model-checking enables verifying the correctness of
the adaptations regarding the reachability of the “stable” state.

7 Conclusion

In this paper, we provided a modeling approach for cloud systems’ structure and elastic
behaviors based on Bigraphical Reactive Systems. We use bigraphs and bigraphical
reactive rules to express both aspects respectively. These behaviors implement the elas-
ticity controller and are described by elasticity strategies. We propose different strate-
gies for horizontal scale (de)provisioning of cloud system resources and for load

balancing at service and infrastructure levels. Strategies describe the logic that enables
the elasticity controller to reason over the entire cloud system’s state and manage its
elastic adaptations.

One step further, we encoded the modeling approach into Maude language to provide
a generic executable solution for elasticity in cloud systems. We also provided formal
verification of elasticity property using the LTL model-checker integrated in Maude.

Besides, we presented an original way to compose different elasticity strategies at
both service and infrastructure levels to provide multiple high-level elastic behaviors.

Finally, we proposed a queuing-based approach to conduct experimental simulations
of the different elasticity strategies combinations in order to provide a quantitative eval-
uation of the adaptations.

As on-going work, we aim to enlarge the specifications of cloud system’s elastic
behavior. Our goal is to provide a more complete solution that considers vertical scale
elasticity for cloud resources management.

8 References

[1] A. Ali-Eldin, J. Tordsson, and E. Elmroth, "An adaptive hybrid elasticity controller for
cloud infrastructures", 2012 IEEE Network Operations and Management Symposium,
Maui, HI, (2012), pp. 204–212.

[2] M. Amziani. "Modeling, evaluation and provisioning of elastic service-based business pro-
cesses in the cloud". Thesis. Institut National des Télécommunications, 2015. English.
<NNT: 2015TELE0016>. <tel-01217186>.

[3] B. Baynat, "Théorie des files d'attente". Paris: Hermès Science publications, 2000. Avai-
lable online : http://books.google.fr/books?id=NWWgMQEACAAJ

[4] M. Bersani, D. Bianculli et al., "Towards the formalization of properties of cloud based
elastic systems", Proceedings of the 6th International Workshop on Principles of Engineer-
ing Service-oriented and Cloud Systems – PESOS 2014, Hyderabad, 2014, pp. 38–47.

[5] M. Sevegnani and M. Calder, "BigraphER: rewriting and analysis engine for bigraphs". In
proceedings of Computer Aided Verification (CAV 2016), Lecture Notes in Computer Sci-
ence, Volume 9780 Part II, pp 494-501, Springer, Toronto, Canada, July 2016.

[6] M. Calder and M. Sevegnani, "Modeling IEEE 802.11 CSMA/CA RTS/CTS with stochas-
tic bigraphs with sharing". Formal Aspects of Computing. 26(3): 537-561 (2014)

[7] K. Chatziprimou, K. Lano and S. Zschaler, "Runtime Infrastructure Optimization in Cloud
IaaS Structures". CloudCom (1) (2013): 687-692

[8] T. Chen, R. Bahsoon and X. Yao, "A Survey and Taxonomy of Self-Aware and Self Adap-
tive Cloud Autoscaling Systems", ACM Computing Surveys, Vol. 1, No. 1, Article 1. Jan-
uary 2018.

[9] M. Clavel, F. Duran and al., "Maude Manual V 2.7.1". 2017
[10] G. Copil, D. Moldovan et al., "Multi-level elasticity control of cloud services", Service-

oriented Computing, 2013, pp. 429–436.
[11] S. Dustdar, Y. Guo, B. Satzger, and H. Truong, "Principles of elastic processes", IEEE

Internet Comput. 15 (2011), pp. 66–71.
[12] L. Freitas and P. Watson, "Formalizing workflows partitioning over federated clouds:

Multi-level security and costs". International Journal of Computer Mathematics,
91(5), pp.881-906.

[13] G. Galante and L. Bona, "A survey on cloud computing elasticity", 2012 IEEE Fifth Inter-
national Conference on utility and Cloud Computing, Chicago, Il, 2012, pp. 263–270.

[14] AJ. Glenstrup, TC. Damgaard et al., “An implementation of bigraph matching”. Technical
Report 2010-135. Copenhagen: ITUniversitetet Kobenhavn; 2010.

[15] A. Gurtov and V. Mazalov, "Queueing System with On-Demand Number of Servers",
Mathematica Applicanda, vol. 40, no. 2, 2012.

[16] N. Herbst, S. Kounev, and R. Reussner, "Elasticity in cloud computing: What it is, and
what it is not", In Proceedings of the 10th International Conference on Autonomic Compu-
ting, San Jose, CA: uSENIX, 2013.

[17] J. Wang, D. Xu and Z. Lei, "Formalizing the Structure and Behaviour of Context-aware
Systems in Bigraphs". In First ACIS International Symposium on Software and Network
Engineering; 2011.

[18] B. Jacob, "A Practical Guide to the IBM Autonomic Computing Toolkit". IBM, Interna-
tional Technical Support Organization, Raleigh, NC, 2004.

[19] K. Khebbeb, H. Sahli, N. Hameurlain et al., "A BRS Based Approach for Modeling Elastic
Cloud Systems". Service-Oriented Computing – ICSOC 2017 Workshops, pp.5-17.

[20] S. Kikuchi and K. Hiraishi, “Improving reliability in management of cloud computing in-
frastructure by formal methods”. In Network Operations and Management Symposium
(NOMS); 2014. p. 1-7.

[21] L. Letondeur, "Planification pour la gestion autonomique de l’élasticité d’applications dans
le cloud". Computer Science [cs]. Thesis at Joseph Fourier University, (2014). French. <tel-
01140128>

[22] M. Rady, "Formal definition of service availability in cloud computing using OWL". In
Computer Aided Systems Theory-EUROCAST. Springer; 2013. p. 189-194. N

[23] M. Clavel, F. Duran et al., “All about Maude. A High- Performance Logical Framework”.
volume 4350 of Lecture Notes in Computer Science. Springer, 2007.

[24] A. Mansutti, M. Miculan and M. Peressotti, "Multi-agent Systems Design and Prototyping
with Bigraphical Reactive Systems". DAIS 2014: 201-208.

[25] P. Mell and T. grance, "The NIST Definition of Cloud Computing", National Institute of
Standards & Technology, Special Publication, 2011, pp. 800–145.

[26] R. Milner, "Bigraphs and their algebra", Electron. Notes Theor. Comput. Sci. 209 (2008),
pp. 5–19.

[27] R. Milner, "The Space and Motion of Communicating Agents", Cambridge university
Press, Cambridge, 2009.

[28] A. Naskos, E. Stachtiari et al., “Cloud elasticity using probabilistic model checking” CoRR,
vol. abs/1405.4699; 2014

[29] M. Netto, C. Cardonha et al., "Evaluating Auto-scaling Strategies for Cloud Computing
Environments", 2014 IEEE 22nd International Symposium on Modelling, Analysis & Sim-
ulation of Computer and Telecommunication Systems, 2014.

[30] G. Perrone, S. Debois, and T. Hildebrandt, "A Model Checker for Bigraphs". In proceed-
ings of the 27th ACM Symposium in Applied Computing ACM-SAC'12; 2012.

[31] H. Sahli, N. Hameurlain and F. Belala, "A bigraphical model for specifying elastic cloud
systems and their behaviour", International Journal of Parallel, Emergent and Distributed
Systems, 2016 DOI: 10.1080/17445760.2016.1188927.

[32] H. Sahli, F. Belala and C. Bouanaka, "Model-Checking Cloud Systems Using BigMC" 8th
International Workshop on Verification and Evaluation of Computer and Communication
Systems. Bejaïa, Algeria. Sep 2014.

[33] D. Trihinas, C. Sofokleous et al., "Managing and monitoring elastic cloud applications",
Lecture Notes in Computer Science, Toulouse, 2014, pp. 523–527.

[34] M. Mendieta, C. Martin et al., "A control theory approach for managing cloud computing
resources: A proof-of-concept on memory partitioning". IEEE Second Ecuador Technical
Chapters Meeting (ETCM). 2017.

[35] X. Liu, X. Zhu et al., "Adaptive entitlement control of resource containers on shared serv-
ers". 9th IFIP/IEEE International Symposium on Integrated Network Management, 2005.

[36] X. Zhu, M. Uysal et al., "What does control theory bring to systems research?". ACM
SIGOPS Oper. Sys. Rev., vol. 43, no. 1, 2009.

